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ABSTRACT
Short-orbit gas giant planet formation/evolution mechanisms are still not well understood. One promising pathway to discriminate
between mechanisms is to constrain the occurrence rate of these peculiar exoplanets at the earliest stage of the system’s life.
However, a major limitation when studying newly born stars is stellar activity. This cocktail of phenomena triggered by fast
rotation, strong magnetic fields, and complex internal dynamics, especially present in very young stars, compromises our ability
to detect exoplanets. In this paper, we investigated the limitations of such detections in the context of already acquired data
solely using radial velocity data acquired with a non-stabilized spectrograph. We employed two strategies: Doppler Imaging and
Gaussian Processes and could confidently detect hot Jupiters with a semi-amplitude of 100 m s−1 buried in the stellar activity.
We also showed the advantages of the Gaussian Process approach in this case. This study serves as a proof of concept to identify
potential candidates for follow-up observations or even discover such planets in legacy data sets available to the community.

Key words: techniques: radial velocities – planets and satellites: detection – planets and satellites: formation – stars: activity –
stars: individual: HD 141943 – stars: pre-main-sequence.

1 IN T RO D U C T I O N

In the quest to understand the processes governing planetary system
development, the peculiar case of short-orbit gas giants (i.e. Jovian
and sub-Jovian exoplanets, orbiting their star with periods of less
than a few weeks that we will refer as hot Jupiters or HJs hereafter)
is a real challenge as classical theories describing their formation and
evolution do not predict their presence in the vicinity of their parent
star. Although representing a significant fraction of all exoplanets
discovered (between 10 and 15 per cent1), their true occurrence
rate is estimated to be around 1 per cent for mature solar-type stars
(Wright et al. 2012). Even though this discrepancy can be explained
through observing biases, their scarcity raises the question of the
formation channel generating this population.

In the most accepted explanation, future HJs form in the colder
region of the protoplanetary disc (more than a few au) and later
experience orbital decay to eventually reach a close-in orbit. Two mi-
gration mechanisms are proposed: gas disc migration (see Baruteau
et al. 2014, for a review), where the planet migrates inwards as the
result of angular momentum exchange between the gas giant and
the disc, and high-eccentricity tidal migration. In this last scenario,
the planet is sent to a highly eccentric orbit following a strong
perturbation (planet–planet scattering, e.g. Chatterjee et al. 2008,

� E-mail: alexis.heitzmann@usq.edu.au
1https://exoplanetarchive.ipac.caltech.edu/

or secular interactions, see Beaugé & Nesvorný 2012; Petrovich
2015; Petrovich & Tremaine 2016; Hamers et al. 2017 for the
different proposed mechanisms). Now being close enough to the
star at periastron, tidal forces exerted by the star act to circularize the
planet’s orbit.

Confronting migration theories is in situ formation, where the HJ
forms in the vicinity of the host star and remains in close orbit.
This explanation has been historically rejected as it sets restrictive
constraints on the inner stellar disc, i.e. there must be enough
available material to form the core of these gas giants and that core
forming process needs to be completed before the star depletes all the
gas from the area for the future HJ to successfully accrete its gaseous
envelope. Due to these constraints, it is unlikely to occur according
to the Solar nebula theory, assuming a disc composition similar to
the one that gave birth to our Solar system (Perryman 2011). Now
realizing that our Solar system may be far from being the norm in
the great diversity of planetary systems, in situ formation has come
back under the spotlight (Batygin, Bodenheimer & Laughlin 2015;
Boley, Contreras & Gladman 2015). Recent studies, such as Bailey &
Batygin (2018) or Dawson & Johnson (2018), suggest that HJs could
have a different origin in different systems and/or that a combination
of the proposed mechanisms could be at play.

In their review paper, Dawson & Johnson (2018) propose to test the
different theories by searching for correlations between properties of
HJs and their parent stars. Among the 15 studied properties, two are
flagged as requiring further observations: HJ obliquities and host star
ages. This paper focuses on the latter.
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Studying young stars is a privileged approach as it would help
us to discriminate between early-stage mechanisms such as in situ
formation or gas disc migration versus more prolonged and late-stage
mechanisms, like high-eccentricity migration. However, Dawson &
Johnson (2018) warn that high-eccentricity migration-driven HJs
could arrive in close-in orbit fairly early in the system’s formation,
showing that the dependence of these mechanisms with stellar age
is not yet completely clear. Therefore, young stars (<20–50 Myr)
and, even more so, younger (<10 Myr) low-mass (<3 M�) T Tauri
pre-main-sequence (PMS) stars as defined in Appenzeller & Mundt
(1989) are probably the best candidates.

Unfortunately, with the exception of direct imaging surveys, the
youngest stars are typically systematically avoided when searching
for exoplanets, as they exhibit particularly strong intrinsic variability,
or stellar activity. For such stars, this activity-induced correlated
noise results primarily from surface brightness features, linked to
complex internal processes and a strong magnetic field. Surface
features yield spurious radial velocity (RV) signatures that gener-
ally completely mask exoplanet signatures, hence preventing their
discovery. Additionally, Nava et al. (2020) showed that activity can
generate unexpected spurious peaks in a periodogram analysis, which
could lead to false positives if no adequate treatment of the activity
is applied.

Filtering or mitigating this stellar activity becomes crucial if one
hopes to find traces of exoplanets orbiting young active stars. It is
also important to note that effective activity mitigating strategies are
key in the search of Earth-sized planets around less active stars. In
those cases, both the activity level and the planetary signature are up
to two orders of magnitude smaller, but present a similar situation
in relative terms. However, it is still slightly different as additional
phenomena are also at play (i.e. granulation and pulsations). The
exoplanet community is actively trying to develop and assess these
strategies (see Cabot et al. 2021).

Available data on planets with periods less than 15 d orbiting very
young stars (<50 Myr) are very scarce. Six planet-hosting stars have
been found from transits (David et al. 2016, 2019; Newton et al.
2019; Bouma et al. 2020; Plavchan et al. 2020; Rizzuto et al. 2020)
and three from RV searches: CI Tau b (Johns-Krull et al. 2016; Flagg
et al. 2019), V830 Tau b (Donati et al. 2015, 2016, 2017), and TAP
26 b (Yu et al. 2017b). Recently, however, the existence of both V830
Tau b and CI Tau b has been challenged by Damasso et al. (2020)
and Donati et al. (2020). V830 Tau b and TAP 26 b were found by the
MaTYSSE (Magnetic Topologies of Young Stars and the Survival
of massive close-in Exoplanets) observation programme in a sample
of 33 weak-line T Tauri stars (Yu 2017a). If real, these two planets
would indicate a fraction of HJs as high as 6 per cent for newly born
stars. In this context, it is crucial to carry on the search for close-in
gas giants around young stars to better estimate their occurrence rate
at that stage.

In this paper, we investigated the case of searches for short-period
gas giants orbiting very young and active stars solely using RV
data. More specifically, we injected various RV signatures mimicking
single circular planet systems behind real data of the young active
G dwarf HD 141943 (not known to host a massive planetary
companion) and assessed our detection limits using two distinct
strategies: Doppler Imaging (DI) activity filtering (Section 3.1) and
Gaussian Process (GP) Regression (Section 3.2).

Although already used in the past (DI + GP in Donati et al.
2016, 2017; Yu et al. 2017b, 2019; Klein et al. 2020 and GP
in most exoplanet searches for the past few years), testing the
respective performance of these two methods in legacy data sets
has not been performed. We note that the underlying data were not

optimized to search for exoplanets and were obtained using a non-
stabilized spectrograph (e.g. with ≈50–100 m s−1 uncertainty on
radial velocities). The limitations we describe should therefore be
significantly improved with RV stabilized data sets. However, they
provide a strong baseline for what is achievable and are useful to
investigate other data sets of this nature already available [i.e. in the
Bcool (Marsden et al. 2014) or TOUPIES (Folsom et al. 2016, 2018)
surveys]. We compared our results to the planet ‘hide and seek’ study
done on the same star with no specific treatment for stellar activity
(Jeffers et al. 2014).

This paper is organized as follows: Details on the techniques used
to reduce the data, more specifically to get from raw spectra to
radial velocities, are given in Section 2. We then cover the methods
addressing stellar variability in Section 3. Section 4 of this paper
focuses on our reanalysis of HD 141943’s raw data set. Section 5
explains how we set up our simulated data sets, and results from the
analysis are laid out in Section 6. Finally, we give our conclusions
and future prospects in Sections 7 and 8.

2 DATA A NA LY SIS

2.1 From spectra to line profiles

Both methods we utilized to disentangle stellar activity from plan-
etary signals take RV time series as input. The extraction of RV
values from raw stellar spectra was performed by finding the centroid
(described in Section 2.2) of a ‘mean line profile’ obtained using
least-squares deconvolution (LSD; Donati et al. 1997; Kochukhov,
Makaganiuk & Piskunov 2010). LSD convolves an observed stellar
spectrum with a spectral line mask. Given an appropriate mask,
the result is an enhanced peak signal-to-noise ratio (S/N) ‘mean line
profile’ exhibiting stellar activity-induced line features. We chose the
stellar mask best matching our star in the list of masks designed in the
scope of the Bcool survey (Marsden et al. 2014) using VALD (Kupka
2000) for a star with an effective temperature of Teff = 6000 K, a
surface gravity of log g = 4.5 cm s−2, and [Fe/H] = +0.2. Only
spectral lines deeper than 20 per cent of the maximum line depth
were kept for the LSD computation, yielding a total of 4097 lines.
The outcome was an S/N increase from ≈50–100 for the observed
spectra (depending on the spectrum and spectral order considered)
to ≈1000 for the LSD mean line profiles.

2.2 From line profiles to radial velocities

Classically, each RV is taken to be the mean of a Gaussian profile
fitted to the obtained line profile. However, for active stars, the
distortion and here the ‘flat bottom’ (see the centre plot on Fig. 1) of
the line show that a Gaussian fit is not suitable. We considered two
alternatives.

