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1. Introduction
Historically, planetary bow shocks, their position, size, and shape, have been characterized statistically with the 
use of (empirical) analytical fitting models in two-dimensional (2D) or three-dimensional (3D) spatial coordi-
nates. A classical starting point for characterizing the Earth’s bow shock in 3D includes the seminal work of 
Formisano (1979), who investigated the asymmetry of the shock with respect to the apparent solar wind flow 
direction, with the use of quadratic surface fits with nine free parameters. In parallel, other studies, such as that 
of Slavin and Holzer (1981) relied on a simple polar equation assuming axisymmetry along the Sun-planet line, 
corrected by the apparent motion of the solar wind in the rest frame of the planet, the so-called aberrated X axis. 
The 2D approach has the merit of needing only three free parameters but ignores the potential asymmetries 
of the shock as, for example, seen at Earth’s bow shock (e.g., Formisano,  1979; Merka et  al.,  2005; Peredo 
et al., 1995, 1993).

More advanced physics-based models have also been proposed as a complement to those empirical attempts. A 
good introduction into analytical models of the bow shock, based on gasdynamic theory and magnetohydrody-
namics solutions, is given in Verigin, Slavin, Szabo, Gombosi, et al. (2003) and recently in Kotova et al. (2021). 
These studies present analytical functions describing the curvature, bluntness, and skewing angle of the shock 
structure, which are arguably better suited to the fitting of the shock flanks; they are applicable to many planetary 
bow shock conditions.

At Mars, due to the sparsity of early data and the non-collisional nature of the shock, the tendency has been to use 
in priority the simplest fitting model available with least free parameters, that is, an empirical 2D polar equation 
(Edberg et al., 2008; Hall et al., 2019; Russell, 1977; Slavin et al., 1991; Trotignon et al., 2006). Only recently 
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with the NASA/Mars Atmospheric and Volatile EvolutioN (MAVEN) mission were quadratic fits used to char-
acterize the general structure of the Martian bow shock, with Gruesbeck et al. (2018) providing fits to a careful 
subset of identified crossings in the first year of operations of the MAVEN mission.

In recent years, many studies have attempted to characterize the Martian shock position and shape and its evolu-
tion under various solar wind and EUV conditions (Hall et al., 2019 and references therein). Two missions have 
been used for this goal, the ESA/Mars Express mission and the NASA/MAVEN mission. Mars Express (hereafter 
MEX for brevity) was launched in 2003 and has been orbiting Mars since 2004, whereas MAVEN was launched 
10 yr later in November 2013 and has been orbiting the planet since 22 September 2014. MAVEN’s scientific 
payload includes among others a fluxgate magnetometer (MAG, Connerney et al., 2015), two ion spectrometers 
including the Solar Wind Ion Analyzer (SWIA, Halekas et al., 2015) and the Suprathermal and Thermal Ion 
Composition instrument (STATIC, McFadden et al., 2015), and an electron spectrometer (Solar Wind Electron 
Analyzer, SWEA, Mitchell et al., 2016). MEX unfortunately does not carry any magnetometer but includes a 
plasma suite (ions and electrons) as part of the ASPERA-3 package (Barabash et al., 2006), which was used to 
investigate the plasma boundaries at Mars (Dubinin et al., 2006). Both missions aim at studying the upper atmos-
phere and the magnetospheric environment of Mars.

Detections of the bow shock in spacecraft data have relied on manual determinations using as many instru-
ments (including plasma instruments and magnetometer) as available to avoid ambiguous detections (Gruesbeck 
et al., 2018). Recently, Němec et al. (2020) proposed a region identification scheme based on selected plasma 
parameters and applied their technique to the MAVEN dataset in order to identify upstream solar wind, magne-
tosheath, and magnetosphere regions crossed by the spacecraft. This method has the advantage of mapping these 
regions statistically, removing certain biases usually associated with manually picked individual boundary cross-
ings which may be orbit-dependent. However, it requires the reliable knowledge of flow speed, ion density and 
magnetic field, which may not all always be available. A parallel trend has also been to apply machine-learning 
techniques to plasma data for the labeling and identification of the regions crossed by a given spacecraft (see 
Breuillard et al., 2020; Hall et al., 2016; for Mars and Earth, respectively), as part of online databases (Génot 
et al., 2021). However, these studies require extensive amounts of time and patience, as well as large computer 
resources to become efficient. Sometimes, a precise determination of the shock position in the data is not of 
paramount importance and simpler, faster, more straightforward approaches, such as the one presented in this 
study, can be advantageous. This may be the case in statistical studies where one of those regions needs to be 
systematically excluded, as in space weather databases monitoring the solar wind. This can also be of interest 
when areas around the predicted bow shock must be excluded for qualified reasons, as in wave studies focusing 
on regions outside of foreshock and shock wake structures, or when a first guess of the location and geometry of 
the shock is needed.

We present in this study new, simple analytical algorithms using two types of historical fitting techniques (2D 
and 3D), which make it possible to quickly estimate from spacecraft spatial coordinates the statistical geometrical 
position of the shock in planetary atmospheres. Special emphasis on the Martian environment and the MAVEN 
dataset is given throughout, however the method is applicable to any planetary environment and spacecraft data-
set. This first crude estimator can be refined further by applying additional criteria, for example, on the magnetic 
field amplitude measured by the MAVEN spacecraft. This provides a fast means to approximately and quite 
reliably identify the position of the shock so that solar wind and magnetosheath regions can be studied on a sta-
tistical level in the data. Moreover, other characteristics of the shock crossing, such as the quasi-parallel (q‖) or 
quasi-perpendicular (q⊥) geometry of the shock can easily be obtained by deriving the perpendicular direction to 
the shock at any point on the surface.

After a review of 2D and 3D bow shock fitting models at Mars in Section 2, we present in a consistent manner the 
leading equations behind these models in 2D and 3D, give the analytical expressions for standoff distances, and 
propose a geometric calculation of the normal to the bow shock at any point on the surface. Starting in Section 3, 
we introduce a predictor algorithm for a fast estimation of the shock position in spacecraft orbital coordinates 
and its timing (Section 3.1). In Section 3.2, we propose a simple correction on this position and timing with the 
sole help of magnetometer data (predictor-corrector algorithm). Application to the MAVEN MAG dataset is 
then given as validation on a few examples and then extended to the whole available dataset. Finally, as a result 
of the automatic detection proposed here, statistical analytical fits are given for the MAVEN mission between 
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November 2014 and February 2021, with a discussion of the shock’s asymmetry based on terminator and standoff 
distances. Applications for space weather-related databases are also mentioned.

2. Bow Shock Models at Mars
In this section, following a survey of existing fitting models at Mars, we present comprehensive formulae for an-
alytical fits in 2D polar coordinates and 3D Cartesian coordinates, with a calculation of bow shock subsolar and 
terminator standoff distances. We also show how to calculate the normal to the surface at a given point in space, 
in order to estimate the q⊥ − q‖ shock conditions.

2.1. Coordinate Systems and Solar Wind Flow Aberration

All spacecraft coordinates in this study are in Mars Solar Orbital coordinates (MSO) for simplicity, in accordance 
with most previous studies. In the MSO system, identical to the Sun-state coordinate system, the +XMSO axis 
points toward the Sun from the planet’s center, +ZMSO is toward Mars’ North pole and perpendicular to the orbital 
plane defined as the XMSO–YMSO plane passing through the center of Mars, and YMSO completes the orthogonal 
system.

Because of the orbital motion of Mars with respect to the average direction of the solar wind, the apparent direc-
tion of the solar wind in the rest frame of the planet deviates from the anti-sunward direction. As a result, an an-
ti-clockwise rotation by an angle α around the Z axis must be applied so that the bow shock’s major axis is aligned 
with respect to the X axis along the solar wind flow. This aberration, first seen in cometary tails and at the origin 
of the hypothesis by Biermann of a stellar wind (Biermann, 1951), is taken into account in the so-called aberrated 
MSO coordinates, denoted 𝐴𝐴 𝐴𝐴

′

MSO
 , 𝐴𝐴 𝐴𝐴

′

MSO
 , and 𝐴𝐴 𝐴𝐴

′

MSO
 (although Z is left unchanged by the transformation). To unclut-

ter notations, the “MSO” subscript is now dropped. Following Formisano et al. (1979), Slavin and Holzer (1981) 
define the angle 𝐴𝐴 𝐴𝐴 as 𝐴𝐴 𝐴𝐴 = arctan

(

𝑉𝑉p∕𝑣𝑣sw

)

 where Vp is Mars’ orbital velocity and 𝐴𝐴 𝐴𝐴sw is the solar wind velocity, 
for example expressed in km s−1. Mars’ average orbital velocity is 𝐴𝐴 𝐴𝐴p = 24.07

26.5

22.0
  km s−1. For the maximum value 

(26.5 km s−1), the angle is α = 3.8° for a typical solar wind speed of 400 km s−1. The angle assumed by all studies 
except those of Slavin and Holzer (1981) and Slavin et al. (1991) is 4°. In Slavin and Holzer (1981), the aberration 
angle was chosen to be varying with solar wind speed conditions. In Slavin et al. (1991), α = 3.2°. Figure 1 shows 
the aberration angle with respect to orbital velocity (abscissa) and to solar wind velocity (color code).

Figure 1. Aberration angle (in °) with respect to the orbital velocity of Mars (in km s−1) and the solar wind mean speed 
(color-coded isocontours, in km s−1).
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2.2. Parametric Models

Table 1 chronologically lists past bow shock studies at Mars and their characteristics in terms of solar activity, 
solar cycle number, and number of observations, including the recent MEX and MAVEN surveys.

Bow shock models at Mars have been proposed since the end of the 1970s, including (but not limited to): Rus-
sell (1977), Slavin and Holzer (1981), Slavin et al. (1991), Schwingenschuh et al. (1990), Trotignon et al. (1991), 
Zhang, Schwingenschuh, Russell, and Luhmann (1991), Zhang, Schwingenschuh, Lichtenegger, et al.  (1991), 
Trotignon et  al.  (1993), Verigin et  al.  (1999), Vignes et  al.  (2000), Trotignon et  al.  (2006), and Edberg 
et al., 2008, 2010. These studies were performed with several spacecraft including Viking, Mars Global Surveyor 
(MGS) and Phobos-2, and for varying solar conditions. Gringauz et al. (1976) quoted in Russell (1977) reported 
11 crossings for the Russian Mars-2, 3, 5 satellites, but Slavin and Holzer (1981) later reanalyzed the datasets and 
found 14 crossings in total. Slavin et al. (1991) reported 94 crossings for Phobos 2, upped to 126 by Trotignon 
et al. (1993), as later reported in Trotignon et al. (2006). Using the same dataset, Verigin et al. (1993) reported 
a weak dependence of terminator bow shock position on solar wind dynamic pressure Psw; additionally in an 

References Spacecraft Years N Solar activity Cycle # Start Max. MY

Slavin and Holzer (1981) Mariner 4 1965 2 Low 20 1964 1968 6

Russell (1977)a Mars 2, 3, 5 1965–1974 11 Low-Medium 20 1964 1968 9–11

Slavin and Holzer (1981) Mars 2, 3 1971–1972 10 Medium 20 1964 1968 9–10

Slavin and Holzer (1981) Mars 5 1974 4 Low 20 1964 1968 11

Slavin et al. (1991) Mariner 4, Mars 2, 3, 5 1965–1974 24 Low-Medium 20 1964 1968 6–11

Schwingenschuh et al. (1990) Phobos 2 1989 ∼100 High 22 1986 1989 19

Slavin et al. (1991) Phobos 2 1989 94 High 22 1986 1989 19

Zhang et al. (1991) Phobos 2 1989 97 High 22 1986 1989 19

Trotignon et al. (1991) Phobos 2 1989 26 High 22 1986 1989 19

Trotignon et al. (1993)b Phobos 2 1989 126 High 22 1986 1989 19

Verigin et al. (1993), (1999)c Phobos 2 1989 126 High 22 1986 1989 19

Vignes et al. (2000) MGS 1997–1998 450 Low 23 1996 2001 23–24

Trotignon et al. (2006) MGS 09/1997–02/1999 573 Low-Medium 23 1996 2001 23–24

Edberg et al. (2008) MGS 09/1997–02/1999 619 Low-Medium 23 1996 2001 23–24

Hall et al. (2016), (2019)d MEX 2004–2008 4,422 Medium-Low 23 1996 2001 27–29

Ramstad et al. (2017)e MEX 11/2005–12/2016 2,166 High-Medium 23, 24 1996, 2008 2001, 2014 27–33

Hall et al. (2016), (2019)f MEX 2008–2015 7,669 Low-High 24 2008 2014 30–32

Hall et al. (2019)g MEX 2015–12/2017 1,494 High-Medium 24 2008 2014 33

Halekas et al. (2017)h MAVEN 10/2014–05/2016 − High-Medium 24 2008 2014 32–33

Gruesbeck et al. (2018) MAVEN 11/2014–04/2017 1,799 High-Medium 24 2008 2014 32–34

Němec et al. (2020)i MAVEN 11/2014–02/2020 − High-low 24 2008 2014 32–35

Note. N is the number of bow shock crossings considered in each study. MGS, Mars Global Surveyor. MEX, Mars Express. Column "Start" marks the start year of the 
corresponding solar cycle, whereas column "Max." gives the year when the maximum of the solar cycle occurred.
aObservations by Gringauz et al. (1976) and analyzed further by Russell (1977). bIn Trotignon et al. (2006), 127 Phobos 2 crossings of the bow shock were reported, 
that is, one more than in Trotignon et al. (1993). cNumber of observations from Phobos 2 used in this study was presumably the same as in Trotignon et al. (1993). dData 
from Hall et al. (2019), MY27–29, Table 3  with respect to Mars Years (MY). eAbout 7,000 orbits were first manually examined, “out of which 1,083 orbit inbound 
and outbound segments with identified BS, IMB […] crossings were included.” Orbital coverage of MEX is shown in their Figure 9. No discrimination with solar 
cycle or MY is given, although EUV flux and solar-wind parameter dependence are studied. fData from Hall et al. (2019), MY30–32, Table 3 with respect to MY. 
MY32 runs from 31 July 2013 to 17 June 2015. gData from Hall et al. (2019), MY33, Table 3 with respect to MY. MY33 runs from 18 June 2015 to 4 May 2017. hBow 
shock variations are obtained by fitting 2D-gridded datasets of average plasma density jumps through the shock location as measured with MAVEN/SWIA and are 
discriminated against magnetosonic Mach number Mms, EUV flux, and dynamic pressure. iNumber of individual crossings not disclosed due to the nature of the region 
detection scheme used. A total of 2,040 full orbits reported.

