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ABSTRACT
We present improved methods for segmenting CO emission from galaxies into individual molecular clouds, providing an update
to the CPROPS algorithms presented by Rosolowsky & Leroy. The new code enables both homogenization of the noise and
spatial resolution among data, which allows for rigorous comparative analysis. The code also models the completeness of the
data via false source injection and includes an updated segmentation approach to better deal with blended emission. These
improved algorithms are implemented in a publicly available PYTHON package, PYCPROPS. We apply these methods to 10 of the
nearest galaxies in the PHANGS-ALMA survey, cataloguing CO emission at a common 90 pc resolution and a matched noise
level. We measure the properties of 4986 individual clouds identified in these targets. We investigate the scaling relations among
cloud properties and the cloud mass distributions in each galaxy. The physical properties of clouds vary among galaxies, both
as a function of galactocentric radius and as a function of dynamical environment. Overall, the clouds in our target galaxies are
well-described by approximate energy equipartition, although clouds in stellar bars and galaxy centres show elevated line widths
and virial parameters. The mass distribution of clouds in spiral arms has a typical mass scale that is 2.5× larger than interarm
clouds and spiral arms clouds show slightly lower median virial parameters compared to interarm clouds (1.2 versus 1.4).

Key words: stars: formation – ISM: clouds – galaxies: individual (NGC 0628, NGC 1637, NGC 2903, NGC 3521, NGC 3621,
NGC 3627, NGC 4826, NGC 5068, NGC 5643, NGC 6300).

1 IN T RO D U C T I O N

Star formation is one of the key processes by which galaxies evolve
over time, building up their stellar mass and heavy elements. Feed-
back from star formation plays a major role in setting the structure
of galaxy discs and returning material to the circumgalactic and
intergalactic medium. In the local Universe, all star formation occurs
in the molecular interstellar medium (ISM). Thus, the properties
of the molecular ISM represent the immediate initial conditions
for star formation and stellar feedback. Understanding how these
properties change from galaxy to galaxy and within galaxies has
been a longstanding goal of ISM studies, with direct implications for
galaxy evolution theory.

Cataloguing molecular clouds is a well-established technique to
describe changing conditions in the molecular ISM. In this approach,
which originated in investigations of isolated dust extinction features
(Heiles 1971), gas in the molecular ISM is assigned to discrete
structures. Then the macroscopic properties of each structure – mass,
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line width, and radius – are measured. The ensemble properties of
clouds in a given galaxy or region capture the physical state of the
molecular gas. Comparing the physical properties of different cloud
populations reveals how conditions in the molecular ISM change
within and among galaxies.

Analysing surveys of the Milky Way’s Galactic plane in CO
emission (Scoville & Solomon 1975; Solomon, Sanders & Scoville
1979; Sanders, Scoville & Solomon 1985; Scoville et al. 1987;
Solomon et al. 1987) established scaling relationships between the
macroscopic properties of molecular clouds. Since these scalings
resemble the correlations pointed out by Larson (1981), they are
frequently referred to as the ‘Larson Laws.’ Within a limited range
of galactic environments, these scaling relationships include a power-
law relationship between cloud size, R, and spectral line width, σ v ,
of the form σ v ∝ Rβ , with β ≈ 0.5. They also imply an approximate
equipartition between the gravitational binding energy (Ug) and the
kinetic energy (K) of the clouds, frequently phrased in terms of
molecular clouds being virialized (i.e. where 2K = |Ug| and all other
terms in the virial theorem being negligible).

In this study, we focus on observations of extragalactic giant
molecular clouds (GMCs), because of the poor sensitivity and
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resolution of extragalactic observations compared to Milky Way
clouds. GMCs are usually defined as molecular clouds with masses
M > 105 M� and radii R > 20 pc, which is an approximate minimum
mass associated with O-star formation (Blitz 1993), and significant
self-gravitation (Heyer, Carpenter & Snell 2001). Although early
studies drew a sharp distinction between dark clouds and GMCs
(e.g. Penzias 1975), subsequent work showed that molecular cloud
populations exhibit a continuous distribution in mass from small
(102 M�) to large clouds (>107 M�; e.g. Solomon et al. 1987; Heyer
et al. 2001; Rice et al. 2016; Miville-Deschênes, Murray & Lee 2017;
Colombo et al. 2019).

Following the detection of extragalactic CO emission (Solomon &
de Zafra 1975), molecular cloud populations have also been cat-
alogued in other galaxies. Single dish telescopes can measure CO
emission at the typical mass and size scales of individual GMCs in the
Magellanic Clouds (Cohen et al. 1988; Rubio, Lequeux & Boulanger
1993; Fukui et al. 1999; Mizuno et al. 2001; Hughes et al. 2010; Wong
et al. 2011) and the other two spiral galaxies in the Local Group (M31
and M33; Nieten et al. 2006; Braine et al. 2012, 2018, Schruba et al.,
in preparation). Early millimetre interferometers achieved similar
resolution and sensitivity in more distant Local Group galaxies and
the nearest other galaxy groups (e.g. Vogel, Boulanger & Ball 1987;
Wilson & Scoville 1990; Wilson & Reid 1991; Wilson 1994). The
first large surveys of Local Group galaxies concluded that their GMC
populations exhibited similar scaling relationships to one another and
the Milky Way (Mizuno et al. 2001; Engargiola et al. 2003; Blitz et al.
2007; Bolatto et al. 2008; Fukui & Kawamura 2010).

The Local Group contains a limited range of environments.
Once interferometric CO surveys were conducted in more extreme
systems, it was discovered that molecular cloud populations in high-
density regions show markedly different properties than those in the
Milky Way disc. Studies of the Galactic centre (Oka et al. 2001;
Shetty et al. 2012; Henshaw et al. 2016) and molecule-rich regions
of external galaxies (Wilson et al. 2003; Keto, Ho & Lo 2005;
Rosolowsky & Blitz 2005; Wei, Keto & Ho 2012) revealed clouds
with line widths higher than expected from the Milky Way size–
line width relationship. Clouds in these environments also showed
high surface densities, such that they often still appeared to exhibit
approximate virialization.

Continuing improvements in instrumentation allowed surveys of
molecular clouds in more distant systems and with higher sensitivity
and completeness (Rebolledo et al. 2012; Donovan Meyer et al.
2013; Schinnerer et al. 2013; Rebolledo et al. 2015). With high
completeness and careful homogenization among data sets (Hughes
et al. 2013), variations in molecular cloud populations within galaxies
also became clear. For example, the arms, interarm regions, and
central disc of M51 show significantly different cloud populations
(Hughes et al. 2013; Colombo et al. 2014). Meanwhile, Heyer et al.
(2009, hereafter H09) pointed out that variations of the size–line
width relationship were also seen within the cloud population of the
Milky Way disc.

Along with observations that the mass distribution of GMCs varies
between galaxies and with galactocentric radius (Rosolowsky 2005;
Gratier et al. 2010), these studies established that the properties
of GMC populations vary with environment. Most of these studies
found virialized GMCs to be a more universal result than the size–
line width relation. Following the theoretical ideas of Elmegreen
(1989) and more recently Field, Blackman & Keto (2011), several
observational works also highlighted that external pressure from a
diffuse gas layer or an external gravitational potential may play an
important role in regulating the properties of clouds in the Milky Way
and other galaxies (Rosolowsky & Blitz 2005; Hughes et al. 2010;

Hughes et al. 2013; Sun et al. 2018; Schruba, Kruijssen & Leroy
2019). The effect of external pressure is to raise line widths above
the expectation for a self-gravitating cloud in energy balance. Such
clouds would still be considered ‘bound’ once the set of external
forces (gravitational potential, diffuse gas pressure) acting on the
molecular gas is considered (Dale, Kruijssen & Longmore 2019;
Kruijssen et al. 2019a; Sun et al. 2020a).

To build our knowledge of the molecular ISM in the local Universe
beyond isolated case studies, the next step is to survey the CO
emission and catalogue the cloud populations across a large sample
of galaxies that is representative of star-forming galaxies in the
local Universe. The Atacama Large Millimeter/submillimeter Array
(ALMA) makes this possible by reducing the time required to survey
the CO emission at cloud-scale resolution across the disc of single
nearby galaxy to ∼1 h each (e.g. Whitmore et al. 2014; Leroy
et al. 2015; Pan & Kuno 2017; Faesi, Lada & Forbrich 2018; Hirota
et al. 2018; Kruijssen et al. 2019b; Maeda et al. 2020). ALMA also
makes it possible to extend these studies beyond star-forming, disc
galaxies to early-type galaxies (Utomo et al. 2015; Davis et al. 2017,
Williams et al., in preparation; Chevance et al., in preparation) and
ultraluminous infrared galaxies (Imanishi, Nakanishi & Izumi 2019,
Saito et al., in preparation).

The Physics at High Angular resolution in Nearby Galaxies
(PHANGS) project is a multifacility campaign to observe the
tracers of the star formation process at the scale of molecular
clouds across different galactic environments. The PHANGS-ALMA
survey leverages the capabilities of ALMA to take this next step
in extragalactic GMC studies. PHANGS-ALMA is a survey of the
12CO(2–1) emission from 74 nearby star-forming galaxies (Leroy
et al., in preparation). The survey targets are massive (109 < M�/M�
< 1011), moderately inclined (i < 70◦), nearby (d < 17 Mpc),
star-forming galaxies where an angular resolution of ∼1 arcmin
achieves a linear scale of �150 pc. This allows the identification
and characterization of high-mass GMCs across a large, statistically
representative galaxy sample for the first time.

This work presents the methods, software, and first results for
the GMC catalogues constructed from the PHANGS-ALMA data.
We adopt an approach built around careful data homogenization,
which Hughes et al. (2013) demonstrated to be essential to com-
parative analysis of molecular cloud properties. Our input data
and the homogenization procedure are described in Section 2. In
Section 3, we present PYCPROPS, a python implementation of the
GMC cataloguing algorithm CPROPS (Rosolowsky & Leroy 2006,
hereafter RL06). We apply these methods to ten galaxies that are
close enough to analyse the CO emission at a common linear
resolution of 90 pc. In Section 4 we present the ‘Larson Law’ GMC
scaling relationships in these galaxies and in Section 5 we present
the mass distributions. Finally, Section 6 explores how physical
properties of the GMC populations change with galactocentric radius
and dynamical environment. A companion paper (Hughes et al., in
preparation) will present the GMC catalogues for the full PHANGS-
ALMA sample.

Finally, we refer the reader to a parallel line of investigation that has
measured the distributions of molecular gas surface density and line
width at fixed spatial resolution for the PHANGS-ALMA galaxies
(Sun et al. 2018, hereafter S18) and Sun et al. (2020b). S18 measured
the surface density and line width in ∼ 30 000 apertures at fixed size
scales of 45, 60, 90, and 120 pc in 15 nearby galaxies. Sun et al.
(2020b) expands this analysis to ∼105 apertures at 150 pc scales
in 70 PHANGS-ALMA targets. Both works found a wide range of
internal conditions in the molecular ISM. While the gas was typically
found near energy equipartition through a vast range of galactic
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1220 E. Rosolowsky et al.

Table 1. Properties of galaxies presented in this work. Distances are from the meta-analysis by
Anand et al. (2020). Orientation parameters (inclination and position angle) are from Lang et al.
(2020). Morphological type is from the NASA Extragalactic Database homogenized morphologies,
which are based on de Vaucouleurs et al. (1991). Stellar masses and Re are derived from the data in
Leroy et al. (2019). The molecular mass, Mmol, is calculated using a variable CO-to-H2 conversion
factor and refers to the mass in the ALMA field of view rather than an estimate for the entire galaxy.

Galaxy Distance Incl. Pos. Angle Morph. Re M� Mmol

(NGC) (Mpc) (◦) (◦) type (kpc) (109 M�) (109 M�)

0628 9.8 9 21 SA(s)c 3.6 18.3 1.74
1637 11.7 31 21 SAB(rs)c 2.6 7.7 0.67
2903 10.0 67 204 SAB(rs)bc 4.1 28.9 3.81
3521 13.2 69 343 SAB(rs)bc 3.7 66.3 6.61
3621 7.1 66 344 SA(s)d 2.6 9.2 1.08
3627 11.3 57 173 SAB(s)b 3.9 53.1 6.03
4826 4.4 59 294 (R)SA(rs)ab 1.6 16.0 0.30
5068 5.2 36 342 SAB(rs)cd 2.0 2.2 0.24
5643 12.7 30 319 SAB(rs)c 3.8 18.2 2.26
6300 11.6 50 105 SB(rs)b 3.6 29.2 1.59

Table 2. Properties of the PHANGS-ALMA data that we analyse in this work. We report
the noise and resolution levels of the native data. Targets marked with m were observed
in multiple separate parts and linearly mosaicked together. The parts have matched
resolution but initially distinct noise properties. The scalar value in the table is average
noise value across these parts. For the homogenized data, the resolution is 90 pc and
the noise level is 75 mK. We also report the fraction of flux in the signal-identification
mask (fmask) and in the catalogued GMCs including clipping corrections (fcat), which are
calculated from the homogenized data. Both fractions are measured with respect to the
total flux in the cube. We find fcat > fmask because of the extrapolations applied to the
measured cloud properties (Section 3.4.2).

Native 90 pc
Galaxy Noise Resolution Linear Res. fmask fcat fmask fcat

(NGC) (mK) (arcsec) (pc)

0628m 113 1.12 53 0.48 0.66 0.58 0.78
1637 36 1.39 79 0.78 0.92 0.59 0.76
2903m 70 1.46 71 0.77 0.91 0.73 0.87
3521m 62 1.28 82 0.82 0.91 0.78 0.89
3621m 39 1.82 62 0.83 0.94 0.68 0.85
3627m 79 1.62 89 0.80 0.90 0.79 0.90
4826 77 1.26 27 0.88 0.95 0.86 0.94
5068m 208 1.04 26 0.30 0.44 0.33 0.50
5643 76 1.30 80 0.69 0.82 0.66 0.81
6300 114 1.08 60 0.66 0.80 0.69 0.85

environments, the internal pressure in the molecular gas ranged over
>6 orders of magnitude. They found smaller, but still significant
variations in surface density and line width. The ‘GMC’-centred
view of the molecular ISM adopted here and the non-parametric
approach in S18 and Sun et al. (2020b) are complementary (Leroy
et al. 2016) and largely consistent, provided controlled comparisons
are drawn. We make frequent comparisons to their results throughout
the text.

2 DATA

We selected 10 galaxies from PHANGS-ALMA for our GMC
cataloguing procedures. We list these targets and summarize their
properties in Table 1. We selected targets that were close enough
to access a common resolution of 90 pc across the subsample. For
context, the coarsest linear resolution for the entire PHANGS-ALMA
sample is ∼150 pc, and about half of the targets have linear resolution
<90 pc. To determine these linear resolutions, we use the distances

compiled by Anand et al. (2020) and reported in Table 2. Resolution
was our only strict selection criterion. Our selection includes galaxies
with a range of inclination, mass, and molecular gas morphology
as diverse test cases for the GMC cataloguing methodology. The
GMC catalogues for all PHANGS-ALMA galaxies will appear in
A. Hughes et al. (in preparation).

2.1 Original data

We began with 12CO(2–1) data cubes from PHANGS-ALMA inter-
nal data release version 3.4, which is nearly identical to the PHANGS
public data release described in Leroy et al. (in preparation). These
cubes combine data from ALMA’s 12-m, 7-m, and total power
telescopes and so should be sensitive to emission from all spatial
scales. The observations and main steps of data reduction are
described in Leroy et al. (2020) and briefly summarized here.