First, we chose a generalized normal distribution (GND; Nadarajah
2005), as shown in green on the central plot of Fig. 1 and described
by the following p.d.f:

GND(x) = β

2σ�
(

1
β

) exp

(
−
∣∣∣∣x − μ

σ

∣∣∣∣
β
)

, (1)

where � denotes the gamma function, μ the position parameter
(mean), σ the scale parameter, and β the shape parameter. β <

2 results in wings more extended than a normal distribution and a
sharper distribution peak. When β = 2, the GND becomes a Gaussian
distribution (where σ is the standard deviation). For β > 2, the
distribution yields wings less extended than a normal distribution
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Figure 1. Diagram of the data analysis procedure, from raw spectra to
periodic signature identification. Each block is a step of the process. Bold text
and the associated numbers in parenthesis, respectively, indicate the method
used to progress from one block to the next and the section of this paper
detailing the corresponding process. Each point on the bottom plot results
from the analysis of a single spectrum using the entire procedure described
here.

and tends to a uniform distribution as β → ∞. This grants more
flexibility to the distribution, resulting in a better fit to broadened
profiles. Error bars on the GND parameters are given by the fitting
method. The centroid μ and the associated error bars for each LSD
profile constituted our RV time series.

Secondly, we derived RV values using the first-order moment
(generalized centroid, FOM hereafter) of each LSD profile, computed
as

RV =
∫

(Ic − I (ν)) νdν∫
(Ic − I (ν)) dν

, (2)

with I(ν) the intensity of the profile at radial velocity ν and Ic the
continuum level. Here, error bars were propagated using the LSD-
derived uncertainties. We note that results given by FOM are sensitive
to integration limits (i.e. the limits on the line profiles used to compute
it). This is further described in Section 5.3.

3 STELLAR ACTI VI TY FI LTERI NG

Stellar activity distorts line profiles, causing a shift in the line’s
centroid and therefore in the measured RV. Modelling the activity
thus aims to correct for these distortion-induced shifts.

3.1 Method #1: filtering activity using DI

Section 3.1.1 describes DI, representing the core of our filtering
process, following Donati et al. (2014). Sections 3.1.2 and 3.1.3
describe magnetic imaging (Zeeman DI, ZDI) and differential
rotation, complementary to the DI technique. The actual filtering
process is described in Section 3.1.4.

3.1.1 Doppler imaging

DI is a tomographic technique that, for rapidly rotating stars (v sin i
� 10 km s−1), uses spectroscopic observations to infer the brightness
features at their surface (Brown et al. 1991; Donati & Brown 1997).
Practically, a time series of observed pseudo-line profiles obtained
through LSD is iteratively adjusted using a tomographic algorithm.
Irregularities in the profiles are interpreted as surface bright/dark
spots that enhance/block Doppler-shifted light due to stellar rotation.
Then, iteratively, synthetic profiles, derived from the DI surface
maps, are fitted to the observed ones. To reach a unique solution to
the ill-posed problem of DI inversion (as a single line profile can be
generated from different surface map solutions), a maximum entropy
selection of the solution is adopted (i.e. minimizing the information
content of the brightness map), while ensuring that the χ2 is kept
below a defined threshold. This is done following the routine of
Skilling & Bryan (1984) and using the entropy as defined in Hobson
& Lasenby (1998). Further details can be found in appendix B of
Folsom et al. (2016). The model output is constituted of a synthetic
set of LSD profiles, and of the brightness surface map producing this
spectral information.

Synthetic line profiles are obtained by integrating the Doppler-
shifted flux (due to the rotation of the star) emerging from each point
of the visible hemisphere. This flux is scaled according to the local
surface cell projected area, brightness, and limb darkening. The local
line profiles are calculated using a Voigt profile, a convolution of a
Gaussian, and a Lorentzian profile.

Output products of DI include a set of synthetic profiles and a
surface brightness map (or a magnetic map for ZDI; see the next
section). The use of DI also enables us to constrain the stellar fun-
damental parameters by selecting the parameter values that optimize
the brightness model (i.e. inclination of the stellar rotational axis
with respect to the line of sight i, line-of-sight projected equatorial
rotation velocity v sin i, stellar equatorial rotation period Peq, stellar
mean radial velocity RV , and differential rotation d�) and line profile
parameters (i.e. line depth and Gaussian and Lorentzian equivalent
widths). The DI analysis of HD 141943 is described in Section 4.2
and Fig. 3.

3.1.2 Zeeman Doppler imaging

Although ZDI is not part of the filtering process, it is similar to the
stellar mapping process and is therefore described here.

Similarly to DI, ZDI (e.g. Semel 1989) is a technique that uses
polarimetric information (i.e. Stokes V LSD profiles) to reconstruct
the magnetic field structure at the surface of the star. Here, we used a
spherical harmonic expansion to describe the large-scale components
of the magnetic field (i.e. poloidal and toroidal; Donati et al. 2006).
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Figure 2. Reduced χ2 surface of the differential rotation (rad d−1) (y-axis)
versus equatorial rotation period (x-axis), equivalent to the rotation frequency
�eq = 2π /Peq. Contours show confidence levels at 1σ , 3σ , and 5σ . Colour
bar shows the reduced χ2 values.

The Zeeman effect allows one to infer the strength and direction of
the surface magnetic field, provided one has high enough S/N line
profiles, rendered possible by the LSD technique. Like DI, solving for
a magnetic field configuration is an ill-posed problem and ZDI also
relies on maximum entropy image reconstruction. The ZDI analysis
of HD 141943 is described in Section 4.2 and Fig. 4.

3.1.3 Surface differential rotation

The information used to generate a snapshot of the stellar surface
through DI and ZDI often spans multiple stellar rotation cycles.
Thus, the effect of differential rotation needs to be accounted for.
The code we used models that differential rotation as a simplified
solar-like differential rotation law:

�(θ ) = �eq − d� sin2 θ, (3)

with �(θ ) the rotation rate at latitude θ , �eq (= 2π
Peq

) the rotation rate at
the equator, and d� the difference in rotation rate between the equator
and the poles (i.e. the differential rotation). Following Petit, Donati
& Collier Cameron (2002) and Donati, Collier Cameron & Petit
(2003), we explored the d� and �eq parameter space, by running DI
inversions for various values of the two parameters, looking for the
doublet that optimizes the DI model, i.e. the d� and �eq values that
minimize the χ2 of our model at fixed entropy level. The resulting
χ2 surface is used to derive our uncertainty on these two parameters.

We performed our DI, ZDI, and differential rotation analyses using
the PYTHON ZDIPY code (see appendix from Folsom et al. 2018, for
a more detailed description of the code). The code has been adapted
to run on Fawkes, the High Performance Computing (HPC) facility
at the University of Southern Queensland. The HPC allowed us
to quickly explore our parameter space. Practically, we varied the
stellar parameters (up to 3 at a time) to find the best solution. By best
solution we mean the set of parameters that fit our line profiles down
to the target χ2 (<1 due to the LSD process; see Cang et al. 2020,
for a similar case and follow-up explanations) and also maximize
the entropy value. The differential rotation analysis of HD 141943 is
described in Section 4.2 and Fig. 2.

3.1.4 Filtering the activity

Following Donati et al. (2014), we removed the stellar activity contri-
bution by subtracting the RV time series derived from our modelling
of the activity alone (i.e. the synthetic profile centroids obtained from
DI) from the values obtained from the raw/observed LSD profiles
(i.e. the observed/raw LSD profile centroids). We assumed that for
very active stars, stellar variability is in a first approximation entirely
due to features present on the stellar surface. We then searched for
periodicity in the resulting filtered RVs, utilizing a Lomb–Scargle
(LS) periodogram (Lomb 1976; Scargle 1982). We point out that
residuals exhibit some red noise leftovers, while LS periodograms are
designed for uncorrelated/white noise (VanderPlas 2018). We keep
this approach here for maximal consistency with previous papers of
Donati et al. (2014, 2016) and Yu et al. (2017b, 2019).

The nature of stellar variability (i.e. correlated/red noise), com-
bined with the imperfect filtering (see Fig. 5) of the activity using
DI, results in residuals exhibiting some red noise leftovers. As LS
periodograms are designed for uncorrelated/white noise (VanderPlas
2018), this approach is limited and should not be used alone to claim
a planet detection. To assess significance of a detection, we use
the false alarm probability (FAP).2 To compute the FAP levels, we
used the Baluev approximation (see Baluev 2008). We also tried a
bootstrap approach, which yielded very similar results.

3.2 Method #2: modelling the activity using a GP regression

Our second approach uses a GP regression to model the stellar
activity-induced RV and its temporal evolution as first suggested
in Haywood et al. (2014) and Rajpaul et al. (2015). The GP
regression treats stellar activity as Gaussian red (correlated) noise.
This Bayesian approach is driven by the data points, considered to be
random correlated Gaussian variables and the covariance matrix C,
specifying the correlation between each pair of data points. Following
Haywood et al. (2014), we computed each entry Cij of this co-
variance matrix using the following physically driven quasi-periodic
kernel made of a sinusoidal component to account for the rotation
of the star combined with an exponential component for the surface
feature appearance/decay:

Cij = θ2
1 . exp

⎡
⎣−

(
ti − tj

)2

θ2
2

−
sin2

(
π(ti−tj )

θ3

)
θ2

4

⎤
⎦ + (

σ 2
i + σ 2

s

)
δij ,

(4)

where the four hyper-parameters can be interpreted as follows:

(i) θ1 (km s−1): Semi-amplitude of the activity RV signature.
(ii) θ2 (d): Decay parameter, or typical surface feature lifetime.
(iii) θ3 (d): Recurrence time-scale, expected to be very close to

Peq.
(iv) θ4 [0:1]: Smoothing parameter or amount of high frequency

in the signal. Smaller and larger values of θ4, respectively, indicate
variations on longer and shorter time-scales. From experience (Jeffers
& Keller 2009; Haywood et al. 2018), light curves and RV time series
exhibit values of around 0.3 to 0.4 for this parameter. We chose a
uniform prior that guarantees to largely encompass these values.

2The FAP limit indicates the likelihood that a peak caused by random
fluctuations in the data would reach a given height/power (see dashed lines
in Figs 5, B2, and C1). However, it does not indicate the probability of a data
set to have a periodic component given the data.
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σ i is the uncertainty of data point i and σ s is an extra white,
uncorrelated noise parameter accounting for variations due to other
sources and not explicitly captured by the model. σ i and σ s were
added in quadrature and only applied to the diagonal of our matrix
(i.e. variance of the data points).

