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Abstract
We present numerical simulations of full transition-edge sensor (TES) arrays uti-
lizing graphical processing units (GPUs). With the support of GPUs, it is possible 
to perform simulations of large pixel arrays to assist detector development. Com-
parisons with TES small-signal and noise theory confirm the representativity of the 
simulated data. In order to demonstrate the capabilities of this approach, we present 
its implementation in xifusim, a simulator for the X-ray Integral Field Unit, a cry-
ogenic X-ray spectrometer on board the future Athena X-ray observatory.

Keywords Transition-edge sensors · X-IFU · Detector modeling

1 Introduction

Superconducting transition-edge sensors (TES) are cryogenic energy sensors with 
applications as single-photon detectors from the near infrared through gamma rays 
[1, 2]. We present simulation software for detectors based on arrays of TESs where 
we implement a generic mathematical model of the TES electrothermal system. The 
software is also part of xifusim, a simulator we are developing for the X-ray Inte-
gral Field Unit (X-IFU) instrument [3] on board the future Athena X-ray observatory 
[4] to be launched in the early 2030s. The X-IFU is a cryogenic X-ray spectrometer 
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that operates a large array of TESs. The current baseline configuration consists of a 
hexagonal array of more than 3000 TES pixels that will provide spatially resolved 
high-resolution spectroscopy from 0.2 to 12 keV with an energy resolution of 2.5 
eV FWHM up to 7 keV. Numerical simulations of the detector allow us to study 
its performance under various operating conditions and to provide feedback to the 
detector development during design before entering the construction phase. The aim 
of xifusim is to provide a representative simulation of the full detection pipeline 
of the X-IFU including all relevant detector physics and the behavior of the read-
out chain. Our programming philosophy is to keep the software flexible to allow a 
quick implementation of new features and customizations. As such, we implemented 
a modular code design that separates the functionality of the software into independ-
ent and interchangeable blocks as shown in Fig. 1.

The input of the simulator is a list of X-ray photon impacts containing ener-
gies, arrival times and impact positions on the pixel array. If one wants to simulate 
an observation of an astrophysical source, such a list can also be generated with 
the Simulation of X-ray Telescopes (SIXTE) software package,1 a generic Monte 
Carlo-based simulation toolkit for observations with astronomical instruments [6, 
7]. The output of xifusim is a list of records that contains the digitized signal of 
all detected current pulses during the simulation. Event reconstruction algorithms 
can further analyze these records to retrieve the photon energies from the pulses [8]. 
xifusim has been derived from the tessim tool [9], a TES simulator developed 
as part of SIXTE. Our software is written in C++ and runs on a standard computer 
under Linux and macOS.

In this contribution, we focus on the first part of the pipeline, the TES array simula-
tion. Section 2 describes the TES model that we implement in our software. In Sect. 3, 
we provide details about the implementation and program structure. To enable long 
simulations of large pixel arrays, we have also implemented a version of the code that 
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Fig. 1  The data flow in xifusim. A list of photon impacts is propagated to the TES array where the 
responses of the individual pixels are calculated. Their signal is amplified in a set of SQUIDs, either 
using a simple, fast SQUID model or a model implementing the nonlinear SQUID response and base-
band feedback [5] ensured by the digital readout electronics (DRE). An analog–digital converter (ADC) 
maps the measured current into a digital signal which is passed to a trigger that detects the individual 
pulses in the datastream and writes them to the output file (Color figure online)

1 https ://www.stern warte .uni-erlan gen.de/resea rch/sixte /.

https://www.sternwarte.uni-erlangen.de/research/sixte/
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utilizes a GPU for acceleration if available. Finally, we show first verification efforts for 
our simulation output.

2  Model Description

The TES model we implement is based on the TES theory detailed in [1]. Figure 2 
shows a diagram of the electrothermal system consisting of the TES itself and a 
Thevenin-equivalent representation of the bias circuit with a bias voltage V and 
load resistor RL in series with an inductance L and the TES. Here, as well as in 
xifusim, we simulate a DC equivalent of the AC bias circuit foreseen for the 
X-IFU [10] where each TES is coupled to an LC filter via a transformer coupling 
with turns ratio a. In this circuit, the effective inductance and resistance seen by the 
TES are L = 2Lfilter∕a

2 and RL = Rpara∕a
2 , where Lfilter is the LC filter inductance 

and Rpara combines additional parasitic resistances in the circuit. The factor 2 in the 
effective inductance accounts for the fact that under AC bias, the TES sees two side-
bands of an RLC filter when our DC equivalent model simulates a single LR filter 
band. In this simplification, we are simulating the AC TES as if it reacted only to the 
RMS level of the current flowing through it. Models that fully take into account AC 
effects in TESs are in development [11, 12], but they are outside the scope of this 
contribution.