Table 1 
Statistical Studies on the Martian Bow Shock Position Replaced Chronologically (With Respect to In-Situ Observations) in the Context of Solar Activity and Mars 
Year (MY)
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analogy with magnetized planets regarding the dependence of the magnetopause thickness to Psw, these authors 
anticipated the discovery of crustal magnetic field sources at Mars, later vindicated with MGS measurements 
(Acuña et al., 1998).

In contrast with what was found at Venus, Slavin and Holzer (1981) and later Vignes et al., 2000, 2002; using 
MGS and data from previous mission suggested that the mean bow shock standoff distance was likely independ-
ent of the solar activity. Slavin et al. (1991) showed that the terminator distance, which is a marker of the swelling 
of the cavity flanks, varied by as much as 11% between the Mars-2, 3, 5 observations (low activity) and the 
Phobos-2 observations (high activity), although the number of crossings for each mission largely differed. Mars 
EXpress (MEX), with its very long activity spanning the end of solar cycle 23 and cycle 24 up to now (toward the 
beginning of new cycle 25), had the best chance to conclusively solve this aspect: Hall et al. (2019) found that for 
the years 2004–2017, the terminator distance underwent variations up to ∼7%, in agreement with the preliminary 
results of Trotignon et al. (1993). Of note, Mazelle et al. (2004) made a review of all available measurements 
before MEX started observing, and discussed the solar cycle variations and the differences observed with Venus 
(for which up to 35% increases of the bow shock location in the terminator plane with increasing activity have 
been reported, see Edberg et al., 2010; Russell et al., 1988; Zhang et al., 2008).

Of great import, Edberg et al. (2009, 2010) used MGS and MEX data in combination with ACE data extrapolated 
to Mars to study the dependence of the bow shock location to solar EUV flux and magnetosonic Mach number 
(noted Mms). They pointed out that the shape of the magnetosonic shock wave depends on the ratio of the solar 
wind speed to the magnetosonic speed. Later, for the entire period 2004–2015, Hall et al. (2016) identified 11,861 
crossings in the MEX database, using electron spectrometer data with machine-learning algorithms. This study 
was extended by Hall et al. (2019) up to 2017 with a total of 13,585 crossings, totaling 13 yr of operations of 
MEX. Both works used a standard 2D conic fit depending on the Mars Year (MY), with observed variations up to 
a few percent in terms of standoff bow shock distance. In addition to solar wind cycle variations and hemispher-
ical changes from a 2D perspective, these studies confirmed the dependence of the shock position with Psw and, 
most drastically, with solar EUV flux. Correspondingly, Ramstad et al. (2017) studied with coincident electron 
and ion data a subset of only 1,083 inbound and outbound MEX orbits for the period 2005–2016. They evaluated 
the dependence of the Induced Magnetospheric Boundary (IMB) and bow shock (BS) to EUV flux and the solar 
wind’s lowest moments (density and bulk velocity), showing that the BS mostly expands and contracts with the 
IMB. However, they also found that the BS swelling in the flank due to increased EUV fluxes cannot be solely 
explained by a corresponding swelling of the IMB. Simultaneously with MAVEN with both magnetometer and 
ion measurements, Halekas et al. (2017) investigated how the Martian magnetosphere and bow shock responded 
to EUV flux, Mms, and Psw between October 2014 and May 2016 (0.85 MY). In agreement with previous studies, 
they showed that the shock inflates with increasing EUV flux and contracts with increasing dynamic pressure 
and Mms; this in turn leads to EUV flux and dynamic pressure competing against one another because of their 
common 𝐴𝐴 1∕𝑑𝑑

2

ℎ
 dependence on heliocentric distance dh.

Recently, Němec et al. (2020) used MAVEN plasma and magnetometer data to construct maps of the solar wind/
magnetosheath regions. Their modeled bow shock locations, explicitly dependent on Psw, EUV flux, and crustal 
field intensities, were in good agreement with the average fits of Trotignon et al. (2006), with appreciable differ-
ences in terminator extensions as compared to the results of Ramstad et al. (2017).

Broadly speaking, two approaches fitting the shape of bow shocks have historically been employed, one using a 
simple 2D polar form (e.g., Slavin & Holzer, 1981), the other the 3D general Cartesian conic form (e.g., Formis-
ano, 1979; Formisano et al., 1979). Semi-empirical models based on gasdynamic and MHD predictions such as 
those of Verigin et al., 1993, 1999 are not discussed in the following.

2.2.1. The 2D Polar Form

Assuming that a full-formed bow shock in aberrated coordinates is symmetric with respect to the Xʹ axis, the 3D 
shape of the bow shock can be reduced to a 2D problem in the 𝐴𝐴 (𝑋𝑋

′
,

√

𝑌𝑌 ′2 +𝑍𝑍 ′2) plane. All Martian studies except 
that of Gruesbeck et al. (2018) have made this assumption. A simple 2D conic of revolution (usually a parabola or 
a hyperbola), symmetric around the aberrated MSO axis X′ and decentered from its focus xF is shown in Figure 2. 
Such a 2D conic takes the parametric form (e.g., Hall et al., 2019):
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𝑟𝑟 =
𝐿𝐿

1 + 𝜖𝜖 cos 𝜃𝜃
, (1)

with ∶ 𝑟𝑟 =

√

(𝑋𝑋′ − 𝑥𝑥𝐹𝐹 )
2
+ 𝑌𝑌 ′2 +𝑍𝑍 ′2, (2)

and ∶ cos 𝜃𝜃 =
𝑋𝑋

′
− 𝑥𝑥𝐹𝐹

𝑟𝑟
 (3)

where ϵ is the conic’s eccentricity, L the semilatus rectum (called terminator 
crossing by Volwerk et al., 2016; Zhang et al., 2008, at Venus, because the focus 
is taken at the center of the planet) and θ the angle measured from the focus of 
the conic, typically within the [−π/2, π/2] range. This range of angles depends 
on the nature of the conic section: for a parabola (ϵ = 1) 𝐴𝐴 𝐴𝐴 ∈ ] − 𝜋𝜋𝜋 𝜋𝜋 [(bor-
ders excluded), for an ellipse (ϵ  <  1) 𝐴𝐴 𝐴𝐴 ∈ ] − 𝜋𝜋𝜋 𝜋𝜋 ], and for a hyperbola 
(ϵ > 1) ∃ �0 ∈ ] 0, �∕2[ | cos�0 = 1∕�, and � ∈] − �0, �0[ ∪ ]�0, 2� − �0[ . 
The equivalent rectangular (Cartesian) form of this equation is (Trotignon 
et al., 2006):

𝑌𝑌
′ 2
+𝑍𝑍

′ 2
−

(

𝜖𝜖
2
− 1

) (

𝑋𝑋
′
− 𝑥𝑥𝐹𝐹

)2

+ 2𝜖𝜖𝜖𝜖
(

𝑋𝑋
′
− 𝑥𝑥𝐹𝐹

)

− 𝜖𝜖
2
= 0. (4)

In this representation, Trotignon et  al.  (2006) derived two additional use-
ful quantities, the standoff shock distance along the X axis, Rss (also called 
subsolar aerocentric distance in Trotignon et al., 2006) and the standoff ter-
minator distance Rtd along the cylindrical coordinate 𝐴𝐴

√

𝑌𝑌 ′2 +𝑍𝑍 ′2 (which is 
none other than the diameter of the tail at Xʹ = 0 divided by 2, or as in Rus-
sell, 1977, the “dawn radius”):

𝑅𝑅ss = 𝑥𝑥𝐹𝐹 +
𝐿𝐿

1 + 𝜖𝜖
, (5)

𝑅𝑅td =

√

𝐿𝐿2 + (𝜖𝜖2 − 1) 𝑥𝑥
2

𝐹𝐹
+ 2𝜖𝜖 𝐿𝐿𝑥𝑥𝐹𝐹 . (6)

We can derive another parameter of interest, that is, the aperture of the Mach cone related to the shock struc-
ture—the limiting Mach cone angle (Verigin, Slavin, Szabo, Kotova, & Gombosi, 2003). In the gasdynamic 
approach, it is defined as 𝐴𝐴 𝐴𝐴 = arcsin (1∕𝑀𝑀s) , where 𝐴𝐴 𝐴𝐴s = 𝑣𝑣sw∕𝑣𝑣s is the sonic Mach number. The sonic speed is 

𝐴𝐴 𝐴𝐴s =

√

𝛾𝛾𝛾𝛾∕𝜌𝜌 , with ρ the solar wind ion mass density, γ = 5/3 the ratio of specific heats, and P = nsw kB(Te + Ti) 
the solar wind thermal pressure, with Te and Ti the electron and ion temperatures, respectively. For a hyperbola 
(ϵ 𝐴𝐴 𝐴  1), the limiting Mach cone angle is exactly the angle made by the asymptotes of the hyperbola (Slavin 
et al., 1984):

𝜚𝜚 = arctan

(
√

𝜖𝜖2 − 1

)

 (7)

with ∶ Δ𝜚𝜚 =
Δ𝜖𝜖∕𝜖𝜖

√

𝜖𝜖2 − 1

 (8)

as uncertainty. In a canonical form for the hyperbola, with a the distance from the nose to the intersection of the 
asymptotes on the X′ axis, and b that from the shock nose to the asymptote on the Y′ axis, 𝐴𝐴 arctan (𝑏𝑏∕𝑎𝑎) . Since, 
by definition 𝐴𝐴 𝐴𝐴 =

√

1 + 𝑏𝑏2∕𝑎𝑎2 , the substitution readily yields expression (7). It is noteworthy to remark that for 
ϵ close to 1, the uncertainty increases to infinity; any determination of ϱ is thus unreliable for quasi-parabolic 
curves.

For the fit, Slavin and Holzer (1981) and Slavin et al. (1991) rewrote Equation (1) as y = ax + b (posing y = 1/r, 
x = cos θ, a = ϵ/L, and b = 1/L) and performed simple linear regressions for a range of focus locations. As point-
ed out by Vignes et al. (2000), this may result in fitting biases when observations are widely disparate in their 
location: in this case direct fitting methods to Equation (1) should be preferred. With a direct polar fit to MGS 

Figure 2. Typical 2D conic bow shock shape in the aberrated 
𝐴𝐴 (𝑋𝑋

′
,

√

𝑌𝑌 ′2 +𝑍𝑍 ′2) coordinate system. For a point M on the shock surface, ρ 
is the Euclidean distance to the shock from the center of the planet of radius 
Rp, and r is the distance to the shock surface from the focus xF of the conic 
with semilatus rectum L and making an angle θ with the X′ direction, so that 
Equation (1) holds. ϑ is the usual polar angle, with respect to the center of 
Mars. Rss and Rtd are the standoff subsolar and terminator distances.
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data, Edberg et al. (2008) gave for example, the following fitted values: ϵ = 1.05 ± 0.04, L = 2.10 ± 0.09, and 
xF = 0.55 ± 0.12. However, to match the results plotted in Figure 1 of Edberg et al. (2008), the value of ϵ must 
be modified down to ϵ = 1.03, a marginal difference likely due to rounding errors. For comparison, the corre-
sponding values derived by Hall et al. (2019), for MEX data but with a larger sample, are ϵ = 0.998 ± 0.003, 
L = 1.802 ± 0.002, and xF = 0.76. For MGS and MEX data (Edberg et al., 2008; Hall et al., 2016, 2019), the 
subsolar standoff distance is Rss = 1.63 ± 0.04 Rp, whereas the terminator standoff distance is Rtd = 2.50 ± 0.09 
Rp. By comparison, Halekas et al. (2017) found large variations of the bow shock standoff distances in the early 
MAVEN data, with Rss ∼1.6–1.9 Rp and Rtd ∼2.5–3.1 Rp depending on EUV flux levels and combined with either 
Mms or the solar wind dynamic pressure. Differences toward upper values with previous studies likely stem from 
different EUV levels encountered by the respective missions, the solar EUV flux being one of the main drivers, 
through ionosphere and exosphere variations, of the bow shock position (Halekas et al., 2017; Hall et al., 2019).

Reference ϵ L [Rp] xF [Rp] Rss [Rp] Rtd [Rp] α Nature ϱ [°]

Russell (1977)a 0.99 ± 0.11 2.985 0 1.50 ± 0.15 3.00 ± 0.13 0 Ellipse −

Slavin and Holzer (1981)b 0.94 ± 0.04 1.94 ± 0.02 0.5 1.50 ± 0.04 2.36m
𝐴𝐴 tan

−1
𝑉𝑉𝑝𝑝

𝑉𝑉
sw

Ellipse −

Slavin et al. (1991)c 1.02 1.68 0.7 1.55 2.29m
𝐴𝐴 tan

−1
𝑉𝑉𝑝𝑝

𝑉𝑉
sw

Hyperbola 11.4 ± 2.9

Schwingenschuh et al. (1990) 0.85 2.72 0 1.47 ± 0.03 2.72m 3.8° Ellipse −

Trotignon et al. (1991) 0.95 ± 0.10 2.17 ± 0.03 0.5 1.62 ± 0.07 2.60m 4° Ellipse −

Trotignon et al. (1993) 1.02 ± 0.01 2.17 ± 0.03 0.5 1.57 ± 0.03 2.6 4° Hyperbola 11.4 ± 2.8

Vignes et al. (2000)d 1.03 ± 0.01 2.04 ± 0.02 0.64 ± 0.02 1.64 ± 0.08 2.62 ± 0.09 4° Hyperbola 13.9 ± 2.3

Vignes et al. (2000)e 1.02 ± 0.02 1.93 ± 0.01 0.72 1.67 ± 0.03 2.56 ± 0.06 4° Hyperbola 11.4 ± 5.6

Trotignon et al. (2006) 1.026 ± 0.002 2.081 ± 0.006 0.6 1.63 ± 0.01 2.63 ± 0.01 4° Hyperbola 12.9 ± 0.5

Edberg et al. (2008)f 1.05 ± 0.04 2.10 ± 0.09 0.55 ± 0.12 1.58 ± 0.18 2.69m 4° Hyperbola 17.8 ± 6.8

