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ABSTRACT

Context. Atmospheric superrotating flows at the equator are a nearly ubiquitous result when conducting simulations of hot Jupiters.
One theory explaining how this zonally-coherent flow reaches equilibrium has already been developed in the literature. This under-
standing, however, relies on the existence of either an initial superrotating flow or a sheared flow, coupled with a slow evolution that
permits a linear steady state to be reached.
Aims. A consistent physical understanding of superrotation is needed for arbitrary drag and radiative timescales, along with the rele-
vance of taking linear steady states into account, needs to be assessed.
Methods. We obtained an analytical expression for the structure, frequency, and decay rate of propagating waves in hot Jupiter atmo-
spheres around a state at rest in the 2D shallow-water β-plane limit. We solved this expression numerically and confirmed the robustness
of our results with a 3D linear wave algorithm. We then compared it with 3D simulations of hot Jupiter atmospheres and studied the
nonlinear momentum fluxes.
Results. We show that under strong day-night heating, the dynamics do not transit through a linear steady state when starting from an
initial atmosphere in solid body rotation. We further demonstrate that nonlinear effects favor the initial spin-up of superrotation and
that acceleration due to the vertical component of the eddy-momentum flux is critical to the initial development of superrotation.
Conclusions. We describe the initial phases of the acceleration of superrotation, including the consideration of differing radiative
and drag timescales, and we conclude that eddy-momentum-driven superrotating equatorial jets are robust, physical phenomena in
simulations of hot Jupiter atmospheres.

Key words. planets and satellites: gaseous planets – planets and satellites: atmospheres – hydrodynamics – waves –
methods: analytical – methods: numerical

1. Introduction

Understanding the atmospheric dynamics of hot Jupiters, which
are Jovian planets in short-period orbits, has been a major chal-
lenge since their discovery (Mayor & Queloz 1995). Due to their
proximity to the host star, hot Jupiters are expected to be tidally-
locked (for a review, see Baraffe et al. 2010), resulting in a
permanent day-and-night-side driving atmospheric circulations
with no equivalent in our solar system. This, in turn, is likely
to lead to the mixing of material between the two hemispheres
(Drummond et al. 2018a,b).

Cooper & Showman (2005) performed the first study of the
atmosphere of HD 209458b (e.g., Charbonneau et al. 2002; Sing
et al. 2008; Snellen et al. 2008) using a general circulation model
(GCM). Such GCMs have been used extensively to character-
ize hot Jupiters (e.g., Showman et al. 2008; Heng et al. 2011;
Rauscher & Menou 2012; Dobbs-Dixon & Agol 2013; Mayne
et al. 2014a; Helling et al. 2016). The physical complexity, or
completeness, of these GCMs varies greatly; for example, treat-
ments of the dynamics and radiative transfer range from those
adopting the primitive equations of dynamics, along with sim-
ple Newtonian cooling, to those solving the full Navier–Stokes
equations and more accurate radiative transfer (see, notably,
Amundsen et al. 2014, 2016). Recent advances have also been

made in the treatment of chemistry, regarding both the gas phase
(see Drummond et al. 2016, 2018c,a,b; Tsai et al. 2018) and the
condensates, or clouds (Lee et al. 2016; Lines et al. 2018a,b;
Roman & Rauscher 2019).

There is a common feature that has emerged from almost all
GCM studies of hot Jupiters: the atmosphere exhibits equato-
rial superrotation, a prograde atmospheric wind velocity, greater
than that which arises from the rotation of the planet alone, over
a range of pressures. Observations have detected an eastward
shift of the peak infrared flux from the substellar point in the
atmosphere of hot Jupiters (Knutson et al. 2007; Zellem et al.
2014), which is consistent with that found in simulations caused
by the advection of heat by the superrotating jet. Mayne et al.
(2017) attempted to suppress the formation of the equatorial jet
in simulated hot Jupiter atmospheres by forcing the deep atmo-
spheric flow or by altering the model parameters. They found
superrotation to be a very robust feature in numerical simula-
tions. However, a recent measurement has inferred an opposite,
westward shift for CoRoT-2b (Dang et al. 2018). Armstrong et al.
(2016) previously obtained variability in the position of the hot
spot over time, suggesting an additional layer of complexity (a
potential link to magnetic fields has recently been investigated by
Hindle et al. 2019). Superrotation, therefore, must be explained
on the basis of sound physical arguments.
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Showman & Polvani (2011) were the first to study the forma-
tion of a superrotating jet in simulated hot Jupiter atmospheres
using a simplified two-layer model. In exploring the linear steady
state of the atmosphere, Showman & Polvani (2011) highlight the
formation of a Matsuno–Gill (hereafter MG, see Matsuno 1966;
Gill 1980) pattern, whereby the atmospheric perturbations are
“tilted” in the latitude-longitude plane driving momentum trans-
port to the equator and accelerating the jet. Showman & Polvani
(2011) posit that the nonlinear equilibrium is reached when the
transport of meridional and vertical eddy momentum into the
region, acting to accelerate and decelerate the jet, respectively,
are balanced by the atmospheric drag. Tsai et al. (2014) extend
the study to a full 3D dynamical model and include a considera-
tion of the resonance of the atmospheric wave response, as well
as the “tilt” of the vertical component which acts to drive the ver-
tical eddy-momentum transport, under the assumption of equal
drag and radiative timescales. This is followed by Hammond &
Pierrehumbert (2018), who explore superrotation in 2D with the
addition of a shearing flow. Perez-Becker & Showman (2013)
consider the propagation of waves and the resulting balance
for the equilibrated jet and propose diagnostics for predicting
the day-to-night temperature contrast, controlled by the effi-
ciency of the zonal advection. This analysis is improved upon by
Komacek & Showman (2016) across an extensive range of
dissipation timescales.

There is, however, an inherent discrepancy between the
works of Komacek & Showman (2016) and Showman & Polvani
(2011): when the atmospheric drag timescale is large, superior
to a few 105 s, the linear steady states obtained in Komacek
& Showman (2016) tend to decelerate the equator although the
associated nonlinear steady states exhibit equatorial superrota-
tion. This raises the question of whether superrotation can be
properly explained through the transition from a linear steady
state.

Specifically, the study of Tsai et al. (2014) is only valid
through the moderate to strong dissipation limit. The study of
Hammond & Pierrehumbert (2018) requires an initial sheared
superrotation. However, Komacek & Showman (2016) show that
superrotation develops only if the dissipation is sufficiently low
(see their Fig. 4). Current theories are, therefore, applicable only
once an initial flow has been set up and its evolution is slow
compared to the wave propagation time.

In this study, we address the issue of what drives the initial
spin-up of superrotation in simulated hot Jupiter atmospheres. In
order to do this we develop a description of the time-dependent
waves supported by our simulations of hot-Jupiter atmospheres
with arbitrary drag and radiative timescales and we determine
which are responsible for driving the evolution of the jet. Firstly,
in Sect. 2, we state our main assumptions and develop the
mathematical framework we have adopted throughout this work,
before finding the form of the time-dependent linear solution
to the beta-plane equations. Additionally, in this section we
summarize the main results of Showman & Polvani (2011),
Tsai et al. (2014) and Komacek & Showman (2016), which we
have based our study upon. Obtaining the form of the solution
to the time-dependent case is not sufficient as the controlling
parameters remain unconstrained and are not easily accessible
analytically. Therefore, in Sect. 3 we numerically explore the
sensitivity of the steady linear solution to the shape of the forc-
ing, or heating, showing that the linear steady state requires a
day-night heating contrast but that it is insensitive to the exact
shape of the forcing itself. This confirms that the limitations of
the current theory do not come from the simplified form of
the forcing but the time-dependent linear considerations must

be included. Therefore, we conduct a numerical study of the
propagating waves, apart from the special case of Kelvin waves
(which have an analytical expression) to build a more complete
picture of the physical process of the acceleration of superrota-
tion. In Sect. 4 we determine the characteristic decay timescale
for different waves and arbitrary dissipative timescales which
are used to explain the structure of both the linear steady states
presented in Fig. 5 of Komacek & Showman (2016) and the time-
dependent linear evolution of simulated hot Jupiters. In Sect. 5,
we combine the understanding developed throughout this study
to detail the transition to superrotation in 3D GCM simulations
through eddy-mean flow interaction under different conditions,
revealing the importance of time-dependent linear considera-
tions as well as vertical momentum transport across different
drag and forcing regimes. Finally, we summarize our conclu-
sions in Sect. 6. Overall, our study shows that the paradigm
of equatorial superrotation in hot Jupiters is robust: superro-
tation is accelerated by an eddy-mean flow interaction (i.e.,
atmospheric waves interacting with the background flow) and
it is strongly influenced by the wave-dissipation timescales and
vertical momentum convergence.

2. Solution to 2D shallow water equations

2.1. Theoretical framework

For this study, we adopted the 2D shallow water equations under
the equatorial β-plane approximation. As in Showman & Polvani
(2011), the shallow water approximation consists of consider-
ing that the planet can be decomposed into an upper, constant
density but dynamically active layer with a free surface at the
bottom exchanging heat and momentum with a lower, quiescent
layer of a much higher density. The equatorial β-plane simpli-
fies the view of the spherical planet as a local Cartesian plane
at the equator, with the Coriolis parameter depending linearly on
the Cartesian meridional coordinate, y, with a factor of propor-
tionality β = 2Ω/R, where Ω is the rotation rate of the planet and
R its radius. The further away from the equator, the less valid this
approximation, but it allows for analytic solutions, making it par-
ticularly suited for the study of equatorial superrotation. Wu et al.
(2000) show that the 3D structure of solutions to the β-plane sys-
tem can be decomposed onto an infinite sum of solutions of 2D
β-planes with different characteristic heights. The importance of
this decomposition regarding hot Jupiter atmospheric dynamics
is emphasized by Tsai et al. (2014), where a vertical shift of the
wave response is presented when the mean background velocity
is changed (their Fig. 10). We begin by summarising the main
results of Matsuno (1966), Gill (1980), and Showman & Polvani
(2011), all of which solve the 2D β-plane equations.

Following Showman & Polvani (2011), the non-dimensional,
linearized equations of motion for a forced 2D, equatorial
β-plane can be written as

∂u
∂t
− yv +

∂h
∂x

+
u

τdrag
= 0, (1)

∂v

∂t
+ yu +

∂h
∂y

+
v

τdrag
= 0, (2)

∂h
∂t

+
∂u
∂x

+
∂v

∂y
+

h
τrad

= Q, (3)

where x and y are the horizontal coordinates, t is time, u is
the zonal velocity (x direction), v the meridional (y direction),
h the height (H) of the shallow water fluid minus the initial,
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horizontally-constant height (H0), that is, h = H − H0, τdrag the
drag timescale, τrad the radiative timescale, and Q the heating
function. The characteristic length, speed and time, correspond-
ing to the Rossby deformation radius, the gravity wave speed,
and the time for a gravity wave to cross a deformation radius in
the shallow water system are:

L =
(
β−1

√
gH0

)1/2
, (4)

U =
√
gH0, (5)

T =
(
β
√
gH0

)−1/2
, (6)

respectively, where g is the gravitational acceleration assumed
constant, and β = 2Ω cos φ/R or the derivative of the Rossby
parameter with φ the latitude of the β-plane. For the rest of this
paper, we only consider φ = 0.

Equations (1)–(3) form a linear differential equation of the
form ∂X/∂t = LX + Q, where X = (u, v, h) is a vector of solu-
tions, L a linear operator, and Q = (0, 0,Q) is the vector form of
the forcing. Hence, the solution is the sum of a homogeneous and
a particular solution. The spatial part of the 3D solution can be
expressed as an infinite sum of modes indexed by m with equiv-
alent depth Hm instead of H0. The orthogonal base functions are
sinusoidal in z, the vertical coordinate, and of the form ei(mz) with
m ∈ N and the heating must be decomposed onto these functions
(see Tsai et al. 2014 Sect. 2 for the rescaling of z and Wu et al.
2000 Sect. 2 for a discussion on boundary conditions).