We observed each target using one or more large, multifield
mosaics. We jointly imaged the 12-m and 7-m data, using channels
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near, but not exactly equal to, 2.5 km s−1 in width. The small
variations in channel width occur since the data are made from
fixed channels in topocentric frequency and the widths vary with
the galaxy’s recession velocity. We deconvolved the emission using
a multiscale clean followed by a deep single-scale clean. After
imaging, we applied a primary beam correction to the data and
convolved the cubes to have a round synthesized beam. Then we
linearly mosaicked our galaxy targets that were observed in multiple
parts, which are marked in Table 2. During this linear mosaicking
procedure, we matched the resolution of the individual parts of the
mosaic to the coarsest common beam. The noise in different parts that
make up the mosaics can vary by up to 30 per cent after convolution
to a common beam and there can be a 20 per cent variation in the
noise across the spectral bandpass.

In parallel, we reduced the total power data following the proce-
dures described in Herrera et al. (2020). We combined the total power
data with the interferometric imaging using feathering.1 Finally, we
convert the units of the cubes to Kelvin.

2.2 Homogenized data

Table 2 reports the native physical resolution and the root-mean-
square (RMS) noise in Kelvin in each data cube at that resolution.
The original data show a factor of >2 range in noise and physical
resolution. The noise also varies within individual mosaics with the
aforementioned < 30 per cent change in different mosaic blocks and
< 20 per cent change across the bandpass.

Heterogeneous noise and resolution present a major problem
for our analysis. Our signal identification algorithm is based on
identifying significant emission, with significance defined relative to
the local noise level. The CPROPS decomposition algorithm that we
use for identifying individual GMCs also divides structures up based
on the significance of features relative to the local noise level. For
algorithms like CPROPS the physical resolution also strongly affects
the size of derived structures (Pineda, Rosolowsky & Goodman 2009;
Hughes et al. 2013; Leroy et al. 2016). As shown by Hughes et al.
(2013), homogenizing the resolution and noise levels in the data is
essential to a robust comparative analysis.

To enable a fair comparison, we smooth all data to share a common
resolution of 90 pc and common surface brightness sensitivity of
75 mK per ∼2.5 km s−1 channel. This process also removes variations
of the noise coming from different parts of multipart mosaics.

To create a uniform noise level for all data cubes in the sample, we
first empirically estimate the three dimensional noise distribution in
each 90 pc resolution data cube. To do this, we follow the procedure
described in (Leroy et al. 2020) for the PHANGS-ALMA data.
Briefly, the noise is estimated from the distribution of signal-free
data assuming the spatial and spectral variations are independent and
smooth. The estimates of the noise scale are built up iteratively, while
also refining the definition of the signal-free region. This creates an
estimate σ T, 0(x, y, v), of the noise amplitude in the original data
(subscript of 0) as a function of position and velocity.

Next, we homogenize the noise to the target level of σ T = 75 mK
across each data cube. To do this, we generate a cube of random
deviates drawn from a standard normal distribution, N(x, y, v). The
cube has the same astrometric grid as the original data and the same
spatial correlations as are expected for a 90 pc beam. Then, we scale

1Feathering creates a final image by forming the weighted combination of
the interferometric and total power data in the Fourier plane (e.g. Vogel et al.
1984; Stanimirović et al. 1999).

the cube of deviates by a spatially and spectrally variable factor so
that, when added to the original data, a uniform noise level of σ T =
75 mK is achieved. The scaled cube of deviates has the form:

N∗(x, y, v) = N (x, y, v)
√

σ 2
T − σ 2

T ,0(x, y, v). (1)

The effect of this scaling is to create a cube of noise with the opposite
trends as are present in the original data; there is a high noise level
in N∗ where the noise in the original cube is relatively low. This
common value of σ T = 75 mK represents the limiting noise across
our whole data set after convolving to 90 pc resolution. Note that
the noise values quoted in Table 2 refer to the data at their original
resolution. For the closer galaxies, the noise will be reduced by the
convolution to a common size scale, and the homogenization process
will then add noise to achieve the common value.

2.3 Environmental masks

A key variable for analysis in our work is the study of GMC properties
as a function of galactic environment. To enable this analysis, we
use the PHANGS ‘environment’ masks by M. Querejeta et al.
(in preparation) to divide the GMCs into distinct categories. The
environment mask creation leverages the decompositions of S4G
(Sheth et al. 2010) carried out by Herrera-Endoqui et al. (2015) and
Salo et al. (2015) with spiral arms identified on a log-spiral fit to
near-infrared data and checked by eye.

The environment masks provide a wealth of information about
the different environments within a galaxy, and we define five
subpopulations of GMCs based on these masks.

(i) Bar – Six of our 10 galaxies have stellar bars (NGC 1637,
NGC 2903, NGC 3627, NGC 5068, NGC 5643, and NGC 6300). We
include all clouds on lines of sight (LoSs) that project on to the bar
in the ‘Bar’ population.

(ii) Disc – For the six galaxies with bars, we define the disc clouds
as those clouds at galactocentric radii larger than the maximum radial
extent of the bar. LoSs that are at radii smaller than the extent of the
bar but not projected on the bar are excluded.

(iii) Spiral Arm – These clouds are located within a spiral arm
of the galaxy with well-defined arms (NGC 0628, NGC 1637,
NGC 3627, and NGC 5643). In barred galaxies with spiral arms,
we only include GMCs associated with spiral arms at galactocentric
radii beyond the extent of the bar. GMCs at bar ends are not in the
spiral arm population but are in the Bar population.

(iv) Interarm – For the four galaxies with defined spiral arms,
this population includes clouds not associated with the spiral arms.
In barred galaxies, we restrict this population to be at radii larger
than the bar extent.

(v) Centre – We define a population ‘Centre’ clouds that include
all clouds that are in centre of the galaxy where the central region
is distinct from the stellar disc. This population includes all clouds
that are associated with a stellar bar, as well as clouds in a compact
nuclear feature or a stellar bulge as per Sun et al. (2020a).

These subpopulations are designed to highlight specific contrasts
and are not designed to contain all the GMCs in any comparison. The
Bar and Disc clouds are mutually exclusive as are the Spiral Arm
and Interarm clouds. For galaxies with both spiral arms and bars,
the Spiral Arm and Interarm clouds comprise the Disc clouds for
that galaxy. GMCs from galaxies without arms or bars (NGC 3521,
NGC 3621, and NGC 4826) are not included in any of these
subpopulations of GMCs.

For Centre clouds, we expect the ISM to respond to the non-disc-
like stellar potential and exhibit different internal conditions. We
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only use this Centre identification in our discussion of the scaling
relationships between cloud properties (Section 4) to highlight which
clouds are in these environments.

3 G MC ID ENTIFICATION AND
C H A R AC T E R I Z AT I O N

We identify and characterize molecular clouds in the CO data cubes
using PYCPROPS,2 a PYTHON implementation of the CPROPS algorithm
originally described in RL06. The shift to PYTHON increases the
cataloguing speed and moves the algorithm outside the propri-
etary IDL software environment. Compared to the original CPROPS

implementation, PYCPROPS also implements data homogenization
(Section 2.2) and assessment of completeness (Section 3.5) as core
parts of the analysis. These additions make the revised version better
suited for rigorous comparative analysis.

Following RL06, we approach molecular cloud cataloguing in two
distinct phases. First, we identify significant emission in the data cube
and assign each pixel containing significant emission to a distinct
molecular cloud. Then we characterize the emission associated with
each cloud to determine the properties of that cloud.

3.1 Signal identification

We begin with a spectral line data cube that contains measurements
of brightness temperature at each position–position–velocity pixel,
T(x, y, v). At this stage we construct a new three dimensional estimate
of the RMS brightness temperature noise, σ T(x, y, v), following the
same procedure as used in Section 2.2 (described in Leroy et al.
2020). In practice, the process of homogenizing the data has already
removed nearly all the spectral and spatial variation, so the cubes are
well described by a single noise value at this stage.

From T(x, y, v) and a local noise estimate, σ T(x, y, v), we construct
a Boolean mask, M(x, y, v), that indicates which pixels are likely
to contain significant emission. Following RL06, we construct two
masks: a high significance mask and a low significance mask. The
high significance mask contains regions with two adjacent spectral
channels with T > 4σ T. The low significance mask contains regions
with two adjacent channels with T > 2σ T. We then reject all
contiguous regions in the low significance mask that do not contain
any pixels in the high significance mask. This pruned low signifi-
cance map represents the final Boolean emission mask M(x, y, v)
indicating pixels that are likely real emission. Cloud identification
and decomposition is restricted to lie within this emission mask.

We choose these specific thresholds since they avoid false posi-
tives, which we assess by applying the same algorithm to the data
cube scaled by a factor of −1. Inverting the cube assesses whether
the negative noise fluctuations in the data cube would be detected
using the masking algorithm, and we find ≤2 detections of negative
noise deviates in each of the cubes. Alternative masking thresholds
are feasible, such as 2 adjacent channels with T > 5σ T, but we found
our chosen combination finds most of the bright, visible emission
in the cubes. We test the impact of this choice through false source
injection (Section 3.5).

3.2 Cloud decomposition algorithm

In PYCPROPS, each cloud is associated with a local maximum of
emission in the spectral line data cube. The algorithm first identifies
those local maxima. Then it checks whether those maxima are
significant with respect to fluctuations that would be expected from
noise in the data and whether they are distinct from neighbouring

local maxima. Finally, it assigns emission to each local maximum.
Here, we describe the parameters and implementation details of the
general algorithm and then describe the application to the PHANGS-
ALMA data including parameter choices in Section 3.3.

To identify local maxima, we take advantage of the fast
dendrogram algorithm provided by the ASTRODENDRO package.
This algorithm efficiently constructs a dendrogram representation
(Rosolowsky et al. 2008) of all emission in the mask. In the process, it
identifies all local maxima in the data and also measures the intensity
contour levels at which each maximum ‘merges’ with each other
maximum. The efficient implementation of ASTRODENDRO offers a
major performance improvement compared to the original CPROPS

implementation. From the local maxima identified by ASTRODENDRO,
we select only those likely to be significant. Following the original
algorithm, PYCPROPS implements features to reject local maxima
based on four criteria: significance, number of associated pixels,
separation, and uniqueness.

First, we require that the intensity at local maximum, Tmax, must
be an interval δ above the highest contour of emission containing at
least one other neighbour. We define the merge level, Tmerge, as the
highest value contour containing a given local maximum and one
other neighbour. We then compare the brightness difference between
the local maximum and the merge level to the parameter δ, requiring
Tmax − Tmerge > δ. This criterion ensures that the local maximum
is significant with respect to the local background. By setting δ to a
multiple of the local noise, σ T, we reject local maxima that are noise
fluctuations. As laid out in Rosolowsky et al. (2008), the default
value of δ = 2σ T is a good compromise between sensitivity to cloud
structure and robustness against noise.

Second, we require a minimum number of cube pixels (sometimes
called ‘voxels’), N, to be uniquely associated with the local maxi-
mum. For this test, we count only pixels contained in the isosurface
above the merge level containing only that local maximum. By setting
N to some multiple of the beam size in pixels, we reject small, poorly
defined objects.

Third, we require that local maxima are separated from each other
by a minimum distance of dmin spatially and vmin spectrally. Related
to the previous point, this requirement ensures that maxima are
reasonably resolved from one another. In the case of two maxima not
well separated from one another, we discard the fainter maximum
from the list.

Finally, we test whether local maxima are unique if their properties
change significantly when merged with another object. For a merging
pair of leaves in the dendrogram, we consider both objects to be
unique if the measured properties of each object changes by a factor
of >s when combined with one another. This is the SIGDISCONT
parameter in the original CPROPS code. This parameter can evaluate
changes in flux and in size, where size is defined as the second
moment of the emission distribution along the coordinate axes. In
the case that a merger is not unique, we discard the fainter maximum
from the list.

After identifying a set of unique, significant local maxima, we then
use these as seeds to assign emission to molecular clouds. To do this,
we use a watershed algorithm that associates all pixels in the mask
with a local maximum. Some pixels are already uniquely associated
with a single local maximum in the dendrogram. The remainder of
the emission lies at an intensity level where it could be associated
with multiple local maxima. The watershed algorithm assigns these
contested pixels by growing the regions associated with the local
maxima until all pixels are assigned to one of the regions. In this
way, pixels with ambiguous assignments are assigned to the closest
unique object in position–position–velocity space.
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This approach follows the ‘seeded’ version of CLUMPFIND

(Williams, de Geus & Blitz 1994) adopted by Rosolowsky & Blitz
(2005). It is implemented as one of the options in the original version
of CPROPS, but is not the default decomposition algorithm. The default
approach in RL06 is to only catalogue emission uniquely associated
with clouds. This often leaves a large amount of emission unassigned
in the watershed (e.g. see Colombo et al. 2014), particularly in
crowded fields. That approach relies heavily on the extrapolation
or clipping corrections described in RL06 and Section 3.4. The
approach adopted here is significantly less reliant on these clipping
corrections, although we still apply them.

In detail, PYCPROPS uses the seeded watershed algorithm in SCIKIT-
IMAGE (van der Walt et al. 2014). This algorithm includes the
compactness parameter introduced by Neubert & Protzel (2014).
We adopt a value of 1000, which leads the algorithm to seek
the most compact possible structures. This leads to more natural
boundaries between regions compared to the original CLUMPFIND.
Note that when applying this algorithm, it is possible, though rare, for
clouds to span disconnected regions of the signal identification mask
(Section 3.1). We visually inspected these occurrences, finding that
there is often evidence for real emission below the mask sensitivity
limit that connects the two apparently disjoint regions. We therefore
retain these identifications as genuine clouds.

The watershed algorithm assigns each pixel in the emission mask
(M) to a molecular cloud, generating a label cube L(x, y, v). The
label map has an integer value so that all pixels in the jth cloud are
labelled with a value of j in L. All pixels in L outside the emission
mask (i.e. M = 0) are also set to zero.

3.3 Cloud decomposition in PHANGS-ALMA

For the decomposition of the PHANGS-ALMA data, we only use
the contrast and minimum volume criteria to select local maxima.
Because our 90 pc beam size is comparable to the �100 pc size of
GMCs, we expect to select compact, almost beam-sized structures
that may be crowded together. Therefore we impose no minimum
separation, setting dmin = 0 and vmin = 0. We also set s = 0, and
so do not merge peaks based on lack of uniqueness. These choices
reflect a prior expectation on GMC size and that all emission in the
mask can be decomposed into GMCs. We note the mask does not
necessarily contain all the emission in the data cube and this low
lying emission will not be incorporated into the cloud catalogues.

We require all maxima to have δ = 0.15 K, or 2σ T, contrast against
the local merge level. We also require N > 0.25�bm/�pix cube pixels
uniquely associated with each local maximum, meaning those pixels
above the contour level at which the object merges with another ob-
ject. Here �bm and �pix are the solid angles of the resolution element
and the pixel, respectively. Since the pixellization of interferometer
images is arbitrary, we have linked the decomposition parameter to
the resolution of the image. While N is smaller than a resolution
element, the number of pixels in the resulting GMCs is much larger
after the watershed algorithm is applied to the data. This criterion
ensures that each cloud in crowded, high signal-to-noise regions has a
small neighbourhood around the local maximum that can be a stable
seed for the decomposition.

Fig. 1 shows the results of this decomposition approach applied to
a region in the PHANGS-ALMA data for NGC 3627. The projected
boundaries of catalogued clouds are illustrated with blue contours.
These show that the approach segments the emission into compact
regions and that the boundaries between blended regions are approx-
imately straight. Often, the projected boundaries appear to cross one
another, but this arises because the clouds have different velocities

Figure 1. Cloud decomposition of a region in NGC 3627. The greyscale
background shows the masked CO(2–1) integrated intensity image by
PHANGS-ALMA. The blue dashed contours show the projected boundaries
of the molecular clouds. The red ellipses are elliptical approximations to the
emission distribution. The ellipses are centred on the emission centroid of
the cloud and show the size and orientations of the molecular clouds as the
deconvolved major and minor axes (FWHM; see Section 3.4.3 for details).
Clouds that cannot be deconvolved are shown as filled circles. The circle in
the bottom left-hand corner illustrates the beam size.

in the data cube. The figure also illustrates how the current approach
allocates all significant emission into clouds, unlike the default
original CPROPS algorithm. Conforming to physical expectation, the
clouds identified in the figure tend to be centrally concentrated and
look like discrete clumps. The watershed algorithm does a good job
of assigning extended fainter emission to the identified peaks in a
natural way.