Hall et al. (2016) 1.01 ± 0.11 1.82 ± 0.08 𝐴𝐴 0.74
+0.03

−0.10
𝐴𝐴 1.65

+0.13

−0.18
𝐴𝐴 2.46

+0.20

−0.22
4° Hyperbola −k

Halekas et al. (2017)g 1.0 2.01–2.54 0.6 1.6–1.9l 2.5–3.1m 4° Parabola −

Ramstad et al. (2017)h 1.022 1.48 0.85 1.58 2.19 (4°) Hyperbola 11.9 ± 2.7

Hall et al. (2019)i 0.998 ± 0.001 1.802 ± 0.002 0.76 1.662l 2.445 ± 0.003 4° Ellipse −

All (one per mission)j 1.016 ± 0.012 2.01 ± 0.25 0.61 ± 0.10 1.61 ± 0.08 2.56 ± 0.20 4° Hyperbola 13 ± 4

Note. Pre-Mars Express results were already summarized in Trotignon et al. (2006), Table 1. The aberration angle α is given for each reference. ϱ is the limiting Mach 
cone angle, calculated by formula (7) in the case of a hyperbolic shape. The mean value for each mission is also given, with Mars 2, 3, and 5 and Mariner 4 (Slavin 
et al., 1991), Phobos 2 (Trotignon et al., 1993), Mars Global Surveyor (MGS; Edberg et al., 2008), and Mars Express (MEX; with Hall et al., 2016, 2019). The planetary 
radius of Mars is by definition Rp = 3,389.5 km.
aBecause the Mars 2, 3, and 5 measurements reported by Gringauz et al., 1976; in total 11 crossings did not specify local times, aberration angle α was assumed to be 
zero. bThese authors use the full definition of the aberration angle, resulting in 𝐴𝐴 𝐴𝐴 = arctan

(

𝑉𝑉𝑝𝑝∕𝑣𝑣sw

)

 , in contrast to the more recent studies. See Section 2.1. cMariner 4, 
and Mars 2, 3, 5 data only here. Uncertainties on ϵ fitted values assumed to be 1%. d“Direct fit” method with all three parameters varying simultaneously. e“Slavin’s 
method,” using a linear regression in (1/r, cos θ) space. fNote that ϵ = 1.03 matches better with Figure 1 of Edberg et al. (2008), for which the Mach cone aperture would 
instead be ϱ = 13.9. gFits were performed on 2D-gridded density data, co-depending on Mms and EUV flux levels on the one hand, and solar wind dynamic pressure 
and EUV flux levels on the other.The coordinate system adopted by Halekas et al. (2017) was the Mars Solar Electric (MSE) system, with the X axis lying anti-parallel 
to the solar wind flow. hRamstad et al. (2017) use the following rectangular function (required to be cylindrically symmetric with respect to the solar wind direction): 

𝐴𝐴 𝐴𝐴 =

√

𝜖𝜖2 − 1

√

(𝑥𝑥 −𝑅𝑅ss − 𝜍𝜍)
2
− 𝜍𝜍2 , with ρ the radial distance to the bow shock on the Yʹ axis from the center of Mars, Rss the subsolar standoff bow shock distance 

on the X′ axis, and ς the so-called scale length. This function is valid ∀x ≠ Rss since ρ(y = 0) = Rss. By definition, 𝐴𝐴 𝐴𝐴td = 𝜌𝜌(𝑥𝑥 = 0) =

√

𝜖𝜖2 − 1

√

(𝐴𝐴ss + 𝜍𝜍)
2
− 𝜍𝜍2 . ς 

is a constant equal to 33.54 Rp derived in Ramstad et al. (2017) from the bow shock model values for Rss, Rtd, and ϵ of Vignes et al. (2000) and can be calculated as 
𝐴𝐴 𝐴𝐴 = −

1

2𝑅𝑅
ss

(

𝑅𝑅
2

ss
−𝑅𝑅

2

td
∕(𝜖𝜖

2
− 1)

)

 . The original values of Rss and ϵ in their study were fitted to a function 𝐴𝐴 𝐴𝐴 𝐴𝐴
𝑏𝑏

sw
(𝑣𝑣sw∕100)

𝑐𝑐
+ 𝑑𝑑 ; we have assumed here nominal conditions 

𝐴𝐴 (𝑛𝑛sw, 𝑣𝑣sw) = (2 cm
−3
, 400 km s

−1
) for simplicity. We calculate the semilatus rectum as 𝐴𝐴 𝐴𝐴 =

(

𝑅𝑅
2

td
− (𝜖𝜖

2
− 1)𝑅𝑅

2

ss

)

∕(2𝑅𝑅ss) from formulae (5) and (6). Uncertainties on 
ϵ fitted values assumed to be 1%. iHere, we only recall the results for all MYs (MY27–33). Individual MYs have eccentricities below 1 (ellipse), except for MY28–29 
(hyperbola). jThat is, Mariner 4 and Mars 2, 3, and 5 (Slavin et al., 1991), Phobos 2 (Trotignon et al., 1993), MGS (Edberg et al., 2008), MEX (Hall et al., 2019), and 
MAVEN (Halekas et al., 2017). The listed uncertainties are the standard deviations of the series. Accordingly mean angles ϱ are calculated only for 3 values and are 
only given for for completeness here. kAlthough this is a hyperbola with cone angle ϱ = 8.1°, the large eccentricity uncertainty leads to a cone angle uncertainty of 44°, 
hence no ϱ value is provided here. lCalculated from formula (5). mCalculated from formula (6).

Table 2 
Summary of Martian Bow Shock 2D Conic Parameters
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We present in Table 2 the fitted conic parameters of the main quoted references in Table 1, in chronological order. 
It is interesting to remark that most shapes fitted are stricto sensu hyperbolic (ϵ ≥ 1), but in practice can be con-
sidered quasi-parabolic as eccentricity ϵ ∼ 1, which makes it possible to calculate the limiting Mach cone angle. 
For example, when fitting bow shocks from different MYs, Hall et al. (2019) showed that eccentricities varied 
around ϵ = 1 by <5% between MY27 and MY33, with a marked tendency toward ellipsoidal shapes (only two 
consecutive years, MY28 and MY29 had eccentricities above 1).

2.2.2. The 3D Cartesian Form

The more general way of characterizing the bow shock shape does not assume any symmetry with respect to 
any axis. A 3D shape model can be constructed in the form of a quadratic equation (e.g., Formisano et al., 1979; 
Gruesbeck et al., 2018; Simon Wedlund et al., 2017, for Earth, Mars, and comets):

𝐴𝐴𝐴𝐴
2
+ 𝐵𝐵𝐵𝐵

2
+ 𝐶𝐶𝐶𝐶

2
+𝐷𝐷𝐴𝐴𝐵𝐵 + 𝐸𝐸𝐵𝐵𝐶𝐶 + 𝐹𝐹𝐴𝐴𝐶𝐶 + 𝐺𝐺𝐴𝐴 +𝐻𝐻𝐵𝐵 + 𝐼𝐼𝐶𝐶 − 1 = 0. (9)

Here and for clarity in the equations, (x, y, z) coordinates are by definition the unaberrated (XMSO, YMSO, ZMSO) 
coordinates. With the MAVEN spacecraft including both magnetometer and ion spectrometer, Gruesbeck 
et al. (2018) used a limited subset of bow shock crossings when ignoring rapid spatial motions of the boundary 
across the spacecraft due to the variable solar wind (see Halekas et al., 2017), leaving a database of only 1,799 
crossings spanning about 3 years of data (November 2014–April 2017). For all bow shock detections considered 
in their study, the best least-squares ellipsoid fit was obtained with A = 0.049, B = 0.157, C = 0.153, D = 0.026, 
E = 0.012, F = 0.051, G = 0.566, H = − 0.031, and I = 0.019 and is valid only for the dayside bow shock up 
to a few 0.1 Rp downstream of the terminator (X ≳ −0.5 Rp) because of the poor MAVEN orbital coverage on 
the nightside flanks of the shock. Gruesbeck et al. (2018) concluded that asymmetry of the shock surface was 
particularly pronounced in the North-South direction, likely due to the influence of crustal magnetic fields. Lo-
cated predominantly in the southern hemisphere of Mars between 30° and 85°S (Acuña et al., 1998), they tend to 
increase the altitude of the induced magnetospheric boundary and hence increase the subsolar standoff distance 
of the shock (see Matsunaga et al., 2017 and references therein).

Although quadratic surfaces are not necessarily centered on the planet nor is their main axis directed along the 
XMSO axis (see Appendix A), a simple estimator of the shock’s position in the subsolar and terminator directions 
can be of interest. We propose here such an expression, based on Equation (9). We calculate thus the subsolar 
standoff distance along the XMSO axis at coordinates (x, y = 0, and z = 0) by finding the positive root of the sim-
plified quadratic equation (i.e., the intersection of the surface with the XMSO axis):

𝐴𝐴𝐴𝐴
2
+ 𝐺𝐺𝐴𝐴 − 1 = 0 (10)

⇒𝑥𝑥max = 𝑅𝑅ss =
−𝐺𝐺 +

√

𝐺𝐺2 + 4𝐴𝐴

2𝐴𝐴
, (11)

whereas the terminator standoff distances in the Y − Z plane (non-aberrated MSO coordinates) are similarly given 
by:

𝐵𝐵𝐵𝐵
2
+𝐻𝐻𝐵𝐵 − 1 = 0 ⇒ 𝐵𝐵max = 𝑅𝑅td,𝐵𝐵 =

−𝐻𝐻 +

√

𝐻𝐻2 + 4𝐵𝐵

2𝐵𝐵

 (12)

𝐶𝐶𝐶𝐶
2
+ 𝐼𝐼𝐶𝐶 − 1 = 0 ⇒ 𝐶𝐶max = 𝑅𝑅td,𝐶𝐶 =

−𝐼𝐼 +

√

𝐼𝐼2 + 4𝐶𝐶

2𝐶𝐶

 (13)

Because of the small angles involved at Mars, non-aberrated coordinates are rather accurate for the subsolar 
standoff distance. That said, rotating the MSO coordinate system by a certain small angle α about the Z axis does 
impact the terminator distances by a few 0.01 Rp. For the parameters given above, Rss = 1.56 Rp, Rtd,z = 2.50 Rp, 
and Rtd,y = 2.62 Rp. Because the shock is a 3D object, the exact position of the tip of the ellipsoid may vary with 
respect to the values taken at the origin.
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2.2.3. Comparison of Historical Models

A comparison of a representative selection of historical bow shock models (some of them as listed in Vignes 
et al., 2000; Trotignon et al., 2006) in the Xʹ −Yʹ/Zʹ plane is given in Figure 3. The 3D quadratic model of Grues-
beck et al. (2018) was rotated anticlockwise by 4° around the Z axis to ease the comparison. It is noteworthy to 
remark that although the fit is not valid for Xʹ ≲ −0.5 Rp, the figure displays the fits for Xʹ > −2.5 Rp to illustrate 
the differences in shock surface swelling.

All models are in excellent agreement around the subsolar point, with a mean subsolar standoff distance value 
of Rss = 1.59 ± 0.05 Rp. The terminator standoff distance is also in very good agreement—however, for Xʹ ≲ 0 
Rp, the difference between fits becomes substantial, especially (a) between the recent MEX investigations of Hall 
et al., 2016, 2019 and the other fits on the one hand and (b) between the MAVEN fits and all other fits on the oth-
er. For MAVEN, this is due, as previously mentioned, to the lack of orbital coverage by the spacecraft for Xʹ < 0 
Rp. In this sense, MEX has a much better antisolar spatial coverage. Of note, the North-South asymmetry in the 

Figure 3. Bow shock fitted models to observations in MSO aberrated coordinates. The 3D quadratic model of Gruesbeck 
et al. (2018) fitted from MAVEN data was rotated anticlockwise 4° around the Z axis. All other models are obtained in 
cylindrical conic form from other missions, including Mars Express (MEX), Mars Global Surveyor (MGS), Phobos 2, and the 
Mars 2, 3, and 5 missions. The fits of Hall et al. (2016, 2019) and Gruesbeck et al. (2018) consider all shock detection points 
of their respective studies. Because the cylindrical models are symmetric about the Xʹ axis, the figure’s cylindrical y-axis 

𝐴𝐴

√

𝑌𝑌 ′2 +𝑍𝑍 ′2 is equivalent to the Yʹ or to the Zʹ axis, regardless. The coordinates are normalized to the radius of Mars, Rp = 
3,389.5 km.
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3D fits of Gruesbeck et al. (2018), coinciding with the presence of crustal fields in the Southern hemisphere of 
Mars, can easily be seen, a characteristic which no axisymmetric model directly quantifies.

2.3. Shock Geometry

2.3.1. Quasi-Perpendicular or Quasi-Parallel Shock?

A collisionless shock may have different behaviors depending on the upstream solar wind magnetic field (the 
IMF), which conditions how the solar wind is losing its energy to the magnetosheath. Two main cases are 
conveniently studied for their varying properties: q‖ and q⊥ shocks. Additional important physical quantities driv-
ing the shock structure and dynamics are the magnetosonic Mach number (which defines the shock’s criticality) 
and the plasma-β (Balogh & Treumann, 2013).

It is useful to recall that a q‖ shock condition is defined so that the background IMF lines are intersecting normally 
the shock surface, whereas a q⊥ shock describes an IMF that is in effect in the tangent plane to the surface shock. 
Thus, the angle of importance is the angle between the average IMF vector upstream of the shock and the shock 
normal. This angle is in the literature almost always named θBn, which is kept here for convenience. The geometry 
of the shock is defined as follows:

�Bn > 45◦ ∶ �⟂ shock (14)

�Bn ≤ 45◦ ∶ �
‖

shock (15)

Starting in the magnetic field compression region in the solar wind, q⊥ shocks have structures, from the point of 
view of B-fields, almost always characterized by (a) a foot, (b) a fast ramp, and (c) a wider overshoot followed 
by a more gradual undershoot (see Kennel et al., 1985, Figure 11). This classic picture is a first approximation 
as fine electron-scale structures in the foreshock, foot and ramp can be seen with high-cadence magnetic field 
measurements. Q⊥ shocks reflect particles back upstream to satisfy the shock conditions and are on average 
diffusive. Magnetic structures trapping particles such as mirror modes are observed to predominantly take place 
in the magnetosheath behind a q⊥ shock (Gary, 1992). On the other hand, q‖ shocks are on average resistive and 
are usually characterized by heavy turbulence. Their foreshock contains MHD turbulence that can give rise to 
first-order Fermi acceleration. Also common in the foreshock region, highly compressive structures such as Short 
Large-Amplitude Magnetic Structures (SLAMS) are associated with large density variations: they originate from 
the steepening of ULF waves and are of great importance in the shock reformation (Burgess et al., 2005; Burgess 
& Scholer, 2014).