Our global model is the sum of the GP model accounting for the
stellar activity (RVGP), a sinusoid for the circular planetary signature
(RVpla), and a constant offset (RV0):

RVtot = RV0 + RVGP(t, θ1, θ2, θ3, θ4, σi, σs)

+ RVpla(t, K, Porb,�). (5)

We ended up with a parameter space to explore containing 5 (θ1,
θ2, θ3, θ4, and σ s) + 3 × n parameters + RV0, for n planets (i.e. 9
parameters for single planet model). Then, two aspects need to be
considered in order to confidently claim the presence of a periodic
signal in the data. The first part is parameter estimation, where we
explore the parameter space yielding posterior distributions from
which the most likely set of parameters, as well as their mean
and uncertainty values, can be recovered. The second aspect is
model selection, where we assess how much more likely a model
containing one planet is, compared to one with only stellar activity.
Commonly, parameter space exploration is performed using Monte
Carlo approaches. Despite the efficiency of some algorithms (e.g.
EMCEE from Foreman-Mackey et al. 2013), the bottleneck of planet
searches is usually model selection.

Model selection is performed by comparing the marginal like-
lihood (or evidence, Z) of different models (i.e. activity only,
activity with one planet, two planets, etc.). A detailed description
of the evidence is given in Appendix A. Accurate estimation of this
evidence is computationally expensive as it implies multidimensional
integration over potentially large parameter spaces. Recently, Nelson
et al. (2020) compared different methods for computing the evidence
applied by different research groups. Although this was preliminary
and would require follow-up studies to completely generalize the
results, some approaches proved to be more consistent than others.
Following their results, we developed our GP code using PYMULTI-
NEST (Buchner et al. 2014), a PYTHON implementation of MULTINEST

(Feroz, Hobson & Bridges 2009). This Importance Nested Sampling
algorithm estimates the evidence and provides, as a by-product, the
posterior probabilities and can therefore also be used for parameter
estimation.

For the rest of this paper, when comparing models, we will refer to
the Bayes factor (BF) and/or the associated probability (p) in favour
of a single planet model (model M1) over an activity-only model
(model M0):

BF = Z1

Z0
, (6)

withZ0 andZ1 the marginal likelihood forM0 andM1, respectively.
We used the metric of Jeffreys (1961) (see Table A1) to assess
significance from the BF.

3.2.1 Likelihood and priors

Two ingredients are needed to recover the posterior probabilities:
likelihoods and prior probabilities.

In our case, the natural logarithm of the likelihood [i.e. probability
of the data given the model and its parameters, p( y|θ,Mi) or L] is
given by

2 lnL = −n ln(2π ) − ln (|C|) − yT (C)−1 y, (7)

Table 1. Prior distributions of parameters used for the
GP regression. The right column gives the prior for
each parameter of the model. J(min, max) stands for
Jeffrey’s priors, MJ(max, knee) for Modified Jeffery’s
priors, N (mean, std) for Gaussian priors, and U [min,
max] for Uniform priors. σRV is the mean of the RV
uncertainties. RVmax is the largest absolute value in
the data set and RVstd is the standard deviation of all
RV values.

Parameters Priors

Stellar activity
θ1 (km s−1) MJ(1.5× RVmax, σRV)
θ2 (d) J(1, 100)
θ3 (d) N (2.2, 0.05)
θ4 [0:1] U [0:1]

Planet
K (km s−1) MJ(2× RVmax, σRV)
Porb (d) J(0.1, 15)
� [0:1] U [0:1]

Telescope and noise
RV0 (km s−1) U [−RVmax:RVmax]
σ s (km s−1) MJ(RVstd, σRV)

with y the vector (of length n) containing the residuals after having
removed both RVpla and RV0 from the original RVs and C the co-
variance matrix computed using our GP kernel from equation (4).

Our priors, physically motivated following Gregory (2007), are
listed in Table 1. Because the evidence is dependent on prior proba-
bilities, we emphasize the importance of favouring uninformative
priors, such as uniform, Jeffrey’s (uniform prior in logarithmic
space; see Gregory 2007) or Modified Jeffrey’s (Jeffrey’s prior,
approaching a uniform distribution for values � to the knee pa-
rameter of the modified Jeffrey’s prior to handle priors that have
0 as a lower boundary; also see Gregory 2007), or at least priors
independent of the studied data when previous and statistically valid
knowledge is available in the literature. Using informative priors,
without justification, would act to artificially boost the evidence.
This is especially true for parameters that are not shared by the
compared models (the planetary parameters in our case). The only
informative prior we used here is θ3 as Peq has been constrained from
DI.

We ran PYMULTINEST with an efficiency of 0.3 and 2000 live points
(see Nelson et al. 2020). For each run, the parameter search drew
between ≈50 000 samples from the posterior for the model with no
activity and ≈150 000 for the single-planet model. Details of the
results for all data sets are in Table 4.

4 A NA LY S I S O F H D 1 4 1 9 4 3

Before attempting to recover injected planets behind HD141943’s
activity, we analysed the raw observations (data set #5 containing no
planet) to recover stellar parameters and ensure the star does not host
any planet that we can detect.

4.1 Spectropolarimetric data set

Spectroscopic Stokes I (intensity) and V (polarized) observations
of HD 141943 used in this study were acquired using the SEMPOL
instrument, visitor polarimeter operating together with the University
College London Echelle Spectrograph (Donati et al. 2003) and
mounted on the 3.9 m Anglo-Australian Telescope (AAT) in Siding
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Table 2. Fundamental parameters of HD 141943.

Parameter HD 141943

Spectral type G2V
Distance (pc) 60.028 ± 0.083d

Age (Myr) 17–32b

M� (M�) 1.3a

Photospheric temperature Teff (K) 5850 ± 100a

Spot temperature (K) ≈3950a

Req (R�) 1.5+0.06
−0.05

c

i (◦) 70 ± 10a

v sin i (km s−1) 35.6 ± 0.7 e

Equatorial rotation period Peq (d) 2.198 ± 0.002e

d� (rad d−1) 0.1331+0.0095
−0.0094

e

aM11A.
bHillenbrand et al. (2008).
cGaia DR2: Gaia Collaboration (2016, 2018).
dGaia EDR3: Gaia Collaboration (2016, 2021).
eThis study.

Spring, Australia. Available data comprise 92 spectra spread over
11 d between 2007 March 30 and April 9, covering 4.68 stellar
revolutions, offering a well-sampled rotational phase coverage as
required for DI and ZDI (further details on the data can be found in
Marsden et al. 2011a) and a suitable time-scale to search for HJs.
The 92 spectra were taken in chunks of four 30 min consecutive
exposures, each in different polarization states to perform ZDI. As
each 2 h observing run represents a very short time frame compared to
Peq (stellar equatorial rotation period) and any simulated HJs’ orbital
period, this data set can be treated as containing 23 epochs rather
than 92. A previous DI and ZDI analysis of this data set is available
in Marsden et al. (2011a, b) (M11A/B hereafter). The reduction of
raw spectra was done using the ESPRIT pipeline (Echelle SPectra
Reduction: an Interactive Tool; Donati et al. 1997).

4.2 Stellar parameters and surface mapping

HD 141943 is a young (≈17–32 Myr, M11A and Hillenbrand et al.
2008), nearby [60 ± 0.08 pc, estimated using Bailer-Jones et al.
(2020) with the Gaia EDR3 data (Gaia Collaboration 2016, 2021)]
active G PMS star. This Sun-like star has a mass of 1.3 M� and
a radius of 1.5+0.06

−0.05 R� (Gaia DR2; Gaia Collaboration 2018).
Soummer et al. (2014) also identified a surrounding near-edge-on
debris disc, consistent with a planetesimal belt populated by two
dust components at respective grain temperatures of 60 and 202 K.
The extended list of stellar parameters can be found in Table 2.

We inferred stellar parameters by analysing the raw HD 141943
data set, containing no injected planet. These are marked with the
superscript ‘d’ in Table 2: v sin i = 35.6 ± 0.7 km s−1, i = 43 ± 10◦,
Peq = 2.198 ± 0.002 d, and d� = 0.1331+0.0095

−0.0094 rad d−1.
These parameters are close although not exactly matching the

previous analysis from M11A/B (see the first two lines from Table 3).
This discrepancy could be explained by the fact that the DI/ZDI code
used between M11A/B is slightly different than ours. Mainly, ZDIPY

lets us map bright and dark surface features (spots) in contrast with
only dark spots in M11A/B. The inclination is the parameter with the
largest difference (43◦ versus 70◦), and also the hardest to constrain.
To further investigate, we derived the best solution when fitting both
(i) only for dark spots and (ii) using both dark and bright spots but
forcing i to match M11A/B’s value (i.e. 70◦). Obtained Doppler maps
and best parameters for the three cases (dark + bright, only dark and

Table 3. Set of parameters resulting from four different analysis: (i) bright
and dark feature mapping, (ii) from M11A, (iii) bright and dark feature
mapping with an inclination angle constrained to 70◦ matching M11A’s
value, and (iv) only dark features.

Best value v sin i (km s−1) Peq (d) d� (rad d−1) i (◦)

This work 35.6 2.198 0.13 43
M11A/B 35 2.182 0.36 70
Fixed i 35.6 2.197 0.12 70 (fixed)
Dark only 35.4 2.214 0.02 42

dark + bright with imposed 70◦ inclination) are given in Fig. 3 and
Table 3, respectively.

These three cases yielded similar results, however, noting the
negligible differential rotation when fitting only the dark features.
Forcing i to 70◦ did not change the overall solution, and we found
good agreement between the dark + bright non-forced and forced
analyses. The contrast difference on the Doppler maps as seen on the
bottom-left map of Fig. 3 is due to the effect of projection imposed
by i. Spot locations are consistent across all maps and with M11A.
The difficulty to constrain the inclination angle prevents a reliable
deduction of the stellar radius Req and we therefore used the Gaia
DR2’s value given in Table 2. Our main objective for this paper
was to filter out as efficiently as possible any rotationally modulated
signal in RVs. Since setting i to 43◦ optimizes this task, we adopted
this value for the inclination in the rest of this study.

