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Abstract

The treatment of chemical mixing in the radiative envelopes of intermediate-mass stars has hardly been calibrated
so far. Recent asteroseismic studies demonstrated that a constant diffusion coefficient in the radiative envelope is
not able to explain the periods of trapped gravity modes in the oscillation spectra of γ Doradus pulsators. We
present a new generation of MESA stellar models with two major improvements. First, we present a new
implementation for computing radiative accelerations and Rosseland mean opacities that requires significantly less
CPU time. Second, the inclusion of shear mixing based on rotation profiles computed with the 2D stellar structure
code ESTER is considered. We show predictions for the mode periods of these models covering stellar masses
from 1.4 to 3.0Me across the main sequence, computed for different metallicities. The morphology of the chemical
mixing profile resulting from shear mixing in combination with atomic diffusion and radiative levitation does allow
for mode trapping, while the diffusion coefficient in the outer envelope is large (>106 cm2 s−1). Furthermore, we
make predictions for the evolution of surface abundances for which radiative accelerations can be computed. We
find that the N/C and C/O abundance ratios correlate with stellar age. We predict that these correlations are
observable with precisions 0.1 dex on these ratios, given that a precise age estimate can be made.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Stellar abundances (1577); Stellar evolution
(1599); Stellar oscillations (1617)

1. Introduction

A complete and calibrated theory of chemical mixing inside
stars remains an outstanding problem in stellar structure and
evolution theory (Salaris & Cassisi 2017). The chemical
mixing on a microscopic level is ascribed to atomic diffusion
(including radiative levitation) and can be derived from first
principles, whereas macroscopic mixing, caused by turbulent
flows, is often parameterized as the combined effect of
convection, (convective) core boundary mixing (CBM), and
radiative envelope mixing (REM), each with their own free
parameters. Convective mixing can be described by mixing-
length theory (MLT; Böhm-Vitense 1958), where the free
parameter αMLT, setting the typical length scale, is often fixed
to a value calibrated to the Sun (Choi et al. 2018). A commonly
used parameterization for the CBM is based on convective
penetration (Zahn 1991; Augustson & Mathis 2019), where the
fully mixed core is extended over a distance described by a
dimensionless parameter αov times the local pressure scale
height. In this extended region, the temperature gradient is the
adiabatic one. This form of CBM was found to give a more
accurate description than diffusive exponential overshooting
with a radiative temperature gradient from a sample of 26
slowly pulsating B-type (SPB) stars (Pedersen et al. 2021).
Beyond the CBM zone, REM takes over, which can be induced
by several mechanisms, such as internal gravity waves (IGWs;

Rogers & McElwaine 2017), meridional flows (Meynet &
Maeder 2002), or shear instabilities due to differential rotation
(Maeder 2009).
The advent of asteroseismology has made it possible to

probe the internal physics of pulsating stars through their
oscillation spectrum (Aerts et al. 2010). For nonrotating,
nonmagnetic stars the period difference between gravity (g)
modes with equal spherical degree, ℓ, azimuthal order, m, and
consecutive radial order, n, is constant in the asymptotic regime
where n? ℓ (Tassoul 1980). Yet departures from a constant
period spacing are induced by the changes in the local
composition (Miglio et al. 2008), by rotation (Bouabid et al.
2013), and by the presence of a magnetic field (Prat et al. 2019;
Van Beeck et al. 2020). The study of a star’s period spacing
pattern (i.e., mode period Pn vs. the period spacing
ΔPn= Pn+1− Pn), or equivalently the precise mode periods
themselves, allows one to probe the deep internal stellar
structure (see Aerts 2021, for a review).
Different prescriptions for REM have been tested on a

sample of SPB stars in the work by Pedersen et al. (2021),
comparing the observed periods of g-mode oscillations with
those predicted by models. Their work shows that an REM
profile based on vertical shear is preferred for the majority of
the sample containing 26 stars. Similarly, Mombarg et al.
(2021) measured the value of fov, the parameter defining the
extent of the CBM region (Freytag et al. 1996), for a sample of
37 γDoradus (γDor) stars. In their work, a constant value
Dmacro= 1 cm2 s−1 for the macroscopic mixing in the radiative
envelope was chosen. Although for a large part of the sample
this simple prescription seems sufficient, there are also several
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stars that show signatures of mode trapping, such that modes
are confined in a narrow cavity owing to wave reflection caused
by a gradient in the local mean molecular weight. The clearest
example of a γDor star with trapped modes is KIC 11294808,
which shows pronounced “dips” in the period spacing pattern
(Van Reeth et al. 2015) that could not be explained with the
physics used in the models of Mombarg et al. (2021). These
authors find that similar amplitudes of the dips, compared to
those observed in KIC 11294808, are only reproduced at a level
of Dmacro= 0.05 cm2 s−1 for the macroscopic mixing. How-
ever, such low diffusion coefficients throughout the radiative
envelope are four to six orders of magnitude lower than typical
values assumed for macroscopic mixing induced by turbulent
diffusion in stellar models (Miglio et al. 2008; Christophe et al.
2018; Ouazzani et al. 2019). Furthermore, due to gravitational
settling, KIC 11294808 should have a low surface metallicity
(if radiative levitation is relatively weak), which is not
supported by spectroscopic observations (Gebruers et al. 2021).