When neither drag nor heating are considered, Matsuno
(1966) expresses the analytic solutions to the homogeneous
equations in the form of {u, v, h} = {ũ, ṽ, h̃} exp(iωt + ikx), where
ω is the complex frequency, k the longitudinal wavenumber
and a tilde denotes a function of y only. Dropping the tilde for
simplicity, the homogeneous equations can be expressed as:

iωu − yv + ikh = 0, (7)

iωv + yu +
∂h
∂y

= 0, (8)

iωh + iku +
∂v

∂y
= 0. (9)

Matsuno (1966) showed that this system can be reduced to a
single equation for v, namely,

∂2v

∂y2 +

(
ω2 − k2 +

k
ω
− y2

)
v = 0. (10)

Through an analogy with the Schrödinger equation of a simple
harmonic oscillator, the boundary condition v → 0 when |y| →
∞ requires

ω2 − k2 +
k
ω

= 2n + 1, (11)

with n ∈ N. As this is a third order equation, the eigenvalues for
the frequency are labelled ωn,l with l = 0, 1, 2, and the corre-
sponding eigenvectors are labelled X̃n,l = (un,l, vn,l, hn,l). Finally,
the case where n = 0 is treated separately and the important case
where v is identically null is similar to a coastal Kelvin wave,
with ω = −k (Matsuno 1966). The form of the solutions in the
y direction are expressed through the use of the parabolic
cylinder functions ψn, given by

ψn(y) = Hn(y)e−y
2/2, (12)

where Hn is the nth Hermite polynomial. Finally, simple mathe-
matical arguments show that the eigenvalue ω is always real: the
homogeneous solutions are only neutral modes. Matsuno (1966)
also shows that the eigenvectors of Eqs. (7)–(9) form a complete,
orthogonal set of the 2D beta-plane: at a given time, any function
on the beta plane can be written as a linear combination of the
ψn(y) exp(ikx) functions.

Matsuno (1966) and Gill (1980) obtained the steady state
solution to Eqs. (1)–(3) under the inclusion of heating (and cool-
ing) and drag. The completeness and orthogonality of the above
functions allows us to write:

Q =
∑
n,l

qn,lX̃n,l, (13)

where qn,l is the projection of Q onto X̃n,l. In their Eq. (34),
Matsuno (1966) showed that a steady solution X to the forced
problem with τdrag = τrad is given by

X =
∑
n,l

qn,l

τ−1
drag − iωn,l

X̃n,l. (14)

Showman & Polvani (2011) show that for a horizontal wavenum-
ber one representing the asymmetric heating of hot Jupiters
and τdrag = τrad = 105 s, the steady linear solution exhibits a
“chevron-shaped” pattern (in pressure, density, or temperature)
which has been denominated the Matsuno–Gill (MG) solution,
leading to a net acceleration of the equator at the nonlinear order.
However, it is not clear whether a linear steady state is relevant
in a case where nonlinearities are likely dominant, such as in the
case of hot Jupiters, where the extreme forcing is likely to trig-
ger nonlinear effects over short timescales. It also is not clear
whether it is appropriate to choose equal values for both dis-
sipation timescales. Therefore, we require the time-dependent
solution of Eqs. (1)–(3) in the general case, which are expressed
in Sect. 2.3.

2.2. Nonlinear accelerations from the linear steady state

Now that we have reviewed the main assumptions and equations
for our basic framework, we move on in this section to a sum-
mary of the key results from Showman & Polvani (2011) and Tsai
et al. (2014). A key conclusion drawn by Showman & Polvani
(2011) is that the MG pattern is a linear steady state but that the
nonlinear accelerations from this circulation trigger an equato-
rial superrotation. In considering a linear perturbation (a wave
or a steady linear circulation) associated with velocities u′, v′, w′
in the longitudinal, latitudinal, and vertical directions, respec-
tively, the nonlinear momentum fluxes per unit mass from this
perturbation scale as

φl ∝ u′v′, (15)

φv ∝ u′w′, (16)

where φl is the latitudinal flux of momentum, φv the vertical and
an overline denotes a longitudinal average. When φl is positive,
there is a net transport of eastward momentum to the North,
with a negative value resulting in a net transport to the South.
When φv is positive, there is a net transport of eastward momen-
tum upward or downwards when it is negative. Therefore, if
φl is negative in the mid-latitudes of the Northern hemisphere
and positive in the Southern hemisphere, there is a net merid-
ional convergence of eastward momentum (a similar argument
applies in the vertical coordinate for a 3D systems). For the
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Fig. 1. Temperature (colorscale in K) and horizontal wind (arrows) as
a function of longitude (x axis) and latitude (y axis) at the 40 mbar
pressure level of the linear steady state (denominated MG circulation)
obtained using ECLIPS3D (Debras et al. 2019) with heating function,
drag and radiative timescales following the definitions of Komacek
& Showman (2016). Following the notation of Komacek & Showman
(2016): (a) ∆Teq,top = 100 K, τdrag,top = 105 s and τrad,top = 105 s. The
maximum speed at this pressure range is 10 m s−1. (b) ∆Teq,top = 100 K,
τdrag,top = 106 s and τrad,top = 104 s. The maximum speed at this pressure
range is 100 m s−1. Note that the maximum speed has been multiplied
by ten as the drag timescale has been multiplied by ten.

shallow-water β-plane system used in Showman & Polvani
(2011), the vertical momentum flux is accounted for by the addi-
tion of a coupling term between the deeper (high-pressure), qui-
escent atmosphere and the dynamically active (lower-pressure)
atmosphere (R term in Eqs. (9) and (10) of Showman & Polvani
2011).

In Fig. 1a, we present the temperature (color scale, K) and
wind vectors (vector arrows) as a function of latitude and lon-
gitude for a typical MG circulation. This 3D linear steady state
was obtained using ECLIPS3D (see Debras et al. 2019 for the
details and benchmarking of ECLIPS3D), a linear solver for
waves, instabilities, and linear steady states of an atmosphere
under prescribed heating and drag. The initial state around which
the equations are linearized is an axisymmetric, hydrostatically-
balanced state at rest. The bottom pressure is set to 220 bars
and the temperature profile follows that of Iro et al. (2005),
with the polynomial fit in the log of pressure of Heng et al.
(2011), assuming an ideal gas equation of state. Due to the very

Table 1. Value of the standard parameters for HD 209458b, following
Mayne et al. (2014b).

Quantity Value

Radius, Rp (m) 9.44 × 107

Rotation rate, Ω (s−1) 2.06 × 10−5

Depth of the atmosphere, Rtop (m) 1.1 × 107

Surface gravity, gp (ms−2) 9.42
Inner boundary pressure, pmax (Pascals, Pa) 220 × 105

Specific heat capacity (constant pressure), cp (Jkg−1K−1) 14 308.4
Ideal gas constant, R (Jkg−1K−1) 4593

high inner boundary pressure, the choice of the inner boundary
condition does not impact our results. The physical parameters
relevant for HD 209458b used in this setup, namely the radius
Rp, the rotation rate Ω, the depth of the atmosphere Rtop, the
surface gravity gp, the inner boundary pressure pmax, the spe-
cific heat capacity cp, and the ideal gas constant R are given
in Table 1. Finally, the heating as well as drag and radiative
timescales were prescribed as in Komacek & Showman (2016)
with the addition of an exponential decay in the heating in the
upper, lower-pressure part of the atmosphere. The exponential
damping acts to mimic the damping of vertical velocities close to
the outer boundary, or “sponge layer” applied in 3D GCMs (see
e.g., Mayne et al. 2014b). In turn, this damping layer allows the
adoption of a “no escape” or reflective outer boundary condition,
which would otherwise reflect waves back into the numerical
domain. The equilibrium temperature towards which the atmo-
sphere relaxes is a sinusoidal function of latitude and longitude,
and ∆Teq, the equilibrium day side-night side temperature dif-
ference, decreases logarithmically in pressure between 10−3 bar
where ∆Teq = ∆Teq,top (the value at the top of the atmosphere
which is set to 10 K in this case) to 10 bars where ∆Teq = 0.
The drag timescale, τdrag, is constant throughout the atmosphere
at 105 s and the radiative timescale, τrad, is a logarithmically
increasing function of pressure (see Eq. (7) of Komacek &
Showman 2016) between 10−2 bar where τrad = τrad,top = 105 s
and 10 bar where τrad = 107 s.

As shown in Fig. 1a, the maximum temperature at the equa-
tor is shifted eastward from the substellar point (the substellar
point is set at a longitude of 180 degrees) in our results consistent
with observations (Knutson et al. 2007; Zellem et al. 2014). The
meridional circulation exhibits a Rossby wave-type circulation
at mid latitudes, with clockwise or counter-clockwise rotation
around the pressure maxima, and a Kelvin wave type circul-
ation at the equator, with no meridional velocities. The combi-
nation of both of these circulations brings eastward momentum
to the equator to the East of the substellar point, and advects
westward momentum to the mid-latitudes to the West of the sub-
stellar point. Globally, it is easily shown that φl is indeed negative
in the Northern hemisphere and positive in the Southern hemi-
sphere: there is a net convergence of eastward momentum at the
equator. According to Showman & Polvani (2011), this conver-
gence is associated with divergence of vertical momentum flux,
and equilibration occurs when the vertical and meridional terms
balance.

Tsai et al. (2014) further extend this understanding to include
vertical transport more completely. Tsai et al. (2014) project
the heating function onto equivalent height β-plane solutions
(see Sect. 2.1), showing that the vertical behavior of the waves
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can be linked to the equilibration of the jet (a synonym
used here and throughout this work for the term “equatorial
superrotation”). More precisely, Tsai et al. (2014) show that in
the limit of slow evolution (or strong dissipation), their linear
development around a steady flow with constant background
zonal velocity reproduces the wave processes occurring in 3D
simulations extremely well. Tsai et al. (2014) show that the wave
response of the atmosphere is shifted from west to east when
the background zonal velocity is increased (their Fig. 10): this is
interpreted as a convergence toward a single equilibrium state,
where the nonlinear acceleration from the linear processes are
canceled out. While they are very detailed and physically rel-
evant, the results of Tsai et al. (2014) are, as they state, only
applicable to the strong or modest damping scenario, dictated
by the fact that the waves must have the time to reach a station-
ary state before nonlinearities become significant. Throughout
this work, we define the drag regime relative to the initial accel-
eration of the jet: in the “weak” drag regime, nonlinear terms
become non-negligible before a linear steady state (MG) could
have been reached; whereas in the “modest” drag regime, the
time required to reach the MG state is comparable with the time
to depart from this linear steady state; and in the “strong” drag
regime, we can decouple the linear and the nonlinear evolution of
the planet, as considered by Showman & Polvani (2011). Once an
initial jet has been accelerated, the evolution of the atmosphere
is much slower than its initial acceleration and the results of Tsai
et al. (2014) apply, even in a weak drag regime, explaining the
consistency of their work for the evolution of the jet toward an
equilibrated state.