Fig. 4 shows the radial (top), azimuthal (middle), and meridional
(bottom) magnetic field distribution, derived with ZDI using Stokes
V LSD profiles. We find a magnetic field with 52 and 48 per cent
distribution for the poloidal and toroidal components, respectively,
well agreeing with the 47 and 52 per cent from M11A. The mean
strength is ≈52 G, much lower than M11A’s value of 91 G. This
can be explained again by the difference in inclination angle. Indeed,
reapplying ZDI with a forced i = 70◦ yields a field strength of 85 G,
better agreeing with M11A.

4.3 Planet search

Before injecting planets in the HD 141943 data set, we ensured it did
not exhibit any sign of hosting a planet.

The top panel of Fig. 5 shows the periodogram of the raw
RVs, where we identified Peq and its harmonics, the strongest
signature being present at Peq/2. Secondly, third and fourth panels
are periodograms of the filtered RVs, respectively, from dark and
bright, dark and bright with imposed i = 70◦ features, and only dark
analysis. All show similar features but one peak (around 2.7 d) did
show different heights across analysis, and was above the 0.001 FAP
threshold for the dark spot-only analysis. However, it did not reach
overwhelming significance. This data set did not allow us to assess
the impact of the varying DI solutions (dark, dark + bright, and dark
+ bright with forced inclination) on the planet retrieval as it has no
injected planet. To test that, we performed a second analysis using
these three configurations for data set 22 (see Section 5 for details on
simulated data sets), containing a simulated planet in the ‘uncertain’
range of detection. We found that the different DI solutions did not
change our conclusions regarding the planet search (detailed analysis
available in Appendix C).

The GP confirmed that we were not able to detect any significant
planet in the raw data set. We found a BF in favour of the single
planet model over the activity-only model of only 0.3 (p ≈ 0.23).
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Planets around young solar-type stars 4995

Figure 3. Comparison of the surface brightness maps for HD 141943’s original data set (#5). Each map is a maximum entropy reconstructed image of the
brightness features at the surface of the star. The blue and brown patches indicate regions that are warmer or colder than the photosphere, respectively. The maps
are polar projected, with the centre being the visible rotation pole and the full ring labelled 90 the equator. Values on the outermost ring give the rotational phase
and the ticks indicate the phase of each observation. Top left: Map obtained using the parameters from the first line in Table 3 and mapping for bright and dark
features. Top right: Map extracted from M11A (second line of Table 3) and mapping only dark features. In their approach, the colour scale expresses the spot
filling factor. Bottom left: Map obtained using the parameters from the third line of Table 3, with a forced inclination parameter of 70◦ and mapping for bright
and dark features. Bottom right: Map obtained using the parameters from the fourth line of Table 3 and mapping only dark features.

5 SIMULATED EXOPLANET DATA SETS

We created 37 data sets, each containing a single planet on a
circular orbit around HD 141943, following a procedure described
in Sections 5.1 and 5.2. Each planet was incorporated into the raw
spectra studied in the previous section.

5.1 Injected planets

Injected planets were chosen to be massive short-period exoplanets,
with masses ranging from 0.38 up to 5.9MJ and periods shorter than
6 d. We set the orbits to be circular, as it is believed to be the case for
most HJs, especially for orbits shorter than 3 d (Dawson & Johnson
2018). We should none the less bear in mind that eccentricity can be
a crucial aspect in favour of high-eccentricity migration and should
not be overlooked especially when attempting to detect the slightly
cooler warm Jupiters (Porb > 10 d). The RV shift induced by each
planet was defined as

RVpla(t) = K sin

[
2π

(
t

Porb
− � + 0.5

)]
, (8)

with K the semi-amplitude of the signal, Porb the planet’s orbital
period, and � the phase. � ∈ [0: 1] and was defined such that
when � = 0, the planet crosses the plane containing the line of
sight. We set � = 0 to match the mid-point of the observations
(BJD�mid = 2454195.153776). For the rest of this paper, we will refer
to semi-amplitude values (K) for the planets rather than mass. The
equivalence between K and mass is described in Section 6.2.5.

5.2 Complete data sets

To build our data sets, we generated an RV time series using
equation (8) at times matching our observing epochs and then
shifted each spectrum accordingly in wavelength space. In order
to explore our planetary parameter space (made of K, Porb, and �)
without being overwhelmed with the number of data sets to analyse
(nK × nPorb × n�), we used the following strategy:

First, we created seven data sets (#1 to #8, excluding #5, the
original one) at a fixed period (3.653 d) with K ranging from 50 to
500 m s−1 and random �. This initial analysis provided an estimate
of the limiting semi-amplitude range for detectability.
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4996 A. Heitzmann et al.

Figure 4. Maximum entropy image reconstruction of the radial (top),
azimuthal (middle), and meridional (bottom) components of the magnetic
field for HD 141943. Positive/negative field modulus values (in Gauss) are
displayed in yellow/red and blue, respectively. The horizontal line shows
the equator with the number describing the phase. Ticks translate each
measurement’s epoch.

Then, we generated additional data sets 4–5 at a time, filling areas
in the parameter space that seemed relevant, i.e. around the noise
limit, around Peq and harmonics and to cover empty areas of the
parameter space. After generating each batch of data sets, these were
randomly assigned a mock value before analysis to avoid biases.

We ended up with 37 data sets (38 when including the original data
set) spanning the following ranges: 42–532 m s−1 in K, 0.288–5.69 d
for Porb, and 0.02–0.99 in �. See Table 4 for specific details.

5.3 RV extraction

We tested the RV extraction from the line profiles using both a first-
order moment approach and a GND fit. For the original data set
(#5 with no injected planet) and given our limits on the integration
for the FOM approach the average difference between FOM- and
GND-extracted RVs (from the observed profiles) is 8 m s−1 with a
maximum difference of 144 m s−1 for the most extreme point. The
uncertainty on the RVs also differed as GND yielded uncertainties
twice as large as those from FOM (148.5 ± 2.0 m s−1 versus
70.4 ± 1.8 m s−1).

As previously mentioned, FOM-derived RVs and uncertainties
are dependent on the number of points taken into account for its
computation (i.e. chosen integration limits for the line profile) and
where to cut in the wings of the line profile can be somewhat arbitrary.

On both sides of each profile (and for all of them), we cut at 43 km s−1

relative to the line centre. We tested different limits and chose the
one that gave the least average difference with the GND approach,
which is an analytical function and therefore not prone to this effect.

6 R ESULTS

All data sets are extensively described in Table 4 and will be referred
to using their number (#1, #2, ..., #38).

6.1 Stellar parameters

Stellar parameters inferred from the data sets containing injected
planets are consistent with our refined parameters derived from the
raw data set (#5; see Section 4.2). The mean values of the retrieved
stellar parameters across all data sets, along with the largest deviation
from the mean (given by the ±), are: v sin i = 35.6+0.27

−0.45 km s−1, i =
43+5

−3
◦, Peq = 2.1995+0.007

−0.006 d, and d� = 0.119 ± 0.08 rad d−1. In
all cases, spot distributions are similar, with slight differences in
terms of contrast. This can be explained by the fact that the fit to
the line profiles was sometimes performed to a slightly different
χ2 level. Typically, the presence of a planet with a semi-amplitude
significantly larger than the activity level (e.g. for data set #6) slightly
impacts the performance of the DI. However, even such a large planet
signature did not hamper the capacity of the DI to identify spot
locations and recover the planet.

6.2 Planet detection: methods performance

6.2.1 Method 1: DI activity filtering

Results are shown in Fig. 6. Each marker represents a data set with its
corresponding number in order to easily refer to Table 4 containing
more details. Marker positions indicate the injected planets’ K and
Porb (as we did not identify a systematic impact of � on retrievals,
it was omitted for clarity). Each data set is identified by a specific
marker/colour combination: A green circle when a periodogram peak
was identified above an FAP threshold of 0.001 (0.1 per cent) and with
a deviation from the true period of <10 per cent, an orange square
when two peaks above an FAP of 0.001 and of similar height were
found or when the right peak was identified but with a deviation from
the true period of >10 per cent, preventing a safe conclusion, a grey
cross when no signature above FAP = 0.001 could be identified,
and finally a red cross when a peak was present above the FAP
threshold but was not matching the injected planetary period, i.e. a
false positive.

This approach yielded 16 positive detections, 6 inconclusive
findings, 11 non-detections, and 4 false positives. These four data
sets confirm that using FAP as a measure of significance is not the
safest approach, as discussed in Section 3.1.4. Rigorous estimation
of the significance was performed with the GP analysis.

All six simulated planets with semi-amplitudes larger than
150 m s−1 were well retrieved and half (8/18) between 100 and
150 m s−1. This fraction increased to 60 per cent (8/13) when
removing all data sets close to Peq and its harmonics. Only 1/13
planets below 100 m s−1 were found (noting that #25 was a very
weak detection with an FAP of 3.5 × 10−4).

We note that all analyses that identified the right peak but with
deviation of more than 5 per cent (up to 10.6 per cent for #21) from
the true period (#19, #21, #25, and #35) had fewer than 2.5 orbital
periods within our observation time span. This inaccuracy was due
to the width of the peaks in the periodogram arising as the period
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Planets around young solar-type stars 4997

Figure 5. LS periodograms for the original data set (#5, containing no planet). First panel: Observed (raw) RVs. All other panels are for filtered RVs (i.e. raw
RVs – synthetic RVs, where synthetic RVs are derived from the DI fitting). Second panel: Filtered RVs using the dark and bright (d and b) features for DI. Third
panel: Filtered RVs using the dark and bright features for DI and with the 70◦ constraint on i (d and b, i = 70). Fourth panel: Filtered RVs using only dark
features (d) for DI. We note that the peak around 2.6 d is likely caused by the rotation period at intermediate latitudes (offering a maximal visibility given the
inclination angle of the star). This value is larger than the equatorial period depicted by the red, vertical lines, as expected in the case of a differentially rotating
surface (see Section 3.1.3).

represented a significant fraction of the time span. It is safest, given
our number of samples, to cover at least 2 to 3 orbital periods to
achieve sufficient precision on Porb.