Moreover, the work by Mombarg et al. (2020) demonstrated
that the inclusion of atomic diffusion and radiative levitation
has large effects on the resulting predicted periods of the g-
modes. Similar results were obtained for p-modes by Deal et al.
(2020). Yet, due to large amounts of computation time required
for calculations related to radiative levitation and the Rosseland
mean opacity, the inclusion of radiative levitation in the
modeling of g-modes in dwarfs has so far been limited to two
slowly rotating γDor stars (Mombarg et al. 2020).

The gravitational settling of helium near the core boundary
reduces the local chemical gradient and therefore inhibits mode
trapping (Théado et al. 2009). Since it is well known that
atomic diffusion occurs in stars (Michaud et al. 2015), this
gives us extra constraints on the macroscopic mixing, as the
effect of atomic diffusion needs to be counteracted in some
parts of the stars when mode trapping is observed. Similarly, a
form of turbulent diffusion that is scaled with the local atomic
diffusion coefficient of helium was introduced by Richer et al.
(2000) to counteract the gravitational settling in AmFm stars, in
order to reconcile with observed surface abundances.

In this work, we demonstrate that (macroscopic) shear
mixing in combination with microscopic mixing due to atomic
diffusion (including radiative levitation) can explain the
observed g-mode periods of γDor stars, and we investigate
the implications of including these two mixing phenomena for
the evolution of the surface abundances. In Section 2, we
present an improved method to compute radiative accelerations
and the Rosseland mean opacity from monochromatic opacity
tables, reducing the computation time drastically by more than
a factor of 4. In Section 3, we discuss a new implementation of
macroscopic mixing induced by vertical shear and combine this
with microscopic mixing to study when mode trapping can
occur across the γDor mass regime for different ages and
metallicities (Section 4). Moreover, we show the predicted
evolution of surface abundances in Section 5, discuss the
numerical sensitivity in Section 6, and finally conclude in
Section 7.

2. Improved Routines for Radiative Levitation

We start by discussing the numerical implementation to
compute radiative accelerations (i.e., the acceleration of
elements induced by the process of radiative levitation) and
the improvements we have made to reduce the computation
time. The change in the local mass fraction of a chemical

species i over time is described by
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where the first term on the right-hand side describes the change
in composition due to nuclear reactions, and the second term
describes the change induced by both macroscopic and
microscopic mixing. Here ρ is the local density, r is the
distance from the stellar center, Dmacro is the diffusion
coefficient for macroscopic turbulent mixing, and vdiff,i is the
diffusion velocity of species i.
We make use of the open-source stellar structure and

evolution code MESA, r11701 (Paxton et al.
2011, 2013, 2015, 2018, 2019), where the default routines
for computing radiative accelerations are based on the work by
Hu et al. (2011). The diffusion velocity of a species i is
determined in MESA by solving the Burgers equations
(Burgers 1969). We refer to Mombarg et al. (2020) and
references therein for details on the numerical implementation.
The effectiveness of radiative acceleration enters the Burgers
equations via the local acceleration induced by momentum
absorption of photons generated in the stellar core (Hu et al.
2011),
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where μi and μ are the molecular weights of species i and the
mean molecular weight, respectively, κR is the Rosseland mean
opacity, ( )r is the local radiative flux, c is the speed of light,
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where u= hν/kBT (with h the Planck constant and kB the
Boltzmann constant). This integral depends on the local
mixture that is given by the fractional abundances fk, with
∑kfk= 1, and its computation requires the monochromatic
cross sections σi and correction terms ai. MESA relies on the
tables provided by the OP project (Seaton 2005) for these
quantities. These OP monochromatic tables provide data for H,
He,6 C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Cr, Mn, Fe, and
Ni, which are equally spaced in
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where u ranges from 10−3 to 20.
As a result of atomic diffusion, the Rosseland mean opacity

can no longer be evaluated for the same mixture in each cell of
the model since
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6 For H and He, the correction terms ai are not provided.
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where the factors fk(r) for the metals are no longer constant
throughout the star. Consistently computing κR requires a lot of
additional computation time compared to when the fractional
metal abundances are constant throughout the star.

As a first step to reduce the number of redundant
computations, we pre-process the OP mono tables where we
compute the cross section for momentum transfer to an atom (
i.e., the numerator in Equation (3)). The data from the OP
project are tabulated in temperature T and electron number
density Ne. The latter has to be converted to a mass density as
per

 ( )Nlog log log log log , 6e Ar m= + - X -

where Ξ=∑kfkΞk is the average number of electrons per atom
and A is Avogadro’s number. For the temperature T(r) and
density ρ(r) in each cell, κR and γ are computed by means of a
bicubic interpolation, where we use the following scheme to
select the 16 points on which the interpolation is done. First,
select the closest point in the table by minimizing

( ( )) ( ( )) ( )
( ) ( )T T r rlog log

0.0025

log log

0.25
, 7

t 2 t 2r r
D =

-
+

-

where the two constants are used to account for the difference
in spacing of the tabulated T(t) ( ( )Tlog t given in steps of
0.05 dex) and ρ(t) ( ( )log tr given in steps of 0.5 dex).
Subsequently, a grid of 4× 4 points is constructed, centered
around T(r) and ρ(r). It occasionally happens that a cell has
temperature and/or density close to the edge of the OP mono
tables. In that case, the 4× 4 grid is moved one step at the time
in temperature/density until a 4× 4 grid is found that encloses
T(r) and ρ(r). For one location in the OP mono tables (relevant
for intermediate-mass main-sequence (MS) stars), the grid
selection is hard-coded.