Komacek & Showman (2016) compare the steady states from
various 3D GCM simulations across a range of τrad and τdrag
values (their Figs. 4 and 5). The simulations of Komacek &
Showman (2016) extend from low-forcing, hence a linear steady
state, to strong-forcing, hence a nonlinear steady state. Contrary
to the conclusions of Showman & Polvani (2011), Komacek &
Showman (2016) also show that when the linear steady state
resembles that of Fig. 1a, the associated nonlinear steady state
is not (or only weakly) superrotating. This can be understood by
considering the fact that τdrag is smaller than the characteristic
timescale of advection by the superrotating jet over the whole
planet, hence the jet is dissipated before it can reach a steady
state. In Fig. 1b, we present the results from ECLIPS3D that are
obtained when reproducing a particular setup from Komacek &
Showman (2016), namely, that with τdrag = 106 s and τrad,top =

104 s. According to the analysis of Komacek & Showman (2016),
the nonlinear steady state associated with the linear steady state
of Fig. 1b does indeed exhibit strong superrotation, although
the tilt of the wave in Fig. 1b would lead to a removal of the
momentum at the equator. Komacek & Showman (2016)
acknowledge this in writing, “these phase tilts are the exact oppo-
site of those that are needed to drive superrotation”. As for the
explanation of Showman & Polvani (2011), the stationary wave
pattern obtained from the heating is postulated to accelerate
superrotation but Komacek & Showman (2016) present results
which are in opposition to this scenario: when the linear steady
state accelerates the equator (Fig. 1a, with τdrag = 105 s) the asso-
ciated nonlinear steady state is not superrotating. However, when
the linear steady state takes momentum away from the equator
(Fig. 1b, with τdrag = 106 s), the nonlinear steady state is superro-
tating. Thus, there is an inherent discrepancy between Showman
& Polvani (2011) and Komacek & Showman (2016). In order to
understand this discrepancy, we need to go a step beyond the sole
consideration of a linear steady state and study the evolution of

the linear solution over time. This is the objective of Sects. 2.3
and 4.

2.3. Time-dependent solutions

Now that we have established the basic mathematical system and
summarized the current picture of superrotation in hot Jupiter
atmospheres, we move on to expressing the time-dependent solu-
tion to the forced problem which provides us with the shape
of the atmospheric wave response. Our main assumption is that
the heating function can be decomposed onto the homogeneous
solutions of Eqs. (17)–(19). When τrad = τdrag, the horizontal
part (defined as Xn,l(x, y, t = 0) in Eq. (20)) of the eigenvec-
tors still form a complete set of the equatorial β-plane because
of the orthogonality and completeness of the Hermite functions,
as in Matsuno (1966). However, when τrad , τdrag, the eigen-
vectors are no longer orthogonal, as shown in Appendix A, and
a rigorous proof would be needed to show that they still form
a complete set of solutions1. From a physical perspective, it is
expected that the heating function would trigger linear waves
which are solutions of the homogeneous equation and such a
decomposition of the heating function onto these waves there-
fore probably exists, although it is no longer simply given by a
scalar product. Finally, it is worth stating that solving ∂X/∂t =
aX + Q is straightforward (except that we don’t know the eigen-
values and eigenvectors of the homogeneous equation), however,
employing a Green’s function to solve this equation provides a
more physically intuitive result in terms of wave propagation and
dissipation.

With the addition of a drag timescale, τdrag, and a radiative
timescale, τrad, Eqs. (7)–(9) can be modified to yield(
iω +

1
τdrag

)
u − yv + ikh = 0, (17)(

iω +
1

τdrag

)
v + yu +

∂h
∂y

= 0, (18)(
iω +

1
τrad

)
h + iku +

∂v

∂y
= 0. (19)

Indexing again the solutions by n and l as in Matsuno (1966), we
define

Xn,l = (un,l, vn,l, hn,l) = X̃n,l(y)eikx+(iνn,l−σn,l)t (20)

as an eigenvector of Eqs. (17), (18), and (19), with X̃n,l(y) the
amplitude of the wave, k the horizontal wave number, νn,l its
frequency, and σn,l its damping (or growing/growth) rate (note
that ωn,l = νn,l + iσn,l). We also define L as the operator of
the same equations, such that LXn,l = 0 for all n and l. The
general equation can then be written as LXF = Q, where Q is
the forcing which, as it is only present in the third individual
equation is given by Q = (0, 0,Q), and XF is the forced, time-
dependent solution. A homogeneous solution XH can be written
in its general form as

XH =
∑
n,l

αn,lXn,l, (21)

where αn,l are scalars.

1 Although the eigenvectors remain linearly independent, a Gram-
Schmidt method could ensure creation of an orthogonal set of these
eigenvectors.
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When τdrag = τrad, νn,l are similar to the ωn,l of Matsuno
(1966) and σn,l = τ−1

drag for all (n, l). When τdrag , τrad, the analyt-
ical expressions for νn,l and σn,l are not known a priori. In order
to solve the general equation, we seek the causal Green function
XG that represents the solution at time t due to switching on the
forcing at time t′ only. Therefore, for all t and t′:

LXG(x, y, t, t′) = δ(t − t′)F(x, y, t′), (22)

where δ(t) is the Dirac distribution and F is the heating function.
In the case of simulated hot-Jupiter atmospheres, the star is
effectively “switched on” at t = 0, after which the heating is
constant with time (in the linear limit). F can then simply be
expressed as F(x, y, t′) = Θ(t′)Q(x, y), where Θ(t) is the Heavy-
side function (null when t < 0 and equal to 1 otherwise). The
forced solution of Eqs. (17)–(19) is simply the integral over t′ of
the causal Green function, hence the sum of the responses of the
atmosphere excited by a Dirac function of the forcing at time t′:

XF =

∫ ∞

−∞

XG(t − t′)Θ(t′)dt′ =

∫ t

0
XG(t − t′)Θ(t′)dt′, (23)

where the change in the upper limit of integration can be made
due to the fact that the Green function is causal and is, therefore,
zero when t − t′ is negative . From the definition of the Green
function (Eq. (22)), for (t−t′) > 0 we have LXG = 0. Hence, XG
is a homogeneous solution of Eqs. (17)–(19) when t > t′. It is
then logical to choose for XG:

XG(t, t′) = Θ(t − t′)
∑
n,l

αn,lXn,l(t − t′), (24)

and it is easily verified that

LXG = δ(t − t′)
∑
n,l

αn,lXn,l(t − t′)

+ Θ(t − t′)
∂

∂t

∑
n,l

αn,lXn,l(t − t′)

+ LhΘ(t − t′)
∑
n,l

αn,lXn,l(t − t′),

= δ(t − t′)
∑
n,l

αn,lXn,l(t − t′) + Θ(t − t′)L
∑
n,l

αn,lXn,l(t − t′),

= δ(t − t′)
∑
n,l

αn,lXn,l(t − t′), (25)

where we have used the fact that the derivative of the Heavyside
function is the Dirac distribution, L = ∂/∂t +Lh where Lh is an
operator acting on the horizontal coordinates only andLXn,l = 0.
Therefore, in order to solve the forced problem we can project the
forcing onto the homogeneous solutions and write for t = t′:∑
n,l

αn,lXn,l(t = t′) =
∑
n,l

αn,lX̃n,l = Q(x, y). (26)

The first equality simply arises from the definition of X̃n,l,
whereas the second uses Eq. (22). Therefore, if we know the
projection of Q onto the X̃n,l, the αn,l quantities, the final solu-
tion can be obtained. By setting αn,l = qn,l, we recover the results
of the previous section (these are termed bm and bm,n,l in Matsuno
(1966) and Tsai et al. (2014), respectively, where the latter is in
3D). The solution to the forced problem is given by injecting the

Green function (Eq. (24)) into Eq. (23):

XF =

∫ ∞

−∞

∑
n,l

qn,lXn,l(t − t′)Θ(t − t′)Θ(t′)dt′,

=
∑
n,l

∫ t

0
qn,lX̃n,l(x, y)e(iνn,l−σn,l)(t−t′)Θ(t′)dt′. (27)

Under this integral form, it is clear that the solution is the con-
tinual excitation (the Θ term) of waves with a characteristic
frequency νn,l and time of decay of σ−1

n,l . The amplitude of the
excited waves is proportional to their projection onto the forcing
function Q, as explained by Gill (1980) and Tsai et al. (2014).
Solving this integral yields:

XF =
∑
n,l

qn,lX̃n,l

σn,l − iνn,l

(
1 − e(iνn,l−σn,l)(t)

)
. (28)

In this form, we simply recover the results of Matsuno (1966)
and, notably, their Eq. (34) or our Eq. (14),

XMG =
∑
n,l

qn,lX̃n,l

σn,l − iνn,l
, (29)

where XMG is the MG solution, hence the steady solution to the
forced problem. The time-dependent part of the solution could
have been obtained from a simple first-order equation solution.
However, the Green function formalism allows us to determine
that the solution consists of permanently-forced waves that are
damped with time and that the shape of the atmosphere is given
by the interactions between these waves. Using Eq. (27), we can
write

XMG = lim
t→∞

∑
n,l

∫ t

0
qn,lX̃n,le(iνn,l−σn,l)(t−t′)Θ(t′)dt′, (30)

the form of which confirms the interpretation of the stationary
solution as an infinite interaction of waves. Additionally, it shows
that for a given heating function, changing the value of τdrag (but
keeping τrad = τdrag), thereby not altering the X̃n,l and νn,l but
only σn,l = τ−1

drag, will change the linear steady solution. This is
because the excited waves will not propagate to the same length
before being damped. This was first realized by Wu et al. (2001),
where they show that the zonal wave decay length is of the order
of

√
τ−1

radτ
−1
drag for arbitrary τrad and τdrag.

From Eq. (27), we see that the linear solution is controlled by
three main parameters: the shape of the forcing function (qn,l),
the global behavior of the waves (horizontal shape of X̃n,l and
νn,l), and the dissipation of the waves (σn,l). Although Eq. (27)
provides the form of the solution to the time-dependent problem,
the three main parameters we have detailed remain unknown.
Therefore, we move on to quantifying the sensitivity of the solu-
tion to the forcing function and, hence, the influence of the qn,l
in the next section.

3. Insensitivity of the Matsuno–Gill solution to
differential heating

The interpretation of Showman & Polvani (2011) relies on a sim-
plified treatment of the forcing, the impact of which we must
first assess before discussing the impact of the linear evolution
of the atmosphere. Firstly, in order to derive analytical results,
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Fig. 2. Temperature (colorscale in K)
and winds (arrows) as a function of lon-
gitude and latitude with different heat-
ing functions, with drag and radiative
timescales defined as in Komacek &
Showman (2016) with non-dimensional
values of 1 (almost half an Earth day).
(a–c): the initial pressure at this height
is 50 mbar which corresponds to an ini-
tial temperature of 1326 K and the forc-
ing is ∆Teq,top = 50 K. (d): the initial
pressure is 40 mbar and initial tempera-
ture 1322 K. (a): heating as in Komacek
& Showman (2016) (b): same as in
Komacek & Showman (2016) but with
a cooling at the night side three times
more efficient than the heating on the
day side. (c): same as in Komacek &
Showman (2016) with no cooling at the
night side. (d): heating rate extracted
from the full radiative transfer calcula-
tions of the GCM (divided by ten to
obtain comparable values).

Showman & Polvani (2011) impose an antisymmetric (sinu-
soidal) heating where the night side of the planet is cooled as
much as the day side is heated. In this case, the linear steady solu-
tion gives rise to the chevron-shaped pattern they denominate
the “Matsuno-Gill” circulation. However, the actual structure of
the heating process is not just a sinusoidal function. Moreover,
we know from Mayne et al. (2017) and Amundsen et al. (2016)
that there are qualitative differences between the steady state
of GCM simulations of hot Jupiters calculated using either a
Newtonian heating or with a more sophisticated radiative trans-
fer scheme. In that regard, the first intuitive idea to test is
whether the MG pattern is robust when the heating function is
changed. With the addition of the vertical dimension, Tsai et al.
(2014) have shown that the linear solution strongly resembles
the MG circulation at low pressures in the atmosphere. It is not
clear whether this holds with realistic, three-dimensional heating
functions.

From Eqs. (14) or (30), as Xn,l(x, y) = X̃n,l(y) exp(ikx), we
know that the projection of the heating function onto different
wavenumbers, k, can alter the resulting Matsuno–Gill circula-
tion from that obtained at wavenumber one. To verify this point,
using ECLIPS3D we solve for linear steady circulations across a
range of prescribed heating rates, adopting the drag and radiative
timescales of Komacek & Showman (2016), as used previously
for the data presented in Fig. 1a. We use three forms of heating,
the first two modified from that used for Fig. 1a, and a third one,
inspired from 3D GCM simulations: (i) he same day-side forc-
ing as Fig. 1a, but no night-side cooling ; (ii) the same forcing as
Fig. 1a but with the night-side cooling enhanced by a factor of 3;
(iii) a heating profile matching that obtained from 3D GCM sim-
ulations (taken from Amundsen et al. 2016), including net day
side heating and night side cooling.