In order to determine the q‖ or q⊥ geometry of the shock crossed by a spacecraft, the normal direction to the 
shock surface needs to be first estimated. For a single spacecraft, this can be done either with methods that 
take advantage of upstream and downstream magnetic field measurements (coplanarity method as in Horbury 
et al., 2002 and Schwartz, 1998, although prone to rather large uncertainties) or through geometrical consider-
ations only, as we propose in Section 2.3.2. The accuracy of the geometrical method presented here is linked 
to the assumption that the shock surface is smooth and does not possess any kinks or local structures where 
the current curls on itself. In practice, we do not expect such a smooth surface as the shock may assume a 
more rippled shape which depends on the upstream solar wind condition and the turbulence at the boundary 
(Moullard et al., 2006). However, our geometric determination may still be a useful first approximation of the 
geometry of the shock.

2.3.2. Determination of the Shock Normal

The normal to the shock surface, at point (r0, θ0) in polar coordinates, (x0, y0, z0) in Cartesian coordinates, or (r0, 
ϑ0, φ0) in spherical coordinates, is simply defined as the gradient vector of the (assumed) smooth surface f at that 
point. Mathematically we can express this condition as:

∇𝑓𝑓 ⋅ 𝐯𝐯 = 0 (16)
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where v is a vector tangential to the surface at that point. This leads to the following expressions in the 2D and 
3D cases.

2.3.2.1. The 2D Case

For the 2D polar coordinate case, let f be equal to f(r, θ) = r − L/(1 + ϵ cos θ) following Equation (1) where θ is 
the angle from the focus xF on the Xʹ axis. The gradient of f depends on the two variables (r, θ):

∇� =

⎛

⎜

⎜

⎜

⎝

��
��

1
�
��
��

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1

− � sin �
(1 + � cos �)

⎞

⎟

⎟

⎟

⎠

 (17)

At point (r0, θ0) vector ∇f = (R0, Θ0) is perpendicular to the surface. Note that because of the peculiarity of a con-
ic, values in x must always be corrected by the focus distance xF, because the typical polar angle ϑ is not strictly 
the same as the conic angle θ used in Equation 1; see Figure 2.

In Cartesian coordinates, using Equation (4), the gradient will be against directions along Xʹ and Yʹ and equal to:

∇𝑓𝑓 =
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. (18)

This expression circumvents the ambiguity on the angle direction of the polar formula, and as such should be 
preferred when calculating the normal direction. Figure 4a displays our estimates of the normal direction to sev-
eral points on the shock surface applied to the 2D bow shock polar fit of Edberg et al. (2008), and converted to 
Cartesian coordinates.

Figure 4. Bow shock normal. (a) Polar 2D case (model of Edberg et al., 2008). (b) Cartesian 3D case (model of Gruesbeck et al., 2018). All coordinates are normalized 
to the radius of Mars, Rp = 3,389.5 km.
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2.3.2.2. The 3D case

For the 3D Cartesian quadratic equation, f is simply equal to the left member of Equation (9).

The gradient of f is then:

∇𝑓𝑓 =
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At point (x0, y0, z0) vector ∇f = (X0, Y0, Z0) is perpendicular to the surface. Additionally, the equation of the tan-
gent plane to the smooth surface at that point is of the general form:
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where subscript “0” in the gradient components denotes the gradient taken at points (x0, y0, z0) for brevity. Thus, 
knowing the 3D position of the spacecraft at the expected bow shock position, one can calculate the transverse 
and tangent directions to the bow shock surface. Figure 4b shows our results with this technique applied to the 
3D bow shock fit of Gruesbeck et al. (2018), assuming a spacecraft situated on random points of the shock’s 
surface.

With the knowledge of the normal direction to the shock at the spacecraft location, it becomes possible, from the 
2D and 3D model cases, to calculate the angle θBn from the average direction of the magnetic field at the space-
craft position near the shock, noted Bbg:

tan 𝜃𝜃Bn =
‖∇𝑓𝑓 × 𝐁𝐁bg‖

∇𝑓𝑓 ⋅ 𝐁𝐁bg

. (21)

For added robustness, the function arctan2 is recommended for the calculation of the inverse tangent, as it re-
turns a value corresponding to the correct quadrant of the Euclidean plane. Because of the inherent 3D nature 
of a spacecraft orbit and of the local magnetic field, we prefer the 3D calculation with Equation (19) over the 
corresponding 2D case [Equation 18]. It is however important to recall here that the shock’s local shape may 
be assuming that of a “corrugated iron” section, as evidenced, for example at Earth, with the Cluster quartet of 
spacecraft (Moullard et al., 2006). No method is foolproof in estimating θBn: in case studies, the local normal to 
the shock can be more carefully checked, for which several complementary methods exist, such as the magnetic 
coplanarity method mentioned earlier.

When applied to the MAVEN dataset, the geometric calculation of θBn, assuming a smooth surface, is expected 
to reach an uncertainty of about ±5° depending on the upstream field determination. We obtained this estimate 
for a small sample of crossings, by extending over a few minutes the time spans used to calculate the upstream 
magnetic field direction.

3. Detecting the Bow Shock in Spacecraft Orbits
Estimating the bow shock position from spacecraft spatial coordinates can be achieved either empirically or 
theoretically, depending on the precision needed. Semi-empirical but computationally intensive techniques using 
machine-learning imaging algorithms are currently attempted to detect automatically and precisely the exact 
position of the shock. Such techniques make use of the full plasma instrumental payload on board planetary 
missions, when available. Other techniques like that of Němec et al. (2020) use ion and magnetic field data in 
combination to statistically identify the regions crossed by the spacecraft. However, a faster approach, based on a 
simple geometrical estimator using a static analytical bow shock model (see Section 2), may still prove valuable 
for statistical studies or for new datasets. We present such an approach and its possible refinements in 2D and 3D 
coordinate systems based on magnetic field-only measurements. Because in the following we do not take into ac-
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count plasma measurements, and because the true signature of the shock may be difficult to detect with magnetic 
field data only, a range of simultaneous criteria to identify solar wind and magnetosheath regions is required to 
mitigate this ambiguity. These criteria are presented in Section 3.2.

3.1. Predictor Algorithm for the Shock Position From Existing Analytical Models

The predictor algorithm is based on the calculation of polar (2D, θ) or spherical (3D, [ϑ, φ]) angles in the corre-
sponding frame of reference centered on the planet in MSO coordinates. These angles unequivocally define the 
predicted distance to the bow shock at the position of the spacecraft (Xsc, Ysc, Zsc). Comparing this bow shock 
distance with the Euclidean spacecraft distance to the center of the planet gives access to the region in which the 
spacecraft is located either in the solar wind or in the magnetosheath.

3.1.1. The 2D Case

Our algorithm is (see Figure 2 for definitions of angle and distances):

•  Choose conic model r(θ), with eccentricity ϵ, semilatus rectum L and focus’ position (xF, 0, 0).
•  Calculate the spacecraft’s Euclidean distance rsc from the chosen conic model focus xF, in aberrated MSO 

coordinates, so that: 𝐴𝐴 𝐴𝐴sc =

√

(𝑋𝑋
′

sc
− 𝑥𝑥𝐹𝐹 )

2

+ 𝑌𝑌
′2

sc
+𝑍𝑍

′2

sc
 .

•  Calculate the angle 𝐴𝐴 𝐴𝐴sc at the position of the spacecraft: 𝐴𝐴 𝐴𝐴sc = arctan2

(

√

𝑌𝑌
′2

sc
+𝑍𝑍

′2

sc
, (𝑋𝑋

′

sc
− 𝑥𝑥𝐹𝐹 )

)

 .
•  Calculate the predicted bow shock distance Rbs at the corresponding spacecraft θsc from the focus xF: 

Rbs = r(θsc) = L/(1 + ϵ cos θsc) following Equation (1).
•  Calculate ΔR = rsc − Rbs. If ΔR goes from negative to positive (respectively, from positive to negative) values, 

the spacecraft is expected to move from the magnetosheath to the solar wind (respectively, from solar wind to 
magnetosheath). At the temporal precision of the spacecraft ephemerides, the closest value to ΔR = 0 defines 
the shock position 𝐴𝐴 (𝑋𝑋bs, 𝑌𝑌bs, 𝑍𝑍bs) and crossing time tbs.

This purely geometrical approach was tested for polar coordinate models (such as Edberg et  al.,  2008; Hall 
et al., 2016, 2019), provided that all spacecraft coordinates are first rotated 4° into the aberrated MSO system.

3.1.2. The 3D Case

For 3D quadric models (Gruesbeck et al., 2018), the aberration is already taken into account and there is no need 
to correct the spacecraft coordinates for the position of the focus of the conic. Thus we only need generalize the 
approach above to spherical coordinates (ρ, ϑ, φ), where 𝐴𝐴 𝐴𝐴 =

√

𝑋𝑋2 + 𝑌𝑌 2 +𝑍𝑍2 is the planetocentric distance, 
whereas 𝐴𝐴 𝐴𝐴 = arctan (𝑌𝑌 ∕𝑋𝑋) and 𝐴𝐴 𝐴𝐴 = arctan

(

𝑍𝑍∕

√

𝑋𝑋2 + 𝑌𝑌 2

)

 represent azimuth and elevation (measured from the 
X–Y plane) by convention. To compensate for the inherent ambiguity on azimuth depending on the quadrant and 
gain robustness, the function arctan2 is preferred throughout for simplicity, in a programing sense. Equation (9) 
becomes a second-degree equation of the form:

𝑎𝑎𝑎𝑎
2
+ 𝑏𝑏𝑎𝑎 − 1 = 0 (22)

with:
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In the case of an ellipsoid of revolution (as it is the case for the parametrization of Gruesbeck et al., 2018), the 
bow shock distance Rbs at the angles (ϑ, φ) corresponds to the positive root of this equation:

𝑅𝑅bs =
−𝑏𝑏 +

√

4𝑎𝑎 + 𝑏𝑏2

2𝑎𝑎
, (23)
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for a ≠ 0. For other parametrizations such as a hyperboloid of two sheets, there may be two positive roots, in 
which case the smallest root should be chosen. The denominator 2a in expression (23) never reaches zero, no 
matter the combination of angles chosen, which makes it a robust formula throughout any orbit. For azimuth and 
elevation angles (|ϑ| ≳ 115°, |φ| ≲ 55°), the model of Gruesbeck et al. (2018) is not applicable any more (standoff 
distances above 4 Rp) as these particular angular combinations correspond to a tail-flank position, lying outside 
of MAVEN’s orbital range.

The next step is to determine whether the spacecraft is inside the bow shock surface or outside of it in the orbital 
sequence. Our algorithm follows a similar sequence as for the 2D case, but all variables are calculated with re-
spect to the center of Mars, in unaberrated MSO coordinates:

1.  Choose 3D model of the bow shock with A, B, C, D, E, F, G, H, and I parameters.
2.  Calculate the spacecraft’s Euclidean distance in non-aberrated coordinates, 𝐴𝐴 𝐴𝐴sc =

√

𝑋𝑋
2
sc
+ 𝑌𝑌

2
sc
+𝑍𝑍

2
sc

 .
3.  Calculate (azimuth, elevation) angles (ϑ, φ) at position of the spacecraft: 𝐴𝐴 𝐴𝐴sc = arctan2 (𝑌𝑌sc, 𝑋𝑋sc) and 

𝐴𝐴 𝐴𝐴sc = arctan2

(

𝑍𝑍sc,

√

𝑋𝑋
2

sc
+ 𝑌𝑌

2

sc

)

 .
4.  Calculate the bow shock distance Rbs at the corresponding spacecraft spherical angles with Equation (23).
5.  Calculate ΔR = Rsc − Rbs. If ΔR goes from negative to positive (respectively, from positive to negative) values, 

the spacecraft is expected to move from the magnetosheath to the solar wind (respectively, from solar wind to 
magnetosheath). At the temporal precision of the spacecraft ephemerides, the closest value to ΔR = 0 defines 
the shock position 𝐴𝐴 (𝑋𝑋bs, 𝑌𝑌bs, 𝑍𝑍bs) and crossing time tbs.

3.1.3. Application to MAVEN Orbits

Using 1-min-averaged MAVEN orbits to test our prediction algorithm, we perform the automatic detection of 
the bow shock as shown in Figure 5. Because of the relatively poor temporal resolution of this dataset, as well as 
the fast approach in the early stages of the orbit insertion, some points in the orbit yield false positive detections 
which disappear when increasing the orbital data resolution to 1 s.

Thanks to the simple algorithms presented above, we can statistically predict bow shock crossings in a given 
spacecraft orbit. To help identify the solar wind region, we can distinguish between trajectories moving from the 
magnetosheath to the solar wind region, and vice-versa. For each orbit intersecting the bow shock model, two 
points per orbit will be identified. At 1 s resolution, we predicted a total of 16,515 bow shock crossings using the 
3D analytical model of Gruesbeck et al. (2018) for the MAVEN dataset between November 2014 and February 
2021, including 8,256 crossings from the sheath to the solar wind and 8,259 crossings from the solar wind to the 
sheath.

Actual crossings may in practice be different than the predictions and the algorithms may fail to pinpoint the 
location of the shock sometimes by several tens of minutes, mostly because of solar wind varying conditions, or 
due to the geometry of the shock at the point of passage for an individual orbit (Halekas et al., 2017). We estimate 
thus the precision of these automatic estimates to be of the order of ±0.08Rp (±270 km) around the “true” bow 
shock location, from a representative subset of data. Because of variable shock position from orbit to orbit and 
the geometric average nature of the detection, some orbits that may have experienced shock crossings but lie 
inside the average shock position will not be tested for potential detection. It is estimated that only a few hundred 
potential crossings were ignored in the process. Consequently, the true shock structure location should be checked 
directly in the magnetic field and plasma data. Moreover, since the bow shock is a dynamical object, it may ex-
perience fast forward and backward motions, crossing the spacecraft trajectory several times more per orbit. This 
can be seen, for example, in Figure 6c, where the total magnetic field undergoes sharp intermittent jumps in the 
foreshock area (23 June 2018, around 01:00 UT). As in Gruesbeck et al. (2018), these multiple crossings, usually 
the first one in the temporal sequence for crossings into the sheath, and the last one for crossings into the solar 
wind, are identified as one with our algorithm.