To further speed up the computation of κR, the quantity
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R
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where the superscript “(p)” indicates the mixture for which the
grids have been precomputed, and “(c)” indicates the current
mixture. The threshold value of 10−4 was found to be an
optimal value by Hui-Bon-Hoa (2021), using a similar
technique to speed up computations of the Rosseland mean
opacity in the Toulouse-Geneva evolution code (Hui-Bon-
Hoa 2008; Théado et al. 2012). We choose to evaluate the
mixture in the convective core, as this is the largest zone in the
star where the mixture is homogeneous. After the first time step
for which ( )

R
pk is computed, the 4× 4 grids selected for each cell

and the corresponding T(r), ρ(r), and fk are saved for the next
time step. For the following time steps, if Equation (8) is true,
the following conditions are evaluated:
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where the superscript “(o)” indicates the values of the previous
time step. If any of these three conditions is fulfilled for a
specific cell, the grid points for interpolation are recomputed
for the new local mixture and stored for the next time step.
Otherwise, the grid points of the previous time step are used for
the interpolation of the opacity and its derivatives with respect
to temperature and density.
Similarly, for the radiative accelerations we precompute a

grid containing γ( t) for each temperature–density point in the
OP mono data, using the initial mixture. Yet, as we only need
to compute the radiative accelerations in the radiative envelope,
a slightly different methodology is used, compared to the one
used to compute the opacity. The radiative envelope is divided
into two zones with an equal number of cells based on the
number of cells for which grad,i needs to be computed. In each
of these two zones, we define a mixture, where fk=∑ifk,i is the
average value of the fractional abundance of element k across
all cells (with cell index i) in the zone, and renormalize
afterward such that ∑kfk= 1.
The value of γ is then interpolated in temperature and

density from one of the precomputed grids. A precomputed
grid is recomputed for the current average mixture ( )fk

c if the
condition in Equation (8) is true. To ensure a smooth transition
between these two zones, within 15 cells on each side of the
boundary we blend the two values of glog irad, for the two
average mixtures according to

( ) ( )( ) ( )g g glog log 1 log , 12i i i i irad, rad,
1

rad,
2b b= + -

where we vary βi linearly between 0 and 1 in this transition
zone and the superscripts denote the two zones that each have
an average mixture.
In summary, the quantities that are saved for the next time

step are listed in Table 1, and a flowchart is shown in Figure 1.
Hence, by reusing previously made computations and allowing
a small error on the precision of the opacity and radiative
accelerations, much CPU time is saved. To evolve a 1.7 Me
model starting at the pre-MS to a core hydrogen mass fraction
of Xc= 0.005, including radiative levitation for all elements for
which OP mono data are available, takes 30 minutes on 36
CPUs with the routine presented here. In comparison, this takes
130 minutes with the current routines in MESA. Additionally,
models computed in this work experience almost no failures to
converge on the pre-MS, which was until now, besides the long
wall times, also a bottleneck for us to compute grids of models
with radiative levitation included. Figure A1 in Appendix A
shows the difference in the predicted radiative accelerations
and Rosseland mean opacity between the method presented in
this paper and those of Hu et al. (2011). Overall, the differences
are small and the differences in the surface temperature and
luminosity are well within typical precisions that can be
achieved observationally.

Table 1
Summary of the Quantities Saved for the Next Time Step in the Evolution

Quantity Description Dimension

Precomputed ( )Tlog log , logRk r for the mixture in the core 1648
Value of ( ( ) ( ))T r rlog , logr of the last time step for each cell 2 × Ncell

Saved ( )Tlog log , logRk r grid for old mixture in cell Ncell × 4 × 4
Precomputed ( )Tlog log , logig r for two averaged mixtures of

the two zones in the radiative envelope

2 × 1648
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3. Implementation of Shear Mixing in MESA

In this work, we focus on macroscopic mixing from rotation-
induced turbulence, henceforth referred to as shear mixing. It
should be noted that this does not refer to the various forms of
shear instabilities implemented in MESA (see Heger et al.
2000), which cause very spiky mixing profiles and, as such, are
not suitable for g-mode asteroseismology (Truyeart 2016). We
follow the formalism by Zahn (1992, Equation 2.14), where we
scale the local diffusive mixing coefficient as per