In Fig. 2 we present the full-galaxy image for NGC 3627,
highlighting the locations and orientations of each cloud. We also
illustrate the environmental regions described in Section 2.3. Similar
images for the remaining nine galaxies in our sample are available
in the Supporting Information.

3.4 Property estimation

After assigning emission to clouds, CPROPS calculates properties
of the identified clouds. For this step, our PYTHON implementation
largely follows RL06 with a few improvements. Property determina-
tions are moment-based. We estimate the size and line width of the
cloud based on the second moments of the emission distribution along
the spatial and spectral axes. We estimate the flux based on the zeroth
moment, i.e. the sum of the intensity. We then correct the measured
moments for the effects of sensitivity and the finite resolution of the
data. Finally, we translate the moments into estimates of physical
quantities.

3.4.1 Moment-based property estimators

For these calculations, we consider the pixels in a cloud mask C,
which is just those pixels belonging to a single cloud in the label
map L generated by the segmentation algorithm (Section 3.1). We
measure the luminosity of the cloud as

LCO = Apix

∑
i∈C

Ti�v, (2)
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1224 E. Rosolowsky et al.

Figure 2. Integrated intensity map (‘moment 0’) of 12CO(2–1) emission for
NGC 3627 with locations of GMCs overlaid as red ellipses on an arcsinh
colour stretch. The ellipses indicate the locations, the deconvolved major
and minor axes (FWHM), and the position angles of the clouds as in Fig. 1.
Unresolved clouds are shown as filled circles. The beam size is indicated as
the yellow circle in the lower-left. The magenta ellipse highlights the region
identified as belonging to a bar and the solid blue contour indicates regions
associated with spiral arms (Section 2.3). The dashed black box indicates the
region shown in Fig. 1. Similar figures for other targets are available in the
Supporting Information.

where Apix is the projected physical area of a cube pixel in pc2, �v

is the channel width in km s−1, and Ti is the brightness of the cube
pixels measured in K in the cloud mask C. The resulting LCO has
units of K km s−1 pc2. We also record the equivalent integrated flux,
FCO, in units of K km s−1 arcsec2, using the solid angle of a pixel
instead of the physical area.

We estimate cloud line widths (specifically, the velocity disper-
sions) by calculating the intensity-weighted variance in the spectral
direction:

σ 2
v,obs =

∑
i∈C Ti (vi − v̄)2∑

i∈C Ti

, (3)

where v̄ is the intensity-weighted mean velocity calculated over the
cloud mask.

To measure the cloud size, we calculate the intensity-weighted
second moments over the two spatial axes of the cube following a
similar form as equation (3). This yields spatial variances σ 2

x and
σ 2

y . We also calculate an intensity-weighted covariance term σ xy.

Then we place these values in a variance–covariance matrix. We
diagonalize the matrix to determine the major and minor axes of the
emission distribution, σ maj and σ min, as well as the position angle
following RL06.

3.4.2 Extrapolation and sensitivity correction

Our masking strategy and calculation of moments only includes emis-
sion above an intensity threshold, which will bias these estimators.
To account for this bias, we extrapolate from the actual measured
cloud properties to those we would expect to measure given a 0 K
contour threshold. This calculation corrects for the finite sensitivity
of the data. RL06 describe this extrapolation in detail, and we briefly
summarize it here.

We sort the data (Ti) associated with the cloud in order of
decreasing intensity. Then we repeatedly measure the moment values,
each time including only data from the GMC above some intensity
threshold (i.e. the cloud pixels with intensity ≥Ti). We repeat the
calculation of moments, progressively lowering the threshold from
the highest to the lowest intensity value in the clouds. As we do
so, the moments increase in value as the threshold intensity level
decreases.

We fit the measured moment as a function of intensity threshold,
using a linear form for the size and line width and a quadratic form
for the luminosity. To carry out the fit of property versus intensity
threshold, we use a robust least-squares regression with an arctan
loss function, which is chosen for its robustness to outliers. Then
the extrapolated property is equal to this fit evaluated at an intensity
threshold of 0 K.

The fitting procedure and its interaction with the decomposition
are the main differences from the original RL06 implementation.
Our robust fitting improves on the original approach, which adopted
the median of simple linear least-squares fits to all levels. The two
methods mostly agree to better than < 5 per cent for luminosity,
size, and line width, but in discrepant cases, the robust least-squares
approach appears to provide a more reasonable extrapolation.

Our revised approach to decomposition also minimizes the impact
of the extrapolation on the final measurements. The original CPROPS

decomposition yielded high clipping levels and so relied heavily on
the extrapolation. Our current approach incorporates much more low
intensity emission into the cloud assignments, which reduces the
dependence of the derived cloud properties on the extrapolation.

Other studies have adopted similar corrections using a Gaussian
functional form (e.g. Rosolowsky & Blitz 2005) or through directly
fitting a Gaussian emission profile to the data (e.g. Donovan Meyer
et al. 2013). The extrapolation-based corrections to the brightness
moments lead to nearly the same values as a Gaussian model for
a bright, isolated cloud. For crowded regions, the local maxima in
the emission distribution are less distinct and all approaches become
less stable. We prefer our approach because it is non-parametric and
tends to produce stable estimates of the moments.

To estimate a characteristic uncertainty in these properties, we
inject false sources into signal-free regions of the data cube (see
Section 3.5). These tests suggest that the cloud luminosity measure-
ments typically have ∼ 30 per cent errors and a systematic bias to
underestimate the true luminosity by ∼ 20 per cent, even after the
extrapolation correction. The cloud size and line width measurements
show typical errors of ∼ 30 per cent and no evidence of a systematic
bias. These errors get larger for faint clouds with local maxima near
the noise floor (> 50 per cent for peak signal-to-noise <10; see also
RL06). We adopt the extrapolation correction since the other options
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GMC properties in PHANGS-ALMA 1225

(Gaussian correction or direct fitting) show larger property errors
in the low signal-to-noise case, though they show slightly smaller
biases for luminosity estimates.

In Table 2, we report the fraction of emission found in catalogued
objects, fmask, by comparing the sums of the unmasked data cube
and the masked data cube so that fmask ≤ 1. These show a wide
range of values from fmask = 0.33 for NGC 5068 to fmask = 0.86 for
NGC 4826. We also report the fraction of emission found in GMCs
after carrying out the extrapolation, fcat. Because this extrapolation
models the emission outside the mask, we could find fcat > 1 though
none of our targets show such high values. The extrapolation should
include all emission near the emission mask. The remaining emission
not included in the extrapolated flux values presumably corresponds
to low surface brightness emission found elsewhere in the cube away
from the boundary of the signal mask.

3.4.3 Derived physical properties

We use the measured size, line width, and luminosity to calculate
several derived quantities. First, we convert from luminosity to a CO-
based mass estimate. To do this, we scale the extrapolated luminosity
by a CO-to-H2 conversion factor, αCO:

MCO = αCOLCO. (4)

For PHANGS-ALMA, we adopt the αCO treatment of Sun et al.
(2020a). We designate αCO as the CO(2–1)-to-H2 conversion factor

α
(2−1)
CO = α

(1−0)
CO (Z)

R21
, (5)

where R21 is the CO(2–1)-to-CO(1–0) brightness temperature ratio
and α

(1−0)
CO refers to the CO(1–0)-to-H2 conversion factor, which we

allow to vary with metallicity. We adopt R21 = 0.65 based on Leroy
et al. (2013) and den Brok et al. (2020), measured at kpc scales. The
ratio does vary, but these variations have magnitude ±20 per cent in
den Brok et al. (2020) and we neglect them here.

Following Sun et al. (2020a), we consider a metallicity depen-
dence α

(1−0)
CO ∝ Z−1.6, following Accurso et al. (2017) and in good

agreement with a wide range of previous literature. This prescription
is scaled to match the standard Galactic α

(1−0)
CO = 4.35 M� pc−2

(K km s−1)−1 at solar metallicity (Bolatto, Wolfire & Leroy 2013).
In our targets, we estimate the metallicity locally as a function
of galactocentric radius using the global mass–metallicity scaling
relation of Sánchez et al. (2019) and the universal metallicity
gradient of Sánchez et al. (2014). A more complete discussion of
this calibration as applied to the PHANGS-ALMA data is presented
in Sun et al. (2020a).

To estimate the line width of the emission, we deconvolve the line
spread function from the extrapolated line width, σv,extrap, to obtain
a final line width measurement:

σv =
√

σ 2
v,extrap − σ 2

v,chan, (6)

where σv,chan is the equivalent Gaussian width of a channel. RL06
equated the line spread function to a single top hat-shaped channel
and subtracted the equivalent Gaussian width of a channel from the
measured line width in quadrature. Here, we refine that approach to
account for line spread functions broader than a single channel. We
adopt the method of Leroy et al. (2016), who model the equivalent
Gaussian width of a channel as

σv,chan = �v√
2π

(
1 + 1.18k + 10.4k2

)
, (7)

where �v is the channel width and k is a correction factor determined
from the Pearson correlation coefficient, r, between noise in adjacent
channels arising from line spread function in our data. As in Leroy
et al. (2016), we adopt

k = 0.47r − 0.23r2 − 0.16r3 + 0.43r4. (8)

This model only accounts for correlation between adjacent channels,
but this is sufficient to describe most radio data. For the PHANGS-
ALMA CO(2–1) data, we adopt r = 0.05, which is a good approxi-
mation for all the data sets used in this work (Sun et al. 2020b).

To measure cloud radii, we correct the extrapolated size measure-
ments to account for the finite resolution of the data. We deconvolve
the round Gaussian beam2 from the data, assuming that both the
cloud and the beam have a Gaussian profile. We convert from
deconvolved major and minor sizes, σ maj, d and σ min, d, to a cloud
radius measurement using

R = η
√

σmaj,dσmin,d. (9)

The factor η formally depends on the light or mass distribution
within the cloud (e.g. see RL06). For PHANGS-ALMA, we model
the surface brightness of the clouds as a two dimensional Gaussian
and use R to denote the half-width at half-maximum so that
η = √

2 ln 2 = 1.18. We also report the position angle of the major
axis, P.A., and the aspect ratio of the cloud in terms of the cloud

eccentricity, e =
√

1 − σ 2
min,d/σ

2
maj,d, to enable energetics estimates

using the approach of Bertoldi & McKee (1992).
We note that our adopted η = 1.18 is smaller than the η = 1.91 used

in Solomon et al. (1987, hereafter S87). This factor was determined
from an empirical scaling between the measured moment and the
cloud boundary defined by a brightness contour in the Massachusetts-
Stony Brook CO Galactic Plane Survey (Sanders et al. 1986). The
survey identified clouds from a wide range of distances in the
Galactic plane, so this factor is calculated for clouds that range from
marginally to well-resolved on a sparsely sampled pixel grid. This
same value of η = 1.91 was adopted in RL06 and has been widely
used throughout the GMC literature primarily for consistency. For
PHANGS-ALMA, the clouds that we observe are almost always
marginally resolved (e.g. see Fig. 1) and the map is shaped by the
Gaussian beam of our data. We consider our definition of the radius
to offer a more realistic representation of the emission distribution.
As a result, we expect that size-dependent quantities such as the
inferred volume density and surface density will also be closer to
physical reality using our definition. While the heterogeneous nature
of literature CO data is likely to be a greater source of uncertainty
for comparative studies of cloud properties, we nonetheless note that
our revised definition of size should be taken into account when
comparing the results presented here to previous literature.

Our geometric model approximates the cloud as a spherically
symmetric object so that R also characterizes the object in three
dimensions. As such, we do not apply any inclination corrections to
R. This model becomes limited when the size of the cloud approaches
the scale height of the molecular medium in a galaxy. As noted by
Sun et al. (2020a), the 90 pc resolution of our data and our measured
cloud sizes can approach or even exceed the ∼100 pc full width
at half-maximum (FWHM) height of the molecular gas disc in the
Milky Way (e.g. Heyer & Dame 2015) and nearby galaxies (e.g.
Yim et al. 2014). This issue will be even more severe considering
the 150 pc common resolution of the full PHANGS-ALMA data

2The PYCPROPS algorithm also supports deconvolution by elliptical Gaussian
beams.
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1226 E. Rosolowsky et al.

set. In this case, the conventional assumption that clouds have a
spherical geometry with an LoS depth equal to the projected size on
the sky is no longer appropriate. In these cases we shift our model
to a spheroidal geometry for objects where the measured radius
would exceed the expected FWHM scale height, H, of emission in
the galaxy. Concretely, we take the LoS depth of the cloud to be
the lesser of the cloud diameter, 2R, and the scale height, H. This
leads to a three dimensional mean radius, R3D, that should be used
to calculate volumetric quantities. We take

R3D =
{

R ; R ≤ H/2
3
√

R2H
2 ; R > H/2.

(10)

In this paper, we adopt a constant H = 100 pc for simplicity in all
our targets. More sophisticated models of H that account for the
local structure of the galaxy are possible (e.g. Blitz & Rosolowsky
2006) and represent a future direction for development. Over half
(54 per cent) of our clouds are large enough that R3D 
= R.

We also estimate the virial mass of each cloud, Mvir = 5σ 2
v R3D/G,

and a simple virial parameter, αvir = 2Mvir/MCO (Bertoldi & McKee
1992). The factor of 2 arises from our two dimensional Gaussian
cloud model, where half the mass is contained inside the FWHM.
We thus treat the virial mass as an estimate of the dynamical mass
within the FWHM, comparing Mvir to MCO/2. Practically, we use the
virial parameter as a scalar estimate of the relative strength of the
gravitational binding energy versus the kinetic energy of a molecular
cloud rather than a statement that cloud is virialized, which would
require the cloud to be stable and thus long-lived. Following the
diction of the field, references to virialization are best interpreted in
terms of contributions to the balance of energy terms in complete
virial analysis rather than an assertion of dynamical stability.

If we instead were to consider the energy balance in a Gaussian
cloud and report the virial parameter αvir = 2K/|Ug|, we would arrive
at a similar result. For a three dimensional Gaussian mass distribution
with dispersion σ r, Pattle et al. (2015) show that the gravitational
binding energy is

U = − 1

2
√

π

GM2

σr

= −
√

ln 2

2π

GM2

R3D
, (11)

where we have used the result that a 3D Gaussian distribution with
dispersion σ r projects to a 2D Gaussian surface density distribution
with the same dispersion. The kinetic energy is K = 3

2 Mσ 2
v by

construction since the line width is measured as a luminosity-
weighted average over the profile and we assume that light traces
mass. Thus,

αvir = 3

√
2π

ln 2

R3Dσ 2
v

GM
≈ 9.03

R3Dσ 2
v

GM
, (12)

where the numerical pre-factor is only 10 per cent different from the
pre-factor of 10 used in the simple model we report.

We calculate the average surface density within the FWHM size,
�mol = MCO/(2πR2). This estimate adopts the two dimensional
Gaussian cloud model in which half the mass is contained inside
the FWHM. For each cloud we also calculate the implied turbulent
line width on a fixed 1 pc scale: σ 0 = σ v(R3D/1 pc)−0.5. This σ 0

assumes that the turbulent structure function within all clouds has an
index of 0.5 (e.g. Heyer & Brunt 2004) and scales from the measured
σ v and R3D to derive σ 0 at R3D = 1 pc.