We successfully applied this 3D algorithm to the retrieval of undisturbed solar wind density and velocity mo-
ments in the MAVEN/SWIA data with 1 min resolution, as part of the Helio4Cast solar wind in-situ data catalog, 
enabling the statistical study of interplanetary coronal mass ejections and high speed streams (Möstl et al., 2020).
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3.2. Refining the Position of the Shock: A Predictor-Corrector Algorithm

Because of variations in the shock position, the automatic detection may give inaccurate predictions. We present 
here a fast method to correct to a certain extent for these discrepancies. It makes use of the magnitude of B to 
identify the position of the shock structure, either when crossing from the magnetosheath into the solar wind or 
vice-versa. As before, the main assumption is that the shock is crossed twice per orbit at maximum, although in 
practice the shock structure may be crossed several times due to the fast motion of the boundary across the space-
craft trajectory (Halekas et al., 2017). As we are interested in the statistical position of the shock, this assumption 
nonetheless provides a valuable estimate of the average position of the shock during those times. All magnetic 
field data are assumed here to be of the order of 1 s resolution.

Figure 5. Automatic detection of bow shock in MSO coordinates normalized to the planet’s radius, using the general quadric formula of Gruesbeck et al. (2018). 
The bow shock surface is in brown, the orbit of MAVEN between 1 November 2014 and 7 February 2021 is in blue. Detections of the crossings from inside the shock 
surface to outside of it are shown as orange circles, whereas outside-to-inside crossings are depicted by yellow circles. Coordinates are normalized to the radius of Mars, 
Rp = 3,389.5 km.
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From the point of view of a single spacecraft’s magnetic field measurements across the shock boundary, the total 
magnetic field intensity increases sharply, from typically 5 to 10 nT in the solar wind at Mars to about twice that 
level on average when moving into the magnetosheath. Additionally, fluctuations increase, going from small 
standard deviations around the mean in the solar wind, to comparatively larger fluctuations in the magnetosheath. 
Typical crossings of the Martian shock illustrating these behaviors are shown, for example, in Figure 6 which 
presents examples of bow shock crossings around Mars as seen with the MAG instrument on board MAVEN 
throughout the mission. As discussed in Section  2.3, q⊥ shocks usually display distinct features (foot, sharp 
ramp, and overshoot) as in Figure 6a, 6b, and 6d, whereas q‖ geometries have less clear signatures in magnetic 

Figure 6. Examples of total magnetic field amplitudes |B| at 1 s resolution measured by the MAVEN/MAG instrument throughout the mission (left y-axes), and 
calculated running median absolute deviations ςmad,B (right y-axes in green). (a) 25 December 2014 (beginning of mission). The first crossing is quite oblique 
(θBn ≈ 45°) followed by two highly q⊥ shock crossings (θBn 𝐴𝐴 𝐴  85°). (b) 23–24 September 2016. The two detected crossings are q⊥, the first one with θBn ≈  58°, the 
second with θBn  ≈  78°. (c) 23 June 2018, with two detected q‖ crossings (θBn ≈ 8, 25°). (d) 28 March 2020, with five crossings all oblique toward q⊥ conditions, with 
θBn ≈ 45°, 49°, 80°, 82°, and 88°, successively. The predictor geometric detections (Section 3.1) are in dashed lines and labeled “automatic,” whereas the predictor-
corrector detections proposed in Section 3.2 are in solid lines. Highlighted in different colors are crossings from solar wind to magnetosheath (labeled SW  →  MS, red) 
and from magnetosheath to solar wind (labeled MS  →  SW, blue). Calculations of θBn angles were performed using median averages of B over the color-highlighted 
regions (blue for MS  →  SW crossings, red for SW  →  MS crossings). The threshold ςth = 0.5 is shown as a horizontal dashed line (right y-axis, green).
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field data, making it difficult to detect reliably (Figure 6c). Consequently, the corrector method presented here is 
biased toward the detection of q⊥ crossings.

Our predictor-corrector detection algorithm attempts to consistently identify solar wind undisturbed regions in the 
chosen dataset, characterized by relatively low magnetic field intensities in combination with small fluctuations. 
For each orbit of a spacecraft, it proceeds as follows, with user-defined values (Δtbs, Bth, T, and ςth) discussed 
afterward:

1.  Calculate predictor estimate of the shock crossing time tbs with the automatic algorithm in 2D aberrated polar 
coordinates or in 3D (as in Section 3.1).

2.  If tbs exists in the considered orbit, choose a small time interval symmetric around the estimated shock so that 
[tbs − Δtbs, tbs + Δtbs] (user-defined).

3.  Calculate a robust estimate of the average magnetic field, for example, the median of the magnetic field in half 
of this interval, noted |Bsw|1/2. By definition |Bsw|1/2 corresponds to the assumed solar wind region magnetic 
field. For crossings from the solar wind into the sheath, the first half-interval is selected. For crossings from 
the sheath to the solar wind, the second half-interval is selected. There are two possibilities at this junction:
 (a)  If |Bsw|1/2 > Bth, where Bth is the solar wind-to-magnetosheath threshold (user-defined), the position of the 

solar wind region is difficult to assess. In that case:
i.  Make the time interval float around the estimated location of the shock, by increments of Δtbs/3 in one 

direction or the other, so that tbs = tbs ± Δtbs/3,
ii.  Repeat interval shift until |Bsw|1/2 ≤ Bth or until a maximum shift of 2Δtbs is effected from the estimat-

ed shock timing in either direction. If |Bsw|1/2 > Bth still, either the spacecraft is always in the sheath 
or in an usually high solar wind B-field region, in which case the crossing is altogether ignored and 
removed from the database. If not, go to step (b):

 (b)  If |Bsw|1/2 ≤ Bth, this half-interval is a good candidate for undisturbed solar wind conditions. In that case:
i.  Calculate the running Median Absolute Deviation (MAD) ςmad,B of the total B-field signal over a 

temporal window of duration T (user-defined) in the chosen half-interval, and smooth further the 
result with a running median over a time span enclosing the shock structure in its entirety (e.g., 2T or 
3T). This also helps remove potentially abrupt but temporally isolated changes in the signal. Note that 
this particular choice of ςmad,B is somewhat arbitrary. After several tests including running standard 
deviations, normalized or not to the “solar wind” signal, the choice of a smoothed running MAD was 
empirically found to work consistently well with the MAVEN dataset at 1s resolution. For all times t 
at which the total magnetic field Btot is measured over a running interval [ti, ti + T]:

𝜍𝜍mad,B(𝑡𝑡) =

⟨

median

(

|

|

|

|

𝐵𝐵tot(𝑡𝑡𝑖𝑖) − median
𝑇𝑇

(𝐵𝐵tot)

|

|

|

|

)⟩

∀𝑡𝑡 ∈ [𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖 + 𝑇𝑇 ] (24)

ii.  Compare ςmad,B to threshold value ςth (user-defined). A jump above a certain threshold ςth indicates a 
transition between a less turbulent region (ςmad,B < ςth) to a more turbulent one (ςmad,B > ςth), an indi-
cator of the presence of a shock-like structure. If this threshold is reached, take the first (respectively, 
last) time this happens in the chosen interval for solar wind-to-sheath (respectively, sheath-to-solar 
wind) crossings, and correct the original timing tbs of step 1 to new tbs, corr. If not, discard crossing.

 (c)  Repeat for each orbit.

At Mars, we tested step 1 (predictor) in the previous section with the MAVEN dataset: on average, the detected 
shock was within ±0.08Rp (±270 km) of the true shock crossing, corresponding to about ±30 min of data along 
the orbit. We thus set the interval of study for the corrector algorithm to Δtbs = 30 min. This value depends on the 
orbit inclination with respect to the bow shock surface and is thus mission-dependent.

We determined the typical user-defined threshold values for the MAVEN mission manually, for simplicity, on a 
reduced dataset. We found a good compromise by trial and error with Bth = 11 nT, because the undisturbed solar 
wind magnetic field in Mars’ vicinity is of the order of 2–6 nT on average (Slavin & Holzer, 1981), but can reach 
up to about 10 nT or more when solar transient effects such as coronal mass ejections or co-rotating interaction 
regions are involved (Liu et al., 2021). In future studies, a more dynamic criterion in step (3a) may be preferred, 
that is, where the amplitude of the magnetic field is normalized to the assumed upstream solar wind value. The 
criterion for being in the magnetosheath could, for example, become 𝐴𝐴 𝐴𝐴 = |𝐁𝐁|∕|𝐵𝐵sw|1/2 > 𝐴𝐴th , where γth is an ad-
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equately chosen threshold (γ  ∼  1.5 for a clear increase of magnetic field when moving into the magnetosheath, 
with nominal solar wind levels γ  ∼  1).

Because the shock appears in measurements as a turbulent structure whereas the solar wind is on average less 
so, step (3b–i) calculates a measure of the variability of the magnetic field in the vicinity of the shock. The value 
of T is also mission- and instrument-dependent; for MAVEN/MAG data at a resolution of 1 s, a value T = 120 s 
was chosen, which adequately captures the mean magnetic field variations. When in the solar wind, we found 
that the intrinsic variability of the signal ςmad,B, calculated over a running window of duration T = 120 s, was on 
average <0.5, which is adopted as the threshold ςth. This makes it possible to detect the very first perturbations 
in the solar wind leading to the creation of the shock structure, a point which is identified here as the position 
of the shock proper at time tbs. Again, in future studies, the threshold can be normalized to the magnetic field 
level, as in Halekas et al. (2017) where, together with constraints on plasma parameters, the normalized root-
sum-squared value of the magnetic field was chosen so that RSS(B)/|B| < 0.15 to identify undisturbed solar 
wind intervals.

3.2.1. Application to MAVEN Dataset

Applied to the MAVEN dataset at 1 s orbital and magnetic field resolution, the corrector algorithm reaches an 
accuracy of ±0.02Rp (±70 km) around the “true” shock (manually picked on a reduced dataset for compari-
son), a factor 4 increase in accuracy with respect to step 1. In the temporal datasets, this corresponds to only a 
few minutes of continuous data along MAVEN’s orbit. This is epitomized in Figure 6, which shows examples 
of shock crossing predictions from step 1 (dashed lines) in magnetic field data (left axis) as compared to the 
predictions from the predictor-corrector algorithm (unbroken lines, red for crossings into the magnetosheath, 
and blue for crossings into the solar wind). Right axes in green show ςmad,B and the associated threshold of 0.5, 
where ςmad,B < 0.5 mainly occurs for upstream solar wind intervals. With the addition of criterion Bth on the total 
magnetic field, only clear solar wind regions are captured by our algorithm, whereas ambiguous regions from the 
point of view of the magnetic field data are rejected.

At the beginning of the mission (Figure  6a, December 2014), the automatic predictor algorithm gives a 
reliable estimate of this q⊥ shock’s position: this is expected since the prediction is based on the 3D quadric 
model of Gruesbeck et al. (2018) who specifically performed shock fits on the first years of the mission. In 
this case, the predictor-corrector algorithm only corrects the shock’s estimated location by a few minutes. 
Figure  6b (September 2016) displays a case where the shock position is hard to ascertain from magnet-
ic-field data only: the predictor estimate is off by up to 20 min for all crossings. Because of the constraints 
on the magnetic field amplitude and the lack of significant variations in |B| between 22:00 and 01:00 UT, 
the predictor-corrector algorithm ignores the two first expected crossings but corrects well for the two next 
crossings (around 03:30 and 04:45 UT). Figure 6c shows a more complex mix between sheath and solar wind 
conditions, and even though the boundaries are more subtle and the overall B-field magnitude below 10 nT, 
the predictor-corrector algorithm manages to estimate the position of the q‖ shock well, ignoring possibly 
unclear crossings which do not fulfill the combined threshold conditions on ςmad,B and Bth (around 01:00 UT). 
Figure 6d shows yet another example of the superiority of the predictor-corrector algorithm for some very 
clear bow shock crossings in 2020, after the orbit of MAVEN had been altered into a different orbit than at 
the beginning of the mission.

The final corrected timings for the detections yield with this algorithm a lower estimate of the total actual number 
of crossings encountered by a spacecraft throughout its mission. Events occurring when |Bsw|1/2 > Bth, even after 
shifting the temporal window significantly, or when ςmad,B < ςth, were discarded in the final selection as can be 
seen in Figure 6. They may indicate that the magnetic field was either too turbulent or too complex in its structure 
(e.g., multiple crossings as is regularly the case with q‖ crossings) for the corrector algorithm to capture. More-
over, as discussed previously, the analytical approximation model used for the determination in step 1 (either 2D 
or 3D) is likely to underestimate the true number of crossings due to the planetary bow shock variability (Halekas 
et al., 2017). Because our study is primarily interested in the statistical position of the bow shock throughout the 
mission, this loss of potential detections may be compensated by the large number of orbits of the considered 
spacecraft.

For MAVEN, from the original 16,515 candidate detections from step 1 (predictor) using the 3D model of 
Gruesbeck et  al.  (2018) as a first approximation, our predictor-corrector algorithm selected 14,929 events 
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(7,494 detections from the solar wind to the magnetosheath and 7,435 from 
the sheath to the solar wind) for the period 01 November 2014–07 February 
2021. This is a 10% decrease in number of crossings, leaving out the less 
ambiguous events from the predictor algorithm. On average, the correction 
to the original timing is within about Δt ± 20 min along the spacecraft or-
bit, which corresponds to a percentage difference in radial distance of about 
±25% (not shown). The calculated average difference |ΔRbs| over the entire 
dataset between predictor and predictor-corrector algorithm is ∼0.11Rp, 
that is, ∼380  km or about 5% difference. The complete list of MAVEN 
crossings (times and spatial coordinates) derived with the predictor-correc-
tor algorithm is compiled in Simon Wedlund et al. (2021).

Out of these 14,929 crossings, we found that an overwhelming number 
(11,967) was predominantly q⊥ crossings with θBn > 45° as calculated with 
formula (19), the remaining 2,962 events being classified as more reminis-
cent of q‖ shock conditions. It is important to recall that the method is biased 
toward clear signatures of q⊥-like bow shock crossings, in practice filtering 
out many q‖ crossings, which may explain part of the discrepancy. About 
22% of the q⊥ crossings are highly perpendicular shocks (θBn ≥ 80°, 2,674 

crossings), whereas only ∼1% of the q‖ shocks are highly parallel ones (θBn ≤ 10°, 30 crossings). This is shown in 
Figure 7, where the highest number of crossings occurs for θBn ∼ 80°. This is also in qualitative agreement with 
the results of Vignes et al. (2002) for the MGS mission, when they investigated a proportion of 93 q⊥ shocks for 
only 23 q‖ shocks.