The six ‘to be confirmed’ (orange squares) data sets #2, #15,
#32, #34, and #36 all exhibited two competing peaks above the
FAP threshold and at a similar height (FAP of 1.8 × 10−4 and
7.2 × 10−4 for #2, 1.6 × 10−4 and 1.4 × 10−4 for #15, 1.1 × 10−11

and 1.1 × 10−11 for #32, 1.25 × 10−6 and 2.6 × 10−4 for #34, and
1.15 × 10−10 and 2.43 × 10−9 for #36), preventing us from being able
to choose the correct period. For #2, #15, and #32, the peaks are just
above our detection threshold and it is therefore not surprising to find
competing features. For #32 and #36, however, the competing peaks
were both very significant. We are not sure as to how to interpret
these, which vanished as we filter the signature associated with one
of the two peaks. As shown in Fig. B2, these spurious peaks did not
seem to correspond to any harmonics of neither the planet nor the
star. See periodograms. Although complex interactions between the
uneven data sampling and the periodic signatures cannot be ruled
out, no significant peak could be identified in the window function
(see Fig. B1). The complete analysis of these two data sets can be
found in Appendix B. Data set #21 also falls in the ‘orange square’
category with a very wide identified peak, yielding a 10.6 per cent
deviation between the retrieved and injected periods, slightly over
our 10 per cent threshold.

False positives arose as the highest peak was not the simulated
one, which would lead to false identification (if relying solely on DI)
for #1 and #17. Regarding #9 and #24, the peaks were barely above
the FAP of 0.001 and would not have led to a significant detection.

Although we could not identify a systematic impact, phase is
expected to play a role in the injected planets retrieval and we can

see this occurring in the zoomed box in Fig. 6. The only noticeable
difference between #13 and #15 is their phases (respectively, �13 =
0.4769 and �15 = 0.1093) and yet planet #13 is recovered but not
#15.

Studying periodograms for all data sets indicated that planets with
periods close to Peq (#12 and #26), Peq/2 (#33 and #34), Peq/3 (#9
and #24), and Peq/4 (#30 and #32) seem to be affected by the activity
filtering. The case of #32 has been discussed above. This effect is to
some extent expected as DI has the capacity to distort the line profiles,
interpreting the rotationally modulated distortions as produced by
spots on the brightness maps at harmonics of the rotation period and
therefore is likely to absorb part of a planetary signature close to one
of these periods.

For RV searches, the LS periodogram has limitations (choosing
an FAP limit, interpreting the significance of a result, limitation
to sinusoidal signals; see VanderPlas 2018) and we emphasize
that dedicated treatment for stellar activity should be performed.
We therefore advocate for incorporating a second, complementary
method, presented in the following section, allowing both better
quantification of the significance of a retrieved signature and a more
comprehensive modelling of the activity.

6.2.2 Method 2: GP regression activity modelling

Again, results are detailed in Table 4 and summarized in Fig. 7.
We defined successful retrievals (green circles) where the GP
strongly favoured the single planet model over the activity-
only model with a probability p > 0.909 (computed from
the marginal likelihood/BF; see Appendix A and Table A1
for further details). We then have substantial evidence (orange
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4998 A. Heitzmann et al.

Table 4. Data sets 1 to 6. Each column represents a simulated data set. The first section (rows 1–4) gives the stellar parameters inferred from the DI analysis.
The second section (rows 5–7) gives the values of the three parameters used to simulate the injected planet. The third section (rows 8–13) gives the results of the
Method #1 DI filtering. RV0 is an offset; then, we have the three recovered planet parameters, followed by the rms and χ2 of the residuals. The fourth section
(rows 14–22) gives the result of the GP (Method #2) for the no planet (activity-only) model. For the parameters (θ1 to σ s), the values are given as: mean ± std
(maximum a posteriori). We then have the rms and χ2 of the residuals and the resulting natural logarithm of the evidence. The last section (rows 23–36) gives
the result of the GP for the single planet model. Again, the parameter (θ1 to σ s) values are given as: mean ± std (maximum a posteriori). We then have the rms
and χ2 of the residuals and the resulting natural logarithm of the evidence. Finally, we give the BF, defined as the ratio between Z from the single planet model
(row 34) and the no planet model (row 22). The last row is the probability in favour of the single planet model associated with the BF value. Only the first six
rows (data sets) are shown here; the full version is available as online material.

Data set #1 #2 #3 #4 #5 #6 ...

DI inferred stellar parameters

i(◦) 43 40.5 41.5 42 42.5 45 ...

v sin i (km s−1) 35.47 35.53 35.75 35.789 35.643 35.862 ...

Peq (d) 2.206 15 2.203 45 2.1988 2.194 08 2.197 88 2.201 79 ...

d� (rad d−1) 0.0769 0.097 96 0.133 33 0.146 94 0.133 33 0.123 08 ...

Injected planet parameters

K (m s−1) 60.6 82.9 154.9 267.1 – 532.2 ...

Porb (d) 3.6531 3.6531 3.6531 3.6531 – 3.6531 ...

� [0:1] 0.271 0.303 0.445 0.311 – 0.432 ...

Method #1 (DI) mean ± std

RV0 (m s−1) 13.1 ± 9 1.7 ± 9 0.5 ± 9 12.2 ± 10 – –60.0 ± 10 ...

K (m s−1) 85.5 ± 12 68.7 ± 11 115.6 ± 12 233.0 ± 13 – 430.2 ± 14 ...

Porb (d) 2.549 ± 0.054 1.413 ± 0.022 3.538 ± 0.067 3.649 ± 0.041 – 3.640 ± 0.022 ...

� [0:1] 0.612 ± 0.026 0.209 ± 0.031 0.435 ± 0.018 0.301 ± 0.009 – 0.427 ± 0.006 ...

rms (m s−1) 81.9 79.6 79.7 84.4 – 89.9 ...

χ2 1.34 1.28 1.28 1.43 – 1.63 ...

Method #2 (GP)/no planet model/mean ± std (MAP)

θ1 (m s−1) 314.2 ± 113.4(217.4) 276.8 ± 89.9(208.2) 265.4 ± 68.0(217.1) 320.5 ± 74.1(277.5) 357.6 ± 109.1(296.6) 462.9 ± 98.0(394.1) ...

θ2 (m s−1) 10.2 ± 6.3(6.9) 6.9 ± 3.8(6.0) 3.0 ± 1.4(4.2) 1.7 ± 0.5(1.7) 19.2 ± 9.3(15.7) 1.4 ± 0.3(1.1) ...

θ3 (m s−1) 2.190 ± 0.036(2.148) 2.190 ± 0.041(2.141) 2.205 ± 0.045(2.164) 2.206 ± 0.049(2.255) 2.215 ± 0.020(2.216) 2.207 ± 0.049(2.268) ...

θ4 (m s−1) 0.527 ± 0.148(0.399) 0.468 ± 0.136(0.347) 0.415 ± 0.137(0.234) 0.587 ± 0.146(0.511) 0.628 ± 0.083(0.597) 0.723 ± 0.151(0.605) ...

RV0 12.5 ± 156.8(-20.5) 19.7 ± 127.6(16.6) 35.6 ± 97.7(52.1) 15.8 ± 113.3(-0.7) 25.3 ± 194.0(50.9) 17.4 ± 160.3(49.6) ...

σ s 12.3 ± 9.5(0.4) 11.7 ± 9.1(2.8) 12.0 ± 9.2(9.8) 12.0 ± 9.2(3.0) 11.5 ± 8.8(0.6) 12.3 ± 9.5(0.7) ...

rms (m s−1) 55.9 54.9 54.8 55.8 59.0 56.6 ...

χ2 0.62 0.59 0.59 0.61 0.69 0.63 ...

lnZ −550.99 −552.15 −560.46 −563.85 −545.03 −571.93 ...

Method #2 (GP)/single planet model/mean ± std (MAP)

θ1 (m s−1) 340.1 ± 117.7(271.1) 360.8 ± 120.8(257.2) 400.9 ± 151.9(301.2) 401.0 ± 138.3(347.7) 357.3 ± 107.9(292.2) 473.5 ± 199.5(338.4) ...

θ2 (m s−1) 14.0 ± 7.8(13.3) 17.2 ± 10.0(17.1) 20.9 ± 13.2(15.3) 21.7 ± 12.3(19.0) 19.9 ± 9.7(15.9) 27.7 ± 16.7(22.3) ...

θ3 (m s−1) 2.204 ± 0.030(2.217) 2.213 ± 0.026(2.233) 2.208 ± 0.024(2.216) 2.215 ± 0.019(2.220) 2.216 ± 0.020(2.228) 2.206 ± 0.020(2.213) ...

θ4 (m s−1) 0.595 ± 0.151(0.602) 0.642 ± 0.154(0.601) 0.641 ± 0.163(0.570) 0.677 ± 0.143(0.645) 0.631 ± 0.081(0.592) 0.705 ± 0.156(0.680) ...

K (m s−1) 43.1 ± 23.6(59.8) 59.2 ± 19.7(69.1) 130.8 ± 19.1(138.8) 238.7 ± 14.2(235.6) 29.4 ± 32.1(39.7) 474.7 ± 14.5(473.4) ...

Period (d) 3.008 ± 2.386(3.331) 3.223 ± 1.341(3.420) 3.571 ± 0.438(3.598) 3.580 ± 0.102(3.603) 2.481 ± 2.528(0.172) 3.616 ± 0.035(3.610) ...

Phase [0:1] 0.345 ± 0.210(0.259) 0.305 ± 0.115(0.286) 0.444 ± 0.036(0.448) 0.306 ± 0.013(0.309) 0.571 ± 0.293(0.821) 0.432 ± 0.005(0.430) ...

RV0 38.6 ± 166.5(-1.6) 52.6 ± 178.1(119.5) 27.8 ± 212.0(81.8) 69.8 ± 211.2(1.2) 28.4 ± 190.2(166.2) 39.2 ± 292.2(121.2) ...

σ s 11.0 ± 8.3(6.8) 11.1 ± 8.4(3.9) 12.4 ± 9.4(3.2) 11.8 ± 9.1(5.1) 10.7 ± 8.2(6.3) 12.7 ± 9.6(2.8) ...

rms (m s−1) 57.3 62.1 61.3 57.9 60.4 64.4 ...

χ2 0.65 0.77 0.75 0.66 0.72 0.82 ...

lnZ −551.06 −550.91 −556.77 −556.41 −546.25 −560.60 ...

Bayes factor 0.9 3.5 40.0 1702.8 0.3 83283.0 ...

p(M1) 0.48 0.78 0.98 1.00 0.23 1.00 ...

squares) of a planet (i.e. 0.75 < p < 0.909) and non-detections
(grey crosses, i.e. p < 0.75). We note that most of the in-
jected planets (28/37) were correctly identified by the GP, al-
though not always significant enough to lead to a detection
claim.