3.5 Completeness limits

We validate the results of our source identification and property
recovery by injecting false sources into signal-free regions (i.e. the

complement of M) of the data cube and analysing them following
the methods described above. This provides a good test of the source
identification and characterization algorithms and represents another
point of improvement over the algorithm presented in RL06. We use
our real data in this case so that the residual effects of interferometric
deconvolution or the influence of faint emission on source recovery
are empirically included in the analysis. We emphasize, however,
that this analysis does not assess the effects of blended emission,
for example, detecting a cloud in a crowded region or separating
blended clouds. We empirically characterize the effects of blending
in Section 5.

The false sources have Gaussian profiles in position–position–
velocity space. Each cloud has a mass, virial parameter, and sur-
face density drawn randomly from log-uniform distributions for
that parameter. This part of the analysis adopts a fixed αCO =
6.7 M� (pc2 K km s−1)

−1
throughout.

We generate false clouds using uncorrelated sampling of dis-
tributions of the cloud mass, surface density, and virial parame-
ter. False cloud masses have a 2.5 dex range centred on M0 =
50αCO�bmd2σ T�v, where �bm is the solid angle subtended by the
beam, d is the distance to the galaxy, σ T is the median RMS noise
level in the data set, and �v is the channel width. This mass value
corresponds to an S/N = 50 detection in a single beam and a single
channel. False cloud surface densities have a 2.5 dex range centred
on �mol = 150 M� pc−2. Virial parameters are drawn in a 2 dex
range centred around αvir = 2.

Once the mass, virial parameter, and surface density are specified,
we calculate the implied line width, σ v = (αvirG/5)1/2(πM�mol/2)1/4,
and an observed two dimensional radius, R = (M/2π�mol)1/2. The
resulting distributions of line width and radius are not exactly
uniform, but they span a larger range than we expect for real GMCs.
For example, radii range from 3 pc for high surface density, low-mass
clouds to 800 pc for low surface density, high-mass clouds. The line
widths range from 0.5 km s−1 for low virial parameter, low-mass,
and low surface density clouds to 25 km s−1 for high virial parameter,
high-mass, and high surface density clouds.

For each data set, we inject >103 false sources into the signal-
free portion of the data cube and process the cubes with the same
parameters as used in the main analysis. For each source, we note
whether the source is detected or not and record both the recovered
parameters and the injected parameters.

We use these data to determine the probability of detecting a cloud
with a given M, �mol, and αvir. To do this, we fit a logistic regression
to the detection data, which has the following form:

P (M,�mol, αvir) =
{

1 + exp

[
−c0 − c1 log10

(
M

106M�

)

−c2 log10

(
�mol

150 M� pc−2

)

−c3 log10

(αvir

2

)]}−1
. (13)

We use the STATSMODELS package (Seabold & Perktold 2010) in
PYTHON to perform the regression and obtaining coefficients ci for
the models from fits to the detection statistics.

In the model described by equation (13), the mass limit below
which the completeness is < 50 per cent for a cloud with αvir = 2
and �mol = 150 M� pc−2 is

Mcomp = 10−c0/c1+6 M�. (14)

The logistic regression can report the mass scales for different
completeness fractions but the 50 per cent completeness level is the
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GMC properties in PHANGS-ALMA 1227

characteristic scale for this model. For the homogenized data (90 pc
resolution, uniform noise), this completeness limit is 4.7 × 105 M�
at �mol = 150 M� pc−2 and αvir = 2.

In equation (13), the probability of cloud detection also depends
on αvir and �mol. We find coefficients c2 and c3 that are significantly
non-zero, indicating that these other terms are important. On average,
we find that 〈c0〉 = 1.5, 〈c1〉 = 4.7, 〈c2〉 = 2.2 and 〈c3〉 = −1.4 across
all data sets.

If we shift the fiducial �mol we expect to effectively change c0

in equation (14) by c2 times the logarithmic change in �mol. Given
〈c2〉 = 2.2, adjusting to a factor of three (or 0.5 dex) lower �comp,
Mcomp will increase by 70 per cent. The effect of �mol is weaker than
M, i.e. c1 > c2 because these clouds are marginally resolved in our
data. The convolution with the instrumental effects leads two clouds
with the same mass but different �mol to having roughly the same
surface brightness as long as both are relatively compact compared
to the beam.

Cloud line widths are typically well resolved in our data and
clouds with larger virial parameters have emission distributed over
a larger number of channels. For fixed mass, this decreases the peak
brightness of the cloud and lowers the signal-to-noise in any given
channel, thus lowering the probability of detection. If we raise the
fiducial αvir from 2 to 6, then the corresponding Mcomp will increase
by 40 per cent.

Fig. 3 shows the results of our completeness analysis for the
homogenized, 90 pc resolution data for NGC 3627. The figure
shows that the logistical regression described by equation (13) is
a good approximation to the completeness structure in the data, with
roughly half of the clouds near the 50 per cent completeness limit
line being detected. However, the top panel of the figure indicates
that clouds with very low surface densities (�mol < 10 M� pc−2) are
poorly recovered irrespective of their total mass because of their
low surface brightness. This can be seen since several clouds in
the > 90 per cent regime (bottom right) are still not detected. This
behaviour is not captured by the multilinear logistic regression model
(equation 13), and our algorithm will not detect clouds with low
surface brightness. The tilt of the completeness lines with respect to
the coordinate axes illustrate how Mcomp depends on �mol and αvir,
increasing with increasing αvir and decreasing with increasing �mol.

This analysis gives quantitative completeness limits and qualita-
tively shows that the algorithm is best at detecting luminous objects
that are compact in both space and velocity. For fixed mass, clouds
with higher virial parameter or lower surface density have lower
signal-to-noise at any individual pixel because the cloud is distributed
over a wider region in the spatial and spectral directions.

Overall, PYCPROPS applied to PHANGS-ALMA reliably extracts
‘classical’ molecular clouds with �mol � 102M� pc−2 and virial
parameters αvir � 2. It is not sensitive to the presence of a diffuse
molecular medium, e.g. as inferred from multiscale analysis of M31,
M51, and other nearby galaxies (Pety et al. 2013; Caldú-Primo &
Schruba 2016; Chevance et al. 2020). Unbound molecular gas and
low surface density clouds are unlikely to be detected as individual
objects (Roman-Duval et al. 2016). If they are isolated, they will not
be detected and catalogued. If they are in a dense region, they will
be assigned to nearby clouds by the decomposition algorithm.

4 SC A L I N G R E L AT I O N S

The scaling relations between the macroscopic properties of GMCs
(mass, radius, line width) illustrate the changing physical conditions
of the star-forming ISM across different galactic environments. These

Figure 3. Recovery of false sources injected into the signal-free region of
the homogenized, 90 pc resolution data for NGC 3627. The plots show the
injected mass, M, against the surface density, �mol (top), and virial parameter,
αvir (bottom), of the test clouds. Filled points indicate false clouds recovered
by PYCPROPS. Empty circles indicate points not recovered. The solid blue line
marks P(M, �mol, αvir) = 0.5 (equation 13), taking the fiducial parameters for
variables that are not plotted. This line shows where clouds would be detected
with 50 per cent completeness. The blue dashed lines show the analogous lines
of 10 per cent and 90 per cent completeness. The figure shows that cloud mass
is the primary factor affecting source recovery but surface density and virial
parameter have important secondary effects.

scalings are primary results from the cataloguing processes outlined
above.

Our main results come from an analysis of the homogenized data
described in Section 2.2. This homogenization is essential for a robust
inter-galaxy comparison of cloud populations (Hughes et al. 2013).
Here, we illustrate the effect and importance of the homogenization in
Section 4.1. We report the properties of individual clouds in Table 3.
We explore correlations among cloud properties in Section 4.2 and
summarize distributions of their physical properties in Table 4. For
comparison, we present the same scaling relationships at the native
resolution and noise levels of the data in the Appendix.

When applied to the homogenized data for our 10 targets, PY-
CPROPS recovers 5758clouds. Of these, 4986 have a signal-to-noise
ratio at the cloud peak of S/N > 6, which we consider a threshold
for reliable measurements (RL06).
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1228 E. Rosolowsky et al.

Table 3. Example catalogue of GMC properties determined from PHANGS-ALMA observations of NGC 0628. The complete table including all targets is
available in the Supporting Information. Here, R is the deconvolved cloud radius, the position angle of the major axis is given in the PA column, and e is the
cloud eccentricity. The line width is given as a velocity dispersion, σv . The cloud luminosity in CO(2–1) emission is given as LCO and the mass is given as MCO

after applying a spatially variable CO-to-H2 conversion factor. Finally the virial mass appears in the Mvir column. For more details on how these properties are
measured for each cloud, see Section 3.4.3.

Galaxy Number RA Dec VLSR R PA e σv LCO MCO Mvir

(J2000) (J2000) (km s−1) (pc) (◦) (km s−1) (105 K km s−1 pc2) (106 M�) (106 M�)

NGC 0628 1 24.17516879 15.76966235 631.8 115.0 3 0.41 7.6 3.3 1.9 5.8
NGC 0628 2 24.15919146 15.76697688 625.4 98.8 3 0.55 7.2 1.0 0.6 4.8
NGC 0628 3 24.17234447 15.76836941 626.4 118.8 179 0.90 7.1 2.4 1.4 5.3
NGC 0628 4 24.16455515 15.76022010 623.4 119.5 153 0.94 4.4 3.7 2.6 2.0
NGC 0628 5 24.16955384 15.76238607 626.4 99.6 84 0.86 6.1 3.5 2.4 3.4
NGC 0628 6 24.16149093 15.76770079 626.3 107.9 100 0.40 5.1 5.4 3.5 2.5
NGC 0628 7 24.18739848 15.74728395 628.2 57.6 138 0.95 3.1 0.8 0.7 0.6
NGC 0628 8 24.18065112 15.75086674 631.3 58.1 118 0.67 4.9 5.2 4.3 1.5
NGC 0628 9 24.17763321 15.75330872 632.2 93.4 28 0.76 7.5 1.5 1.2 5.0
NGC 0628 10 24.16708744 15.75749143 624.6 64.4 115 0.65 1.1 1.0 0.8 0.1

Table 4. Parameter distributions for the GMC populations in our target galaxies. The Bar, Disc, Arm
and Interarm populations show the average parameters for GMCs in these environments (defined in
Section 2.3 and discussed in Section 6.2).

Galaxy αvir σ 0 �mol Pint/kB tff
(km s−1) (M� pc−2) (105 cm−3 K) (Myr)

NGC 0628 1.2+1.3
−0.5 0.54+0.18

−0.18 53+57
−26 1+2

−1 9.1+3.6
−2.9

NGC 1637 1.4+1.9
−0.8 0.57+0.28

−0.18 66+65
−33 1+2

−1 8.0+3.3
−2.7

NGC 2903 2.0+3.3
−1.1 0.90+0.52

−0.30 100+140
−54 4+13

−3 6.3+3.0
−2.3

NGC 3521 1.2+1.6
−0.5 0.81+0.25

−0.25 140+180
−82 4+8

−3 5.4+3.0
−1.8

NGC 3621 1.6+2.1
−0.9 0.81+0.32

−0.28 120+130
−61 3+6

−3 5.8+2.5
−2.0

NGC 3627 1.6+2.5
−0.9 0.87+0.35

−0.26 120+210
−74 4+14

−3 5.9+3.4
−2.4

NGC 4826 4.1+4.0
−2.0 2.30+0.73

−0.53 430+470
−200 84+190

−56 2.9+1.4
−1.2

NGC 5068 0.8+1.0
−0.4 0.54+0.24

−0.24 86+64
−53 1+2

−1 6.8+4.7
−2.0

NGC 5643 1.5+1.8
−0.8 0.62+0.30

−0.22 78+88
−41 1+4

−1 7.4+3.5
−2.5

NGC 6300 1.7+2.1
−0.9 0.69+0.37

−0.21 85+110
−45 2+6

−1 7.2+3.4
−2.6

Average 1.5+2.1
−0.8 0.77+0.35

−0.27 100+160
−60 3+9

−2 6.4+3.5
−2.5

Bar 2.6+4.3
−1.5 1.19+0.54

−0.41 130+230
−82 9+29

−7 5.8+3.9
−2.4

Disc 1.4+1.6
−0.7 0.71+0.29

−0.25 96+120
−53 2+6

−2 6.6+3.4
−2.3

Arm 1.2+1.2
−0.6 0.64+0.29

−0.21 87+130
−49 2+6

−1 6.9+3.7
−2.6

Interarm 1.4+1.7
−0.7 0.65+0.29

−0.24 75+95
−42 1+4

−1 7.5+4.0
−2.6

4.1 Resolution effects bias cloud properties

As described in Section 3.4, PYCPROPS attempts to correct the
measured cloud properties for the finite sensitivity and resolution
of the data. These after-the-fact corrections assume that the emission
associated with each cloud has been correctly assigned to the cloud
by the segmentation algorithm (Section 3.1). However, the segmen-
tation algorithm itself is affected by limited data sensitivity and
resolution.

The segmentation relies on identifying local maxima in the spectral
line data cube. Clouds at separations smaller than the beam size
will nearly always be blended together into larger structures by this
approach. This blending introduces a direct dependence of cloud size
and mass on the resolution of the data. The ISM has structure on a
wide range of scales (e.g. Stanimirović & Lazarian 2001). When a
seeded watershed algorithm like CLUMPFIND or CPROPS is applied to
such multiscale structure, the algorithm tends to divide the emission
into regions comparable to the beam size (Pineda et al. 2009; Hughes
et al. 2013; Leroy et al. 2016).

In addition to resolution, noise also plays an important role in
segmentation. Local maxima are identified based on a contrast
threshold δ, which is set by the noise in the data. In data with
insufficient sensitivity, peaks with low contrast may be blended
together. The results of our completeness analysis in Table 2 also
show that the mass of clouds that can be recovered is a sensitive
function of the physical resolution and the noise of the data.

These effects mean that source identification depends on the
resolution and noise properties of the data. Despite attempts to correct
for these effects in the property measurements, this dependence of
the decomposition algorithm can strongly influence the distribution
of measured cloud properties.

To illustrate this, Fig. 4 compares the size–line width (top)
and mass–radius (bottom) relationships for our sample before and
after homogenization. The figure illustrates how the segmentation
algorithm distinguishes objects near the beam size. Due to the
range of angular resolution and distances for our target galaxies
(Table 2), the native resolution data in the left panels yield a wide
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GMC properties in PHANGS-ALMA 1229

Figure 4. Comparison of the size–line width (top) and mass–radius relationship (bottom) before (left) and after (right) homogenizing the data. The left-hand
panels show results for our targets analysed at their native resolutions and noise levels. The right-hand panels show results for the homogenized data. Values for
the individual GMCs are shown as grey points. The coloured contours denote the regions containing 50 per cent of the data for individual galaxies. The solid blue
lines show the reference relationships σv = 0.7 km s−1(R3D/1 pc)0.5 in the top panel and �mol = 100 M� pc−2 in the bottom panel. The vertical blue dashed
lines in the right-hand panels show the beam size of 90 pc data in the homogenized data. Analysing the native resolution data (see Table 2 for characteristics)
would lead to the conclusion that cloud populations show more variation than what is inferred from a parallel analysis on the homogenized data.

range of linear resolutions (projected beam sizes of 26 to 89 pc)
and hence measured cloud sizes. After smoothing all data to have
the same resolution in the right-hand panels, the sizes span a much
narrower range. Clouds from NGC 4826 and NGC 5068, which
begin at linear resolution � 30 pc, show particularly striking contrast
between the two panels. Meanwhile, the addition of noise during the
homogenization also removes sensitivity to lower mass clouds. With
homogenization, clusters of smaller clouds in these two galaxies are
blended together and catalogued as a single complex of emission.
After homogenization most recovered clouds have M > 106 M�,
while before homogenization many galaxies have populations of
clouds extending down to M � 5 × 105 M�.