⎛
⎝

⎞
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( ) ( )D r t K
r
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d
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where η is a free parameter, N is the (weighted) Brunt–Väisälä
frequency, and K is the thermal diffusivity,
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with σSB the Stefan–Boltzmann constant and CP the heat
capacity. The radial derivative of the rotation frequency, Ω, is
computed using the 2D ESTER code (Espinosa Lara &
Rieutord 2013; Rieutord et al. 2016) that computes a steady
model at a given mass, Må; the fraction of the initial core
hydrogen mass fraction left, Xc/Xini; and the rotation rate
expressed as a fraction of the Keplerian critical rotation rate,
Ωbk. For stars with masses below ∼3 Me, the convergence of
ESTER becomes delicate. As such, we compute an ESTER
model for 3 Me, Xc/Xini= 0.95, and Ωbk= 0.2 and apply
simple scaling relations for Må and Xc/Xini to scale the rotation
profile from this model to the appropriate mass and age of the
model we want to compute. We take a rotation profile averaged
over the colatitude, starting from the boundary of the

convective core, as shown in the top panel of Figure 2. As
can be seen in the bottom panel of Figure 2, the global shear
profile of d

dr

W remains roughly the same along the evolution.

Therefore, we choose to scale the normalized ( )d

dr norm

W profile

of the aforementioned ESTER model as per
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The values of the constants ai are listed in Table 2. At each
cell of the MESA model, the local value of Dmacro is
interpolated from the normalized d

dr

W profile of the 3 Me

ESTER model that is defined on an interval [rcc, Rå], that is,
from the convective core boundary to the surface. In Figure 3,
we show rotation profiles for three different masses at the zero-
age MS (ZAMS). In addition, the rotation profile for 0.5Ωbk is
also shown for the most massive model, demonstrating that the
morphology of the normalized rotation profile barely changes
for different rotation rates.
The Brunt–Väisälä frequency can be decomposed into a part

related to structure and a part related to composition,
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Figure 1. Flowchart showing the different steps in computing the Rosseland mean opacity (left side) and the radiative accelerations (right side), starting at the blue
box. The labels t + 1 indicate the next evolution time step.
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where ∇ad, ∇, and ∇μ are the adiabatic, temperature, and
chemical gradient, respectively. Moreover, g is gravitational
acceleration, HP is the local pressure scale height,

( )∣Tln ln P,d r= - ¶ ¶ m, and ( )∣ln ln P T,f r m= ¶ ¶ . In the
formalism of Mathis et al. (2004), the mixing coefficient scales
with K+Dh, where Dh is the horizontal diffusion coefficient.
Here we do not compute Dh, but instead approximate

K+Dh= ηK and construct a weighted Brunt–Väisälä fre-
quency,

( )N N N
1

. 202
struc
2

comp
2h

h
= +

-

Hence, our implementation has one free parameter, η, to control
the global scaling of the mixing profile. This weighting of the
different components follows from the fact that while both
components of the buoyancy force are weakened by horizontal
diffusion, only the structure (thermal) component is addition-
ally weakened through thermal diffusion (Talon & Zahn 1997).
The point where the transition is made from CBM to REM is
chosen at the smallest radius where DREM(r)>Dov(r). An
example of a profile for Dmacro(r) is shown in Figure 4. The
mixing profile based on vertical shear used by Pedersen et al.
(2021) comes from a profile computed by Georgy et al. (2013),
relying on 1D stellar models. Pedersen et al. (2021) then scale
this profile by a free parameter that sets the diffusion coefficient
at the edge of the overshoot zone. In this work, we rely on 2D
ESTER models to compute the rotation profile, which are in
addition scaled with the stellar mass and the hydrogen mass
fraction in the core. We find similar mixing profiles to those
derived by Mathis et al. (2004), although the drop in the
diffusion coefficient close to the overshoot zone (around
r/Rå= 0.1 in Figure 4) is much more pronounced in our
models.
One particularly interesting star in the sample of Van Reeth

et al. (2015) is KIC 11294808 ( frot= 0.77 days−1,
Må= 1.655Me, Xc= 0.19), for which period spacing patterns
of dipole (ℓ= 1, m= 1) modes and quadrupole (ℓ= 2, m= 2)
modes were observed. The periods of the quadrupole modes
exhibit clear recurring dips, indicative of trapped modes.
Therefore, we use this star to find a reasonable value for η,
which produces dips in the period spacing pattern for a model
with the parameters found by Mombarg et al. (2021). We use a
scaling of αov≈ 10fov (Claret & Torres 2017), as in this work
we model the CBM with convective penetration. On one hand,
when η is set too low (20; see Figure 5), helium settling is not
counteracted efficiently, thereby stabilizing the chemical
gradient near the core boundary. On the other hand, if η is

Figure 2. Top panel: rotation profiles for a 3 Me ESTER model with a rotation
rate of Ω = 0.2Ωbk. The profiles are normalized by the rotation frequency at the
core boundary (indicated by the dotted vertical lines). Bottom panel: the
evolution of the shear profile (absolute value) for a 3 Me ESTER model (solid
lines) and the scaled approximations used for the mixing in the MESA models
(dotted lines). The inset shows a zoom-in close to the core boundary (i.e.,
where r = 0). The radial derivative of the local rotation frequency shown here

is dimensionless, as Ω is normalized by ( )P Rc c
2r , and r is normalized by the

size of the radiative envelope, Renv, where r = 0 at the convective core
boundary.