The first two cases allow us to test the robustness of the
pattern under extreme situations, with the third mimicking
the GCM simulations. ECLIPS3D calculates the linear steady

states by inverting the linear matrix obtained with the full
3D equations (see description in Debras et al. 2019). The outer
boundary condition is a “no escape” condition (zero vertical
velocity w), and we have applied an exponential decay of the
forcing in the high atmosphere (low pressure) to mimic the
damping of vertical velocities, or sponge layer, employed in
the Unified Model (Mayne et al. 2014a) and other GCMs. For
the inner boundary, we adopt a solid boundary condition for the
vertical velocity (w = 0), and a free slip (no vertical derivatives
of the horizontal velocities, u and v) or no slip (no horizontal
velocities) condition on u and v give qualitatively similar results
because of the very high inner pressure. These assumptions are
obviously simplifications of the real physical situation, but we
have assessed their impact by changing the range of pressures at
the inner and outer boundaries and we find no significant change
in the qualitative results. The physical parameters adopted for
HD 209458b are the same as in Mayne et al. (2017), which are
also given in Table 1.

Figure 2 shows the perturbed temperature (steady tempera-
ture minus initial temperature, colorscale), and winds (arrows)
as a function of longitude and latitude of the MG solutions
for the three different heating profiles described previously, at
a height where the initial pressure is 50 mbar. Figure 2 shows
that the shape of the linear steady circulation does not quali-
tatively depend on the forcing: we always recover an eastward
shift of the hot spot, associated with a tilt of the eddy patterns
leading to a net acceleration of the equator for the nonlinear
order. As long as there is a differential heating between the day
and the night side, the linear steady solution of the atmosphere
exhibits the chevron-shaped pattern of the MG circulation (we
have verified that a constant heating across the whole planet or
just a cooling on the night side does not lead to solutions of a
similar form as the MG solutions). There is, however, a change
in the quantitative values, which does not affect the qualita-
tive aspects of the nonlinear momentum transfer (see Sect. 5).
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Therefore, relaxing the approximation of a wavenumber one
(e.g., day-night antisymmetric forcing) heating function has no
influence on the nonlinear acceleration around the linear steady
state: the projection onto different zonal wavenumbers changes
the zonal amplitude of the MG circulation, but not its qualitative
shape. We only present the results with a characteristic drag and
radiative timescale of 105s but we have verified that changing
these values affects the shape of the solutions in all cases in a
similar way.

Globally, even for simulations with a proper treatment of
the radiative transfer, as long as the planet is tidally locked,
we expect the linear steady circulation to be MG-like. In the
paradigm proposed by Showman & Polvani (2011) and Tsai et al.
(2014), the propagation of planetary waves impose this global
MG circulation, exhibiting no superrotation, with the accelera-
tion on to superrotation being due to eddy mean flow interactions
around this primordial state. Therefore, the time to reach the lin-
ear steady state, which is by no means a nonlinear steady state,
must be small relatively to other dynamical times in the system.
In the case where the drag and radiative timescales are equal, this
led Tsai et al. (2014) to conclude that their work could not apply
to long diffusion timescales. We now seek to assess if similar
conclusions can be made in cases where the drag and radia-
tive timescales differ, in order to determine how the atmosphere
reacts at first order. To develop this argument, we analytically
restrict ourselves to the quasi geostrophic set of equations (2D
Cartesian, shallow water β-plane), as detailed in Sect. 2.1.

4. Wave propagation and dissipation

We have established, using a Green’s function, that the linear
solution to the 2D shallow water, β-plane equations, can be
expressed as the continual excitation of waves with a character-
istic frequency and decay timescale (Eq. (27), Sect. 2.3). The
decay timescales themselves are crucial as they can be used to
determine the qualitative form of the linear steady state itself,
and provide insight into the response of the atmosphere over
short timescales. In this section, we focus on the mathemati-
cal derivation of the characteristic decay timescales reaching an
expression (Sect. 4.1.1), which we then solve numerically for dif-
ferent types of atmospheric waves (gravity; Rossby and Kelvin
waves). A short summary is then provided in Sect. 4.1.5. Fol-
lowing this, we extend our arguments to 3D in Sect. 4.2. The
entirety of this section is focused on the mathematical nature of
the supported waves, with a physical interpretation provided later
in Sect. 5.

4.1. Characteristics of waves in 2D

4.1.1. Decay time of damped waves

The first task is to derive an equation for the decay timescale,
or growth rate, for a general damped wave in our framework.
If τdrag = τrad, using the complex frequency ω ∈ C (contrary
to Matsuno (1966) where ω ∈ R), we can define iλ = iω +
1/τdrag to transform Eqs. (17)–(19) into Eqs. (7)–(9), equations of
which we know the eigenvalues from Matsuno (1966). Therefore,
λ is real which implies that the real part of ω, the frequency, is
unaltered from the original equations of Matsuno (1966), but the
imaginary part of ω becomes,

=(ω) =
1

τdrag
. (31)

One can then express e.g., un,l as:

un,l = ũn,le−t/τdrag ei(νn,lt+kx). (32)

This shows that all modes decay over a characteristic timescale,
namely, the drag (or radiative) timescale. For the case where
τrad = τdrag the time to converge to the Matsuno–Gill circulation
is the decay timescale, as one would naively expect, and all
waves have the same exponential decay in time.

If τdrag , τrad, Eq. (10) must be modified to obtain:

∂2v

∂y2 −

 (iω + τ−1
drag

) (
iω + τ−1

rad

)
+ k2

+y2 iω + τ−1
rad

iω + τ−1
drag

−
ik

iω + τ−1
drag

 v = 0. (33)

It is easy to verify that setting τ−1
drag = τ−1

rad = 0 gives back
Eq. (10).

To go one step further, we define a complex number c such
that:

c4 =
iω + τ−1

rad

iω + τ−1
drag

, (34)

and choose for c the only root with a positive real and imaginary
part. This definition ensures that the real part of c2 is always
positive, which allows for the solutions to decay at infinity, see
Appendix A. We then choose as a variable z = cy (the cases
c = 0 and c = ∞ are of no physical interest). Using this new
variable, ∂2v/∂y2 = c2∂2v/∂z2, Eq. (33) is simplified to

c2 ∂
2v

∂z2 −

(iω + τ−1
drag

) (
iω + τ−1

rad

)
+ k2 + y2c4 −

ik
iω + τ−1

drag

 v = 0.

(35)

Dividing this equation by c2 (and recalling the definition of z,
z = cy), we obtain

∂2v

∂z2 −

(
iω + τ−1

drag

) (
iω + τ−1

rad

)
+ k2 − ik/

(
iω + τ−1

drag

)
c2 v − z2v = 0.

(36)

Defining the multiplier of v in the second term as m, the equation
can be expressed as

∂2v

∂z2 + (m − z2)v = 0. (37)

The major difference with the Matsuno case, Eq. (10), is that now
z ∈ C and so the boundary conditions are altered. As |z| → ∞
when y→ ±∞, we have to solve this equation with the following
boundary condition:

v→ 0 when |z| → ∞. (38)

As in the case where m is real, one could show (see, e.g.,
Abramowitz & Stegun 1965) that the only solutions are the
parabolic cylinder functions, Eq. (12): Hn(cy)e−c2y2/2 where n ∈
N, hence the need for<(c2) > 0 so that the solutions decay when
y→ ±∞, and provided that:

−
(
iω + τ−1

drag

) (
iω + τ−1

rad

)
− k2 + ik/

(
iω + τ−1

drag

)
c2 = 2n + 1, (39)
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Defining x = iω + τ−1
drag and γ = τ−1

rad − τ
−1
drag, followed by taking

the square of Eq. (39) in order to obtain c4 yields,

x4(x + γ)2 + 2k2x3(x + γ) − 2ikx2(x + γ)

− (2n + 1)2x(x + γ) + k4x2 − 2ik3x − k2 = 0. (40)

Equation (40) has already been obtained by Heng & Workman
(2014) (their Eq. (121) with different notations: their F0 is τ−1

rad in
our work, ωR is our ω and ωI is −τ−1

drag), in order to derive steady
state solutions as performed in Wu et al. (2001) and Showman &
Polvani (2011). Equation (40) is a polynomial of order six, but a
thorough study of Eq. (39), as reported in Appendix B.1, shows
that only three different waves propagate, and two for n = 0, as in
Matsuno (1966).

The horizontal shape of the solutions to Eqs. (17)–(19) in
the general case are given by Eq. (A.7), but we would also
require the solutions of Eq. (40) to obtain a fully analytic expres-
sion for the waves. Therefore, we have solved Eqs. (17)–(19)
numerically over an extensive range of n, k, τdrag and τrad val-
ues (we have verified that our numerical solutions recover the
limits τ−1

drag = τ−1
rad = 0 and τ−1

drag = τ−1
rad). Firstly, as expected, no

mode can exponentially grow given a background state at rest.
The cases of k ∼ 1 and n = 1, 3, 5 and 7 are the most impor-
tant for hot Jupiters as the heating function is dominated by
wavenumber 1, that is, a day-and-night side (non-dimensional
value around 0.7, see Sect. 5). Here the n number represents
the order of the Hermite polynomial, hence the number of zero
nodes in latitude (note that as c2 can be complex, the number
of zeros in latitude is no more solely defined by the Hermite
polynomials as in the c = 1 case). If the heating function is a
Gaussian function, as chosen by Matsuno (1966), Showman &
Polvani (2011) and Tsai et al. (2014), then the projection of Q on
to the parabolic cylinder function stops at the third order (this is
not necessarily true when τdrag , τrad but we don’t expect large
amplitude in the n > 3 waves as the forcing exhibits no zeros in
latitude).

Using our numerical solutions, we explore the behavior of
gravity (Sect. 4.1.2) and Rossby (Sect. 4.1.3) and Kelvin waves
(Sect. 4.1.4) before summarising our results (Sect. 4.1.5). For all
cases, the frequency of the waves remains within an order of
magnitude of the free wave frequency (when τ−1

drag = τ−1
rad = 0).

Hence the major changes between cases are obtained for the
decay rate and horizontal shapes. The shapes of the waves with
non-zero τdrag and τrad are shown in Appendix C. Regarding
the decay rates, we express them as power laws fitting reason-
ably well with the numerical values in the next section. We
also implemented the 2D-shallow water equations in ECLIPS3D
(detailed in Debras et al. 2019) to verify our numerical results
discussed in this section. For all cases for matching parame-
ters (characteristic values, τrad, τdrag), the agreement between
ECLIPS3D and the results discussed here (obtained using the
Mathematica software) for both the decay timescales or growth
rates and frequency of waves is excellent. Furthermore, insert-
ing the numerical values obtained here in Eq. (A.7) recovers
the exact modes as obtained using the shallow water version of
ECLIPS3D.

4.1.2. Gravity waves

In this work we define “gravity waves” as the solutions to
Eqs. (17)–(19) which tend to the standard definition of a grav-
ity wave in the limit τdrag → τrad (we have verified that the

identification is unchanged for τrad → τdrag). As there are only
three solutions to these equations (see, e.g., Matsuno 1966), the
Rossby wave is, therefore, the last mode.

Our numerical results give a characteristic time of decay for
gravity waves of ∼τdrag, when τdrag ∼ τrad, as expected. For cases
where the drag is dominant over the radiative forcing, τdrag �

τrad, the decay timescale obtained numerically is ∼τdrag, which
indicates that the drag controls the timescale of the convergence
of the atmosphere. Physically, this is expected as drag will
prevent the wave from propagating and damp the perturbed
velocity efficiently, preventing the temperature and pressure to
depart significantly from the forced equilibrium profile.