Crucially, the measurements without homogenization often sug-
gest variations among cloud populations that diminish or even
disappear when the data properties are matched. From the left-hand

to right-hand panels of Fig. 4, our sample shifts from showing a wide
range of apparent cloud masses and sizes to showing substantial
overlap among the cloud populations in most galaxies. Higher
resolution observations on the distant sources would likely resolve
individual clouds into more objects, including substantial numbers of
low-mass clouds like those seen in our nearest targets like NGC 4826
and NGC 5068.

The homogenization can also highlight differences that would not
be apparent without careful matching. For example, we note in Fig. 4
that clouds in NGC 4826 clearly show larger line widths and surface
densities relative to the other targets after homogenization. With
homogenization, this becomes a robust measurement that reflects
real differences in the cloud properties in this dense starburst.

Homogenizing the data in resolution and noise represents the most
direct and robust approach to mitigate these issues. If the data share
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1230 E. Rosolowsky et al.

Figure 5. Scaling relationships among molecular cloud properties in our homogenized cloud catalogue. Individual clouds are presented as grey points except
for clouds in galactic centres, which are indicated with a black × symbol. Coloured curves indicate the binned relationships for each individual galaxy, giving
the median values in bins set to contain equal numbers of clouds along the x-axis. The shaded regions indicate where the false source insertion tests indicate
< 50 per cent (yellow) and < 10 per cent (red) recovery rate for clouds in the test sample (Section 3.5). For cases where the completeness region depends on
cloud mass, we assume a test mass of

√
10 Mcomp = 1.5×106 M�, where Mcomp is the 50 per cent completeness mass for the homogenized data: 4.7 × 105 M�.

solid blue lines indicate reference relationships. Panel (a) shows the relationship between molecular gas surface density, �mol, and the ratio σ 2
0 = σ 2

v /R3D. The
blue line shows the locus of virialization. Panel (b) shows the mass–radius relationship with blue lines showing constant surface densities. Panel (c) shows
the relationship between estimated virial mass and the mass estimated from CO luminosity and our location dependent conversion factor. The blue line shows
Mvir = MCO/2. Panel (d) shows the size–line width relationship with the blue line showing the scaling identified in the Milky Way (S87). In panels (a) and (c),
the offset from the reference relationship encodes the virial parameter (see the text).

the same observational properties then the biases introduced by the
segmentation will be the same across all data sets (Hughes et al.
2013). This gives high confidence to comparative analyses, so that
variations between the measured cloud populations reflect real dif-
ferences in the underlying distribution of emission. Other approaches
do exist. For example, the original RL06 implementation attempted
to address these issues for the specific case of comparing Galactic
to extragalactic cloud samples. This approach set prior assumptions

for the clouds to be extracted in data sets with radically different
resolution and noise levels by setting the algorithm parameters laid
out in Section 3.2 to fixed physical scales.

4.2 Homogenized catalogues

We plot the relationships among the properties of molecular clouds
catalogued in the homogenized data in Fig. 5. In all panels, points
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GMC properties in PHANGS-ALMA 1231

show results for individual clouds. Black points indicate clouds in the
centres of galaxies, defined as per Section 2.3. Coloured, connected
lines show the binned trends for each individual galaxy. These lines
trace the median y-axis properties measured in up to five bins, each
containing an equal number of clouds after sorting the data by the x-
axis quantity. Blue lines show fiducial relationships based on simple
physical expectations or studies of Milky Way molecular clouds
(S87; H09).

In the Appendix, we show the scaling relations for the native reso-
lution data. Enforcing a common physical resolution and sensitivity
between galaxies brings the cloud populations into better agreement
with one another in all four views into parameter space. It also makes
us more confident that any differences we measure among clouds are
physical.

The shaded regions in Fig. 5 highlight regions of parameter
space where our survey is not sensitive to cloud detection. These
completeness regions are defined by mapping the values fit to
equation (13) to the parameter values plotted. In cases where
the mapping applies for a specific cloud mass (such as for the
size–line width relationship in panel d), we plot the region for
M = √

10 M50 where M50 is the 50 per cent completeness limit for
the homogenized data: 4.7 × 105 M�. Since the most common
clouds detected in our study are found near the completeness limit,
this represents the censored regions of parameter space for the most
common clouds. Higher mass clouds can still be found outside these
regions. The yellow shaded region indicates 10–50 per cent recovery
of these sources over the range of virial parameters and surface
densities considered. The red shaded regions indicate < 10 per cent
recovery.

4.2.1 The �mol–σ 0 relationship

Fig. 5(a) shows the relationship between the mean molecular gas
surface density, �mol, and the normalized turbulent line width
σ 2

v /R3D ≡ σ 2
0 . We compare the data to the relationship

σ 2
v

R3D
= πG�mol

5

(
R

R3D

)2

, (15)

which is shown as a solid blue line and expected for clouds with
αvir = 1 and R = R3D.

Overall the population of giant molecular clouds appears consis-
tent with the locus of virialization. This result is broadly consistent
with Heyer et al. (2009) for the Milky Way and a non-parametric
analysis of the first PHANGS-ALMA targets by S18. Both of these
studies find that the molecular ISM tends to be found in a state
consistent with self-gravitation (αvir ≈ 2) across a wide range of
physical scales. Here we investigate a new sample of galaxies,
add information on cloud sizes, and find that the molecular ISM
across our sample shows αvir ≈ 1.5 with a broad distribution of
virial parameters (±1σ ranges of 0.7–3.6). Given our uncertainties
are expected to be ∼50 per cent from the analysis of false source
injection, the range of virial parameters could be explained by
observational errors.

Clouds in galaxy centres (black markers) often appear to deviate
systematically higher than the αvir = 1 relationship. They show
consistently larger line width at fixed size scale and fixed �mol than
clouds in the outer parts of galaxies. This likely reflects a combination
of source blending, the presence of a diffuse molecular phase, the
influence of external forces, and unresolved motions contributing to
the line width in galaxy centres (Dale et al. 2019; Kruijssen et al.
2019a; Sun et al. 2020a)

Most galaxies show general agreement in this plot, although
NGC 4826 (M64) is an outlier here and below. Previous work
(Rosolowsky & Blitz 2005) showed that GMCs in this system
have high surface densities and line widths compared to Local
Group GMCs but had energetics consistent with being virialized.
The starburst in this system appears to be driven by the unique
evolutionary state of the gas in that galaxy relative to the rest of our
sample. The high gas surface density is conjectured to come from a
retrograde galaxy collision that drove most of the neutral ISM into
the central 1.5 kpc of the galaxy (Braun et al. 1994).

4.2.2 Mass–radius relationship

– The mass–radius relationship is shown in Fig. 5(b). Here we
compare our measurements to lines of constant surface density, �mol

(solid blue lines). As in previous GMC studies, our measurements
show that most GMCs in this sample have average surface densities
of �mol ≈ 102 M� pc−2. The completeness regions show that the
apparent increase in surface density at small radii is a censoring effect
because only high surface brightness clouds with such small sizes are
detected. Based on Milky Way studies (S87; Heyer et al. 2001, H09)
there are likely to be many clouds with smaller masses and radii that
we simply cannot detect in the (homogenized) PHANGS-ALMA
data.

Nevertheless, there is real variation in the surface densities of our
identified clouds. As seen in panel (a), the high �mol clouds also tend
to exhibit high σ 2

v /R3D, thus, maintaining αvir ≈ 1.5 even as �mol

varies. Once again, the cloud population in NGC 4826 stands out as
having relatively high surface densities.

Fig. 5(b) also shows that clouds located in the central regions of
galaxies are associated with larger values of �mol but these targets are
found throughout this parameter space. We caution that in the dense
central regions of galaxies, the molecular medium is more luminous
per unit mass compared to galaxy discs (e.g. Solomon et al. 1997;
Bolatto et al. 2013; Sandstrom et al. 2013, see also Section 7).

Interestingly, we do not recover large clouds in our data set. We
find essentially no clouds with R > 200 pc and very few clouds with
R > 100 pc. The cloud radii are limited by intracloud spacing which
is typically only 100–250 pc (e.g. Chevance et al. 2020), which
is consistent with this scale. However, we are wary of ascribing
physical meaning to the upper limit in cloud sizes because of the
behaviour of the PYCPROPS segmentation algorithm. CO emission
appears clumpy on the scale of the beam even when the emission
forms larger structures, e.g. see the maps in Fig. 2 and the online
supplement. The algorithm selects local maxima, but this selection
is limited by the resolution. Thus, the sizes tend to cluster around
the minimum values which is determined by the beam scale (Pineda
et al. 2009; Leroy et al. 2016), which because of the design of the
PHANGS-ALMA observations, is comparable to the molecular disc
scale height (Leroy et al., in preparation). This effect is so sharp as it
acts as another form of censoring that is imposed by the segmentation
algorithm rather than the sensitivity. In principle, we can detect larger,
smooth structures, but the multiscale structure of the ISM combined
with our selection based on local maxima precludes us identifying
such objects.

4.2.3 Dynamical versus luminous mass

Fig. 5(c) shows the correlation between dynamical mass estimated
from the virial theorem, Mvir, and the mass estimated from CO
luminosity, MCO. We plot the line Mvir = MCO/2, expected for αvir = 1.
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1232 E. Rosolowsky et al.

The tight correlation is expected given the results in panel (a), which
shows that the data cluster around the relationship expected for αvir =
1.5. The consistency of the two mass estimates provides additional,
independent support for our adopted CO-to-H2 conversion factor
prescription.

Clouds found in the centres of galaxies appear systematically offset
to high values above the reference line (see also Sun et al. 2020b).
While galactic centres can have systematically higher luminosity
per unit molecular gas mass (Sandstrom et al. 2013), such effects
would only exacerbate the discrepancy. Instead, the offset seen in
both panel (a) and panel (c) suggests that dynamical effects such
as streaming motions could be significant for these clouds (Meidt
et al. 2018). The objects that we identify in galaxy centres therefore
seem to be less gravitationally bound than the clouds identified
in the main discs of our targets. There may be smaller bound
structures within the clouds that we identify in galaxy centres, or
these structures may be gravitationally bound when the broader
environment is considered. However, at our working resolution while
treating the molecular gas in isolation, these central clouds appear
to include at least some gravitationally unbound, high line width
material.

We also examined the set of points at MCO ≈ 106 M� with small
virial masses. These clouds have highly uncertain deconvolved radii
and line widths that likely result in underestimates of the virial mass.
Since the virial mass depends on the second moment of the intensity
distributions whereas the luminous mass estimate only depends on
the zeroth-moment, the luminous masses are more stable in these
cases.

4.2.4 Size–line width relationship

Fig. 5(d) shows the size–line width relationship. The blue line shows
the fiducial Milky Way relationship with σv = σ0R

0.5
3D . We adopt the

normalization σ 0 = 0.7 km s−1 (S87) as the reference line.
The median trends show significant galaxy-to-galaxy variation

between the different cloud populations. Based on the previous
three panels, these can be at least partially attributed to variations in
cloud surface density, �mol, from galaxy to galaxy. The data cluster
around the fiducial Milky Way line. The different galaxies all appear
roughly consistent with a slope of β = 0.5, though they would have
systematically different values of σ 0. However, a combination of
censoring effects (shaded regions) and coarse resolution create limits
on the dynamic range of our study, so we are not in a good position to
measure an independent size–line width relationship based only on
this analysis. Like the other panels, clouds in the central regions of
galaxies have higher velocity dispersions for a given radius compared
to those in the outer parts of discs, and again NGC 4826 appears as
a distinct system.

4.2.5 SUMMARY

We find general consistency between our catalogued clouds and the
basic physical picture formed from studies of the Local Group. In
particular, outside the centres of galaxies we find that GMCs show
a virial parameter slightly larger than unity. They show a range of
surface densities that is broadly consistent with commonly adopted
characteristic values for GMCs. We find good agreement between
our CO luminosity-based masses and virial mass estimates. Finally,
our clouds show the size–line width relations estimated with the
binned medians consistent with the Galactic size–line width relation
given their sizes.

The nuclear regions of galaxies show significant deviations from
all of these trends. In these regions, many of our targets show high
surface densities, high line widths, and evidence for less strongly
bound gas when considered in isolation. Some of these trends may
be explained if CO is overluminous in these regions compared to the
discs of galaxies. In contrast, accounting for variations in the CO-
to-H2 conversion factor would only make the observed differences
between the virial and luminous masses starker.

The plots in Fig. 5 also show how censoring effects shape the
trends exhibited by our data. We only detect clouds with reasonably
high �mol � 30 M� pc−2, high MCO � 105.5 M�, and line width σ v �
2.5 km s−1. The segmentation algorithm also imposes a bias against
finding large structures due to its focus on finding compact sources
associated with local maxima.

4.3 Cloud population characteristics

Our data show overall consistency with the picture of GMCs
as approximately self-gravitating objects, though there is a wide
range of observed virial parameters spanning nominally bound and
unbound systems. In Fig. 6 and Table 4 we directly quantify the
distributions of virial parameter, αvir, surface density within the
FWHM, �mol, and normalized line width, σ0 ≡ σv/

√
R3D. These

can be viewed as the basic physical properties of the clouds in our
catalogues. They also correspond to the normalizations of many
commonly adopted GMC scaling relationships, e.g. Mvir ∝ MCO,
MCO ∝ R2, and σv ∝ R0.5

3D (S87; Bolatto et al. 2008; H09; Fukui &
Kawamura 2010).

We also characterize the distribution of the mean internal pressure
〈Pint〉 = ρσ 2

v , where ρ is the mass density. Here, we use R3D from
equation (10) to calculate the density. Expressing this in terms of the
other properties of molecular clouds:

Pint = 3Mσ 2
v

8πR3
3D

. (16)

Using the measured density, we also calculate the implied free-fall
collapse time,

tff =
√

3π

32Gρ
=

√
π2R3

3D

4GM
. (17)

Fig. 6 shows the probability density functions (PDFs) for (the log10

of) four characteristic properties obtained from the homogenized
catalogue. Our targets have relatively uniform distribution of virial
parameters with 〈αvir〉 ≈ 1.5 and a standard deviation of 0.3 dex.

Panel (a) reveals small differences between targets. Clouds in
NGC 5068 have a lower mean virial parameter than other galaxies
whereas clouds in NGC 4826 and NGC 2903 have a higher mean
virial parameter. Since the virial parameter scales inversely with
the CO-to-H2 conversion factor, some of these variations may stem
from limitations of our prescription for αCO. NGC 4826 represents a
unique starburst case and shows high αvir, NGC 2903 and to a lesser
extent NGC 3621, NGC 3627, and NGC 6300 also show regions
with high αvir. These galaxies all show prominent stellar bars and the
clouds with high virial parameter are preferentially found in those
environments. We revisit the effect of dynamical environment on
GMC properties in Section 6.2.

We note that the outlier systems, NGC 4826 (high αvir) and
NGC 5068 (low αvir) also exhibit extreme values for the amount
of emission identified in the bright emission mask (fmask = 0.86
for NGC 4826 and 0.33 for NGC 5068; see Table 2). This corre-
lation indicates that the cloud properties are reflecting the spatial
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GMC properties in PHANGS-ALMA 1233

Figure 6. Probability density functions (PDFs) of parameters describing the GMC population conditioned by galaxy for the homogenized data sets. These
PDFs show the distribution of (a) the virial parameter αvir, (b) the line width on 1 pc scales σ 0, (c) the mean surface density �mol, and (d) the internal pressure
Pint/k. The PDFs are calculated for the log10 of the quantity in question and represent probability per decade. The grey distribution in the background shows the
PDF of all GMCs in the sample.

distribution of bright emission since the mask is defined from the
spatial and spectral association of high significance emission. The
CO emission morphologies of these two systems are distinct, with
NGC 4826 showing a nearly continuous molecular disc where the
catalogued clouds may blend together low-mass neighbouring clouds
and contributions from a diffuse molecular medium. In contrast, the
emission from NGC 5068 appears to be isolated into individual
clouds.