The GP yielded 16 positive detections, 4 ‘to be confirmed’ findings
(i.e. requiring further observations), 17 non-detections, and more
importantly no false positives. Again here, all six simulated planets
with semi-amplitudes larger than 150 m s−1 were correctly found.
This drops to half (9/18) between 100 and 150 m s−1 (same ratio as

DI although not systematically on the same data sets), and increases
to 70 per cent (9/13) when removing all data sets close to Peq and
its harmonics. Finally, for planets below 100 m s−1, only 1 out of
13 was found (along with two cases requiring further observations,
with #2 a correctly identified planet and #27 a missed identification).
The GP, compared to DI, is more conservative yet more reliable (i.e.
no false positives) due to its accurate measure of the significance
for each finding. Fig. 7 shows that, similar to the DI analysis,
it is difficult to identify planetary signatures close to Peq or its
harmonics.
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Figure 6. Results using the DI method. Each marker on the plot is a data set containing a simulated injected planet. Orbital period (d) is on the x-axis and
semi-amplitude (m s−1) is on the y-axis. Green circles: identification of the correct planet with a periodogram peak above an FAP of 0.001. Orange square:
two peaks of similar height (see Section 6) were found preventing a safe conclusion or when the width of the correctly identified peak yielded a deviation
of more than 10 per cent between the retrieved and injected orbital period. Grey crosses: no signature with FAP > 0.001 could be identified. Red crosses:
the most significant peak was not matching the injected period peak. Horizontal dashed lines show the stellar activity semi-amplitude (Kactivity) and the error
bars on the retrieved RVs (σRV). Vertical dashed lines show the rotation period of the star and its harmonics. Blue points show, for the ‘Detection’ and ‘To be
confirmed’ data sets, the Peq and K values corresponding to the highest peak in the periodogram.1: For data set #21, the correct peak was found, at an FAP of
1.1 × 10−13. However, that peak being very broad, it yielded a 10.6 per cent deviation between the retrieved and injected periods, slightly outside our 10 per cent
limit.

We finally note that imprecision on the retrieved Porb increases for
longer periods (see MAP values indicated on Fig. 7). This is because
fewer periods are covered by the data set as we move to the right of
Fig. 7.

6.2.3 Consistency between methods

Utilizing two distinct methods serves as cross-validation when a
signature is found. However, the GP is the only Bayesian approach,
therefore the only one allowing a rigorous quantification of the
evidence favouring of a particular model (i.e. presence of a sinusoidal
signature in the data or not).

For signatures above 150 m s−1 and after removing data sets close
to Peq harmonics, both methods yielded systematic detections except
for the ambiguity on #36 when using DI. For signatures between
100 and 150 m s−1, the GP showed more consistency than the DI
that exhibited three false positives. Out of the 13 data sets below
100 m s−1, we ended up with 1 detection for both GP and DI.

Even though the Bayesian approach using a GP can (i) better han-
dle correlated noise and (ii) more reliably estimate the significance of
a detection, the use of the DI filtering method allows an independent
validation.

6.2.4 Comparison with previous work

In a study performed in 2014, Jeffers et al. (2014) (J14 hereafter)
injected various planets behind simulated activity signatures of

two young G and K stars. Varying parameters were the planet
semi-amplitude, orbital period, and v sin i (shown to be correlated
with the activity level). Stellar activity was generated based on
DI maps and with different configurations (e.g. adding plages
associated with spots, adding extra random spots, etc.; see J14
for more details). The G dwarf was HD 141943, thus making
the comparison particularly relevant. Each simulated data set was
composed of a single planet in a circular orbit, to which modelled
stellar activity and instrumental signatures were added. In that
study, the search for injected planets was performed without a
specific treatment for stellar activity and was considered successful
for periodogram peaks below FAP = 0.01 (versus 0.001 in our
study).

With 50 observational epochs and for their less complex simu-
lation of activity (only based on the DI maps), J14 were able to
retrieve signatures of semi-amplitude K = 110 m s−1 when v sin i =
20 km s−1 and K = 525 m s−1 when v sin i = 50 km s−1. Regarding
their most complex simulation of activity (DI maps + plages +
random spots; see J14 for further details), the minimum attainable
planetary signature was K = 525 m s−1 when v sin i = 20 km s−1.
In the case of v sin i = 50 km s−1, 200 observational epochs were
required to reach the K = 525 m s−1 detection threshold.

We note that the data sampling is different, which might slightly
hinder the comparison.3 With 23 unevenly spread epochs, the

3J14 has one datum per night for 50, 100, or 200 consecutive nights, whereas
we have 23 epochs over 10 nights.
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Figure 7. Results using the GP method. Each marker on the plot is a simulated injected planet. Orbital period (d) is on the x-axis and semi-amplitude (m s−1)
is on the y-axis. Green circles: the evidence between the single-planet model and with activity only is  ln(Z) > 10, associated with at least a strong detection
(probability p > 0.909). Orange squares: 10 >  ln(Z) > 3 or substantial evidence (0.95 > p > 0.75). Grey crosses:  ln(Z) <3 (p < 0.75). Horizontal dashed
lines show the stellar activity semi-amplitude (Kactivity) and the error bars on the retrieved RVs (σRV). Vertical dashed lines show the rotation period of the star
and its harmonics. Blue points show the Maximum A Posteriori (MAP) values for Peq and K, linked by a line to the corresponding data set.

smallest signature we could reliably detect was K = 100 m s−1 (down
to 70 m s−1 for data set #10), emphasizing the benefit granted
by our activity filtering approach. Although now systematically
applied by the community for planetary searches around active stars,
this emphasizes that an independent treatment of stellar activity
combined with robust model selection is crucial to improve detection
capabilities.

6.2.5 Recovered exoplanets

Here, we translate our results into planetary mass/orbital periods for
the case of HD 141943, given M� = 1.3 M� and i = 43◦. We consider
that the stellar rotation axis is normal to the planet’s orbital plan. In
this context, our lower detection threshold of 100 m s−1 is equivalent
to a planet with either

(i) Mpla = 1 MJup, Porb = 1.6 d (a = 0.03 au) or
(ii) Mpla = 2 MJup, Porb = 12.5 d (a = 0.12 au).

Using M11A’s inclination value of i = 70◦, we get

(i) Mpla = 1 MJup, Porb = 5 d (a = 0.062 au);
(ii) Mpla = 2 MJup, Porb = 35 d (a = 0.23 au).

In a case of a star of 1 M� with a transiting exoplanet, we can
hope to detect a 1 Mjup orbiting at up to 10 d, using typical DI non-
stabilized observations. This is, of course, given similar conditions in
terms of data quality and quantity, observing constraints, and stellar
variability level. As more numerous and precise RVs should be easily
obtainable, it is fair to expect better results and identify HJs around
very young solar-type stars.

6.2.6 Dependence of planet detection to various parameters

In terms of semi-amplitude, our detection threshold of around
100 m s−1 corresponds to half of the stellar activity rms and a quarter
of its semi-amplitude (≈400–500 m s−1 looking at the maximum
of the data points, or 357 ± 100 m s−1 according to the GP applied
to data set #5). Given the scarcity of planets orbiting very young
stars discovered solely using RV, comparisons with the literature are
limited. When excluding searches in the small activity regimes (i.e.
rmsactivity < 50 m s−1) only two planets provide a direct comparison,
V830 Tau b (Donati et al. 2017) and TAP 26 b (Yu et al. 2017b).

TAP 26 b is thought to have a semi-amplitude of 160 m s−1, or
1
8 to 1

12 of the stellar variability semi-amplitude and V830 Tau b
(K ≈ 60 m s−1) up to 1

20 . They both exhibit activity levels with a
semi-amplitude of ≈1200 m s−1. We believe that the difference in
performance (detection threshold of ≈ 1

4 of the activity level for this
work) can be explained by the fact that (i) both Yu et al. (2017b) and
Donati et al. (2017) had more data (≈30 and 60 epochs versus 23
for us), (ii) Donati et al. (2017) had slightly better uncertainties on
the RVs [σ RV ≈ 50 m s−1 versus 75 for both Yu et al. (2017b) and
this study] and most importantly, (iii) both had a longer baseline for
the observations: 100 and 35 stellar rotation cycles versus 3 for us.
We also used less constraining priors as previous knowledge was not
available.

To ensure it was not our method implementation that hindered
our capacity to find smaller signatures from our data sets, we ran
our code on both Donati et al. (2016)’s and Yu & Donati (2017a)’s
data and were able to retrieve the published periodic signatures.
We note that with no access to previous knowledge, our prior
distributions were less restrictive (i.e. non-Gaussian and/or broader
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for the concerned parameters), decreasing the evidence and yielding
slightly more conservative results. Our limitations can be seen as an
upper boundary and that data of better quality and quantity would be
able to detect smaller planets.

We find that detecting planets with orbital periods conflicting
(i.e. within 0.1 d of) either Peq or its harmonics was unreliable,
as illustrated in Figs 6 and 7. Although longer period planets did not
seem to be harder to detect, we noticed a significant loss of precision
in the orbital period retrieved once we reach periods larger than 40 to
50 per cent of the observing time frame (see MAP values on Fig. 7).
This is expected and good practice to sample a few orbital periods at
least to get reasonable constraint. A good example of a similar study
can be found in Klein et al. (2020), where the authors required 35/50
data points spread over 3 months (≈15 orbital periods) to reliably
detect 5/10 m s−1 planets behind stellar activity (about 2/3 times the
planetary signature level). Finally, as we saw for data sets #32, #36
(see Appendix B for the complete analysis of these two data sets) and
to a lesser extent for #2 and #15, spurious periodicity signatures can
appear with no relation to harmonics and no obvious relation with
the window function, as suggested by Nava et al. (2020).

Regarding orbital phase, the significant difference in peak height
between data sets #13 (periodogram peak power = 0.3, � = 0.4769)
and #15 (periodogram peak power = 0.5, � = 0.9183) given their
identical period and comparable semi-amplitude suggests that phase
impacts the detection capabilities. It is not surprising that particular
phases would have an impact on the periodogram as the irregular
sampling can yield different phase coverage. That being said, we did
not observe a general trend with phase across all data sets.