The thermal behavior is driven by the Joule heating in the TES, the signal power 
Pin and the power Pb lost due to the heat flow from the TES to the bath through the 
thermal link. In this electrothermal system, the evolution of the time-dependent tem-
perature, T(t), and current, I(t), in the TES is described by two coupled differential 
equations [1],

(1)C
dT

dt
= −Pb + R(T , I)I2 + Pin, T(tstart) = Tstart,

(2)L
dI

dt
= V − IRL − IRTES(T , I), I(tstart) = Istart,

TES

C

G

Heat Bath Tb

V

RL L

RTES

Fig. 2  Diagram of the electrothermal system that we implement in our software, consisting of the 
Thevenin-equivalent representation of the bias circuit coupled to the TES (after [1]). An equivalent bias 
voltage V is applied to a load resistor R

L
 , an inductance L, and the TES. We assume the TES to have a 

heat capacity C, which is connected to a heat bath at temperature T
b
 through a weak thermal link with 

thermal conductance G (Color figure online)
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where RTES(T , I) is a function that describes the shape of the TES resistance surface. 
In this contribution, we assume a linear resistance model around the operating point 
resistance R0 , temperature T0 and current I0 given by

where the steepness of the transition is described by the logarithmic temperature 
sensitivity �0 and current sensitivity �0 at the bias point. The power flow to the heat 
bath is modeled using a power-law dependence [1],

with a temperature exponent n (in general ~  3) and a material- and geometry-
dependent parameter K.

3  Simulation of TES Arrays

For a two-dimensional detector array of TES-based pixels, our simulator predicts the 
current signal I(t) in each pixel of the array during a given time interval [tstart, tstop] , 
based on a list of photon impacts with arrival times, energies and positions on the 
array. Since the performance of a real detector is greatly affected and limited by 
various noise processes, we also include several noise sources in our simulation. We 
can output any other system state variables required, such as the evolution of the 
pixel resistances or temperatures. Furthermore, individual parts of the TES model 
can be exchanged for another representation as needed. For example, one could read 
the resistance from a different RTI-surface model or extend the differential equa-
tion system to describe the TES as a resistively shunted junction [12]. We can also 
include temperature fluctuations of the heat bath due to cosmic ray hits on the detec-
tor wafer [13].

3.1  Implementation Details

First, the physical parameters of all pixels and their position within the array are read 
from an external file. The program then performs a numerical integration of Eqs. (1) 
and (2) at times tj = tstart + j�t , j = 1, 2,… , until tstop is reached, where �t is the step 
size of the integrator. Currently, we use a standard fourth-order Runge–Kutta inte-
grator taken from the boost C++ library odeint.2 Before each integration step, the 
list of photon impacts is checked for photons that would impact on the array during 
the next time step. The absorption of a photon is assumed to happen with instantane-
ous thermalization and modeled as a delta function impulse in the affected pixel. If 

(3)RTES(T , I) = R0 + �0
R0

T0
(T − T0) + �0

R0

I0
(I − I0),

(4)Pb(T , Tb) = K(Tn − Tn
b
),

2 www.odein t.com.

http://www.odeint.com
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two or more photons impact the same pixel during one time step, their energies are 
summed (pile-up).

Figure  3 shows an example output stream for a four-pixel array during a 30  s 
simulation where we use the current best estimate X-IFU pixel parameters. Noise is 
modeled as Gaussian noise by adding normally distributed random numbers to the 
electrical and thermal differential equation at every time step with an appropriate 
variance and normalization that takes the step size of the integrator into account. 
In our simulation, we assume the following spectral densities for the white noise 
sources injected in the differential equation system [1, 14, 15]:

We include Johnson noise of the TES [Eq.  (6)] and load resistor [Eq.  (7)] as well 
as thermal fluctuation noise between the TES and heat bath [Eq. (5)], where MP is 
a factor we introduced to scale the phonon noise level to match measurements. We 
also include noise from the bias line [Eq. (8)] and an excess Johnson noise param-
eter [Eq. (9)] which is based on empirical characterization to represent noise inter-
nal to the TES that is not fully understood as of yet. These white noise levels are 
updated at each time step to simulate the non-stationarity of the system. We note 

(5)p2
TFN

= 4kBT
2G

(

T

T0
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(1 +M2
P
) ×

1 +
(
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2
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(6)e2
nJ
= 4kBTR(T , I) ×
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)
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Fig. 3  Individual signals of a four-pixel configuration during a 30  s simulation with random photon 
impacts. The currents are flipped and normalized to the range 0–1 (Color figure online)
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that standard Runge–Kutta methods are formally not suited for the integration of dif-
ferential equations containing stochastic terms. As an alternative, we are investigat-
ing numerical algorithms specifically developed for stochastic differential equations 
[16]. First, results show a similar behavior between the two methods.