Figs 6(b) and (c) show the distributions of σ 0 and �mol. Compared
to the results for the virial parameter, there is substantially more
variation between our targets for these cloud properties. The ho-
mogenized data exhibit real galaxy-to-galaxy variations in the cloud
surface densities, �mol, and scaled line widths, σ 0. As is illustrated
in Fig. 5, these two properties tend to scale with one another (see
also S18) such that αvir is of order unity for the GMC populations of
all our targets.

Similar to �mol, Fig. 6(d) shows a wide range of internal pressures.
We find a range of at least 1 dex in Pint within most galaxies and
4 dex across our whole sample. Sun et al. (2020a) show that the
internal pressure measurements on cloud scales are closely coupled
to (but generally exceed) estimates for the pressure in the diffuse
ISM on kpc scales. The pressure in the diffuse ISM varies by a
similar range and can qualitatively explain the wide range of cloud
internal pressures observed. Meidt et al. (2018) further argue that
these two observations are necessarily linked since the GMCs we are

cataloguing are a continuous part of a self-gravitating ISM in a disc
geometry and not dynamically distinct.

In Table 4, we also report the typical free-fall times for the GMCs
in each galaxy. For the whole sample, we find a characteristic value of
6.4 Myr with a range of 0.2 dex and relatively little galaxy-to-galaxy
variation. Again, NGC 4826 is an outlier, showing smaller typical
free-fall time (2.9 Myr) as a consequence of the higher density clouds
in the starburst environment.

5 MASS D I STRI BUTI ONS

The cloud mass distribution describes the structure of the molecular
ISM and is theoretically linked to the stability and formation of
the molecular medium (Reina-Campos & Kruijssen 2017). Unlike
the distributions of e.g. pressure or surface density, we have a prior
expectation for the shape of the mass function (e.g. Rosolowsky
2005; Mok, Chandar & Fall 2019, 2020) as a distribution that
declines strongly with increasing mass, where there are a few high-
mass clouds and many low-mass clouds. The function is frequently
described as a power-law or exponential distribution. Establishing an
analytic form of the mass distribution allows us to fit the parameters of
the function using the maximum-likelihood approach advocated by
Mok et al. (2019), Mok et al. (2020), which is based on the approach
used in galaxy population studies (e.g. Mo, van den Bosch & White
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1234 E. Rosolowsky et al.

2010). These parameters can then be directly compared to theoretical
expectations. In this section, we amend the maximum-likelihood
formalism to account for the effects of completeness and to compare
different models using the Bayes Information Criterion.

In this work, we adopt a Schechter-like, truncated power-law
function to describe the PDF for finding a molecular cloud of a
given mass M:

p(M|Mc, β) = C

(
M

Mc

)β

exp

(
− M

Mc

)
. (18)

Here, C is a normalization coefficient, Mc is the cut-off mass, and β

is the power-law index.
Incompleteness complicates direct comparison between equa-

tion (18) and the data. To account for this, we combine equation (18)
with a logistic selection function following Section 3.5. The amended
PDF is

p(M|Mc, β, c0, c1) = C

[
1 + exp

(
−c0 − c1

M

Mc

)]−1

×
(

M

Mc

)β

exp

(
− M

Mc

)
. (19)

Unlike in Section 3.5, we do not consider the effects of the virial
parameter or surface density on detection. We leave the parameters
of the selection function, c0 and c1, free for optimization along with
Mc and β. This functional form equals a power-law mass distribution
between a cut-off at the low-mass end from the completeness term
and a cut-off at the high-mass end by the exponential term. Directly
fitting for the completeness terms allows for the possibility that the
true completeness is higher than we estimate from the false cloud
injection tests. Such an effect is expected because our false cloud
tests do not account for blending or source extraction in crowded
regions. However, in cases where the completeness mass approaches
or exceeds the cut-off mass, the power-law slope of the completeness
function will be unconstrained.

We also account for uncertainty in the cloud mass determination.
Based on the false source injection (Section 3.5), we estimated
a characteristic 0.2 dex uncertainty in cloud masses. To reflect
this, we adopt the approach from Mok et al. (2020) and convolve
equation (19) with a lognormal distribution with width σ = 0.2 dex
before fitting, to transform the true masses of the clouds M into the
observed masses M

′
.

We find the parameters that maximize the likelihood:

argmax
Mc,β,c0,c1

L = argmax
Mc,β,c0,c1

∏
i

p(Mi |Mc, β, c0, c1)∫ Mmax

Mmin
p(M ′|Mc, c0, c1, β)dM ′

(20)

where L is the likelihood. We set Mmin and Mmax to be two orders
of magnitude lower and higher than the observed minimum and
maximum cloud mass. We determine the credible ranges of these
parameters using the EMCEE sampler (Foreman-Mackey et al. 2013)
to sample the likelihood function. For the optimization and sampling,
we assume that the prior distribution of β is uniformly distributed
on the interval [−5, 1] and adopt improper, uninformed priors for c0

and c1, and that log10(Mc/M�) is uniformly distributed on [4, 9].
We also consider a model in which Mc → ∞, i.e. there is no

truncation in the mass distribution and the distribution is represented
as a pure power law above the completeness limit. We maximize a
likelihood analogous to equation (20) but without Mc and so only
using three free parameters.

For these two models, we report the best-fitting power-law index,
β, and cut-off mass, Mc, in Table 5. We show these fits in comparison

to an empirical estimate of the PDF determined from binned mass
distributions in Fig. 7.

The empirical distributions in Fig. 7 show substantial variation
in the mass distributions between galaxies. While the maximum-
likelihood approach does not fit these binned empirical estimates,
they trace the functional form that our fitting approach is trying
to match. In the homogenized data, the maximum mass of clouds
reaches much higher scales in some galaxies (NGC 3627) than others
(NGC 5068). Some systems show a steep truncation and then a few
high-mass clouds (NGC 1637 and NGC 2903). These high-mass
clouds are found in the centres or bars of the galaxies, and this likely
reflects the combination of multiple different galactic environments
in a single population. Only a few galaxies show a clear power-law
tail at the high-mass end (NGC 5643 and NGC 6300) above the
completeness limit.

The mass distributions do not show a declining tail over a large
dynamic range in mass. There is usually only a factor of 10 between
the peak of the PDF and the highest mass cloud. Thus, our fitting
to the mass PDFs shows that both functional forms (i.e. a power-
law model with and without a high-mass truncation) are reasonable
representations of the mass distribution. The empirical estimates of
the censoring effects that arise from crowding in our source extraction
provide a good model for the turnover in mass distribution at the
low-mass end. By explicitly including this censoring effect, we can
include all of the clouds in the catalogue in our estimates of the
mass distributions rather than rejecting the low-mass clouds below a
limit defined by eye. This has the advantage that we can statistically
assess the effects of blending but the approach has the drawback that
it relies on equation (19) being a good model for the observed data.

To assess whether there is a preferred functional form for the mass
distribution, we use model selection with the Bayes Information
Criterion (BIC, Schwarz 1978). We use

BIC = k ln N − 2 ln(L̂), (21)

where k is the number of parameters in the model (3 for a pure power-
law, 4 for the truncated power-law), N is the number of clouds in the
fit, and L̂ is the maximum of the likelihood function. We report the
difference in BIC between a pure and power-law model in Table 5
(�BIC = BICPL − BICtrun).

Table 5 shows that the truncated and pure power-law fits dis-
tribution are usually both good representations of the molecular
cloud mass distribution. The BIC indicates a very strong preference
(�BIC > 10, Kass & Raftery 1995) for the truncated power-law mass
distribution in NGC 0628, NGC 2903, NGC 3521, and NGC 3627.
In these cases, the truncation plus relatively shallow power-law mass
distributions are reflecting the behaviour of the mass distribution
below the cut-off where it is affected by blending.

The completeness limits shown in Fig. 7 come from the empirical
fit using equation (14). These values exceed the limit established
by the completeness tests, 4.7 × 105 M�, by 0.5–1.0 dex. In the
mass distribution fits, our completeness limit is generally near the
peak of the PDF. As mentioned above, we expect that this higher fit
completeness reflects crowding and blending of GMCs. However, the
fit values will only be meaningful as long as our adopted functions
are actually good descriptions of the underlying mass distribution.

In NGC 3521, the truncated power-law shows a completeness
limit 30 times larger than the truncation mass Mc, a byproduct of
the model finding a solution to explain the large mass range where
the PDF is flat. The optimization provides a better fit by having
the power-law component of the mass distribution represent this flat
section with a shallow index. Thus, we are wary of interpreting this
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GMC properties in PHANGS-ALMA 1235

Table 5. Parameters of mass distribution fits including the number of clouds catalogued (N), the index of the mass
distribution with and without a truncation (β trun, βPL), the truncation mass (Mc), the derived completeness limits for
the two fits (Mcomp) for the truncated and pure power-law cases), and the difference in the BIC between the two models,
�BIC = BICPL − BICtrun.

Truncated power law Pure power law
NGC N β trun Mc Mcomp βPL Mcomp �BIC

(106 M�) (106 M�) (106 M�)

0628 472 0.6+0.7
−0.3 1.1+0.2

−0.1 1.0 −3.2+0.2
−0.2 2.7 10.9

1637 275 −1.4+0.6
−0.7 2.6+3.9

−1.2 0.6 −2.5+0.2
−0.2 1.0 − 0.1

2903 810 −0.9+0.4
−0.4 4.6+2.2

−1.2 0.9 −2.5+0.1
−0.1 2.4 19.4

3521 1432 −3.4+1.3
−1.5 0.8+0.2

−0.1 26.6 −3.4+0.2
−0.2 4.9 72.5

3621 394 −1.3+1.2
−1.7 1.2+1.8

−0.5 1.9 −3.4+0.3
−0.2 2.1 − 2.5

3627 1048 −1.0+0.2
−0.2 9.9+2.5

−1.9 0.8 −2.2+0.1
−0.1 2.4 43.9

4826 48 0.1+0.7
−0.6 3.4+2.6

−1.1 1.2 −2.3+0.5
−0.3 3.0 6.2

5068 74 −2.2+2.6
−2.3 0.2+0.3

−0.1 6.9 −3.7+0.9
−0.6 1.5 − 0.7

5643 695 −2.3+0.1
−0.2 50+200

−31 1.2 −2.5+0.1
−0.1 1.3 − 4.4

6300 510 −2.6+0.2
−0.3 55+300

−40 1.7 −2.7+0.1
−0.1 1.8 − 5.2

Bar 552 −0.9+0.2
−0.2 12.5+4.7

−2.8 0.9 −2.2+0.1
−0.1 3.7 22.2

Disc 2454 −1.2+0.2
−0.2 4.7+1.0

−0.8 0.9 −2.4+0.1
−0.1 1.7 66.0

Arm 931 −1.0+0.2
−0.2 5.8+1.7

−1.1 0.7 −2.3+0.1
−0.1 1.9 39.6

Interarm 903 −0.7+0.3
−0.3 2.3+0.7

−0.5 0.5 −2.5+0.1
−0.1 1.5 31.8

as a physical result and believe that this is reflecting the limitations
of our algorithm applied to coarse resolution data.

The pure and truncated power-law models are equivalently good
representations of the mass distributions for most systems (|�BIC|
< 10). However, these show steep indices compared to Local Group
studies (Rosolowsky 2005), sometimes showing β < −3. In the
cases with steep indices, the completeness limit is relatively high
so there is less than an order of magnitude of dynamic range in
the well-sampled portion of the mass spectrum. Observations with
higher linear resolution would allow for a wider dynamic range in
mass to be observed without blending effects, providing an improved
measurement of the mass distribution.

For NGC 5643 and NGC 6300, the cut-off mass in the truncated
mass distribution happens at high mass (>107 M�), leading to a
slightly shallower slope in the power-law component of the mass
distribution. In both of these cases, the BIC does not show strong
evidence for preferring a high-mass truncation. Similar to the results
of Mok et al. (2019) and Mok et al. (2020), we see no evidence
for galaxies that show a clear power-law mass distribution with or
without high-mass truncations. Our derived truncation masses are
typically between 106 and 107 M� so that the exponential cut-off in
equation (19) is describing the entire high-mass tail of the distribution
rather than just providing a cut-off at the highest masses above a
power-law section. The marginal differences between models seen in
most of the BIC results are reflecting that there is not a clear evidence
that prefers for exponential versus power-law tails in the mass PDF.

Overall, we see that the homogenized mass distributions change
between galaxies, reflecting real differences in the emission distri-
butions among systems. At the 90 pc resolution of the homogenized
data, blending effects are severe and the resulting data only have a
limited dynamic range over which we can fit the mass distribution.
These blending effects will be mitigated by observations with higher
physical resolution or in media where the atomic-to-molecular gas
transition is defining the structure we observe. While resolution plays
a major role, we are also combining cloud populations over many dif-
ferent dynamical environments within these galaxies and separating
the analysis of these regions will produce clearer results (Section 6.2).

6 SPATI AL VARI ATI ONS I N GMC PRO PERTIES

Once homogenized, GMC properties are broadly consistent across
the different galaxies in this sample. While we see the same
basic trends across systems, the central regions are clearly outliers
compared to the remainder of the galaxy. This distinction motivates
for a more careful analysis of whether there are variations with
galactocentric radius in the characteristic cloud properties.

6.1 Variations with galactocentric radius

In Fig. 8, we show the variations in the cloud populations as a
function of galactocentric radius normalized to the effective radius
quoted in Table 1. The top two panels show the parameters discussed
in S18: the mean virial parameter and the internal pressure. The
bottom panel shows the fraction of mass in the surveyed area that is
included in the GMC catalogue.

For many galaxies, αvir remains relatively flat with radius. In
NGC 4826, the virial parameter peaks towards the centre of the
galaxy. NGC 1637, NGC 2903, NGC 3627, NGC 3621, and
NGC 5643 show milder but still significant increased αvir in the inner
0.5−1 Re and all of these are barred systems except NGC 5643. In
good agreement with Sun et al. (2020b), our cloud-based analysis
suggests that molecular gas with high line widths and apparently
high αvir values are preferentially associated with the inner parts of
strongly barred galaxies. Stellar bars can induce streaming motions
and concentrate gas in the inner parts of galaxies. These streaming
motions likely contribute to the observed line widths of the identified
GMCs. At 90 pc resolution, it is unclear as to whether the high line
widths indicate a significantly different dynamical state in the molec-
ular medium (i.e. GMCs are stretched or sheared apart, contributing
to an unbound or weakly self-gravitating diffuse molecular medium;
e.g. Meidt et al. 2018; Dale et al. 2019; Kruijssen et al. 2019a) or
whether GMCs remain near-virialized entities moving along the local
galactic potential with the large line widths arising from clouds on
shared orbits overlapping in PPV space or from intersections of gas
streamlines (along dust lanes or at bar ends; e.g. Beuther et al. 2017;
Sormani et al. 2019).
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1236 E. Rosolowsky et al.

Figure 7. Empirical and best-fitting estimates of the mass distributions for the GMCs in 10 galaxies. An empirical estimate for the mass PDF is shown as a
stepped histogram. The two curves illustrate the best-fitting relationships for a power-law mass distribution. The curves include the effects of completeness
and blending at the low-mass end. The Truncated model includes a high-mass exponential truncation to the distribution that is not included in the Power-law
distribution. The vertical line indicates the maximum likelihood estimate of the completeness limit for the pure power-law model. For most galaxies, both
functional forms provide good models for the PDF shape.

NGC 4826 is a high-density, centrally concentrated molecular gas
disc that may be strongly affected by (or even result from) a recent
interaction. This high concentration stands out in Fig. 8, where all of
the clouds lie within Re. The high ambient ISM pressure, and large gas
and stellar surface densities also make this galaxy a good candidate to
host a widespread diffuse molecular gas phase (e.g. Rosolowsky &
Blitz 2005). This could also explain the high line widths, internal
cloud pressures, and αvir values observed in this galaxy. This is also
consistent with the high value of fmask in the galaxy, indicating most
of the emission is bright and blended together.