Finally, data obviously play a huge role in the detection capabilities
with crucial aspects being quality, quantity, and sampling. To better
characterize the activity, i.e. improve the hyperparameters of the GP,
it is important to optimize the sampling (spanning multiple stellar
orbits with as dense and as regular sampling as possible). Another
successful strategy is to apply a GP to simultaneous photometric data,
or at least not too far apart so that there is not too much evolution
of the stellar surface features. We also tested (see Appendix D) the
improvement brought by the knowledge of the period of the orbiting
planet (i.e. characterizing a known transiting planet).

7 C O N C L U S I O N S

In this paper, we assessed our capabilities to detect exoplanets behind
real stellar activity signatures. We used a previously published set
of observations gathered with a non-stabilized spectrograph of the
young, active G star HD 141943 in which we injected simulated
planets. We then utilized two distinct strategies, DI and a GP
regression to filter out the stellar activity variability, aiming to recover
these injected planets.

Our dedicated treatment of stellar activity allowed significant
improvement in the detection capabilities compared to J14, a planet
search study done on the same star with no dedicated activity
mitigation. As previously shown by Yu & Donati (2017a), these
strategies are among the best tools we have to deal with large activity
signatures. Although now widely accepted in the community, we
further confirmed that dedicated treatment of the activity is crucial,
and showed that we can detect short-orbit gas giants even in non-
optimally sampled data sets exhibiting a 50–100 m s−1 RV precision.

We tested two alternatives to recover the RVs from the LSD line
profiles (GND fit and first-order moment), which yielded slightly
different RV time series but more importantly different uncertainties.
We favoured the FOM approach but other methods such as broadened
profiles could be explored.

With a low number of epochs acquired with a non-stabilized
spectrograph, the combined use of both GP and ZDI methods enabled
us to set a planet detection threshold of around 100 m s−1 or ≈ 1

4 of
the activity level. Injected planets under this threshold were either
non-detections or would require extra observations to confirm. The
limitations we faced give a good idea of the upper limit we can hope
to achieve for such systems in similar conditions.

Although DI shows less reliability than the GP, it allows us to
strengthen the confidence of a finding. This lack of reliability could
be explained by the fact that DI does not take into account surface
variability due to the active regions’ appearance/disappearance.
These can evolve quickly, as shown for another G-type star in Petit
et al. (2004). We suggest that claiming planets around active star
should be done with a dedicated treatment for stellar variability,
and preferentially using a Bayesian framework for robustness and to
allow a quantification of the evidence of the presence of an orbiting
planet.

We attempted to identify some factors that could improve the
likelihood to find exoplanets orbiting young stars. Larger and more
precise data set is an obvious one. Efficient sampling is also crucial,
where dense sampling of the stellar rotation to better constrain the
activity should be combined with coverage of multiple planetary
orbits.

Orbital periods close to Peq and its harmonics pose serious
difficulties, and often lead to non-detections. In our case, it also
appears to be a good rule of thumb to sample at least 2, or even 3,
orbital periods to constrain Porb with sufficient precision.

Some data sets (#2, #15, #32, and #36) exhibited significant
spurious peaks of mysterious origin that compete with the true
planetary period, emphasizing the difficulty of RV-only searches.

Detecting young exoplanets that do not transit is difficult but
essential if we want to expand the sample of massive short-period
exoplanets orbiting very young stars and progress towards settling
the long-lasting debate over their origin. This work demonstrates
that we can realistically identify potential candidates for follow-up
observations and even detect short-orbit gas giant planets in non-
optimized data sets exhibiting large activity variability.

8 FU T U R E WO R K

As follow-up of this work, and to improve precision, producing
mean line profiles with either classical approaches (i.e. CCF, shift,
and fit) or more recent proposals (Rajpaul, Aigrain & Buchhave
2020 or Collier Cameron et al. 2021), rather than with LSD for the
GP analysis, could be explored. Indeed, the strength of LSD is the
increase in S/N it provides, at the cost of a poorer estimation of the
uncertainties (usually overestimated). It is more relevant to have a
better estimation of the uncertainties when it comes to the RV used
for the GP rather than a boosted S/N (required for DI).

Now having a better grasp on the capabilities of these activity
mitigation strategies, it is possible to study real data of young
solar-type stars. Many projects such as the BCool (Marsden et al.
2014) and TOUPIES4 (Folsom et al. 2016, 2018) surveys, aimed at
characterizing star using DI and ZDI, would be good starting points.

Among the overwhelming number of targets observed by the
TESS mission (Ricker et al. 2015), many are young Solar analogues.
Careful planning of follow-up and the availability of photometry
for transiting planets would drastically increase the characterization
capabilities; see Appendix D. In general, using complementary tools

4https://ipag.osug.fr/Anr Toupies//
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to diagnose the activity, such as activity indicators and photometry,
is strongly recommended (e.g. Rajpaul et al. 2015; Jones et al. 2017;
Oshagh et al. 2017; Kosiarek & Crossfield 2020).
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In the scope of this research, we used the University of Southern
Queensland’s (USQ) Fawkes HPC that is co-sponsored by the
Queensland Cyber Infrastructure Foundation (QCIF).

This research has made use of NASA’s Astrophysics Data System
and the SIMBAD data base operated at CDS, Strasbourg, France.

This work has made use of the VALD database, operated at
Uppsala University, the Institute of Astronomy RAS in Moscow,
and the University of Vienna.

For this research, we made use of the following PYTHON packages:
ASTROPY (Astropy Collaboration 2013), CORNER (Foreman-Mackey
2016), LOGUNIFORM (MIT licence; João Faria), MATPLOTLIB (Hunter
2007), NUMPY (Harris et al. 2020), PYMULTINEST (Buchner et al.
2014), and SCIPY (Virtanen et al. 2020).

Finally, thanks to J. C. H for the insightful conversations on the
science behind this research.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author. The full content of Table 4 is available
as online material.

RE FERENCES

Appenzeller I., Mundt R., 1989, A&AR, 1, 291
Astropy Collaboration, 2013, A&A, 558, A33
Bailer-Jones C., Rybizki J., Fouesneau M., Demleitner M., Andrae R., 2020,

Gaia eDR3 Lite Distances Subset Cone Search. VO Resource Provided
by the GAVO Data Center. http://dc.zah.uni-heidelberg.de/gedr3dist/q/c
one/info, Accessed date: May 15th, 2021

Bailey E., Batygin K., 2018, ApJ, 866, L2
Baluev R. V., 2008, MNRAS, 385, 1279
Baruteau C. et al., 2014, in Beuther H., Klessen R. S., Dullemond C. P.,

Henning T., eds, Protostars and Planets VI. Univ. Arizona Press, Tucson,
AZ, p. 667

Batygin K., Bodenheimer P. H., Laughlin G. P., 2015, ApJ, 829, 1
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APPENDIX A : BAY ESIAN MODEL SELECTI ON

To assess the significance of the presence of periodicity in our
data sets, we had to compare different models: activity only versus
activity + planet(s). From parameter estimation and for a given
model, an MCMC (nested sampling in our case) approach gives
access to the most likely set of parameters for the model along
with the associated maximum likelihood value. This non-normalized
likelihood is, however, not comparable across models. A model
with more parameters will have more flexibility and therefore the
capacity to better fit the data, yielding a greater likelihood value. To
circumvent this, one tries to penalize models with more parameters,
following Ockham’s razor (law of parsimony). The notoriously hard
to compute marginal likelihood or evidence (or posterior distribution
normalization constant) naturally applies Ockham’s razor and acts
to penalize models with higher number of parameters.

We encourage the reader to refer to Robert, Chopin & Rousseau
(2009) for a thorough description of this Bayesian framework, based
on the work of Jeffreys (1961). We will here give a quick overview.

First let’s define the quantities required for this Bayesian frame-
work. With y an array containing the data points, θ the set of
parameters composing the model, and Mi the ith model, we define

(i) p(θ |y,Mi) or P(θ ): Posterior distribution of the parameters.
(ii) p(y|θ ,Mi) or L(θ ): Likelihood.
(iii) p(θ |Mi) or π (θ): Prior probability of the parameters.
(iv) p(y|Mi) or Z: Evidence/marginal likelihood/probability of

data given the model/posterior distribution normalization constant.
(v) p(Mi) or π (Mi): Model’s prior.

The first four are linked by Bayes’ theorem:

P(θ ) = π (θ) × L(θ )

Z . (A1)

To compare models, we look at the BF, defined for two models
M0 and M1 as

BF = Z1

Z0

π (M1)

π (M0)
. (A2)

Table A1. Values of the BF, i.e. the ratio of marginal likelihood between the
single planet model and the 0-planet (stellar activity only) model. Middle
and left columns are the associated probability and level of confidence.

Bayes factor Probability Level of confidence

<1 <0.5 None
<3 <0.75 Not worth more than a bare mention
<10 <0.909 Substantial
<30 <0.967 Strong
<100 <0.99 Very strong
>100 >0.99 Decisive

In cases where nothing a priori favours one model over the other
(i.e. π(M1)

π(M0) = 1), we are left with the ratio of the marginal likelihoods.
To obtain the marginal likelihoods, we need to marginalize (i.e.
integrate) over all parameters:

Z =
∫

L(θ )π (θ)dNθ , (A3)

with N the number of parameters. For models with a large number
of parameters, accurate computation of Z requires integrating over
many dimensions (N) and is therefore often intractable. It quickly
becomes too computationally expensive and needs to be approxi-
mated. Various approaches are used in the literature; see Nelson et al.
(2020) for the most extensive attempt to compare these methods in
the context of exoplanet searches.

Once in possession of the evidence for each model, we can
compute the BF and assess whether the data favour model 1 over
model 0. It is common practice to work with the natural logarithm
of the evidence; we then have

BF = exp(lnZ1 − lnZ0) = exp( lnZ). (A4)

The different level of confidence is then interpreted from the BF,
following Jeffreys (1961), as summarized in Table A1. We emphasize
that this level of evidence is assessing the significance of the model
given the data, and does not take into account how accurately the
data reflect what we wish to observe nor the plausibility of the model
on its own [although that can be added as π (Mi) in equation A2].