However, when the radiative forcing is dominant over the
drag, τdrag � τrad, we find two cases. Firstly, when τrad � 1 the
numerically obtained decay rate for the gravity waves (σg1) is
given by

σg1 ≈ τ
−1
drag + τ1/(n+2)

rad . (41)

For this case, if τrad → 0, σ−1
g1 (the decay timescale) is given

by the drag timescale, as for the case of dominant drag. How-
ever, if τrad is larger the behavior is more complex and includes a
dependence on the order of the Hermite polynomial n, although
this still results in the decay timescale being the same order of
magnitude as the drag timescale. We interpret it based on the
fact that although the temperature and pressure perturbation will
be dictated by the forcing, the time to damp the wave is still gov-
erned by the time for the velocities to be damped, hence, the drag
timescale.

Secondly, for the case where τrad � 1 the numerically
obtained limit for the decay rate (σg2) is given by

σg2 ≈
τ−1

rad

3
. (42)

In this case, the radiative timescale is long enough to be imposed
as the characteristic time of decay even for the velocities, and the
decay of the wave is only controlled by this timescale.

4.1.3. Rossby waves

The behavior of the Rossby wave decay timescale is more com-
plex than that of gravity waves. When |τ−1

drag − τ
−1
rad| & 0.5, for

all individual values of τ−1
drag or τ−1

rad, the absolute value of the
imaginary part of c2 is much larger than that of the real compo-
nent. This means that the Rossby wave modes oscillate in the
y direction several times before being damped, in these con-
ditions. Additionally, for increasing values of |τ−1

drag − τ
−1
rad|, the

amplitude at the equator becomes negligible, and the mode’s
peak amplitude moves to higher latitudes, where the equato-
rial β-plane approximation begins to break down. Therefore, our
numerical results show that the simple shallow-water, equatorial
β-plane framework adopted in this work is not usefully appli-
cable to the case of Rossby waves where |τ−1

drag − τ
−1
rad| & 0.5.

This is confirmed by the graphical representation of these waves
in Appendix C. We will therefore rely on numerical results of
Sect. 4.2 for this region of the parameter space. However, for
|τ−1

drag − τ
−1
rad| . 0.5 (which is the case for all τ−1

drag, τ
−1
rad < 0.5), the

decay rate for Rossby waves (σR) we have derived numerically
can then be approximated by,

σR ≈
1
2

(
τ−1

rad + τ−1
drag

)
. (43)
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Therefore, for long radiative and drag timescales, Rossby
waves are equally sensitive to the damping of velocities and
temperature. Such a result is expected from the conservation
of potential vorticity, which gives rise to Rossby waves, and is
defined in the shallow water system as (ξ+ f )/h where ξ = ∇∧u
is the vorticity and f = 2Ω cos φ the Coriolis parameter. When
neither ξ and h are strongly damped, we might therefore expect
a combination of the drag and radiative damping to return to
equilibrium. Comparing the decay timescale for Rossby waves
with that obtained for gravity waves in Sect. 4.1.2 shows that the
decay rates differ between these two cases.

4.1.4. Kelvin waves

Kelvin waves are a particular solution of the homogeneous
Eqs. (17)–(19), as first pointed out by Matsuno (1966), where the
meridional velocity is zero, and can be characterized analytically.
Combining Eqs. (17) and (19) with v = 0 yields,

∂u
∂y

=
ik

iω + 1/τdrag
yu, (44)

and hence

u = Aexp
(

ik
iω + 1/τdrag

y2

2

)
, (45)

where A is a constant. If the boundary condition u = 0 for
y→ ±∞ is to be satisfied, the factor of y2/2 must have a negative
real component. Additionally, in order for u and h not to be iden-
tically zero, ω must be a root of a second order polynomial given
by

ω2 − iω
(

1
τrad

+
1

τdrag

)
− k2 −

1
τradτdrag

= 0, (46)

that is,

ω =
1
2

i
(

1
τrad

+
1

τdrag

)
±

√
4k2 −

(
1
τrad
−

1
τdrag

)2
 , (47)

where the term under the square root can be negative and, there-
fore, it can provide an imaginary component. Further algebraic
manipulation then yields

ik

iω +
1

τdrag

=
2ik(

1
τdrag

−
1
τrad

)
± i

√
4k2 −

(
1
τrad
−

1
τdrag

)2
. (48)

In order to satisfy the boundary conditions, the term under the
square root in this equation must be positive or the result is a
pure imaginary number. In other words, Kelvin waves are able to
propagate only when the condition

4k2 >

(
1
τrad
−

1
τdrag

)2

(49)

is met. Additionally, this simple estimation of the regimes where
Kelvin waves can be supported in the atmosphere may well be an
overestimate for the 3D, spherical coordinate case as the charac-
teristic scale of the damping of the Kelvin wave must be smaller
than the scale of the planet’s atmosphere itself. The real part of
ik/(iω + τdrag

−1) must therefore be large enough (and negative).

Finally, when Kelvin waves propagate their characteristic decay
rate (σK) is given by

σK =
1
2

(
1
τrad

+
1

τdrag

)
. (50)

This result is similar to the decay timescale for Rossby waves
(compare Eqs. (43) and (50)). τdrag and τrad therefore have a
symmetric contribution for Kelvin waves, as expected when con-
sidering Eqs. (17) and (19) for v = 0: they have a symmetric
effect on u and h.

4.1.5. Decay timescale summary

We obtained expressions for the asymptotic values of the decay
timescales for damped waves under the 2D shallow-water,
β-plane framework (see Sect. 2.1). In particular, for the case
of Kelvin waves we obtained an analytical expression for
the decay rate, Eq. (50). We also show that for the regime where
the analytical calculations are valid, Rossby waves exhibit the
same decay rate as found for Kelvin waves. For the more general
case, aside from considerations of whether the waves can be sup-
ported by the atmosphere, we have two limits: (i) for τdrag ∼ τrad

and τdrag � τrad, simply, σR ∼ σK ∼ σg ∼ τ
−1
drag within a factor

of ∼2; (ii) for τdrag � τrad, the Kelvin decay rate is the invert of
the radiative timescale. The Rossby decay rate is the invert of
the drag timescale if |τ−1

drag − τ
−1
rad| . 0.5 and we obtained no

semi-analytical solution if |τ−1
drag − τ

−1
rad| & 0.5. Finally, the gravity

waves decay rate becomes σg ∼ τ
−1
drag + τ1/(n+2)

rad for τrad � 1 and
σg ∼ τ

−1
rad/3 for τrad � 1.

Some of the numerical values we used to derive these asymp-
totic evaluations are reported in plain lines on Fig. 3. As our
results have been derived for the 2D shallow-water, β-plane sys-
tem, for the case of Rossby waves in particular, the behavior of
the waves may not be captured correctly. Therefore, we move
on to verifying and extending our approach into 3D coordinates
using ECLIPS3D.

4.2. Extension to 3D with ECLIPS3D

So far we have determined the characteristic frequencies and
decay timescales for various atmospheric waves in our 2D frame-
work, introduced in Sect. 2.1. In this section we extend our
analysis to full 3D spherical coordinates using ECLIPS3D. In
3D, spherical coordinates, the dependency of the waves on the
stratification, and the value of the drag and radiative timescales
is difficult to predict theoretically. Therefore, we approach the
problem numerically by using ECLIPS3D, studying the modes
which propagate in a stratified atmosphere at rest, as is used for
the initial condition when simulating hot Jupiter atmospheres.
The background temperature–pressure profile is set to that of
Iro et al. (2005), employing the polynomial fit of Heng et al.
(2011). The pressure at the bottom of the atmosphere is set to
10 bars (the depth of the atmosphere is now 7 × 106 m), captur-
ing the dynamically active region of the atmosphere, driven by
the forcing in the first phase of simulation but without detail-
ing the innermost regions where the density is much higher. As
before, we have varied the inner boundary condition to test its
impact on our results, and find our conclusions to be robust to
this choice. The selection of the modes of interest is performed
by first excluding modes with unrealistic amplitudes at the pole
or boundary, and then selecting modes with only one oscillation
in longitude, that is, wavenumber 1, matching the heating func-
tion. Additionally, we restrict the selection to those with at most
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Fig. 3. Typical decay rate σ for gravity and Rossby and Kelvin waves
as a function of (top) τdrag for τrad = 0.3 and (bottom) τrad for τdrag = 20.
The lines are values obtained using Eqs. (40), (50) while crosses are
results from seven ECLIPS3D calculations. As τrad is not constant with
depth in the ECLIPS3D results, we have chosen to use an arbitrary value
of τrad = 0.3 for comparison. However, when τdrag increases the location
where the wave exhibits its maximum perturbation, it moves to higher
pressures which should correspond to an increase in the equivalent τrad.
For the Rossby waves, the low τdrag limit has not been studied numer-
ically as it is irrelevant for superrotation. Kelvin waves of comparable
height with Rossby and gravity waves are only clearly identified in four
ECLIPS3D calculations.

two nodes in the latitude direction which are the dominant modes
(see discussion earlier in this section). This selection process is
also described in Debras et al. (2019).

For the first study, we verified that all modes are supported
when τdrag = τrad = 106 s is adopted throughout the atmosphere
and are similar in form to when τdrag = τrad = 0 s but exhibit a
characteristic decay frequency of 10−6 s−1. Although Rossby and
gravity waves are supported with characteristic heights on the
order of the height of the atmosphere itself, Kelvin waves seem
to only be supported at the pressure scale height or smaller.

We subsequently applied ECLIPS3D with τrad prescribed as
a function of pressure following Iro et al. (2005) and τdrag set
as a constant between 105 and 106 s. For this setup, we recover
the usual (see, e.g., Thuburn et al. 2002) Rossby and gravity
modes over different vertical wavelengths. Therefore, although
our 2D analysis breaks for Rossby modes with large τdrag (see
Sect. 4.1.3), we recover them in the full 3D spherical coordi-
nate treatment using ECLIPS3D, with, notably, their decay rate
always comparable to the reciprocal of the drag timescale. How-
ever, in this setup, with a pressure dependent radiative timescale,
we do not find Kelvin modes with atmospheric-scale character-
istic heights (we use 40 points in the z coordinates, therefore
we are unable to resolve modes with H . 105 m). However, we

do obtain Kelvin modes with smaller characteristic heights in
the deepest, highest-pressure region of the atmosphere where
the radiative timescale is long, in agreement with our previ-
ous estimations (see Sect. 4.1.4, Eq. (49)). For this setup, we
also obtain mixed Kelvin-gravity modes, which are concen-
trated at the equator, as well as mixed Rossby-gravity modes,
with the Rossby component dominating in the high latitudes
and the gravity component dominating near the equator. In
the case of the pure gravity modes, the resulting frequencies
and decay rates from ECLIPS3D in 3D spherical coordinates
are in good agreement with the 2D estimations (Sect. 4.1.2).
However, for Kelvin modes, although the decay rates obtained
from ECLIPS3D are in good agreement with our 2D analyti-
cal expressions (Sect. 4.1.4), the obtained frequencies are a little
larger than our analytical analysis would suggest. Finally, for
pure Rossby modes, for the range where our 2D analysis is valid,
the decay timescales are again in good agreement between our
2D estimations (Sect. 4.1.3) and the numerical results in 3D but
similarly to the case of the Kelvin modes, the frequencies are
slightly underestimated.

