An Encounter With the Ion and Electron Diffusion Regions at a Flapping and Twisted Tail Current Sheet - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Journal of Geophysical Research Space Physics Year : 2021

An Encounter With the Ion and Electron Diffusion Regions at a Flapping and Twisted Tail Current Sheet

C. J. Farrugia
  • Function : Author
A. J. Rogers
  • Function : Author
R. B. Torbert
  • Function : Author
K. J. Genestreti
T. K. M. Nakamura
  • Function : Author
P. Montag
  • Function : Author
J. Egedal
D. Payne
  • Function : Author
A. Keesee
  • Function : Author
N. Ahmadi
R. Ergun
P. Reiff
  • Function : Author
M. Argall
  • Function : Author
H. Matsui
  • Function : Author
L. B. Wilson
  • Function : Author
N. Lugaz
  • Function : Author
J. L. Burch
  • Function : Author
C. T. Russell
  • Function : Author
S. A. Fuselier
I. Dors
  • Function : Author

Abstract

We analyze data returned by the Magnetospheric Multiscale mission (MMS) constellation during a rapid (∼1.5 s) traversal of a flapping and reconnecting current sheet (CS) in the near Earth magnetotail (X ∼−20 RE). The CS was highly tilted, with its normal pointing strongly duskward. Its extreme thinness was confirmed by a curvature analysis of the magnetic field lines. The event was associated with a guide field of 8% of the reconnecting components. From the pitch angle distributions of low energy electrons we infer a crossing earthward of the X line. Traveling practically normal to the CS, MMS encountered an ion diffusion region (IDR) in which was embedded an electron diffusion region (EDR). IDR signatures included breaking of the ion frozen in condition in the presence of Hall B and E fields. EDR signatures included a strong out of plane current associated with a superAlfvénic electron jet, positive energy transfer, and a temperature anisotropy (Te > Te) which disappeared at the field reversal. Derived scale sizes normal to the CS are: ∼6.9 de (EDR) and ∼0.4 di (IDR; 40 and 100 km). We estimate the average dimensionless reconnection rate as 0.077 ± 0.050. The observations and inferences are supported by particle in cell (PIC) numerical simulations. We find very good agreement in the reconnection rates. We also discuss the effects of asymmetries in the density, temperature and magnetic field strength on the Hall fields and length of the outflow jets. The event is associated with a substorm onset which began 7 min after the MMS observations.
Fichier principal
Vignette du fichier
JGR Space Physics - 2021 - Farrugia - An Encounter With the Ion and Electron Diffusion Regions at a Flapping and Twisted.pdf (6.33 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03672449 , version 1 (24-06-2022)

Licence

Copyright

Identifiers

Cite

C. J. Farrugia, A. J. Rogers, R. B. Torbert, K. J. Genestreti, T. K. M. Nakamura, et al.. An Encounter With the Ion and Electron Diffusion Regions at a Flapping and Twisted Tail Current Sheet. Journal of Geophysical Research Space Physics, 2021, 126, ⟨10.1029/2020JA028903⟩. ⟨insu-03672449⟩
13 View
16 Download

Altmetric

Share

Gmail Facebook X LinkedIn More