As already seen in Section 4.3, our targets show a much wider
range in internal pressure than in αvir. This agrees with the results of
S18 and Sun et al. (2020b) in which pressure represents a main axis
of variation of the molecular cloud population in galaxies.

The internal pressure of the molecular medium typically declines
with galactocentric radius, with variations of order a factor of 2 from

the centre to 2Re. Not all systems show this trend. Some appear
relatively flat (NGC 5068 and NGC 5643) or even increase with
radius (NGC 0628). Some decline in internal pressure with radius is
expected, given that internal pressures in the molecular clouds appear
to be coupled to the external pressure in the ISM (Hughes et al. 2013;
Schruba et al. 2019; Sun et al. 2020a). Because ISM pressure declines
with galactocentric radius as stellar and gas densities decrease (e.g.
Blitz & Rosolowsky 2006), we expect internal pressure to also
decrease with radius. In our sample, there are two galaxies where the
internal pressure increases by a factor of 1.5 with radius NGC 0628
and NGC 5068. Both of these systems also have the pressures in
their diffuse ISM peaking outside of their centres (e.g. Herrera et al.
2020; Sun et al., in preparation), which is consistent with the internal
pressure being closely linked to the diffuse ISM pressure.

The bottom panel in Fig. 8 shows the fraction of flux catalogued
in clouds, fcat, compared to the total mass implied by the emission
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GMC properties in PHANGS-ALMA 1237

Figure 8. Characteristic GMC parameters plotted as a function of galacto-
centric radius in five even quantiles. For a given galaxy, the same number
of GMCs are found in each bin. The top panel illustrates the median virial
parameter for clouds. The second panel shows the median internal pressure
estimated for the molecular clouds. The bottom panel shows the fraction
of flux in the GMC catalogues compared to the total flux calculated by
summing all the CO emission in that radial bin. The virial parameter of the
molecular clouds is remarkably constant in most galaxies, except for the high
values observed in NGC 4826 and the inner parts of barred galaxies. On the
contrary, we observe significant galaxy-to-galaxy and radial variations in the
other parameters, which trace the organization and brightness of the emission.

in the data cube. Values of fcat > 1 result from inaccuracies in the
extrapolation process. Low values suggest a large fraction of mass is
missed from the catalogue, implying such emission is distributed at
low surface brightness at 90 pc resolution. Thus, we can interpret fcat

as a coarse proxy for the CO emission distribution.
Some galaxies show relatively flat values of fcat with Rgal. For

example, NGC 3627 and NGC 5068 consistently show fcat ≈ 0.9
and 0.4, respectively, implying the ISM emission is not changing
in structure radially. NGC 3521 shows fcat ≈ 1 except in the last
bin, which indicates that the emission structure changes in the
outer disc. Some systems like NGC 1637 and NGC 5643 show a
steadier decline with radius. The low values in NGC 5068, and to
a lesser extent NGC 0628, reflect the low overall surface brightness
in these galaxies. As discussed in Section 5, this likely reflects a
mixture of CO-to-H2 conversion factor effects and the brightness

distribution of the ISM in these galaxies. Most systems show fcat

> 0.75 over most of the surveyed regions, showing we are not
missing substantial fractions of gas from our analysis provided the
extrapolation prescription adopted here is accurate. We note that, at
higher resolution, the higher mass clouds will resolve into smaller
clouds changing the apparent mass distribution.

Overall, the radial trends show mostly modest variations in cloud
internal conditions and emission recovery fraction. In the case of
internal pressure, the variations between galaxies are strong and more
significant than the variations within galaxies. Signatures of changing
dynamical environment and galaxy structure are nevertheless present
in our data. In general, we observe high αvir values in galaxy centres
and declining internal cloud pressure with galactocentric radius.

6.2 Variations with dynamical environment

While there are clear trends in the internal conditions of clouds
with Rgal, the visual inspection of the CO maps shows that the
changes in molecular emission appear more closely tied to the local
dynamical environment. Here we examine how cloud properties and
mass distributions depend on dynamical environment in our sample.
The resolved maps from PHANGS-ALMA show that the molecular
medium is highly organized within the galaxy, and that the location of
clouds is strongly influenced by the presence of stellar bars and spiral
arms (e.g. see the Appendix and S18). In M51, the molecular gas
structures in different dynamical environments were also observed
to exhibit distinct properties (e.g. Koda et al. 2009; Colombo et al.
2014).

Using the environment labels for individual GMCs (Section 2.3),
we establish two comparisons: Bar versus Disc and Arm versus In-
terarm where the subpopulations of GMCs in those comparisons are
mutually exclusive. Fig. 9 plots the distributions of clouds grouped by
environment in σ 2/R3D versus �mol space and summarizes the cloud
properties in each environment in the last four rows of Table 4. We
also show the mass distributions for clouds grouped by environment
in Fig. 10.

6.2.1 Bar versus Disc clouds

In Fig. 9, we explore these two comparisons in the context of
the σ 2

0 −�mol plane. Like Fig. 5, the solid blue line indicates the
relationship expected for clouds in virial equilibrium, i.e. αvir = 1
and R = R3D. In this parameter space, Bar clouds appear displaced
upward relative to the Disc population, showing that they are typically
less gravitationally bound with higher line widths at a given surface
density. This is reflected in Table 4 where the typical virial parameter
for the Bar clouds (αvir = 2.6) is significantly higher than for the Disc
clouds (αvir = 1.4). We also see marginally higher surface densities
and internal pressure in Bar clouds versus the Disc clouds. This result
shows clear evidence for the influence of dynamical environment on
GMC properties (see also the PHANGS-ALMA results in Sun et al.
2018, 2020b).

Considering the Bar versus Disc comparison in Fig. 10, we see that
the mass distribution of Bar clouds extends to higher values and that
the completeness mass is higher than for the Disc clouds, reflecting
more blended emission in the Bars. Referring to Table 5, we see that
cut-off mass scale, Mc, is a factor of 2.5 higher, though the power-law
components of the truncated mass distributions are indistinguishable
(β ≈ 2.3).

Overall, clouds in bars appear less dominated by self-gravity than
in galaxy discs. The high masses of Bar clouds with comparable

MNRAS 502, 1218–1245 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/1/1218/6101227 by IN
IST-C

N
R

S IN
SU

 user on 14 April 2023



1238 E. Rosolowsky et al.

Figure 9. The �–σ 0 relationship showing GMCs grouped by environment.
The grey points show the data from the full survey indicating the general
distribution of clouds. The contour levels show the bounds containing 25, 50,
and 75 per cent of the population for clouds found in regions labelled as Spiral
Arms, Bars, and Interarm regions (not Bar or Spiral Arm). The relationship
shows the variation between the surface density and turbulent line widths on
1 pc scales. The solid blue line shows the relationship expected for cloud with
virial parameter αvir = 1.

surface densities to the other regions also suggest larger sizes. This
in turn suggests that the line widths may be elevated by the strong
non-circular orbital motions associated with dynamical features such
as stellar bars (Meidt et al. 2018). The higher degree of blending and
the higher characteristic mass scales implied by the analysis of the
mass distribution indicate a molecular ISM with different structure
compared to the disc regions of the same galaxies. These elevated
values may also reflect changing mass-to-light ratio in these regions
arising from more diffuse emission.

6.2.2 Arm versus Interarm clouds

Spiral Arm and Interarm GMCs overlap in the σ 2
0 −�mol space

shown in Fig. 9, with only slight differences in the populations.
Spiral Arm clouds show slightly higher surface densities, comparable
turbulent line widths, and slightly lower virial parameters compared
to Interarm clouds. Compared to the Interarm clouds, the Spiral Arm
population contains more clouds with �mol � 102.5 M� pc−2 and
low σ 2/R3D, implying low αvir. This subpopulation comes from the

clouds in the spiral arms of NGC 3627, extending outward from the
bar ends (Fig. 2).

Comparing the Arm and Interarm mass distributions in the bottom
panels of Fig. 10, there are only small differences between the two
populations. The truncated power-law model is again preferred over
the pure power-law model, but the truncation is at lower mass scales
so that it shapes the tail of the distribution. Notably, the truncation
mass in the Spiral Arms is a factor of 2.5 higher than the truncation
mass in the Interarm regions, showing that more massive clouds are
found in Spiral Arms. The comparison is meaningful: this population
only includes clouds that are outside of the region of influence of
the bar and only compares the distributions for galaxies where there
are clearly defined arms. This finding is broadly consistent with the
idea that Interarm regions will limit cloud growth as proposed by
Meidt et al. (2015) and Jeffreson & Kruijssen (2018). While the pure
power-law form is not preferred by the BIC, examining the indices of
the distribution shows that the mass distribution of Interarm clouds
is marginally steeper than the Spiral Arm clouds.

The differences between Spiral Arm and Interarm clouds would
likely become enhanced if we used a narrower definition of the Spiral
Arm region. The Spiral Arm regions defined in environment masks
from Querejeta et al. (in preparation) set Spiral Arm regions to have
a minimum width of 1 kpc. If we defined the Spiral Arm region
with a more restricted area around the molecular gas ridge line, the
Arm–Interarm contrast would likely become stronger.

Our observational results are broadly consistent with Hirota et al.
(2018), who used 45 pc resolution observations of M83 to create a
cloud catalogue and examine how cloud properties vary in different
environmental regions. Those authors also found that clouds in the
Spiral Arms tend to have higher masses, lower virial parameters,
and shorter free-fall times compared to clouds in the Interarm and
Bar regions of that galaxy. However, the differences we observe are
modest and smaller compared to the differences between the Bar and
Disc populations.

7 D ISCUSSION

By applying a cloud cataloguing approach to the CO emission from
our ten PHANGS-ALMA galaxies, we find that the molecular gas
in our targets has relatively uniform physical properties, in the sense
that the clouds in all targets tend to achieve an approximate balance
between their gravitational binding and kinetic energies. There are
modest departures from this balance in certain systems (NGC 4826)
and in different environments (e.g. Bars). Here, we compare our
conclusions to other structural analysis approaches for the ISM and
examine some of the assumptions that underpin our results.

7.1 Cloud decomposition and LoS approaches

Cloud catalogues have been the historical approach to characterizing
the internal conditions of the molecular ISM. With ALMA, these
methods are being extended to CO observations beyond the Local
Group. Fundamentally, the cataloguing approach is motivated by the
clumpy nature of molecular emission, where there are clearly defined
local maxima in the emission. When applied to high-resolution
observations of relatively molecule-poor galaxies (Schruba et al.
2017; Faesi et al. 2018; Imara et al. 2020) these methods still
yield good results that can be directly compared to Galactic and
Local Group studies after the careful treatment of systematic effects
discussed above (Section 2.2).

In the ideal case, cloud identification schemes can be trained to
identify objects based on physically motivated criteria, e.g. by tuning
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GMC properties in PHANGS-ALMA 1239

Figure 10. Mass distributions of clouds in different environments for homogenized data. The stepped measurement of the PDF shows the empirical estimate
and the curves show the two different functional models for the mass distribution. The vertical line indicates the empirically estimated completeness level for
our galaxy sample using a pure power-law model. Clouds in Spiral arms and Bars are well fit by power-law distributions, but Interarm clouds tend to have lower
masses.

the algorithm with prior expectations (see more discussion in RL06).
New approaches are currently being developed to do exactly this
(Colombo et al. 2015; Riener et al. 2020), taking advantage of the
exposure of high-detail, wide-area observations of molecular gas
in the Milky Way and the nearest galaxies. When applied to data
with sufficient spatial and spectral resolution, these methods offer a
powerful, physically motivated tool to study the nature of the cold
ISM.

The cloud identification based approach encounters limitations
when the beam reaches scales that are comparable to the extent
of emission or when applied to molecule-bright regions where the
emission becomes blended together. In these cases, the beam scale
becomes the fundamental spatial scale for the decomposition, and
many popular cloud identification algorithms return beam-sized
objects (Pineda et al. 2009; Leroy et al. 2016).

These considerations motivated our homogenization of the data
as discussed in Section 2.2 and shown Section 4.1. With these
procedures in place, PYCRPROPS can act as a structure characterization
algorithm that allows highly rigorous comparison between different
data sets. The objects identified by PYCRPROPS at ∼100 pc resolution
may not be exactly the GMCs that one would pick out with arbitrary
spatial resolution, spectral resolution, and sensitivity. However,
comparison between cloud catalogues derived from homogenized
data will reveal differences in the structure, density, and dynamical
state of the molecular ISM between systems.

Faced with the same limitations that motivate our careful homog-
enization, Leroy et al. (2016) advocate for using a non-parametric
analysis to characterize the properties of molecular line emission
and compare different systems (see also Hughes et al. 2013; Egusa
et al. 2018; Sun et al. 2018, 2020b; Brunetti et al. in preparation). In
this approach, one measures the properties of molecular gas along
LoSs at one or more fixed spatial scales. The LoS approach has the
advantage of simplicity and reproducibility, making it a good tool for
comparing to simulations (e.g. Jeffreson et al. 2020). It does lack the
natural interpretation framework offered by treating each PYCPROPS

identified object as an individual GMC. Instead, to calculate higher
order physical parameters like density and dynamical state, the

approach requires an estimate of the spatial extent of emission
along the LoS and a sub-beam structure. Following the framework
developed in Sun et al. (2018, 2020a,b), the simplest such framework
is to treat each beam similar to an individual GMC and adopt a model
for the thickness of the molecular disc.

The LoS approach has been applied to a subset of PHANGS
galaxies in S18 and the full PHANGS sample in Sun et al. (2020b).
The cloud cataloguing approach presented here reaches the same
general conclusions that were derived from the LoS approach in S18:
the molecular ISM shows equipartition between the gravitational
binding energy and kinetic energy across a vast range of galactic
environment with notable second-order variations due to galaxy
centres and linked to stellar bars. In this current study and both of the
LoS studies, the conditions in the molecular ISM show significant
variations in the surface density and turbulent gas motions. These
variations combine to manifest as the approximate energy balance,
which then implies several orders of magnitude variation in the
internal pressure of the clouds.

This good match could be expected given that the two approaches
will have similar behaviour when applied to data with marginally
resolved clouds and bright, extended emission. In PYCPROPS, the
beam size or algorithm places a minimum distance on separations
between local maxima. Combined with the sensitivity thresholds for
local maxima, the local maxima in blended regions are always a few
beam widths apart. Because the spacing and measured sizes of GMCs
are tied to the beam size in these regions, the analysis is similar to
measurements on a fixed-resolution grid.

Despite these similarities, there are some important differences
between the two approaches. The most fundamental difference is
that we attempt to deconvolve the effects of the beam from our
measurements. The estimated surface density, volume density, and
dynamical state thus all represent estimates of the true properties
of the identified object. By contrast, the LoS approach treats the
spatial scale of the measurements as the averaging scale. In Sun et al.
(2020a,b), interpretation of these measurements may consider some
sub-beam density distribution but the measurements themselves
occur at a fixed spatial scale.
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The cloud decomposition approach also captures the spatial struc-
ture of emission. The measured cloud sizes and the decomposition
into clouds are set by a mixture of the beam size, cloud spacing,
and cloud structure. The cloud cataloguing approach captures this
through both the relative position of clouds and their measured sizes.
When the clustering of local maxima changes, the new spacing will
alter the measured sizes of clouds.

The combination of deconvolution and focusing on local maxima
leads to a typical virial parameter of αvir ≈ 1.5 in the cloud
case compared to αvir ≈ 2 in Sun et al. (2018, 2020b), mostly
attributable to the smaller spatial sizes of the clouds. The mass
distributions (Section 5) are also not directly comparable. The cloud
mass functions result from summing mass over identified objects.
The analogous quantity in the LoS case is the brightness or mass
surface density distributions at fixed spatial scale. Comparing our
results to Sun et al. (2018), we see that these distributions change
within galaxies, with the nuclear and bar regions of galaxies having
brighter LoSs and more massive clouds: e.g. compare fig. 2 in S18
to Fig. 10 in this work.