Table 2
Values of the Coefficients Shown in Equations (15) and (16)

Coefficient Value

a1 0.05159189
a2 −0.30399420
a3 0.63434263
a4 0.14382828
a5 −0.39459215
a6 0.43750162

Figure 3. The variation of the normalized rotation profile with stellar mass for
ZAMS models. For the 3.0 Me model, the rotation profile at 0.5Ωbk is shown
by the dashed–dotted line (almost the same as the profile for 0.2Ωbk). Note that
in this plot r ä [0, Rå].
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set too high (around 5000, not shown), chemically homo-
geneous evolution occurs. As shown in Figure 5, a value of
η= 60 provides a good estimate for KIC 11294808. We stress
that the predicted locations of the dips in the period spacing
pattern are extremely sensitive to the stellar mass, age, and
input physics, and that the aim of this paper is not to precisely
match the periods but to investigate whether models with shear
mixing and radiative levitation can reproduce the global
morphology of the observed period spacing pattern.

4. Oscillation Spectra

We have computed MESA models for masses of 1.4, 1.7, 2.0,
and 3.0 Me covering the entire γDor mass regime and the
lowest part of the SPB mass regime. For each model, we have
computed the predicted periods at Xc/Xini= 0.95, 0.45, and
0.10. Moreover, we have tested three different values for the
initial metallicity, Zini, namely, 0.010, 0.015, and 0.020. We
refer to Mombarg et al. (2021) and Mombarg et al. (2020) for
more details on our MESA setup. One difference between the
setup used in this work and the aforementioned ones is that
here we describe the CBM by convective penetration,
following the results from Pedersen et al. (2021). It should
be noted, however, that no clear distinction between an
exponential and step overshoot profile7 has yet been made
for γDor stars (Mombarg et al. 2019, 2021). Our focus is on
the prograde dipole modes and radial orders n ä [−100, −10],
as these are the most commonly observed mode geometry in
γDor and SPB pulsators (e.g., Van Reeth et al. 2016; Li et al.
2020; Pedersen et al. 2021). The mode periods were computed
using the stellar pulsation code GYRE (v5.2; Townsend 2003;
Townsend & Teitler 2013). In Figure 6, we show the predicted
period spacings, ΔPn= Pn+1–Pn, as a function of period, Pn,
for the three different values of Xc/Xini. To produce mode
trapping when atomic diffusion (including radiative levitation)
is taken into account, a low mixing efficiency close to the core
boundary is required, and a high efficiency further outward.
Our models show that this can be realized by the prescription
given in Equation (13), as we observe mode trapping for all
stellar masses studied here when we choose η= 60. The
prescription for REM used in this work also requires much
higher diffusion coefficients outside the shear zone, solving the
stark contrast between theoretical predictions and the very low
diffusion coefficients that Van Reeth et al. (2016) and
Mombarg et al. (2021) needed to explain the mode trapping
in some stars in their sample, and the low values found by
Moravveji et al. (2016), when the value of the diffusion
constant was fixed throughout the star.
In Figure 7, the effect of the initial metallicity is

demonstrated for models with Xc/Xini= 0.10 (see Figure B1 in
Appendix B for models with Xc/Xini= 0.45). Since the initial
helium abundance in our models is scaled with the metallicity,
according to the chemical enrichment rate derived by Verma
et al. (2019), a higher Zini means that the helium settling near
the core diminishes the chemical gradient to a larger extent, and

Figure 4. The diffusive mixing coefficient, Dmix, throughout the star for a 1.7 Me model with Xc/Xini = 0.45. The envelope mixing is computed according to
Equation (13), and atomic diffusion (including radiative levitation) has been taken into account.

Figure 5. The predicted period spacing patterns for different values of the η
parameter in Equation (13) for a model with a mass and Xc corresponding to the
maximum likelihood estimate by Mombarg et al. (2021) in the case of
KIC 11294808. The observed period spacing patterns by Van Reeth et al.
(2015) are shown by the sea-green star symbols. The uncertainties of the
observed values are typically smaller than the symbol size.

7 The temperature gradient is taken to be the radiative one, as opposed to
convective penetration.
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as such, the dips in the period spacing pattern caused by mode
trapping are less pronounced. Interestingly, we observe three
sinusoidal modulations in the period spacings of the high radial
order modes of the evolved 1.7 Me model in the lowest-
metallicity case, whereas for higher metallicities a nearly
constant slope is seen. In the model with Zini= 0.010,
additional dips in the REM profile are formed, which create
several mode cavities in which modes can get trapped (see
Figure C1 in Appendix C).

The signatures of mode trapping for models with combined
atomic diffusion and shear mixing are similar to those predicted
by models with no (or very low) micro- and macroscopic REM,
as either set of physics introduces an oscillatory behavior of the
dips in the period spacing patterns, as shown by Miglio et al.
(2008) and Bouabid et al. (2013). Besides mode trapping, dips
in the period spacing pattern can also be caused by coupling
between gravito-inertial modes in the envelope and pure
inertial modes in the convective core at specific mode
frequencies (Ouazzani et al. 2020; Saio et al. 2021).