From our ECLIPS3D outputs we have calculated the value of
√
σ2 + ν2 for all modes supported in the simulated atmosphere

(keeping τrad prescribed following Iro et al. (2005) and τdrag =

106 s), as the amplitude of a given mode in the linear steady
state of the atmosphere is inversely proportional to

√
σ2 + ν2

(Eq. (28)). These results show that the value of
√
σ2 + ν2 is an

order of magnitude smaller for Rossby modes, compared with
Kelvin or gravity modes. As discussed in Sect. 4.1.3 the fre-
quencies of the modes are not significantly altered by the drag
timescale, and Matsuno (1966) has shown that Rossby waves
have frequencies ∼10 times smaller than gravity waves and
∼3 times smaller than Kelvin waves in this regime. Additionally,
when τdrag is large but τrad is modest, the decay rate of Kelvin
waves is controlled by the radiative timescale, whereas the decay
rate of the gravity waves and Rossby waves is conversely con-
trolled by the drag timescale. Therefore, the value of

√
σ2 + ν2

will be bigger for Kelvin waves over that obtained for Rossby and
gravity waves, for both of which this quantity will be on the order
of the frequency, which is ten times smaller for Rossby waves
compared to gravity waves. This indicates that the Rossby waves
will propagate over greater timescales and lengths and dissipate,
globally, more energy in the linear steady state (see Eq. (27)).
The influence of the Rossby waves in the steady linear circu-
lation regime will be dominant over Kelvin and gravity modes,
explaining the qualitative shape of Fig. 1b.

As a summary, Fig. 3, shows the decay timescales for grav-
ity and Rossby and Kelvin waves, obtained from Eqs. (40),
(50) as a function of the drag timescale for τrad = 0.3 (in
dimensional units, a few 104 s), a characteristic value in the
superrotating regions of HD 209458b, or as a function of the
radiative timescale for τdrag = 20 (about 106 s), a value which
allows for superrotation in the nonlinear limit. We also plot
values extracted from numerical exploration with ECLIPS3D,
although the radiative timescale is not constant in these numeri-
cal results and the characteristic height might differ. We recover
the fact that Kelvin waves are more damped than other waves for
the timescales used in this section, thought to be representative
of hot Jupiter atmospheres, but not for all timescales (notably
when τdrag = τrad). Additionally, there are many regions of the
parameter space where Kelvin waves don’t actually propagate,
as evidenced in Sect. 4.1.4. This highlights the need to constrain
the timescales to understand the spin-up of superrotation and to
understand the wave behavior across different timescales.
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(b) Fig. 4. Pressure perturbations (col-
orscale) and winds (arrows) as a func-
tion of longitude and latitude for four
Rossby waves for an axisymmetric hot
Jupiter atmosphere at rest. Units are
arbitrary. The values of the drag and
radiative timescales are described in
Sect. 4.2. Left column: results from
ECLIPS3D 3D spherical coordinate cal-
culations and right column: for the ana-
lytical results to the equation developed
in Appendix A. For the top row, the drag
is dominant, and the bottom row radi-
ation is dominant. We note that as the
initial state is at rest and axisymmetric,
there is an uncontrolled phase in longi-
tude, meaning the longitudinal location
is abitrary.

Figure 4 shows the pressure perturbations (color scale, total
pressure minus initial pressure) and horizontal winds (vectors)
as a function of longitude and latitude, for four Rossby modes.
Two of the modes in Fig. 4 are from ECLIPS3D, resulting in 3D
spherical coordinate calculations, and two are from the analyt-
ical studies (i.e., derived using equations in Appendix A; with
Matsuno (1966) notations, they both have n = 1 and l = 3),
shown as the left and right columns, respectively. The locations
in longitude are arbitrary as the initial state is axisymmetric and
at rest. The Rossby modes shown in Fig. 4 from ECLIPS3D have
been chosen such that the maximum amplitude was present in
the deeper, high-pressure regions where drag is dominant (top
panel) in one case and for the other case, the amplitude was max-
imum in the upper, low-pressure part of the atmosphere, where
the radiation timescale is shorter than that of the drag (bottom
panel). Figure 4 shows that the ECLIPS3D results and those from
our 2D analytical treatments are in good agreement. Specifically,
the “tilt” of the modes in the latitude–longitude plane and the
location of the maximum perturbation in pressure are broadly
consistent between the analytical 2D and numerical 3D results.
This agreement is comforting given that one case is a simpli-
fication of an atmosphere on a 2D shallow water β-plane and
the other is a restriction onto one height of a fully 3D, spheri-
cal mode. There are, however, discrepancies, notably at mid and
high latitudes.

Interestingly, with ECLIPS3D we also recover Rossby waves
with the opposite tilt in latitude than the results of the shallow
water equations (right panel of Fig. 4), as well as Rossby
waves with no tilt (their horizontal shape being similar to the
Rossby waves from Matsuno 1966). All of these waves have
comparable frequencies and decay rates, no matter the tilt. We
attribute the existence of these waves to the density stratification

and the dependence of the radiative timescale with height,
not considered in the shallow water equations. Therefore, it
is no easy task to predict what will be the shape of the linear
steady state as it depends on the projection of the heating
function on all these waves with different tilts, but also different
characteristic heights. The fact that the waves are no longer
orthogonal (Appendix A) further prevents an easy evaluation of
the projection of the heating function on each wave. However,
it is primordial to note that Rossby waves always exhibit a much
lower amplitude in the pressure and temperature perturbation at
the equator rather than in mid latitudes. This provides additional
confidence in the assertion that Fig. 1b really is dominated by
the Rossby wave component.

It is, therefore, difficult to draw conclusions about the behav-
ior of the linear solutions solely based on the results of the
ECLIPS3D calculations in 3D as we also require the projec-
tion of the heating function onto the waves. However, we clearly
recover tilted Rossby waves and an absence of Kelvin waves in
the upper part of the atmosphere where superrotation develops
(or they must have a very small characteristic height). This is
in contradiction to the findings of Showman & Polvani (2011),
where they link the acceleration of superrotation to the interac-
tion between a standing equatorial Kelvin wave and mid latitude
Rossby wave; but it is in agreement with our analytical estima-
tions for the domain of existence of Kelvin waves. As already
stated in this paper, this does not refute the theories of Showman
& Polvani (2011) and Tsai et al. (2014) regarding the equili-
bration of superrotation but, rather, it shows that the spin-up
of an initial jet is not due to a linear, chevron-shaped steady
state and that time-dependent linear considerations must be
taken into account. Globally, our 2D semi-analytical arguments
seem to be a good approximation of the 3D linear evolution
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of the atmosphere of hot Jupiters. We devote the next section
to an application of these estimations to provide a physical
understanding to the acceleration of superrotation.

5. Transition to superrotation

In Sect. 3, we show that the linear steady state of our atmosphere
is not significantly altered when moving to a more realistic heat-
ing profile taken from a 3D GCM simulation. Therefore, to gain
further insight into the acceleration of the superrotation, we
turn to time-dependent, linear effects. This leads us to develop
expressions for the time-dependent linear solution to the problem
in Sect. 4. In the current section, we use these solutions to under-
stand the transition to superrotation in simulated hot Jupiter
atmospheres. We first assess the validity of our own results by
comparing them with the simulations of Komacek & Showman
(2016) in Sect. 5.1. This is followed in Sect. 5.2 by an order-
of-magnitude analysis, which allows us to conclude that we can
not explain the acceleration to superrotation under the simplifi-
cations employed for the linear steady state (although such sim-
plifications are well-suited for studying the equilibration of the
superrotation, see, e.g., Tsai et al. 2014). Finally, we test our inter-
pretation against the results of 3D GCM simulations in Sect. 5.3,
revealing that vertical accelerations are vital to the process.

5.1. Qualitative structure of linear steady state

Before discussing the transition to superrotation in the nonlin-
ear limit, we first apply our findings from Sect. 4 to interpret the
form of the various linear steady states presented in Komacek &
Showman (2016), as seen in their Fig. 5. As shown by Wu et al.
(2001), the zonal damping rate is proportional to

√
τ−1

dragτ
−1
rad.

Therefore, if the two timescales (drag and radiative) are small, or
one of them is vanishingly small, the zonal propagation of waves
will be extremely limited in longitude. This is clearly seen in
Komacek & Showman (2016) when one or two of the timescales
are short and the temperature gradient is huge between the day
and night side, while the zonal flows are restricted largely to
the day side. Essentially, in this case, the waves excited on
the day side have been damped before reaching the night side
and, therefore, they cannot lead to efficient wind generation and
heat redistribution (in the linear limit). This is also discussed in
Komacek & Showman (2016).

Due to the strong asymmetric, steady forcing in the atmo-
spheres of hot Jupiters, the dominant wavenumber k ensures one
oscillation around the planet, that is, 2πrk = 2π. Typical con-
ditions for hot Jupiter atmospheres yield gH ∼ 4 × 106 m2 s−2

(Showman & Polvani 2011) and therefore L ∼ 7 × 107 m and
T ∼ 3.5 × 104 s (see Eqs. (6), (4)).

Let us suppose that one of the timescales (i.e., radiative or
drag) is much shorter than the other, hence it is the dominant
timescale, which we denote simply as τ. In order for Kelvin
waves to propagate we require, from the dimensional form of
Eq. (49):

τ &
r

2
√
gH
∼ 2.5 × 104 s. (51)

Therefore, if the dominant (shorter) timescale is inferior
to ∼2.5× 104 s, Kelvin waves cannot propagate unless both
timescales are equal. However, if both these timescales are
.2.5 × 104 s, the dissipation time for Kelvin waves will be very
short. Assuming a simple characteristic speed of waves to be√
gH, which in our case is roughly 2 × 103 m s−1, the time for

a wave to travel around the whole planet is ∼2 × 105 s. There-
fore, for drag or radiative timescales of .2.5 × 104 s, even in
the cases where Kelvin waves exist they can not propagate
around the whole planet and, thereby, generate the stationary
chevron-shaped MG pattern of Showman & Polvani (2011). The
chevron-shaped pattern of the linear steady state can, thus, only
exist when both timescales are &105 s and comparable in value.
This is seen in Fig. 5 of Komacek & Showman (2016), where this
pattern is clearly not ubiquitous, and this puts a strong restric-
tion on the cases where the explanation of Showman & Polvani
(2011) is applicable. In other words, acceleration of superrotation
in hot Jupiters from the MG (or chevron-shaped) tilted linear
steady state is only possible over a restricted parameter space,
which is not likely, therefore, to provide an explanation for all
exoplanet cases.

Additionally, Eq. (51) shows that for a given τ but varying H,
there is a minimum height for the propagation of Kelvin waves.
As shown by Wu et al. (2000) and later by Tsai et al. (2014), the
3D structure of the propagating waves can be decomposed onto
waves in a shallow water system but with differing equivalent
depths. The modes are solutions to the homogeneous equa-
tions but featuring a characteristic height which varies between
modes. Tsai et al. (2014) also show in their Fig. 2 that the
projection of the heating function of the vertical modes has a
high amplitude for modes with equivalent height between 5HP
and 0.2HP, where HP is the pressure scale height, roughly of
the order of 4 × 105 m in hot Jupiter atmospheres. Therefore,
by adopting these limits, we have H = 5HP ∼ 2 × 106 m and
H = 0.2HP ∼ 8 × 104 m, and obtain

104s < τ < 6 × 104s. (52)

In our case, this implies that if τ < 104 s, Kelvin waves are unable
to propagate with characteristic height less than 5HP: the lin-
ear steady state will have an almost null projection onto Kelvin
waves. However, if τ > 6 × 104 s, the majority of the Kelvin
waves excited by the forcing can propagate (we recall that if
both timescale are equal, all the wave can propagate, as in the
neutral case, but we expect the radiative timescale to be at least
an order of magnitude smaller in superrotating regions). Addi-
tionally, as introduced in Sect. 4, our estimates for the regimes
where Kelvin waves are supported by the atmosphere is likely
to be wider than the real situation, meaning that the criteria for
Kelvin wave propagation are also likely to be stricter.

The behavior outlined in this section is readily apparent in
Fig. 5 of Komacek & Showman (2016). In the limit where the
drag is strong, the waves are damped efficiently, the thermal
structure strongly resembles the thermal forcing, and there is
no planetary Kelvin wave structure evident at the equator. How-
ever, in the case of weak drag (τdrag > 105 s), the Kelvin wave
component is visible in the temperature structure only when the
radiative timescale is comparable (i.e., > a few 104 s, in other
cases the temperature is almost uniform at the equator). Finally,
in the limit of short radiative timescale, the Kelvin waves do
not propagate, the dynamical shape of the atmosphere is dom-
inated by other components, and the linear steady state strongly
resembles Fig. 1b. Interestingly, it appears that the cases that
superrotate in the nonlinear limit all have a negligible Kelvin
wave contribution in their linear steady state. In other words,
either the equator is not dominated by Kelvin-type circulation
or the high latitudes are dominant.