The run time of our software on a single-core processor depends mainly on the 
step size chosen for the integrator and the number of pixels in the array. To simulate 
one pixel for 1 s with a step size of �t = 6.4 × 10−6 s (foreseen final sampling rate 
for the X-IFU) takes about a quarter of a second. The run time scales linearly with 
the step size and number of pixels. Such run times are sufficient to study the behav-
ior of a configuration on short timescales. Longer simulations for large detectors 
consisting of thousands of pixels such as the X-IFU, however, would not be feasible 
in this framework. For such applications, we have also implemented a version of our 
code that utilizes a GPU for acceleration.

3.2  GPU Implementation

While CPUs typically consist of only few cores optimized for execution of sequen-
tial programs, GPUs are highly parallel manycore processors designed to execute 
thousands of tasks concurrently [17]. Since in our pixel-based simulation, the indi-
vidual signals can be computed mainly independently, a GPU is perfectly suited 
to simulate a 3000 pixels array. We have implemented the GPU version using the 
CUDA parallel computing platform and programming model by NVIDIA.3 The left 
panel of Fig. 4 shows a run time comparison between the two versions where we 
simulate different pixel array sizes for 1  s each time. On a single-core processor, 
the run time increases linearly with the number of pixels simulated, whereas on the 
GPU, the run time stays almost constant, leading to a speed increase by a factor of 
3000 for the largest configuration, which is exactly the anticipated behavior. For the 
Athena X-IFU with more than 3000 pixels, this reduces the computation time of a 
full observation with several kiloseconds exposure from a couple of months to a few 
hours.

Fig. 4  Left: Run time comparison between single-core and GPU-accelerated version of our code (using 
single-precision arithmetic on an Nvidia GeForce GTX 1080 Ti GPU) for different array sizes simulated 
for 1 s each. Right: Comparison between predicted and simulated noise levels. The bottom panel shows 
the differences between the two results (Color figure online)

3 https ://devel oper.nvidi a.com/cuda-zone.

https://developer.nvidia.com/cuda-zone
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3.3  Verification of the Simulation Output

We investigated different means to verify our simulation output. As a first confirma-
tion of our implementation, we have compared our simulated pulses with the TES 
small-signal model [1]. By linearizing Eqs. (1) and (2) around the equilibrium, one 
can approximate their solution for small signals. As illustrated in Fig. 5, the simula-
tion matches with this model for low photon energies. For higher photon energies, 
the pulses start to deviate since the small-signal approximation just scales linearly 
with energy, while the simulation takes the nonlinearities of the system into account.

The right panel of Fig. 4 shows a comparison between the power spectral density 
(PSD) of the current noise as derived in [1] with the linear equilibrium ansatz and 
the PSD of a simulated current stream. The noise sources included in this compari-
son are thermal fluctuation noise, amplifier noise and electrical Johnson noise of the 
TES and load resistor. We find that the PSD of our simulated stream matches the 
theoretically predicted values very well. The next step in our verification efforts will 
be comparisons with laboratory measurements.

4  Conclusions

We have presented a simulation software for detectors that are made up of TES-
based pixel arrays. In our program, we implement a generic model of a TES 
described by the coupled electrical and thermal circuits and numerically calculate 
the pixel signals during incident photon impacts. The software is currently used in 
the xifusim program, a simulator for the Athena X-IFU instrument. In order to 
study the behavior of large pixel arrays like the X-IFU, we have also implemented 
a version of our code that uses a GPU for acceleration. We find that our simulation 
output compares as expected with the TES small-signal model and predicted noise 
levels. Comparisons with measured data will be performed next.

Fig. 5  Pulse shape comparison between simulation and TES small-signal model for different photon 
energies. The pulses match very well for small energies. For higher energies, they start to deviate as 
expected due to the nonlinearity of the readout circuit (Color figure online)
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