5. Surface Abundances

Additionally, the inclusion of REM allows us to study the
evolution of the surface abundances, which provide extra
constraints on the global efficiency of the chemical mixing.
Dotter et al. (2017) already showed that atomic diffusion and
radiative levitation affect the surface abundances throughout

stellar evolution significantly for stars with masses between 0.5
and 1.5 Me. In Figure 8, we show for our models the predicted
surface abundances8 as a function of age for elements He, C, N,
O, Na, Mg, Al, Si, S, Ca, Fe, and Ni. The predicted evolution
of the [Fe/H] abundance of the 1.4 Me model from Deal et al.
(2020), who also include radiative levitation and rotational
mixing in their models, shows a similar trend compared to our
findings. That is, the [Fe/H] abundance decreases during the
first part of the MS and increases again during the second part
of the MS. The same behavior is seen for elements heavier than
oxygen, which do not partake in the CNO cycle and thus have a
constant bulk abundance. Around halfway through the MS, the
radiative acceleration of iron-peak elements exceeds the local
gravitational acceleration, preventing these elements from
sinking toward the core, resulting in an increase of the metal
surface abundances. Yet, for the models with 1.7 Me and up,
the radiative levitation of calcium is strong relatively near the
surface, and a constant increase in the surface abundance along
the MS is observed. The fact that we see changes in surface
abundances throughout the evolution indicates that even the
high mixing efficiencies in the envelope used in this work are
not enough to completely dominate over the effects of radiative

Figure 6. Period spacing patterns for models with shear mixing and atomic
diffusion (including radiative levitation) at Xc/Xini = 0.95 (top panel), Xc/
Xini = 0.45 (middle panel), and Xc/Xini = 0.10 (bottom panel). For all models
Zini = 0.015, αov = 0.15, and Ω = 0.2Ωbk. Figure 7. Same as Figure 6, but for varying metallicity. For all models Xc/

Xini = 0.10.

8 Presented as [ ] ( ) ( )X H X X A Alog log log 12X H X H X,/ / / = - - + , with
XX the mass fraction and AX the atomic mass. For the values of log X,, the
solar composition from Asplund et al. (2021, Ze = 0.0139) is used.
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Figure 8. Predicted evolution of the surface abundances (scaled to the Sun) for models with Zini = 0.015 and η = 60. The dotted lines correspond to a model with 1.4
Me and η = 2. The dashed–dotted lines are for a 1.4 Me model without any macroscopic mixing (η = 0).
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levitation. Yet the typical excursions in [X/H] are about a
factor of 10 less than what was predicted in the absence of
strong REM by Mombarg et al. (2020). For the other two
metallicity values (Zini= 0.010 and 0.020), we find similar
behavior of the surface abundances. As the typical precision for
[X/H] derived in F-type stars is at best on the order of 0.1 dex
(Gebran et al. 2010; Niemczura et al. 2015; Takada-Hidai et al.
2017; Gebruers et al. 2021), we expect that most γDor stars
will not show clear signs of heavy-element depletion at the
surface, as most have moderate to fast rotation frequencies
(Van Reeth et al. 2016, 2018). Indeed, spectroscopic studies of
γDor and SPB stars show that most of them have surface
compositions similar to the Sun (Kahraman Aliçavuş et al.
2016; Gebruers et al. 2021).

Aside from microscopic mixing, efficient REM due to
rotational mixing can transport the CNO elements from the
core toward the surface. Hydrogen burning via the CNO cycle
occurs through a chain of several reactions, where the
conversion of nitrogen to oxygen is slow and causes a buildup
of nitrogen and a depletion of carbon, while the amount of
oxygen stays roughly the same. We predict that this change can
be observed, as the gravitational settling of these elements is
not efficient enough to cause depletion of the CNO elements at
the surface. In Figure 9, the ratios of N/C and C/O are shown,
as well as Mg/Fe and O/Fe. Observational measurements of
log(N/C) or log(C/O) could serve as additional constraints on
the stellar age, if determined with precisions of ∼0.2 and
0.1 dex, respectively. The ratio Mg/Fe is typically the
abundance ratio that can be determined most precisely in
F-type stars. Our models predict that this ratio remains almost
constant throughout the MS, which is consistent with ratios
inferred by Gebruers et al. (2021) for a sample of 91 γDor
stars.