To conclude this section, we further detail the case of
τdrag = 105 s and τrad,top = 104 s. Following Eq. (9) of Komacek
& Showman (2016), this choice for τrad,top implies a radiative
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timescale of 8 × 104 s at P = 80 mbar (the isobaric surface
presented in their Fig. 5) and the drag timescale 105 s. Using
(Eq. (49)), Kelvin waves are able to propagate in this sce-
nario. Additionally, the difference between the drag and radiative
timescales allows us to properly consider the behavior of the
Rossby wave component. Solving Eq. (40) for these prescribed
radiative and drag timescales yields a decay timescale of ∼0.38
(in non-dimensional units) for both Rossby and Kelvin waves,
while the decay timescale of the gravity waves is ∼0.36. There-
fore, when τdrag = 105 s and τrad,top = 104 s, we have Kelvin
wave propagation, with a decay timescale long enough for the
waves to traverse the entire planet and comparable lifetimes for
all three wave types considered (Kelvin, Rossby, and gravity).
In this instance we expect the steady state of the atmosphere to
be a combination of planetary waves all with roughly the same
magnitude (depending on the projection of the heating func-
tion), which leads to the chevron-shaped pattern predicted by
Showman & Polvani (2011) in the Matsuno–Gill circulation.
This is confirmed by Fig. 5 of Komacek & Showman (2016)
where, in the limit discussed, the linear steady state is similar
to that shown in our Fig. 1a.

These comparisons of our estimations with results from this
work and previous studies show that our semi-analytical analy-
sis is actually rather powerful in its explanation of the resulting
linear steady state response of a hot-Jupiter-like atmosphere. The
natural next step is to explore the implications for numerical sim-
ulations of a hot Jupiter atmosphere from the initial condition to
the final superrotating state.

5.2. Order-of-magnitude analysis

In this section, we estimate the maximum forcing under which
the consideration of a linear steady state is relevant, then we
estimate the time-dependent wave response in the weak drag
regime.

As we are performing a linear study, for constant τrad and
τdrag, the value of the maximum velocity is proportional to
the amplitude of the forcing, which is well represented by the
dayside-nightside equilibrium temperature difference that we
apply at the top of the atmosphere, ∆Teq,top. Assuming that the
radiative timescale as a function of pressure within the atmo-
sphere is appropriately represented by the polynomial fit of Heng
et al. (2011), adapted from Iro et al. (2005), the amplitude of the
MG circulation will then only depend on ∆Teq,top and the drag
timescale.

Denoting the zonal velocity of the linear steady state as uMG,
the linear steady state can only be reached if the nonlinear terms
can be neglected when u = uMG, that is, once the linear steady
state is formed. The nonlinear terms scale with the zonal advec-
tion, uMG∂uMG/∂x ∼ u2

MG/L, where L is a characteristic length.
Whereas, the linear terms are of the order of uMG/τdrag. There-
fore, equating these two estimates provides a maximum zonal
speed for which the nonlinear terms may be accurately neglected,
umax, where

umax ∼
L

τdrag
, (53)

and above which a linear steady state will not be reached by the
3D GCM. For the case of hot Jupiters, L ranges from half the
planetary circumference in the MG case to the full circumfer-
ence in the superrotating case, that is, L ∼ πR. If we denote the
maximum zonal, equatorial wind by uMG,1, for the MG solution
with ∆Teq,top = 1 K, using the linear relationship of uMG to the

forcing we have

uMG ≈ uMG,1 ×

(
∆Teq,top

1K

)
, (54)

for any ∆Teq,top at a constant τdrag. Combining Eqs. (53) and (54)
then yields a maximum forcing temperature difference value for
which the linear steady state can be reached:(
∆Tmax

1 K

)
≈

1
uMG,1

L
τdrag

. (55)

For equilibrium temperature contrast at the top of the atmosphere
greater than the value in Eq. (55) nonlinear effects can no longer
be neglected during the acceleration to the linear steady state,
which would not be reached by a GCM. This has already been
noted in Sect. 3.3.2 of Tsai et al. (2014), where they acknowledge
that their analysis is strictly valid only in the strong or mod-
erate damping scenario. As we see in Eq. (55), if τdrag is too
large, indicating a low damping scenario, the maximum forc-
ing will be very small and the linear approximation becomes
invalid for forcing amplitudes relevant to hot Jupiters. This anal-
ysis allows us to more rigorously define the weak, modest, and
strong damping regimes we had mention in Sect. 2.

In the strong or moderate damping scenario, ∆Teq,top .
∆Tmax, the atmosphere first reaches the linear steady solution
and then the subsequent evolution is controlled by nonlinear
acceleration. In this regime, the nonlinear evolution from the
Matsuno–Gill linear steady state is given by ∂uMG/∂t ∼ u2

MG/L,
where the u2

MG/L term comes from advection, then the charac-
teristic time τevol for the atmosphere to significantly depart from
the MG state is

τevol =
L

uMG
. (56)

This limit is that studied in Tsai et al. (2014), where the waves
change the mean flow in a quasi-static way leading to the
emergence and equilibration of superrotation.

In the low damping scenario however, the atmosphere never
reaches the MG steady state, and nonlinear considerations must
be taken into account when the characteristic speed exceeds
umax (hence Eq. (29) is irrelevant and only Eq. (27) and (28)
can be used to understand the transition to superrotation). Let
us suppose for example, that the atmosphere is composed of
two waves: a slowly oscillating, slowly decaying Rossby wave,
hence ν1, σ1 � 1, and a quickly oscillating, strongly damped
Kelvin or gravity wave with ν2, σ2 � 1. Our analysis of Sect. 4
shows that when τrad ∼ 104 s and τdrag ∼ 106 s, Rossby waves
indeed have small frequency and decay rate, whereas Kelvin and
gravity waves have order-of-magnitude higher frequencies and
decay rates (provided they can propagate). In this simplified case,
Eq. (28) is simplified to

XF =
q1

σ1 − iν1
X̃1(x, y)

(
1 − e(iν1−σ1)(t)

)
+

q2

σ2 − iν2
X̃2(x, y)

(
1 − e(iν2−σ2)(t)

)
, (57)

where XF is the time-dependent solution vector. We know that
in the linear steady state, assuming q1 ∼ q2, the Rossby wave
component will hold much more power than the Kelvin or grav-
ity wave as |iν1 − σ1| � |iν2 − σ2|. However, if we select a
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Fig. 5. Modulus of
(
1 − e(iν−σ)(t)
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/(σ− iν) normalized by the final value

for the Rossby wave as a function of time for gravity, Rossby and Kelvin
waves with the numerical frequencies and decay rates obtained with
ECLIPS3D. τrad follows the prescription of Iro et al. (2005) whereas
τdrag is set constant either to 2 × 105 s (plain lines) or 106 s (dashed
lines).

time t such that |iν2 −σ2|t � 1 and (necessarily) |iν1 −σ1|t � 1,
Eq. (57) can be linearized to first order, yielding

XF(σ1t, σ2t � 1) ≈ q1X̃1t + q2X̃2t. (58)

Therefore, in the limit of very early times in the evolution
the two wave components in the time-dependent solution of
the atmosphere are comparable (provided q1 ∼ q2). The wave
components remain comparable even when |iν2 − σ2|t ∼ 1 but
|iν1 − σ1|t � 1, where the exponential term for the Kelvin or
gravity wave is almost zero, but the linearisation holds for the
Rossby wave, hence,

XF(σ1t � 1, σ2t & 1) ≈ q1X̃1t +
q2

σ2 − iν2
X̃2. (59)

Dividing the amplitude of our first, Rossby wave, in this linear
time-dependent state, α1, by the amplitude of wave 2, α2 yields,∣∣∣∣∣α1

α2

∣∣∣∣∣ =

∣∣∣∣∣q1

q2
(σ2 − iν2)t

∣∣∣∣∣ ∼ q1

q2
. (60)

Provided that the projection of the heating function on the
two wave components are similar, that is, q1 ∼ q2, the time-
dependent solution will exhibit comparable amplitudes for both
waves before the (slowest) Rossby wave has grown much larger
than the asymptotic amplitude of the Kelvin or gravity wave.
However, the steady state will be dominated by the Rossby
wave component. Thus, although the linear steady state strongly
depends on τrad and τdrag, in the limits of short timescales the
structure of the atmosphere only depends on the projection of
the heating function on the propagating waves. In Fig. 5, we
show the modulus of

(
1 − e(iν−σ)(t)

)
/(σ− iν) for a Rossby , Kelvin

and gravity waves obtained by ECLIPS3D (see Fig. 3) when
τdrag = 2 × 105 s and for a Rossby and gravity waves when
τdrag = 106 s. In both cases, after a few 104 s (a day being ∼9 ×
104 s), the amplitude of the different waves is of the same order
of magnitude whereas Rossby wave contribution dominates at
later times.

This analysis suggests that the linear steady state is not
responsible for accelerating superrotation in hot Jupiter atmo-
spheres for the low drag limit and it allows us to resolve the prob-
lem explained in Sect. 2.2. As discussed in Sect. 2.2, superrotat-
ing atmospheres were found by Komacek & Showman (2016)

despite structures implying negative convergence of momentum
at the equator in the linear limit (a “reverse” MG structure), in
contradiction with the mechanism of Showman & Polvani (2011)
which invokes the linear MG steady state solution.

This problem persists for physically plausible choices on
the equilibrium temperature contrast and the drag and radiative
timescale, typically, ∆Teq,top = 500 K, τdrag ∼ 5 = 105 s and
τrad = 5 × 104 s which yields umax ∼ 200 m.s−1. When solved
numerically, we obtain uMG,1 ∼ 5 m s−1 hence ∆Tmax ∼ 150 K:
the linear steady state cannot be reached. Specifically, after
one day of simulation, our analysis shows that the linear steady
state will not have been reached; however, numerically, we
already have u > umax, hence nonlinear effects can no longer be
neglected. Regarding the dissipation timescales for the waves
(Sect. 4), after one day we have σKt, νKt ∼ 1,σgt, νgt ∼ 1 and
σRt, νRt � 1, where νK, νg, νR are the Kelvin, gravity, and
Rossby waves frequencies, respectively, and σK, σg σR the
Kelvin, gravity and Rossby dissipation rate, respectively. Our
estimates of this section, Eq. (60), show that this leads to an
equivalent contribution of Rossby, gravity and Kelvin waves in
the circulation.

In summary, after 1 day of simulation: (i) the structure of
the atmosphere exhibits similar contribution in Rossby, gravity
and Kelvin waves, which is characteristic of the chevron-shaped
pattern of Fig. 1a. As shown by Showman & Polvani (2011),
the eddies from such a circulation favour the meridional con-
vergence of eastward momentum at the equator; (ii) in addition,
simple orders of magnitude show that the nonlinear terms (hence
the contribution from the eddies) can no longer be neglected as
they are of the same order of magnitude as the linear terms.

Therefore, when the nonlinear terms become dominant, they
lead to a net acceleration of the equator. Even though the eddy
acceleration from the linear steady state (our Fig. 1b) would
tend to decelerate the equator, the equator is accelerated nonlin-
early after one day of simulation because of this chevron-shaped,
non-steady linear circulation. This initiates superrotation and the
later, slower evolution is well described by Tsai et al. (2014). We
study this further in the next section using our own general circu-
lation model (GCM) based on the unified model (UM, presented
in Mayne et al. 2014b, 2017).