4. Application to the Study of the Martian Bow Shock Variability
In this section, as an application and statistical test of our new predictor-corrector algorithm, we present 2D and 
3D fits of the average bow shock position with the MAVEN spacecraft for the 1 November 2014–7 February 
2021 period. First, we sort out the detected shock positions (compiled in Simon Wedlund et al., 2021) by MY 
(MY32–MY35), aerocentric solar longitude Ls range (four seasons centered on equinoxes and solstices), EUV 
flux (two regimes, one for higher solar flux and one for lower solar flux), and shock geometry (q⊥ or q‖). These 
cases correspond to:

1.  Mars Years: MY32 (incomplete), 33, 34, and 35, inspired by the work of Hall et al. (2019) on MEX datasets.
2.  Solar longitude Ls ranges from [315° to 45°] (centered on Northern Hemisphere [NH] spring equinox), [45°–

135°] (NH summer solstice), [135°–225°] (NH autumn equinox), [225°–315°] (NH winter solstice). Ls de-
fines the geographic Martian season, with Ls = 251° (Ls = 71°, respectively), marking perihelion (aphelion) 
conditions.

3.  Two EUV flux levels, inspired by the works of Halekas et al. (2017) and Gruesbeck et al. (2018) on the early 
MAVEN datasets. The EUV flux at Mars is obtained using the FISM-IUVS daily irradiances at 121.5 nm cal-
culated from the Mars EUVM model (Thiemann et al., 2017). The median of the EUV flux in the 2014–2021 
period is 0.002 8 W m−2 and defines two EUV flux levels, one “high” for fluxes strictly above that limit, one 
“low” for fluxes below.

In Section 4.1, we perform 2D and 3D fits to the found Mars bow shock positions using the spacecraft ephemer-
ides. A discussion of these fits and what they imply is given in Section 4.2.

4.1. Statistical Position of the Martian Bow Shock

4.1.1. The 2D Case

In 2D MSO aberrated coordinates, the polar equation, Equation (1), can be rewritten in the linear form y = ax + b 
(see Trotignon et al., 2006):

𝑟𝑟 = 𝐿𝐿 − 𝜖𝜖
(

𝑋𝑋
′
− 𝑥𝑥𝐹𝐹

)

, (25)

Figure 7. Statistical distribution of crossings with respect to θBn angles, 
the angle between the normal to the shock and the average magnetic field 
direction. The limit between q‖ and q⊥ conditions is for θBn = 45°.
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with a linear regression in the (r, Xʹ − xF) space performed for a chosen focus location xF. First we chose a 
focus location randomly between 0 and 1Rp, and for each linear fit performed, the residuals are calculated. 
The adopted focus point is the one that minimizes the residuals. Because MAVEN’s orbits are not suited to 
bow shock detections for Xʹ < −0.5 Rp, additional constraints on the tail distributions are necessary to obtain a 
more realistic conic fit. This can be achieved, for example, by using the predictions from a chosen pre-existing 
model for deeply negative Xʹ values, such as those of Edberg et al. (2008, noted “E08” in the following) or Hall 
et al. (2019, noted “H19”) where bow shock detections were reported downstream to �′

min ≈ −1.5�p and to 
≈−5�p , respectively. First, additional “ghost” points (representing 10% of the total number of detections for 
the considered case) are calculated for �′

min < �′ < −0.5�p for the chosen model and randomized spatially 
around this result to give a more realistic tail spread. The linear regressions are then performed on the new con-
strained dataset. Tests were performed on the robustness of this method using different analytical models: E08 
and H19 fits are essentially the same around the nose of the shock downstream to about −1 Rp where patent 
differences start to appear. Because of the added cloud of ghost points, this is expected and thus 2D fits pre-
sented below are only valid in practice in the range [− 0.5 Rp, Rss]. Incidentally, differences on the terminator 
and subsolar standoff distances are less than 𝐴𝐴 𝐴 2% in each case. It is noteworthy to add that the determination 
of the nature of the conic section found from the fits can be significantly altered when using tail models either 
from E08 (hyperbola) or from H19 (fits’ nature given by these authors, ranging from ellipse to hyperbola, 
depend on the MY considered): in that case, the fit's nature will naturally be biased toward matching that of 
their respective parent tail model.

Table 3 and Figure 8 display our 2D fits when the E08 tail model supplements the MAVEN dataset for addi-
tional constraints on the tail. Candidate bow shock detections are also drawn as semi-transparent circles. Despite 
the constraints on the predictor-corrector algorithm, several detected points appear to fall well into the magne-
tosheath of Mars, and are false detections. Because of their relative scarcity and thanks to the large statistical 
database, these points do not significantly impact the final fits, which remain robust.

4.1.2. A 3D Case

In 3D, we perform quadric fits using the method first put forward by Taubin (1991), adapted to the quadratic 
surface of Equation (9). This fitting method constructs scatter matrices from local gradients S of tested model T 
and finds the diagonal matrix of the generalized eigenvalue problem so that Tv = λSv, where v is the generalized 

Case ɛ L [Rp] xF [Rp] Rss [Rp] Rtd [Rp] R2 Nature ϱ [°] # detections

All points, this work 1.00 1.75 0.86 1.74 2.46 0.98 Parabola − 14 ,929

MY32, this work 0.83 2.24 0.65 1.87 2.70 0.97 Ellipse − 1,196

MY33, this work 0.99 1.88 0.75 1.69 2.51 0.98 Ellipse − 4,586

MY34, this work 1.02 1.72 0.84 1.69 2.44 0.96 Hyperbola 11 5,073

MY35, this work 1.02 1.63 0.91 1.72 2.39 0.98 Hyperbola 11 4,074

Ls = [315°–45°], this work 1.01 1.73 0.86 1.72 2.45 0.98 Hyperbola 8 3,793

Ls = [45°–135°], this work 1.00 1.81 0.71 1.61 2.42 0.99 Parabola − 3,746

Ls = [135°–225°], this work 0.99 1.82 0.71 1.62 2.42 0.98 Ellipse − 3,134

Ls = [225°–315°], this work 0.98 1.91 0.86 1.82 2.62 0.98 Ellipse − 4,256

EUV flux 𝐴𝐴 ≥ 0.002 8  W m−2 1.00 1.79 0.91 1.80 2.54 0.98 Parabola − 6,502

EUV flux 𝐴𝐴 𝐴 0.002 8  W m−2 1.00 1.75 0.79 1.67 2.41 0.98 Parabola − 8,427

Quasi-⊥ 1.00 1.79 0.82 1.72 2.48 0.98 Parabola − 11 ,967

Quasi-‖ 1.06 1.47 1.07 1.78 2.37 0.94 Hyperbola 19 2,962

Note. Subsolar and terminator standoff distances Rss and Rtd are calculated with Equations (5) and (6). For hyperbolae, the Mach cone aperture ϱ is also given as 
calculated by Equation (7). For each fit, the coefficient of determination R2 gives a measure of the goodness of the linear regression. Due to the large data spread, 
uncertainties on Rss and Rtd are of the order of 5% and of the order of 2% for the other quantities. Rp = 3,389.5 km is the radius of Mars.

Table 3 
Martian Bow Shock 2D Conic Parameters in Aberrated MSO Coordinates From Linear Regression Fits Applied to Equation (25) and the MAVEN Orbits and 
Magnetic Field Data (Predictor-Corrector Algorithm)
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eigenvector of T and S, and λ are the eigenvalues. Because of the scatter of points in the database, uncertainties 
on the found parameters A to I are of the order of 1%, in a least-squares sense.

Table 4 collects all 3D fit parameters for each case; all fitted surfaces are ellipsoids of revolution. For complete-
ness, we present and give the physical interpretation of these parameters in Appendix A, in terms of principal 
axes, their direction and lengths and the centering of the ellipsoids. Figure 9 shows the corresponding fits and 

Figure 8. The 2D fits performed on the predictor-corrector algorithm for the detection of bow shock crossings in the MAVEN dataset, 2014–2021 in aberrated MSO 
coordinates (𝐴𝐴 𝐴𝐴

′

MSO
, 𝑌𝑌

′

MSO
, 𝑍𝑍

′

MSO
 ), and parametrized in Table 3. (a) and (b) Versus MY 32–35. (c) and (d) Versus Ls (season) ranges. (e) Versus EUV flux levels. (f) 

Versus shock geometry (q⊥ and q‖). (g) All detected points in the current database color-coded by year, and comparison to the analytical quadric fit of Hall et al. (2019). 
All coordinates are expressed in units of the planet’s radius, that is, Rp = 3,389.5 km. Superimposed on all panels are the corresponding analytical models of Hall 
et al. (2019) for MY 27–33, except for MYs 32 and 33, where their corresponding yearly fits are plotted. Candidate detections points for each case are also drawn as 
filled circles of varying colors, with the opacity giving a measure of the density of points in that area, giving more or less weight to the fitting method.

Case A B C D E F G H I Rss Rtd,y Rtd,z

Gruesbeck et al. (2018) a 0.049 0 0.157 0 0.153 0 0.026 0 0.012 0 0.051 0 0.566 0 −0.031 0 0.019 0 1.557 2.624 2.495

All points, this work 0.176 9 0.160 9 0.155 9 0.005 7 0.004 4 0.028 1 0.377 3 −0.032 3 0.014 3 1.539 2.595 2.487

MY32, this work 0.136 9 0.141 9 0.140 0 0.038 1 0.017 8 0.054 7 0.378 3 0.004 4 0.027 9 1.654 2.639 2.575

MY33, this work 0.166 0 0.151 6 0.150 1 0.023 5 −0.006 1 0.020 3 0.380 7 −0.028 4 −0.001 8 1.562 2.664 2.587

MY34, this work 0.171 9 0.174 2 0.155 1 −0.011 2 −0.006 8 0.016 5 0.395 5 −0.025 6 0.012 7 1.522 2.470 2.499

MY35, this work 0.557 7 0.224 5 0.200 0 −0.050 9 −0.010 3 0.096 3 −0.142 1 0.001 1 −0.011 9 1.472 2.108 2.266

Ls = [315°–45°], this work 0.155 4 0.162 5 0.158 7 −0.026 5 −0.008 1 0.002 3 0.426 0 0.001 3 0.004 4 1.513 2.477 2.496

Ls = [45°–135°], this work 0.171 9 0.176 1 0.155 5 −0.027 5 0.004 8 0.056 4 0.410 7 −0.028 7 0.005 7 1.497 2.466 2.518

Ls = [135°–225°], this work 0.249 0 0.147 3 0.262 4 0.040 9 0.041 5 0.109 8 0.236 8 −0.094 1 −0.151 0 1.584 2.945 2.261

Ls = [225°–315°], this work 0.155 9 0.148 4 0.140 0 0.004 7 0.022 7 0.040 0 0.358 3 −0.007 2 −0.019 7 1.632 2.620 2.744

EUV flux ≥ 0.002 8 W m−2 0.109 6 0.148 0 0.150 0 0.027 4 0.003 1 0.035 5 0.432 9 −0.029 3 0.004 5 1.634 2.700 2.567

EUV flux 𝐴𝐴 𝐴 0.002 8  W m−2 0.213 8 0.180 7 0.157 7 −0.023 1 −0.005 1 0.031 4 0.347 3 −0.020 7 0.018 5 1.498 2.410 2.460

Quasi-⊥ 0.179 8 0.160 7 0.153 9 0.001 6 0.004 0 0.033 0 0.377 7 −0.034 8 0.012 4 1.531 2.605 2.509

Quasi-‖ 0.142 7 0.167 5 0.166 6 −0.000 4 0.005 1 0.005 0 0.399 2 −0.009 8 0.023 0 1.595 2.473 2.382

Note. See Equation (9) for the definition of parameters A to I and Equations (11), (12), and (13) for those of the subsolar standoff distance Rss along the XMSO axis and 
the terminator standoff distances Rtd along the YMSO and ZMSO axes. Uncertainties on the parameters are of the order of 1% in a least squares sense. All quadrics here 
are ellipsoids. The domain of validity for each fit is shown in Figure 9: fits are valid for XMSO ≥ −0.5 Rp on average. The number of fitting points used for each case is 
the same as for the 2D fits, see Table 3 (last column). Also, see Appendix A for a physical interpretation of the tabulated parameters. Rss and Rtd are expressed in units 
of Mars radius Rp = 3,389.5 km.
aFor all points considered in their data subset.

Table 4 
Martian Bow Shock 3D Conic Parameters From Quadric Surface Fits Applied to the MAVEN Orbits and Magnetic Field Data (Predictor-Corrector Algorithm)
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Figure 9.
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their sections onto the XMSO − YMSO (dawn-dusk hemispheres), XMSO − ZMSO (South-North hemispheres) and 
YMSO − ZMSO (at the terminator, i.e., XMSO = 0) non-aberrated MSO coordinates.

Because of the spacecraft changing orbits during the mission, some of the ellipsoid fits appear anomalous in 
their orientation. This is especially obvious for MY35 when MAVEN, as of March 2020, decreased its apogee 
to ∼4,500 km and hence its revolution period to 3.5 hr to accommodate Mars 2020 rover operations on the 
ground. Consequently, MAVEN only seldom explored regions below X < 0 Rp for half of MY35: this makes 
it difficult to constrain the fit, and we end up with an ellipsoid having its longest principal axis unphysically 
tilted almost 90° in the X-Z plane (purple curves of Figure 9a). A similar issue is found for Ls = 135°–225° 
(yellow, Figure 9b), which has the lowest number of detections among Ls ranges and for which the orbit was 
never favorable for detections due to orbit precession. Thus, in these two cases, no physical interpretation 
should be drawn from the axes orientations of the ellipsoid and the fit should only be valid for near-subsolar 
crossings. More robust physics-based analytical models could be used to overcome these fitting issues (Kotova 
et al., 2021).

4.2. Discussion

Our 2D and 3D fits give some insight on how the Martian bow shock is moving globally for different conditions 
of MY, Ls, and EUV flux and complements previous studies with the MAVEN mission (Gruesbeck et al., 2018; 
Halekas et al., 2017; Němec et al., 2020). As the bow shock position is connected to the balance between thermal 
pressure from the plasma in the ionosphere and the dynamic pressure from the solar wind, any variation of these 
two quantities will have repercussions on the position of the shock.