Additionally, the predicted evolution of the surface abun-
dances for a 1.4 Me model with η= 2 (i.e., the horizontal
diffusion coefficient is of the same order as the thermal
diffusivity) is shown in Figure 8 (dotted lines). We find that the
excursions in [X/H] of O, Na, Mg, Al, Si, S, Fe, and Ni are not
significantly increased, compared to typical precisions that can
be achieved with spectroscopy. The lower mixing efficiency at
the outer part of the envelope can no longer drive Ca to the
surface around mid-MS, resulting in Ca depletion when the star
evolves. The diffusion coefficient just below the surface
convection zone of the model with η= 2 is about two orders
lower than that of the model with η= 60 (i.e., the thermal
diffusivity is smaller than the horizontal diffusion). For C and
N, we find that the mixing becomes too low to induce any
changes in the abundances at the surface. In more evolved
stars, the C/H ratio could be used to put a lower limit on the
mixing just outside of the CBM zone, when the bulk metallicity
is well known and the initial composition is assumed to be
close to the solar composition. For models without shear
mixing, the maximum depletion of the heavier elements is
stronger, and underabundances in Mg and Fe (Mg/Fe ratio
remains stable) could be observed in mid-MS stars when
precisions of σ[X/H]� 0.1 dex can be achieved. The 1.4 Me

model without macroscopic mixing (dashed–dotted lines in
Figure 8) does not show complete helium depletion, even
though the radiative levitation for this element is extremely
weak. The settling of helium at the surface of this model is
impeded by the formation of a surface convection zone (see

Figure 9. Predicted evolution of several surface abundance ratios for models
with Zini = 0.010 (solid lines), 0.015 (dashed–dotted lines), and 0.020 (dotted
lines). The most precise measurements achieved by Gebruers et al. (2021) for
SPB and γ Dor stars are indicated with a gray square and circle, respectively.
The most precise measurements of the Mg/Fe ratio are around 0.6 dex and are
thus much larger than the predicted change of this ratio along the evolution.
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Verma & Silva Aguirre 2019), as is shown in Figure D1 in
Appendix D.

6. Numerical Uncertainties

As the profile of the Brunt–Väisälä frequency is used in the
computation of the mixing profile, the evolution becomes
sensitive to the mesh resolution of the stellar model. For simple
models without radiative levitation or shear mixing, the
difference in the predicted mode periods at some point
becomes smaller than the typical observational uncertainty on
the period when more cells are added to the model. However,
when radiative levitation is taken into account, the mesh
resolution is limited, since each cell has its own composition,
which makes it significantly more difficult for the solver to
converge to a model within the tolerances. We computed the
best model of KIC 11294808 with three different mesh grids
with 2845 (M1), 3010 (M2), and 3109 (M3) cells,9 where the
extra cells are placed around the large change in chemical
composition just outside the core. The differences in the
predicted mode periods by model M2 and M3 are roughly the
same as the period differences between model M1 and M2, as
shown in Figure E1 in Appendix E, indicating that our
predictions of the mode periods are limited to a numerical
uncertainty of ∼60 s on the low radial order (shorter-period)
modes and ∼30 s for the high radial order (longer-period)
modes. In Figure E2, we show rotational kernels overplotted on
the g-mode cavity to illustrate that these the dips in the period
spacing patterns are indeed caused by trapped modes and are
not the result of theoretical uncertainties. We emphasize that
these uncertainties are caused by the choice of the meshing, and
that it is not the noise on the individual periods computed from
a single equilibrium model. Even though these numerical
uncertainties are, compared to the mode periods, smaller than
0.2%, they are still several times larger than the extremely
small uncertainties typically achieved with the Kepler nominal
mission data.

7. Discussion and Conclusion

This study demonstrates the added value of integrating a 1D
stellar evolution code and a 2D stellar structure code to provide
a more accurate description of the evolution of chemical
mixing in the envelope of rotating stars with a convective core.
The predictions presented in this work serve as a valuable
guide for more detailed calibration of the envelope mixing in
intermediate-mass gravity-mode pulsators, as Pedersen et al.
(2021) already showed the need of varying diffusion
coefficients throughout the envelope in order to explain the
observed pulsations of a sample of 26 SPB stars. The treatment
of chemical mixing presented in this work allows for mode
trapping, even when microscopic diffusion in the form of
atomic diffusion (including radiative levitation) is taken into
account. Moreover, it results in realistic and much larger
diffusion coefficients in the outer envelope, compared to when
microscopic diffusion and shear mixing are ignored. The
inclusion of radiative levitation (and consistent Rosseland
opacity) makes the morphology of the period spacing pattern
more dependent on the bulk metallicity. When shear mixing is
the dominant source of macroscopic mixing, the iron
abundance is expected to be relatively stable over the MS

evolution and thus can be used as a tracer for the bulk
metallicity of the star. We predict that in some cases stars with
subsolar metallicity ([M/H]<−0.15) show a very character-
istic modulation of the period spacings in the asymptotic
regime. The estimated mass and age of the star KIC 7380501
by Mombarg et al. (2021) are close to those of the 1.7 Me
model in Figure 7, and its metallicity is subsolar ([M/
H]=−0.21± 0.06; Gebruers et al. 2021). The morphology
of the period spacing pattern of KIC 7380501 is particularly
complex to model (see Figure F1 in Appendix F), where some
parts of the period spacing pattern, consisting of three modes,
show a much larger slope compared to the general slope of the
pattern. This could be explained by the pattern predicted from
the aforementioned equilibrium models, if only a few
consecutive modes are observed, and so radial orders are
suppressed.
Besides mixing induced by rotation, it has been shown that