Improving our measurement and interpretation of the spatial
structure of molecular gas in galaxies represents a clear next step
for both approaches. A convolution of the beam, the structure of
individual clouds, and the spacing of clouds sets the spacing of
local maxima and the resulting properties of clouds in PYCPROPS.
These characteristics trace real features of the ISM emission that
are not recovered by an LoS-based approach focused on a single
scale and one point statistics. However, the interpretation of these
measurements is complex, and this algorithmic approach means
that its primary utility must come from differential measurements
of cloud catalogues carried out under homogeneous analysis as
presented here and in A. Hughes et al. (in preparation). Meanwhile,
the LoS-based approach will be strengthened by pairing it with
two-point statistical descriptions of the molecular ISM. These two-
point statistics can be compared to results from cloud cataloguing,
to predictions from theoretical models (e.g. Hopkins 2012), and to
results from simulations.

7.2 The CO-to-H2 conversion factor

Our estimates of surface density, mass, free-fall time, and pressure
all rely on translating the observed CO luminosities into an estimate
of the molecular gas mass. The details of this scaling can affect
our measured values and impact our interpretation regarding the
dynamical state of the ISM.

There is abundant evidence that the CO-to-H2 conversion factor
varies as a function of metallicity and dynamical state of the gas
and other conditions, like gas temperature, may also play a role (for
a review see Bolatto et al. 2013). We follow Sun et al. (2020a) in
adopting a local prescription that depends on local metallicity, which
we estimated via scaling relations adopted from Sánchez et al. (2014,
2019). The metallicity dependence itself is close to the suggested
scaling by Accurso et al. (2017) and intermediate among the range
of scalings that have been adopted in the literature. Nevertheless,
we note that Accurso et al. (2017) do not derive any resolved (i.e.
within galaxies) calibration, and that they include a term related to
the galaxy-integrated offset from the star-forming main sequence
that Sun et al. (2020a) do not consider. The comparisons between
predictions in Sun et al. (2020a) suggest that our inferences about
the dynamical state of the gas are relatively robust to our choice
of prescription. However, it is evident that a robust prescription for
αCO within galaxies is lacking and that imperfect knowledge of αCO

represents the limiting factor for many aspects of our analysis.

Sun et al. (2020a) only attempt to account for metallicity-related
variations in αCO and thus do not incorporate variations due to
changes in the physical properties of the molecular ISM itself.
Broader line widths, increased gas temperatures, and variations in
opacity can all influence αCO and are often cited as the physical
drivers for the low ‘starburst’ αCO seen in merging galaxies and
galaxy centres (see Bolatto et al. 2013). The main sense of these
effects is that the true αCO will be lower than the one that we adopt
in the central regions of galaxies and in stellar bars. In those regions,
the wide line widths of the molecular gas at fixed surface density
lead to a lower opacity and lower αCO.

Accounting for these effects and adjusting to a lower αCO in bars
and nuclear regions would amplify our conclusion that the gas in
these regions has larger virial parameters compared to spiral arms
and interarm regions. On the other hand, another result from our
analysis is that the mass distribution of clouds in bar regions extends
to higher masses compared to the populations in other regions. This
difference would be less pronounced – or perhaps even erased – using
a lower αCO for the Bar environment.

Finally, we did not account for a variable αCO in our data homog-
enization. In principle, the homogenization could be implemented
such that the input data cubes have matching sensitivity to molecular
mass as opposed to uniform sensitivity to CO intensity, as is in the
current implementation. For comparisons where mass or a mass-
related quantity is fundamental, this may be an issue for our lower
mass galaxies, including NGC 1637, NGC 3511, and especially
NGC 5068, which also represents our case with the lowest fraction
of catalogued CO emission. In practice, homogenization in terms of
mass sensitivity would enforce a much worse common noise floor,
significantly degrading the quality of the input data. We consider that
existing αCO prescriptions are too unreliable relative to the cost in
signal-to-noise to justify this approach at present for the PHANGS-
ALMA data, but future work with larger samples and more sensitive
data may find that uniform mass sensitivity is a preferable basis for
comparative analysis.

7.3 Evaluating GMCs in simulations

The properties of molecular cloud populations often serve as a point
of comparison with numerical simulations. Just as observations have
progressively improved to allow cloud-scale imaging of many galax-
ies, so too have numerical simulations advanced, allowing full-galaxy
simulations with resolution that can identify molecular clouds and
measure their resolved properties (e.g. Tasker & Tan 2009; Benincasa
et al. 2013; Dobbs & Pringle 2013; Renaud et al. 2013). These
and subsequent works find concordance between the simulated and
observed cloud properties and interpret the agreement as evidence
for the validity of the simulation physics. The comparisons include
both the Larson scaling relationships and the mass distributions of the
molecular clouds. Guszejnov et al. (2020) further showed that, in their
simulation set, these GMC scaling relationships and distributions
of properties exhibited little variation for an isolated galaxy over
cosmic time. More recent work has also proposed using variations in
the scaling relationships and mass distributions to critically evaluate
the star formation models in the star-forming clouds (Fujimoto et al.
2019; Grisdale 2021; Li et al. 2020)

In this work, as well as S18 and Sun et al. (2020b), we have
identified variations in cloud properties with environment that can
be used as additional points of comparison with simulations. In
uniformly characterizing GMCs across several galaxies, we find
a range of cloud properties and modest changes in the scaling
relationships that can give context to any discrepancies between
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simulations and the canonical cloud population. Several simulation
studies have already explored the role of dynamical environment on
the properties of molecular clouds finding similar variations to what
we observe in bars and spiral arms (viz., increased mass scales and
changing virial parameters in bars and spiral arms; Fujimoto et al.
2014; Pettitt et al. 2018, 2020). Other studies find that simulated
clouds outside of bars show little sensitivity to the dynamical
environment of the disc (Duarte-Cabral & Dobbs 2016; Jeffreson
et al. 2020; Tress et al. 2020).

Such comparisons between simulations and observations must rec-
ognize the limited information available in the observational domain
and the critical role that observational effects play at shaping the
property and mass distributions that are extracted from observations
(see Section 4.1). While our observational work has made our best
effort to measure the ‘true’ properties of GMCs in other galaxies, the
most rigorous comparisons between simulations and observations are
carried out by generating mock observations (Smith et al. 2014; Pan
et al. 2015; Duarte-Cabral & Dobbs 2016; Khoperskov et al. 2016;
Izquierdo et al. 2021) and analysing those mock observations with
analysis algorithms from the observers’ toolkit such as PYCPROPS,
SCIMES (Colombo et al. 2015), or the LoS approach (Leroy et al.
2016). Dobbs et al. (2019) adopt this full analysis arc to identify
which star formation and feedback approaches in their simulations
yielded best matches to CO observations of M33, using the Larson
scaling relations and mass distributions as points of comparison. For
comparison to the PHANGS observations, we recommend generating
mock observations of CO(2–1) as well as homogenizing the data to
a common resolution and noise level (in this work, 75 mK in a
2.5 km s−1 channel and 90 pc resolution element). Mock GMCs
extracted with PYCPROPS can then be directly compared to this work
(e.g. Tables 4 and 5).

8 SU M M A RY

We present improved methods for identifying and characterizing
molecular clouds based on high-resolution CO observations of
external galaxies. These methods update the CPROPS algorithm
(Rosolowsky & Leroy 2006) to be better optimized for the ALMA
era. We implement them in a publicly available code, PYCPROPS

(URL given in footnote3). The methods largely follow RL06 with
the following notable improvements:

(i) Before any processing, we convolve all data sets to a common
physical resolution and add artificial noise to bring all data to a
common noise level. Following Hughes et al. (2013), this step is
essential for rigorous comparative analysis.

(ii) We carry out rigorous completeness tests by placing mock
clouds in the signal-free regions of the data cubes. We find that our
application of PYCPROPS is sensitive to ‘classical’ GMCs with �mol

≈ 102 M� pc−2 and αvir ≈ 2. We find a 50 per cent completeness
limit of 4.7 × 105 M� in our sample. Low surface density or unbound
gas will not be readily detected by our approach.

(iii) We shift the default segmentation algorithm to a seeded
watershed with a preference for compact structures. The key change
from CPROPS is that we decompose all significant emission into
clouds. This makes the final cloud properties less sensitive to clipping
corrections (‘extrapolation’), but risks artificially assigning diffuse
CO emission into clouds.

(iv) We make minor improvements to the treatments of cloud size,
the line spread function, and beam deconvolution compared to RL06.

3https://github.com/phangsteam/pycprops/

The homogenization and completeness tests are by far the most
important changes, and are prerequisites for a rigorous comparative
analysis of the large sets of new CO maps of nearby galaxies now
being produced by ALMA.

We apply our methods to catalogue molecular clouds based on the
12CO(2–1) emission for ten galaxies from PHANGS-ALMA. These
targets were selected to capture a diverse set of morphology, and are
close enough such that the PHANGS-ALMA data access a common
linear scale of 90 pc. After homogenizing the data, we characterize
4986 individual clouds with S/N > 6 and robustly determine their
basic physical properties including the effects of a spatially varying
CO-to-H2 conversion factor. Our key science results are:

(i) The clouds in our targets show 〈αvir〉 = 1.5 with a scatter of
0.4 dex but only weak galaxy-to-galaxy variations (but see below).
The typical cloud surface density, �mol, and normalized velocity
dispersions, σ0 ≡ σv/

√
R3D, vary among galaxies, but scale with one

another in the sense expected for approximately virialized clouds.
(ii) The above result implies good agreement between mass

estimates from the virial method and from the CO emission using
a spatially varying CO-to-H2 conversion factor. This provides an
independent validation of our adopted αCO prescription.

(iii) The typical cloud identified at 90 pc resolution in our targets
has molecular gas mass surface density �mol ≈ 100 M� pc−2, virial
parameter αvir ≈ 1.5, internal pressure Pint/kB ≈ 3 × 105 cm−3 K, and
gravitational free-fall time tff ≈ 6.4 Myr. Again, there are variations
in these mean parameters between galaxies that are comparable to
the range of GMC parameters within an individual galaxy, with cloud
populations in NGC 4826 and NGC 5068 showing the largest shifts
from the typical values.

(iv) We observe variations in surface density, line width, and cloud
internal pressure from galaxy to galaxy. The ±1σ of these parameters
are roughly a factor of four for the surface density and an order of
magnitude for the internal pressure.

(v) The mass distributions of clouds vary within and among galax-
ies. We fit mass spectra to the cloud catalogues of individual galaxies
and different galactic environments accounting for completeness.
The fits imply that blending is a significant factor in our ability to
recover clouds. In most cases, a pure power-law and a truncated
Schechter-like function work equally well. The pure power-law fits
show power-law indices β � −2, with the shallower cases consistent
with blending of distinct environments.

(vi) We often find high virial parameters, high line widths, and
high surface densities in the centres of galaxies. This may partially
reflect CO-to-H2 conversion factor effects in which molecular gas
tends to be overluminous in CO in galaxy centres. However, the
broad line widths that we observe suggest the presence of unresolved
streaming motions or diffuse gas in these systems.

(vii) Clouds in Bar regions, including the centres of barred
galaxies, show high line width at fixed surface density compared to
Spiral and Interarm regions. Meanwhile clouds in Spiral regions show
high surface density, lower virial parameter, and shorter gravitational
free-fall time compared to Interarm clouds.

Overall our scientific results are in good agreement with results
from the non-parametric, fixed-scale analysis of Sun et al. (2018,
2020b) also using the PHANGS-ALMA data. The improved methods
described in this paper will be applied to the full PHANGS-ALMA
sample with catalogues presented in Hughes et al. (in preparation).

This work was carried out as part of the PHANGS collabo-
ration. We are grateful for the comments of an anonymous ref-
eree whose review improved this work. This paper makes use of
the following ALMA data: ADS/JAO.ALMA#2015.1.00956.S and
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Figure S1. Integrated intensity map (‘moment 0’) of 12CO(2–1)
emission for NGC 0628 with locations of GMCs overlaid as red
ellipses.
Figure S2. As per Fig. 1 but for NGC 1637.
Figure S3. As per Fig. 1 but for NGC 2903.
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Figure S4. As per Fig. 1 but for NGC 3521.
Figure S5. As per Fig. 1 but for NGC 3621.
Figure S6. As per Fig. 1 but for NGC 4826.
Figure S7. As per Fig. 1 but for NGC 5068.
Figure S8. As per Fig. 1 but for NGC 5643.
Figure S9. As per Fig. 1 but for NGC 6300.
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APPENDI X: NATI VE R ESOLUTI ON
C ATA L O G U E A NA LY S I S

In Fig. A1, we present the scaling relationships for the GMC
catalogues of the 10 galaxies studied in this work without undergoing
the homogenization process. In this analysis, there are 6567 total

Figure A1. The scaling relationships between molecular cloud properties across the sample. In each panel, the individual clouds are presented as grey,
translucent points and the curves with points show the relationship for the ten galaxies giving the median values in bins set by the quantiles of the x-axis. The
shaded regions indicate where the false source insertion tests indicate < 50 per cent (yellow) and < 10 per cent (red) recovery of clouds in the test sample. Red
crosses indicate clouds found in the central kpc of their respective galaxies. The solid blue line indicates a reference relationship. Panel (a) shows the relationship
between surface density (�mol) and the turbulent line width on 1 pc scales (σ 0, plotted as σ 2

0 = σ 2
v /R). The blue line shows the locus of virialization. Panel (b)

shows the mass–radius relationship for the recovered clouds. The blue lines show lines of constant surface density. Panel (c) shows the relationship between a
virial mass estimate and the luminous mass estimate. The blue line shows the locus of equality. Panel (d) shows the size–line width relationship for GMCs with
the blue line showing the scaling identified in the Milky Way (S87).
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clouds but only 5697 clouds are included in the figures with peak
signal-to-noise ratio >6. The completeness regions are established
as before, namely as an average over the parameters (ci) of the
completeness fit across all galaxies. There is a significantly larger
range in completeness parameters owing to the different properties
of the data (Table 2).

A1 The �mol–σ 0 relationship

As in the homogenized population analysis, the population of
molecular clouds appears consistent with the locus of virialization.
The binned medians for each of the galaxies show that there appear
to be variations between the different systems. Most follow a positive
scaling relationship between the systems with the exception of
NGC 4826, an abnormal system where most of the molecular mass
is concentrated in a high surface density, nuclear disc with Rgal ≈
1.5 kpc. While clearly distinct in the common-resolution analysis,
the system appears even more abnormal here where the resolution of
the data sets is also significantly different.

A2 Mass–radius relationship

We show the native-resolution mass–radius relationship in
Fig. A1(b). Compared to the homogenized data, GMCs show a
wider range of catalogued properties but still with surface densities
roughly consistent with 102 M� pc−2. The censoring at the low end
of the mass and radius axes is more apparent in the native-resolution
study.

A3 Dynamical versus luminous mass

Fig. A1(c) presents the native-resolution comparison of the dynam-
ical (Mvir) and luminous (MCO) masses of the GMCs. Here, we
see significantly wider ranges of mass scales and implied virial
parameters for the clouds than we did in the homogenized data.
This illustrates the importance of the homogenization process, as
a simple reading of these results would argue that the mass scales
and dynamical state of these galaxies would be significantly different.
However, we see in the homogenized data that the galaxy populations
all occupy a common section of parameter space.

A4 Size–line width relationship

Fig. A1(d) shows the size–line width relationship for the clouds
studied at the native resolution. The apparent differences between

galaxies are clearly illustrated here where each galaxy occupies a
distinct locus in parameter space, but all galaxy populations show
good consistency with the slope of the relationship seen in the Milky
Way. This shows that the implied index of β = 0.5 that we adopt in the
work is well justified but that catalogues created with heterogeneous
noise levels and physical resolutions will necessarily lead to distinct
populations.
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