When assuming axisymmetry around the aberrated axis X′ in the 2D polar rectangular coordinates case, Table 2 
and the average subsolar and terminator distances can be a first guide for our interpretation. Our new results with 
MAVEN (all points, Table 3) agree rather well with past measurements (Table 2) considering the data spread 
and estimated uncertainties: Rss = 1.74 ± 0.09 compared to 1.61 ± 0.08 Rp and Rtd = 2.46 ± 0.13 compared to 
2.56 ± 0.20 Rp. More specifically, for:

1.  Mars Years: The subsolar standoff distance decreases by as much as 10% between MY32 and MY33–MY34, 
from 1.87 to 1.69 Rp, although some of this variation may be stemming from the relatively lower statistics for 
the first year (1,196 points for MY32 compared to >4, 000 for all other years), due to the MAVEN mission 
starting toward the end of MY32. A similar tendency is seen for terminator standoff distances, with a 11% 
decrease seen between MY32 and MY35. Following Hall et al. (2019), these variations may be connected 
through solar EUV irradiance to the solar cycle itself, when descending from the maximum of solar cycle 24 
(encompassed by MY32) toward a minimum of activity (MY34) and the start of solar cycle 25 (MY35). A 
variation in Rss of similar magnitude (∼7% between minimum and maximum of activity) was shown by Hall 
et al. (2019) using MEX data for the previous solar cycles (23–24).

2.  Seasonal variations: In contrast, the Ls ranges have a much more even statistics throughout, with more than 
3,000 detections per season. Arguably, this makes comparing results between seasons statistically more 
significant than for the previous case. Overall, for northern spring equinox (Ls = [315°–45°]) and winter 
solstice (Ls = [225°–315°]) conditions, the bow shock appears to expand in the subsolar direction by about 
7%–13% from its summer and autumn position (Rss ≥ 1.72 Rp compared to Rss ≈ 1.61 Rp). Simultaneously, 
the area encompassed by the bow shock conic is also increased during those two instances. One possible 
driving factor behind these changes may be in turn linked to changes in Mars’ dayside upper atmosphere 
and extended exosphere, and how they expand and contract with seasons, increasing or decreasing the size 
of the obstacle to the solar wind flow (Hall et al., 2016 and references therein). A denser lower atmos-
phere around perihelion (Ls° ∼ 251° where the EUV flux is highest on average) and during the dust storm 
season in the autumn (Trainer et al., 2019) may drive the ionosphere to expand significantly at constant 
EUV flux (Dubinin et al., 2019; Sánchez-Cano et al., 2016), offering a more efficient obstacle to the solar 

Figure 9. The 3D fits performed on the refined predictor-corrector algorithm for the detection of bow shock crossings in the MAVEN dataset, 2014–2021 in the 
XMSO − YMSO, XMSO − YMSO, and YMSO − ZMSO planes (traces of ellipsoids of revolution parametrized in Table 4). (a) Versus Mars Years (MY). (b) Versus Ls (season) 
ranges. (c) Versus EUV flux levels, with their corresponding subset of detected points (blue and orange dots). (d) Versus bow shock geometry, q⊥ (blue dots) and q‖ 
(orange dots). (e) All detected points in the current database with a comparison of present fit (black line) to the analytical quadric fit of Gruesbeck et al. (2018, orange 
dashed line). On each figure, superimposed crosses show where the nose of the shock is located, in the plane of projection (see Appendix B). All coordinates are 
expressed in units of the planet’s radius, that is, Rp = 3,389.5 km.
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wind. Similarly the expansion of Mars’ extended exosphere (notably modulated by the solar wind flux) 
increases the efficiency of the solar wind charge-exchange process (with a net conversion of fast solar wind 
ions to slow-moving heavy ions of planetary origin, effectively slowing down the solar wind, see Edberg 
et al., 2009; Halekas et al., 2017). Both aspects result in the standoff distance moving outwards. The oppo-
site effect is expected when upper atmosphere densities are lower in the deep summer and in the beginning 
of the autumn and the bow shock surface shrinks. The fits and characteristics of the shock appear consistent 
with this picture.

3.  EUV flux variations: The effect of a relatively larger flux on the shock position is twofold, globally in-
creasing the ionization rates in the ionosphere and through photoionization of the extended exosphere as 
well as heating up and expanding the neutral atmosphere-exosphere system (Edberg et al., 2009; Forbes 
et al., 2008; Hall et al., 2016). Photoionization of exospheric neutrals creates newly born ions that are 
picked up by the solar wind convective electric field, resulting in mass-loading and slowing down of 
the solar wind flow (Yamauchi et al., 2015, with the presence of pickup ions in the foreshock region). 
Such combined effects have been shown to expand the bow shock in the solar wind direction (Mazelle 
et al., 2004). The two fits we present here, one for higher and one for lower EUV fluxes (more than 6,500 
points each), display the expected behavior, with a larger standoff distance by 7% and a noticeably larger 
flaring of the fitted conic for the higher EUV fluxes (terminator distances increasing from 2.41 to 2.54 
Rp, i.e., 5%).

4.  Shock conditions: q‖ and q⊥ bow shock crossings are related to the average interplanetary magnetic field’s 
(IMF) direction and the spacecraft’s orbit (more precisely, the spherical quadrant in which the spacecraft 
emerges into the solar wind). Because the predictor-corrector algorithm favors q⊥ detections (Section 3.2), 
the statistics between the two cases is heavily unbalanced (see Vignes et al., 2002, for a similar result). On 
average, we find no significant difference between the two conditions, with the shock surface slightly contract-
ing and flaring up in q⊥ conditions with respect to q‖ conditions (|ΔRss,td| ∼4%). Such a tendency is marginal 
considering that these percentages are at the precision limit obtained with the fits.

Let us now look at our 3D fit results. Figure 9 clearly shows several asymmetries depending on the MY, Ls, 
EUV flux’ and shock condition. The usual pronounced North-South asymmetry (XMSO − ZMSO plane, second 
column, and also YMSO − ZMSO plane, third column), mostly ascribed to the presence of crustal magnetic fields 

Figure 10. Comparison of standoff distances, both at the subsolar point and at the terminator, calculated from the 2D and 3D fits, and for each case as in Tables 3 
and 4. Terminator standoff values are in blue, orange, and yellow (wider bars), whereas subsolar standoff values are in violet and green (thinner bars). For brevity in 
the axis labeling, Ls1 = [315°–45°], Ls2 = [45°–135°], Ls3 = [135°–225°], and Ls4 = [225°–315°]. All distances are expressed in units of the planet’s radius, that is, 
Rp = 3,389.5 km.
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in the southern hemisphere (Gruesbeck et al., 2018), is clearly seen for all cases with the standoff subsolar 
distances being skewed toward that hemisphere. This is shown by crosses representing the tip of the projected 
ellipsoid (calculated by the formulae in Appendix B) located all in the fourth quadrant in the XMSO − ZMSO 
plane. A similar tendency is sometimes marginally observed in the XMSO − YMSO plane (first column), when 
the shock surface is skewed toward the dawn hemisphere (−YMSO), with standoff subsolar distances on average 
larger than on the dusk hemisphere. This is true for MY32 and MY33 (Figure 9a) and for larger EUV fluxes 
(Figure 9c). For lower EUV fluxes (and, incidentally, all other cases), the opposite seems to be taking place 
with the position of the maximum standoff distance being in the dusk +YMSO hemisphere. It is difficult at this 
stage to tell if these latter (small) effects may stem mainly or not from the dawn-dusk asymmetry of the at-
mosphere and hence of the ionosphere (Gupta et al., 2019). Likewise, as in the 2D case, it is important to note 
that many drivers of the shock position (EUV flux, atmospheric seasons, etc.) all act in combination at any 
given time: our fits do not discriminate precisely between these effects. A finer characterization of each driver 
separately is left for another study.

A comparison between all standoff distances, subsolar and terminator alike, and calculated by our 2D and 3D 
algorithms is shown in Figure 10, and based on Tables 3 and 4. The standoff distances calculated from the 3D 
fits show the same tendencies as their 2D counterparts, although since the X and Y coordinates are not solar-wind 
aberrated and hence no axisymmetry is considered, the comparison between the 2D and 3D cases can only be that 
of general trends. From MY32 to MY35, a general decrease of standoff distances can be seen. Excluding Rtd,y, the 
other standoff distances first steadily decrease from Ls centered on 0° (labeled “Ls1”) to 180° (“Ls3”) but then 
increase significantly toward Ls values around 270° (“Ls4”), which may be linked to the EUV flux becoming 
maximum at perihelion Ls = 251°. This result is arguably in contrast to those presented in Vignes et al. (2002) 
although our statistics with MAVEN is much larger than in their study. In an identical way to the 2D fits, larger 
EUV fluxes result in a bow shock surface significantly expanding in the solar wind toward the subsolar direction. 
With respect to the geometry of the shock, the subsolar standoff distances Rss appear to marginally increase from 
q⊥ to q‖ conditions, although the inverse trend is seen for the terminator distances. Again, these differences are 
slight, which may reflect in part the bias against q‖ conditions of our bow shock estimator (thus yielding a low 
amount of q‖ shock detections).

As a preliminary conclusion, we note that:

1.  The XMSO − YMSO and XMSO − ZMSO asymmetry seems particularly marked for Ls = [135°–225°] (labeled 
“Ls3” on the figure), MY32, MY35, and higher EUV fluxes: it can readily be seen by comparing the length of 
the blue and red bars. As explained earlier, the number of points used for fits for MY32 is the lowest of all the 
cases because MAVEN arrived at Mars late in MY32. This is in qualitative agreement with the conclusions of 
Gruesbeck et al. (2018). On average and outside of those special cases, the shock’s shape stays rather symmet-
ric about the XMSO axis: the terminator distances Rtd,z (3D fits) and Rtd (2D fits) indeed seem to match rather 
well most of the time. This axisymmetric tendency can be further amplified by aligning the XMSO − YMSO plane 
with the solar wind aberration system, rotating the 3D quadric surface 4° anticlockwise around the ZMSO axis; 
new standoff distances for the 3D fits (Rtd,z and Rss) differ by less than 5% with their corresponding 2D fits 
values (not shown).

2.  Although the 3D and 2D conic fits retain strong similarities in their behavior, the 3D fits (seemingly para-
doxically) appear more robust and less affected by external assumptions. It is recalled here that not only do 
the 2D fits assume axisymmetry around 𝐴𝐴 𝐴𝐴

′

MSO
 , but certain 2D fits had to also be constrained at larger Eu-

clidean distances from the center of the planet due to the poor coverage of MAVEN for �′
MSO ≲ 0.5�p . This 

superiority of the 3D fitting algorithm is due to: (a) the number of fitting variables (A to I, allowing more 
flexibility despite risking over-determination of the linear system of equations), (b) the natural asymmetry 
of the shock (however small), and (c) the fitting points being statistically better distributed over a larger 
space (both in XMSO − YMSO and XMSO − ZMSO planes instead of a single polar plane) and thus optimizing 
the fits.

3.  Because the Martian seasons (monitored by Ls ranges) to a degree and the EUV flux both depend on Mars’ 
heliocentric distance, correlations between these fits are to be expected. For example, similar fits for low Ls 
values (<135◦ ) and low EUV flux can be seen in Figures 8c and 8e (orange curves) and Figure 9b and 9c (red 
curves).
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4.  Because the solar cycle is a continuous underlying driver of the shock’s position regardless of the binnings 
adopted here (Hall et al., 2019), we expect also correlations between EUV flux and Mars year results. This 
effect is most clearly exemplified with the shock standoff decrease when going from the declining phase of 
solar cycle 24 (MY32 and MY33, high fluxes) to the next solar minimum (MY34, low fluxes)

5. Conclusions
In this study, we presented a fast method to estimate automatically the position of the bow shock in real spacecraft 
orbits, as well as analytical expressions for the normal direction to the shock surface at any point in its close vicin-
ity. After a survey of existing analytical smooth models of the bow shock surface at the planet Mars based on 2D 
and 3D fits, we used these models as a first prediction of the shock position in the data and refined this prediction 
further with a predictor-corrector algorithm based on the median absolute deviation of the magnetic field around 
the predicted shock. This method, biased toward the detection of q⊥ shocks but not entirely limited to them, does 
not substitute for a detailed analysis of the crossing or for machine-learning techniques currently developed for 
space missions. It however finds a useful application when it is necessary to quickly determine the position of the 
spacecraft, or at least an estimate thereof, with respect to the bow shock.

As part of the solar wind and space weather database Helio4Cast, our technique was successfully used to 
retrieve solar wind undisturbed parameters from the MAVEN mission (Möstl et al., 2020). We also success-
fully applied the predictor-corrector method to the MAVEN orbit and magnetic field data between November 
2014 and February 2021 (see list compiled by Simon Wedlund et al., 2021), and performed a series of fits, 
in 2D and in 3D, to test our method and investigate statistically the shape of the shock depending on MY, 
solar longitude Ls, and two solar EUV flux levels. The 3D fitting has obvious advantages over the 2D polar 
axisymmetric geometry usually used to describe the shock structure, namely, a more accurate estimate of 
asymmetries in the global structure, and taking full advantage of the 3D distribution of bow shock detections 
in space. This is especially important for bodies such as Mars with large orbital eccentricities and axial tilts 
to the ecliptic, and for which the heliocentric distance is a strong driver of the EUV flux input and seasonal 
changes on the planet.

Expectedly, we found the Martian shock to be highly asymmetric with respect to the North-South hemispheres, 
in agreement with previous studies (see, e.g., Gruesbeck et al., 2018; Halekas et al., 2017; Hall et al., 2016). Such 
an asymmetry is in part linked to the presence of crustal magnetic fields at Mars; a specific study taking into 
account the planet’s rotation and the location of these crustal magnetic sources on the nightside or on the dayside 
is left for the future. Bow shock fits for quasi-perpendicular and parallel shock conditions were, to the precision 
of our approach, almost identical. In addition, the shock appeared noticeably asymmetric with respect to YMSO and 
ZMSO directions in specific conditions, namely, for MY32 and MY35, Ls = [135°–225°] and larger EUV fluxes. 
Despite this observed asymmetry, solar-aberrated axisymmetric models may still provide a worthy first approxi-
mation of the shock’s shape and position.

To investigate further the conditions of the shock’s asymmetry throughout different solar cycles, solar drivers, 
and internal drivers, such as crustal magnetic fields, and isolate their respective contribution, a full exploitation 
of MAVEN’s continuously growing datasets is warranted; likewise, a reanalysis of past encounters at Mars using 
3D quadric fits would be a welcome addition. These are left for future studies. Applications of these methods, 
especially in 3D, to other bodies with large orbital eccentricities (such as Mercury) may also prove of interest.