IGWs generated by turbulent core convection can also
efficiently transport material throughout the radiative envelope
(Lecoanet & Quataert 2013; Rogers & McElwaine 2017). The
work of Rogers & McElwaine (2017) predicts the efficiency of
the mixing induced by IGWs to scale as DIGW(r)∝ ρ(r)−ζ,
where ζ is somewhere between 1

2
and 1. Hence, we expect that

for stars with trapped modes IGW mixing is not dominant, as
the current simulations do not predict a large variation of the
mixing coefficient near the core. Yet, for stars that show no
signs of mode trapping in their oscillation spectra, mixing
induced by IGWs might be the dominant source. A density-
dependent scaling of the diffusion coefficient (that is constant
in time) is hard to distinguish from a constant diffusion
coefficient, based on the periods of gravity modes (Pedersen
et al. 2018). In that case, the surface abundances may hold
more discriminating power when microscopic mixing is treated
consistently, as done in this work. The effect of IGW mixing on
the mode periods and surface abundances will be addressed in a
future paper.
The NASA TESS mission (Ricker et al. 2015) covers a much

larger part of the sky compared to Kepler (Borucki et al. 2010)
and therefore provides a unique opportunity to study stars in
different metallicity regimes. Period spacing patterns in 128
γDor stars in the TESS Southern Continuous Viewing Zone
have been extracted by S. Garcia et al. (submitted). These stars
are overall brighter than those observed by Kepler, making
them suitable for high-resolution spectroscopic follow-up
studies.
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9 MESA adapts the total number of cells at each time step. The numbers listed
are specifically for the mentioned models.
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Appendix A
Benchmark Results

In Figure A1, we show a benchmark test of our novel
implementation for computing radiative accelerations and
consistent Rosseland mean opacities, compared to the imple-
mentation in MESA r11701.

Appendix B
Predicted Period Spacings Mid-MS

In Figure B1, we show the effect of the initial metallicity on
the predicted period spacing patterns for models of mass 1.4,
1.7, 2.0, and 3.0 Me, roughly halfway through the MS.

Appendix C
Rotational Kernels

Figure C1 shows the predicted mixing profile, overplotted
with the rotational kernel of a g-mode with (ℓ, m, npg)= (1, 1,
−75). For the model with Zini= 0.010 (top panel) this mode is
trapped, whereas for the model with Zini= 0.015 mode trapping
is not observed.

Appendix D
Chemical Profiles of Helium

In Figure D1, we show the helium mass fraction throughout
the star at different times during the MS for a 1.4 Me model
without macroscopic mixing (i.e., only microscopic mixing;
dashed–dotted lines in Figure 8).

Figure A1. A comparison between the radiative accelerations (top panel) and
Rosseland mean opacity (bottom panel) computed with the method presented
in this paper (solid lines) and the routines from Hu et al. (2011) implemented in
MESA r11701 (dashed–dotted lines). The computations are based on a 1.7 Me
model at Xc = 0.325 (Zini = 0.015). The extent of the convective core is
highlighted by the shaded region. The local gravitational acceleration is
indicated by the gray dotted line.

Figure B1. Predicted period spacing patterns for models with shear mixing and
radiative levitation, for different metallicities. For all models Xc/Xini = 0.45.
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Appendix E
Theoretical Uncertainty

Figure E1 demonstrates how the predicted mode periods (top
and middle panels) and the Brunt–Väisälä frequency (bottom
panel) are influenced by the number of cells of the MESA
equilibrium model. In Figure E2, we show the corresponding
rotational kernels of the shortest-period modes of the model
with 2845 cells that is shown in Figure E1.

Appendix F
KIC 7380501

In Figure F1, we show the (ℓ, m)= (1, 1) period pattern of
KIC 7380501 that was extracted by Van Reeth et al. (2015).
The modulations observed in this period spacing pattern are
particularly ill reproduced by the best model found by
Mombarg et al. (2021).
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Figure C1.Mixing profiles and unnormalized rotational kernels for radial order
npg = −75 (Equation (3.356) in Aerts et al. 2010) of the 1.7 Me models shown
in the second panel from the top in Figure 7 for Zini = 0.010 (top panel) and
Zini = 0.015 (bottom panel).

Figure D1. The helium mass fraction (Y) profiles of a 1.4 Me model
(Zini = 0.015) for different times during the MS evolution. The outer part where
the helium mass fraction is constant indicates the surface convection zone.

Figure E1. The effect of the number of cells used in the model, with 1.655 Me,
Zini = 0.02, αov = 0.05, and Xc = 0.356 on the predicted period spacing pattern
(top panel; (ℓ = 2, m = 2)). The middle panel shows the difference in period
per radial order, where the color corresponds to the model with a finer meshing.
The light shaded region indicates the typical uncertainty on the period across
the sample of Van Reeth et al. (2015), and the darker shaded area indicates the
average uncertainty for KIC 11294808. The bottom panel shows the
corresponding total Brunt–Väisälä frequency (solid lines) and its structure
component (Nstruc; dashed lines).
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