A1 Notes on prior probabilities

Prior probabilities are at the core of Bayesian inference, and express
knowledge previously acquired on a particular aspect of the problem,
i.e. a parameter of the model, or on the model itself. One must be
mindful of the choice for these priors. Some are ‘uninformative’
(Uniform, Jeffrey’s or Modified Jeffrey’s priors; see Gregory 2007,
for more details on the last two), meaning that they do not contain
a priori information (they do to some extent as a uniform prior
has limits, but these are rather physical than inferred from previous
analyses). On the other hand, so-called ‘informative’ priors, typically
a Gaussian prior, can strongly constrain the parameter space to be
explored. This results in a boosted marginal likelihood compared
with the use of an ‘uninformative prior’.

Therefore, one has to be extremely cautious when using ‘informa-
tive’ priors. The previous knowledge yielding that prior has to be sta-
tistically robust, to not mislead the analysis by boosting the evidence.

A2 Note on evidence versus planet detection

Accurate estimation of the evidence grants a statistically robust
framework to measure the significance of one model relative to
others. We should keep in mind that models could be wrong and
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that drawn conclusions about physical phenomena are only justified
as long as these models and their underlying assumptions are
reasonable.

Here, our model assesses the likelihood of the presence of a
periodic signature in a data set. It does not, however, inform us
about the origin of such signatures. Assumptions on the nature of
the underlying physical phenomenon or the accuracy of the data
collection and reduction are required to go from ‘a periodic signal
in the data’ to ‘a planet orbiting the observed star’. For example, a
previous exoplanet detection claim was later attributed to the window
function by Rajpaul, Aigrain & Roberts (2016). It has been the case
again very recently for V830 Tau b (Damasso et al. 2020), where
the signature found by Donati et al. (2016, 2017) could not be found
in a new data set. Whether this means the planet does or does not
exist is a rather challenging question, but it once more highlights the
difficulty of RV-only searches.

A P P E N D I X B: SP U R I O U S PE R I O D O G R A M
P E A K S

For the two following data sets:

(i) #32: K = 149.72 m s−1, Porb = 0.5526 d, and � = 0.5701
(ii) #36: K = 142.36 m s−1, Porb = 0.8463 d, and � = 0.6225

the periodogram resulting from the DI analysis showed, in each case
and after the activity filtering, the apparition of a spurious peak

at periods seemingly unrelated to the stellar rotation harmonics,
the orbital period harmonics, or a peak in the window function
(see Fig. B1). As shown in Fig. B2, Pspurious32 ≈ 1.22 d and
Pspurious36 ≈ 5.7 d. After removing the identified highest peak
from the filtered data (matching with the true period in the case
of #36 but not for #32), the competing peak was also filtered
out, suggesting an effect of the uneven sampling of the observa-
tions.

Figs B3, B4, and B5 show the corner plot of the posterior
distribution and the resulting fit to the data for these two data sets
following the GP analysis.

For data set #32 (Fig. B3 and top plot in Fig. B5), the GP does not
seem to be fooled and clearly identifies the right period. However,
the evidence is surprisingly low for such a large planet (BF =
1.67 or p = 0.62 in favour of the single model), yielding a non-
detection. We strongly suspect that the ambiguity in both methods
is due to the orbital period of the injected planet being very close
to the third harmonic of the stellar period ( Peq

3 = 0.547 d and Porb

= 0.553 d).
Regarding data set #36 (Fig. B4 and bottom plot in Fig. B5), once

again the correct period is identified by the GP. We also note a slight
appearance of the conflicting period around 6 d on the posterior
distribution (Fig. B4). This time, however, the evidence is strongly
in favour of a detection with a BF of 175.9 (p = 0.994).

Although it is not clear where the spurious peak arises from, one
of these two cases could be settled by the GP.

Figure B1. Window function of the observed RVs. The horizontal axis shows the period in days and the vertical axis the periodogram power. The upper right
zoomed window shows extra details for periods <1 d.
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Figure B2. Periodograms of data sets #32 (top) and #36 (bottom). Each plot has three subplots showing the periodograms of the raw observed data (top), DI
filtered (middle), i.e. observed – synthetic RVs and residuals (bottom), i.e. filtered – identified periodic signature. Vertical lines on the top subplots mark the
stellar rotation period and its harmonics. In the middle subplots, we showed the recovered periodicity (green vertical line) and the true injected period (purple
vertical line), along with its harmonics (grey dashed vertical lines).
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Figure B3. Posterior distribution of the parameters from the GP analysis of data set #32. Prior weighted posterior samples drawn from the PYMULTINEST

analysis. Blue lines show the most likely parameters. Dashed vertical lines are 0.16, 0.5, and 0.84 quantiles. Contours are 1σ , 2σ , and 3σ levels (representing,
respectively, 39, 86, and 99 per cent for a 2D distribution).
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Planets around young solar-type stars 5007

Figure B4. Posterior distribution of the GP analysis of data set #36. Prior weighted posterior samples drawn from the PYMULTINEST analysis. Blue lines show
the most likely parameters. Dashed vertical lines are 0.16, 0.5, and 0.84 quantiles. Contours are 1σ , 2σ , and 3σ levels (representing, respectively, 39, 86, and
99 per cent for a 2D distribution).

MNRAS 505, 4989–5011 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4989/6291195 by C
N

R
S user on 14 April 2023



5008 A. Heitzmann et al.

Figure B5. Resulting fits for the GP analysis of data sets #32 (top) and #36 (bottom). Top panel is the total model (grey line) and the observed raw RVs (red
points). The second panel is the GP fit with the uncertainty shown by the shadowed area (analytically computed predictive standard deviation of the GP); red
points are (raw RVs) – (recovered planet). The third panel is the recovered planet (purple line) on top of the true injected planet (dashed curve). Red points are
(raw RVs) – (GP fit). The bottom panel is the residuals, i.e. (raw RVs) – (GP model) – (recovered planet).
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APPENDIX C : IMPAC T O F D IFFERENT DI
S O L U T I O N S O N DATA S E T # 2 2

As we saw in Section 4.2, the stellar parameters found via DI are
slightly different from M11A/B. Because the DI filtering uses the
synthetic generated line profiles that depend on the stellar parameters,
we tested the influence of three different DI solutions on our planet
detection capabilities. We re-analysed data set 22, containing an
injected planet with K = 117.28 m s−1, Porb = 3.1546 d, and � =
0.7077.

As described in Section 4.2, we derived the alternate DI solutions
by fitting (i) only using dark features and (ii) using both dark
and bright features but forcing the inclination parameter to 70◦

(matching M11A/B’s value). The optimum parameters are displayed
in Table C1.

Table C1. Test of different DI solutions fitting for dark and bright spots
(top row), dark and bright features with the inclination parameter forced to
70◦ (middle row), and only dark features (bottom row).

Fitting for v sin i Peq d� rad d−1

Dark and bright 35.54 2.2003 0.1231 47
Dark and bright (fixed i) 35.58 2.1982 0.1138 70 (fixed)
Dark 35.38 2.2115 0.0441 44

Regarding the maps, results are similar to data set #5 (no
planet), with mainly a difference in contrast. The periodograms
of the filtered RVs (synthetic RVs – observed RVs) for each
of the three cases are displayed in Fig. C1. In all cases, the
features in the periodogram are quite similar. The analysis with
dark spots only is the most different. It appears, in that case,
that the original peak due to activity was not completely filtered
and blends with the peak of the injected period after the filtering
process. This acts to slightly hinder the accuracy of the period
retrieved.

The fixed inclination case performs slightly better than the dark
and bright case, as the retrieved period is 0.03 d away from the
injected period for the former versus 0.08 d for the latter. However,
the shape of the peak is very similar and we cannot conclude whether
the better result is in fact due to a better solution for the DI or not.
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Figure C1. Top: periodogram of the raw data from data set #22. Second to fourth plot: comparison of the periodograms for data set #22 obtained from dark
and bright-spot DI analysis (2nd, d and b), from dark and bright-spot DI analysis with imposed inclination (3rd, d and b, i = 70), and from dark spots-only DI
analysis (4th, d).

APPENDIX D : SIMULATING A TRANSITING
PL ANET

In order to showcase what access to a photometrically detected
planet (i.e. the case of a transiting planet) would add to the retrieval
capabilities, we investigated a data set allowing for additional prior
constraints. For this, we chose data set #29, which exhibits the
smallest semi-amplitude among the data sets that are not close to
either Peq or its harmonics. It has a semi-amplitude of 47 m s−1,
well below our detection threshold. In Table D1, we compared the
pieces of evidence (derived from the GP analysis) for three different
cases.

The first case (first line of Table D1) uses the same priors as we
did throughout this article, simulating access solely to RV data. The
second case (second line of Table D1) simulates the availability of
transiting data on the planet. We set Gaussian priors for Porb and

�, centred on the true injected value and with a standard deviation
of, respectively, 0.0001 d and 0.01. For the third case (third line of
Table D1), we fixed the value for Porb and � to their true values
(simulating the best transit value).

For each case, the BF and probability favouring the single planet
model over the activity-only model can be found in the last two
columns of Table D1. For the first case, the BF is extremely low (0.4,
p = 0.27) and leads to a non-detection (see grey cross labelled ‘29’
on Fig. 7). For cases 2 and 3, however (lines 2 and 3 of Table D1),
their BFs are comparable and around 9, meaning a 0.9 probability in
favour of the one-planet model and therefore a strong evidence for
the presence of a planet.

This is expected as our constrained priors act to boost the evidence.
It also shows how an inappropriate choice of priors can influence the
evidence and bias the claim of a finding, following our discussion in
A1. We see once more the difficulty of RV-only searches.
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Table D1. GP analysis of data set #29 with three different sets of priors. The first column shows the real
case configuration leading to the according choice of priors. The second column is the list of parameters with
a Gaussian prior. The third column is the list of fixed parameters, i.e. not taking part in the parameter space
search process. The last two columns are the BF and the probability favouring the single planet model over
the activity-only model resulting from the corresponding analysis. To constrain or fix Porb and �, we used the
true injected values as they would be available if transits would have been identified.

Analysis Constrained (i.e. Gaussian prior) Fixed (not fitted) BF Probability

RV only θ3 None 0.4 0.27
Transit θ3, Porb, � None 9.9 0.91
Transit (fixed) θ3 Porb, � 8.2 0.89

This paper has been typeset from a TEX/LATEX file prepared by the author.
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