Appendix A: Characteristics of a Quadric Surface
The 3D planetary bow shock in this paper is approximated as a quadratic surface described by a Cartesian 
equation (Equation 9). Mathematically, 17 different quadrics can exist. However, here only three are physically 
acceptable for the approximation of a bow shock surface. These are the “real” ellipsoid, the elliptic paraboloid, 
and the hyperboloid of two sheets. From coefficients A to I defining the quadric’s surface equation, it is possible 
to extract more “physical” quantities from these surfaces, such as the center of the surface, the direction of the 
principal axes, the typical length, or the “nose” of the surface. This requires the analysis of one particular matrix 
M given by:
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𝐌𝐌 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝐴 𝐴𝐴∕2 𝐹𝐹∕2

𝐴𝐴∕2 𝐵𝐵 𝐵𝐵∕2

𝐹𝐹∕2 𝐵𝐵∕2 𝐶𝐶

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A1)

Determinant det M yields useful pieces of information on the considered surface. If det M < 0, the surface is an 
ellipsoid or a hyperboloid of two sheets. If det M = 0, it is an elliptic paraboloid.

The coordinates of the center of the surface is given by:

𝐏𝐏centre = −𝐌𝐌
−1

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐺𝐺∕2

𝐻𝐻∕2

𝐼𝐼∕2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

 

if M−1 exists. In the case of an elliptic paraboloid, there is an infinite number of centers placed along the inter-
sections of the two planes of symmetry.

As M is symmetric, its eigenvalues are real and eigenvectors are orthogonal. Let us define λi (i = 1, 2, 3), the 
eigenvalues of M, and 𝐴𝐴 𝑖𝑖 , their associated eigenvectors. Physically, only three cases should be considered:

1.  Ellipsoid: λ1, λ2, λ3 > 0. The characteristic lengths of the ellipsoid are proportional to 𝐴𝐴 1∕

√

𝜆𝜆𝑖𝑖 , with the same 
constant to the length of the conic along the three principal axes of the ellipsoid.

2.  Elliptic paraboloid: λ1, λ2 > 0, and λ3 = 0.
3.  Hyperboloid of two sheets: λ1, λ2 < 0, and λ3 > 0. The characteristic lengths of the hyperboloid are propor-

tional to 𝐴𝐴 1∕

√

|𝜆𝜆𝑖𝑖| .

Finally, one may be interested in the position of the tip (tail-like direction) or of the nose (subsolar direction) of 
the surface. These extremum points are at a distance L1, L2, and L3 from the center in the direction ±� . Therefore 
they are given by:

𝐿𝐿𝑖𝑖 =

(
√

𝜆𝜆𝑖𝑖

)−1
√

𝐏𝐏
𝑇𝑇

centre
𝐌𝐌𝐏𝐏centre + 1 

and

𝐏𝐏±,ext = 𝐏𝐏centre

(

1 1 1

)

±

(

𝐿𝐿11 𝐿𝐿22 𝐿𝐿33

)

 (A2)

where the columns of P±,ext are the locations of the extrema. For a hyperboloid of two sheets, only the real 
solution associated with λ3 should be considered: this gives the position of the noses or tips of both sheets. The 
sunward-most position of the ellipsoid (its nose) is referred to as Pnose. The tip or nose of the ellipsoid is in our 
context along the direction of the eigenvectors with the largest X (in absolute value) component.

The volume of the ellipsoid is:

V =
4

3
𝜋𝜋 𝜋𝜋1 𝜋𝜋2 𝜋𝜋3. (A3)

Table A1 presents the length of each of the three principal axes of the quadric Li, the ellipsoid’s volume, eigenvec-
tors 𝐴𝐴 𝑖𝑖 and the coordinates of the center and sunward nose of the surface for each ellipsoid in Table 4.



Journal of Geophysical Research: Space Physics

SIMON WEDLUND ET AL.

10.1029/2021JA029942

28 of 31

C
as

e

L 1
L 2

L 3
V

𝐴𝐴

1
 [R

p]
𝐴𝐴


2
 [R

p]
𝐴𝐴


3
 [R

p]
P ce

nt
er

 [R
p]

P no
se

 [R
p]

[R
p]

𝐴𝐴
[𝑅𝑅

3 𝑝𝑝
]

X M
SO

Y M
SO

Z M
SO

X M
SO

Y M
SO

Z M
SO

X M
SO

Y M
SO

Z M
SO

X M
SO

Y M
SO

Z M
SO

X M
SO

Y M
SO

Z M
SO

Al
l p

oi
nt

s, 
G

ru
es

be
ck

 
et

 a
l. 

(2
01

8)

8.
20

4.
34

4.
11

61
3.

30
−

0.
97

0.
10

0.
22

0.
08

−
0.

72
0.

69
0.

22
0.

69
0.

69
−

6.
45

0.
59

0.
99

1.
52

−
0.

21
−

0.
80

Al
l p

oi
nt

s, 
th

is
 w

or
k

2.
84

2.
74

2.
55

83
.3

7
−

0.
44

−
0.

06
0.

90
−

0.
16

0.
99

−
0.

01
−

0.
88

−
0.

15
−

0.
45

−
1.

07
0.

12
0.

05
1.

18
0.

50
1.

19

M
Y

32
, t

hi
s w

or
k

3.
42

3.
09

2.
68

11
8.

38
0.

76
−

0.
28

−
0.

59
0.

13
−

0.
82

0.
55

0.
64

0.
50

0.
59

−
1.

44
0.

17
0.

17
1.

16
−

0.
79

−
1.

83

M
Y

33
, t

hi
s w

or
k

2.
97

2.
82

2.
65

92
.8

3
−

0.
50

0.
61

0.
62

−
0.

06
0.

69
−

0.
72

−
0.

87
−

0.
40

−
0.

31
−

1.
17

0.
19

0.
09

1.
13

1.
23

0.
90

M
Y

34
, t

hi
s w

or
k

2.
85

2.
70

2.
60

83
.7

9
−

0.
37

0.
05

0.
93

−
0.

65
−

0.
73

−
0.

21
0.

67
−

0.
68

0.
30

−
1.

15
0.

04
0.

02
0.

60
−

1.
73

0.
80

M
Y

35
, t

hi
s w

or
k

2.
28

2.
13

1.
34

27
.1

9
−

0.
13

0.
06

0.
99

0.
08

1.
00

−
0.

05
−

0.
99

0.
08

−
0.

13
0.

13
0.

01
0.

00
1.

45
−

0.
09

0.
17

Ls
 =

 [3
15

°–
45

°]
, 

th
is

 w
or

k
2.

99
2.

86
2.

73
97

.7
9

0.
78

0.
62

0.
12

−
0.

25
0.

13
0.

96
0.

58
−

0.
78

0.
25

−
1.

38
−

0.
12

−
0.

01
0.

94
1.

73
0.

34

Ls
 =

 [4
5°

–1
35

°]
, 

th
is

 w
or

k
3.

08
2.

68
2.

52
87

.1
0

−
0.

61
−

0.
23

0.
76

0.
21

0.
87

0.
44

−
0.

76
0.

43
−

0.
48

−
1.

23
−

0.
02

0.
20

0.
69

−
1.

10
1.

42

Ls
 =

 [1
35

°–
22

5°
], 

th
is

 w
or

k
2.

80
2.

36
1.

88
51

.9
5

0.
13

−
0.

99
0.

11
0.

74
0.

03
−

0.
67

0.
65

0.
17

0.
74

−
0.

59
0.

35
0.

38
1.

17
0.

41
−

1.
19

Ls
 =

 [2
25

°–
31

5°
], 

th
is

 w
or

k
3.

13
2.

86
2.

65
99

.6
5

−
0.

48
−

0.
33

0.
81

−
0.

47
0.

88
0.

08
−

0.
74

−
0.

34
−

0.
58

−
1.

18
0.

02
0.

24
0.

79
0.

94
1.

76

EU
V

 fl
ux

 
≥

0.
00

2 8
 W

 m
−

2
3.

81
3.

13
3.

00
15

0.
08

−
0.

92
0.

25
0.

32
−

0.
02

−
0.

81
0.

58
−

0.
40

−
0.

53
−

0.
75

−
2.

05
0.

29
0.

22
1.

44
−

0.
67

−
0.

98

EU
V

 fl
ux

 
𝐴𝐴

𝐴
0
.0
0
2
8
  W

 m
−

2
2.

73
2.

54
2.

27
65

.7
7

−
0.

26
−

0.
02

0.
97

−
0.

27
−

0.
96

−
0.

09
0.

93
−

0.
28

0.
24

−
0.

81
0.

01
0.

02
1.

30
−

0.
63

0.
57

Q
ua

si
- ⊥

2.
87

2.
73

2.
53

83
.1

1
−

0.
43

−
0.

10
0.

90
−

0.
09

0.
99

0.
06

−
0.

90
−

0.
06

−
0.

44
−

1.
06

0.
11

0.
07

1.
21

0.
26

1.
18

Q
ua

si
-‖

3.
00

2.
79

2.
75

96
.1

2
−

0.
99

−
0.

02
0.

10
0.

09
−

0.
66

0.
75

0.
06

0.
75

0.
66

−
1.

40
0.

03
−

0.
05

1.
58

0.
08

−
0.

36

N
ot

e.
 A

ll 
qu

ad
ric

s a
re

 e
lli

ps
oi

ds
. L

i (
i =

 1
, 2

, 3
) a

re
 th

e 
le

ng
th

s i
n 

un
its

 o
f R

p o
f t

he
 p

rin
ci

pa
l a

xe
s o

f t
he

 e
lli

ps
oi

ds
 a

nd
 V

 th
ei

r v
ol

um
e.

 
𝐴𝐴


𝑖𝑖 a

re
 th

e 
ei

ge
nv

ec
to

rs
 o

f m
at

rix
 M

, t
ha

t i
s, 

th
e 

no
rm

al
iz

ed
 d

ire
ct

io
ns

 o
f t

he
 p

rin
ci

pa
l a

xe
s i

n 
M

SO
 C

ar
te

si
an

 c
oo

rd
in

at
es

 (b
ec

au
se

 th
e 

va
lu

es
 a

re
 n

or
m

al
iz

ed
 to

 R
p a

nd
 ro

un
de

d 
do

w
n,

 a
 v

al
ue

 o
f 1

.0
0 

or
 0

.0
0 

is
 n

ot
 st

ric
to

 se
ns

u 
1 

or
 

0)
. P

ce
nt

er
 a

nd
 P

no
se

 a
re

 th
e 

po
si

tio
ns

 o
f t

he
 c

en
te

r o
f t

he
 e

lli
ps

oi
d 

an
d 

its
 su

nw
ar

d 
no

se
, i

n 
M

SO
 C

ar
te

si
an

 c
oo

rd
in

at
es

. T
he

 d
om

ai
n 

of
 v

al
id

ity
 fo

r e
ac

h 
fit

 is
 sh

ow
n 

in
 F

ig
ur

e 
9:

 F
its

 a
re

 
va

lid
 fo

r X
M

SO
 ≥

 −
0.

5 
R p o

n 
av

er
ag

e.
 M

ar
s' 

ra
di

us
 is

 R
p =

 3
,3

89
.5

 k
m

.

Ta
bl

e 
A

1 
C

ha
ra

ct
er

is
tic

s o
f t

he
 3

D
 M

ar
tia

n 
Bo

w
 S

ho
ck

 a
s D

er
iv

ed
 F

ro
m

 th
e 

M
AV

EN
 D

at
as

et
, S

ee
 T

ab
le

 4
 fo

r t
he

 P
ar

am
et

er
s o

f t
he

 3
D

 S
ur

fa
ce

s C
on

si
de

re
d



Journal of Geophysical Research: Space Physics

SIMON WEDLUND ET AL.

10.1029/2021JA029942

29 of 31

Appendix B: Subsolar Tip of the Trace of an Ellipsoid Surface in Cartesian 
Coordinates
The subsolar point of the projection of a 3D ellipsoid in 2D planes, as shown in Figure 9 (crosses), can be 
obtained by finding the roots of the corresponding 2D conic in the plane considered. For z = 0, Equation (9) 
becomes a second order equation:

𝐴𝐴𝐴𝐴
2
+ 𝐵𝐵𝐵𝐵

2
+𝐷𝐷𝐴𝐴𝐵𝐵 + 𝐺𝐺𝐴𝐴 +𝐻𝐻𝐵𝐵 − 1 = 0. (B1)

Fixing variable y, the equation can be put in quadratic form with the following positive root:

𝑥𝑥M =
−(𝐷𝐷𝐷𝐷 + 𝐺𝐺) +

√

Δ

2𝐴𝐴
, (B2)

Δ = (𝐷𝐷𝐷𝐷 + 𝐺𝐺)
2
− 4𝐴𝐴

(

𝐵𝐵𝐷𝐷
2
+𝐻𝐻𝐷𝐷 − 1

)

> 0 (B3)

Finding the maximum of this function is equivalent to finding a y value that maximizes this function. Posing 
ξ = Dy + G, its derivative has the form:

𝜕𝜕𝜕𝜕M

𝜕𝜕𝜕𝜕
=

2𝐷𝐷𝐷𝐷 − 4𝐴𝐴(2𝐵𝐵𝜕𝜕 +𝐻𝐻)

4𝐴𝐴

√

𝐷𝐷2 − 4𝐴𝐴 (𝐵𝐵𝜕𝜕2 +𝐻𝐻𝜕𝜕 − 1)

−
𝐷𝐷

2𝐴𝐴
 (B4)

Solving 𝐴𝐴
𝜕𝜕𝜕𝜕M

𝜕𝜕𝜕𝜕
= 0 for y and using that result in Equation (B2) makes it possible to calculate the final (x, y) coor-

dinates of the projected ellipsoid’s tip in the corresponding x − y plane. An identical reasoning can be made for 
the x − z plane.

This tip in a plane is however not necessarily the farthest subsolar point of the ellipsoid’s surface. Its position in 
3D is by contrast given by Equation (A2) in Appendix A.

Data Availability Statement
The calibrated MAVEN/MAG datasets are freely available from the NASA Planetary Data System (PDS) at 
https://doi.org/10.17189/1414178. The corresponding predicted bow shock times and spatial coordinates for the 
2014–2021 dataset using our predictor-corrector algorithm are provided for reference on Zenodo at https://doi.
org/10.5281/zenodo.5725288 (Version 2, Simon Wedlund et al., 2021). The FISM-P Mars Solar Spectral Irra-
diance model is available at https://lasp.colorado.edu/lisird/data/fism_p_ssi_mars/. The Helio4Cast database is 
available at www.helioforecast.space/icmecat and www.helioforecast.space/sircat. The solar wind monitor da-
taset at Mars was specifically derived for Helio4Cast using our predictor algorithm and can be downloaded at 
https://doi.org/10.6084/m9.figshare.6356420.
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