We must emphasize that this separation of scales between
linear and nonlinear behavior is obviously very simplified. As
already noted by Showman & Polvani (2011), the nonlinear
accelerations are mostly due to the wave-mean flow interactions
(rather than wave-wave or mean flow-mean flow, as we confirm
in the next section). Therefore, a quasi-linear analysis or statisti-
cal studies of momentum transfer might allow for more rigorous
insight into the jet acceleration (see, e.g., Srinivasan & Young
2012; Tobias & Marston 2013; Bakas & Ioannou 2013; Bouchet
et al. 2013; Bakas et al. 2015; Herbert et al. 2019).

5.3. 3D GCM simulations

In order to assess the applicability of the linear shallow water
result developed in this work to a full 3D calculation, we per-
formed simulations using the UM across a range of forcing
scenarios. The simulations employ Newtonian heating as dis-
cussed in Mayne et al. (2014b) and adopt the baseline hot Jupiter
setup presented in Mayne et al. (2014a) which follows that of
Heng et al. (2011), and for the radiative timescale, Iro et al.
(2005). For our simulations, we then varied the day to night tem-
perature contrast, ∆T from 1 to 100 K (see Eqs. (B2) and (B3)
of Heng et al. 2011). Obviously, this is only a toy model as we
do not expect to find a tidally-locked planet with an effective
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temperature of 1300 K and a day night contrast of 0.1 K, but
this allows us to study the physical mechanisms controlling the
atmospheric structure. Atmospheric drag has not been explicitly
implemented in the UM but it is provided by a diffusion scheme
as detailed in Mayne et al. (2014a). We verified that all of our
simulations conserve mass and angular momentum to an order
of 10−6. We used these simulations to first explore the resulting
qualitative structure of the atmosphere and then the accelerations
within it, detailed in Sects. 5.3.1 and 5.3.2, respectively.

5.3.1. Qualitative structure of the atmosphere

As long as the linear effects are dominant, we expect all
our simulations to have qualitatively similar features but with
quantitative values that are scaled with the forcing. After one
day of simulation, this is indeed the case, whereupon all of
our simulations have the same qualitative structure matching
Fig. 1a, although the magnitude of the temperature differences
and wind velocities vary between simulations (increasing with
larger temperature contrast). The structure matches the chevron-
shaped pattern of Showman & Polvani (2011) but, again, we state
that this is not the steady MG solution. It is a specific time in
the evolution of the atmosphere when all waves have the same
projection in the circulation, as discussed in the previous section.

Comparing the very low temperature contrast case with lin-
ear steady states from ECLIPS3D, the dissipation within our
simulations is equivalent to τdrag ∼ a few 105 s. At P ∼ 80 mbar
the radiative timescale of Heng et al. (2011), adapted from Iro
et al. (2005), is of the order of 2.5 × 104 s. For these parame-
ters the linear MG state can only be considered as reached after
∼10 days, the time for the gravity and Rossby waves (which are
the most long lived components) to be completely dissipated (see
Sect. 4.1.5). Figure 6 shows the temperature and wind structure
for three calculations, the first one using ECLIPS3D with param-
eters set to those matching the GCM simulations (Fig. 6a), and
the next two from GCM simulations after 10 days of simulations,
at 80 mbar, for a small and large temperature contrast at the top
of the atmosphere ∆Teq,top = 1 K (Fig. 6b) and ∆Teq,top = 100 K,
(Fig. 6c).

The ECLIPS3D calculation, hence the linear steady state, in
Fig. 6a recovers the dominant mid-latitude Rossby gyres asso-
ciated with equatorial winds but it clearly differs from Fig. 1a
in the sense that the equatorial circulation is not impacting the
Rossby gyres significantly. We have, therefore, an intermediate
between Figs. 1a and b. For completeness, we also show the
evolution of the atmosphere for the same simulations but with
τdrag = 106 s in Appendix D, which leads to a linear steady circu-
lation equivalent to Fig. 1b. For the GCM simulations adopting
∆Teq,top = 1 K, Fig. 6b, the circulation of Fig. 6a is recovered
after 10 days of simulation. For the GCM simulations adopt-
ing ∆Teq,top = 100 K in Fig. 6c, respectively, the longitudinal
extent of the westward wind is reduced after 10 days compared
to the weak forcing regime. Hence, for the simulation with the
larger temperature contrast, after ten days the atmosphere has
already diverged from the linear evolution of the atmosphere.
Although both simulations were qualitatively identical after one
day of simulation, the low-forcing simulations then reach the
linear steady state, whereas higher-forcing simulations never go
through this state. Using the steady state wind velocities for the
smaller temperature contrast simulation, ∼2 m s−1 and Eq. (56),
alongside the fact that we expect the linear steady wind to scale
with the forcing, we can estimate the timescale to depart from
the MG state in the stronger forcing simulation: ∼106 s, which
is about 10 days. This timescale matches the timescale estimated
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Fig. 6. Temperature (color) and winds (arrows) as a function of longi-
tude and latitude for (a) linear steady state calculated with ECLIPS3D
with ∆Teq,top = 100 K, τdrag = 2 × 105 s and τrad following Iro et al.
(2005). Maximum speed is 400 m s−1 (b): 3D GCM result at the 80 mbar
level after 10 days of simulation, with ∆Teq,top = 1 K and the radia-
tive timescale of Iro et al. (2005). The maximum speed is 2.5 m s−1;
(c): 3D GCM result at the 80 mbar level after 10 days of simulation,
with ∆Teq,top = 100 K and the radiative timescale of Iro et al. (2005).
The maximum speed is 350 m s−1

above from the analysis of the atmospheric waves for conver-
gence to the MG state; hence, the MG state is never actually
reached.

In our simulations, the case when the linear steady state is not
reached occurs for day-night temperature contrasts of ∼100 K or
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greater at drag timescales of τdrag ∼ a few 105 s (as presented
in Fig. 6). If the drag timescale is further increased, the tem-
perature contrast for which the linear steady state could not be
reached would decrease further2 and, rather, HD 209458b is
expected to experience a ∼500 K temperature contrast. Hence,
it does not seem possible to reconciliate the initial acceleration
of superrotation with the consideration of steady linear effect.
The linear considerations can only be used in the first day or so
of simulation and the linear steady state is irrelevant.

Therefore, if superrotation does exist in hot Jupiter atmo-
spheres, the steady linear considerations are not likely to suf-
ficiently explain the initial acceleration as nonlinear effects
quickly dominate. Notably, the study of both Tsai et al. (2014)
and Showman & Polvani (2011) (and more recently Hammond &
Pierrehumbert 2018) would only apply to the limit of slow evolu-
tion, hence, once the atmosphere is already close to a nonlinear
steady state. This explains why Fig. 16 of Tsai et al. (2014),
which represents their linear consideration, compares so well
with their Fig. 15 taken from 3D numerical simulations: when
an initial superrotation is already settled, the further evolution
is slow and can be understood in the linear limit. However, Tsai
et al. (2014) provide no comparison between the linear expec-
tation and the 3D simulations during the original acceleration
phase of superrotation.

As we see in this section, linear considerations apply as long
as we consider the time-dependent solution. Although we cannot
use our linear prescriptions to predict the evolution of the atmo-
sphere in the nonlinear phase (as stressed in Sect. 5.2), we can
estimate the duration of validity of the linear approximation and
show that the atmosphere does not go through a linear steady
state during the acceleration phase. Therefore, it is worth noting
that the westward shift of the hot spot in the steady linear limit
studied by Hindle et al. (2019), with the addition of a magnetic
field, is not a robust enough diagnostic to predict whether the
atmosphere is superrotating.

Interestingly, our low forcing simulation also converged to
a superrotating state after a much longer time (scaling as one
would expect as the inverse of the forcing). This was unexpected
as Fig. 6b is not associated with a strong deposition of eastward
momentum at the equator. More surprisingly, we also recover
a superrotating jet for low-forcing simulations when we further
increase the drag timescale and the atmosphere goes through a
linear steady state resembling Fig. 1b. To understand this phe-
nomenon, we conclude our study with the considerations of 3D
accelerations in the spin-up and equilibration of superrotation for
GCM results.

5.3.2. Accelerations

The final step in this process is to study the acceleration of the
mean flow in the initial stages of the acceleration of superrota-
tion within the 3D GCM simulations and assess the relevance of
the 2D studies. As discussed, once the jet is settled and evolv-
ing slowly, the studies of Tsai et al. (2014) and Hammond &
Pierrehumbert (2018) describe the evolution of superrotation but
the initial acceleration is less clear, as we have explained in this
paper. For this purpose, we study the acceleration of the jet in
a simulation with ∆Teq,top = 100 K and τdrag ∼ 105 s, where the
first phases of the development of superrotation can be captured
over about 30 days. Following Mayne et al. (2017) (who adapted
2 And it is not possible to reduce the drag timescale below ∼105 s as
it leads to a suppression of superrotation (in this situation, the drag
timescale is lower than the advective timescale of a superrotating jet,
explaining the breaking of superrotation).

the treatment of Hardiman et al. 2010), the acceleration of the
zonal mean flow can be written as

(ρ u),t = −
(ρv u cos2 φ),φ

r cos2 φ
−

(ρw ur3),r
r3 + 2Ωρv sin φ

− 2Ωρw cos φ − (ρ′u′),t −

[
(ρv)′u′ cos2 φ

]
,φ

r cos2 φ

−

[
(ρw)′u′r3

]
,r

r3 + ρGλ, (61)

where Gλ denotes the body forces acting in the longitudinal
direction (not considered here), the subscripts denote partial
derivatives and every quantity X is defined as X = X̄ + X′ where
a bar denotes an average on longitude. In this section, we do
not consider the mean flow-mean flow accelerations as they are
negligible during the initial acceleration within our simulations.
However, once the superrotating jet has formed, these acceler-
ations should be taken into account as they balance the eddy
accelerations and eventually lead to a nonlinear steady state (see,
notably, the conclusions of Tsai et al. 2014).

Following Showman & Polvani (2011), the meridional eddy
accelerations, involving v′ and u′, should lead to momentum con-
vergence at the equator from the MG steady state, whereas the
vertical component acts to decelerate the equatorial region. In
Fig. 7, we show the value of (ρ u) for ∆Teq,top = 100 K after
50 days of simulations, as well as the vertical and meridional
accelerations. After 50 days, the jet extends from roughly 1 mbar
to 1bar with the maximum of (ρ u) at around 0.2 bar. As in
Fig. 15 of Tsai et al. (2014), we observe that the vertical accelera-
tions are slowing down the upper part of the jet, while extending
the jet to deeper pressures. The meridional accelerations on the
other hand compensate the vertical component in agreement
with both Tsai et al. (2014) and Showman & Polvani (2011). It
is interesting to note that the explanation for radius inflation pre-
sented in Tremblin et al. (2017) relies on the vertical wind in the
deep atmosphere due to the equatorial jet and that the spin-up of
the jet shows that the vertical accelerations are pushing the equa-
torial jet downwards. This seems to point towards a circulation in
depth between the jet and the vertical velocities that gets deeper
over time.

We also used these simulations to study the jet acceleration
in more detail during the earlier phases. Firstly, we observed that
the jet sets up initially between 0.08 and 0.1 bar in about 15 days
(not shown) and then extends upwards and downwards. We show
in Fig. 8 the meridional and vertical accelerations after 1, 5, and
20 days in the ∆Teq,top = 100 K case.

Figure 8 shows that in the region where superrotation is the
strongest (see Fig. 7), the vertical eddy acceleration always pro-
vides the maximum momentum convergence in the first 20 days,
although the spatial extent of vertical acceleration decreases with
time. Additionally, the location where the vertical motions accel-
erate the jet gets deeper with time, that is, it moves to higher
pressures. We believe that this can be understood in the follow-
ing way: the superrotation does not affect the mid-latitude eddy
circulation, which keeps acting to converge eastward momentum
at the equator. However, as radiation penetrates deeper and the jet
extends, the vertical circulation is changed and the vertical winds
carry momentum away from the jet. This inhibits the deposition
of eastward momentum at the equator, which is accompanied
by a deceleration of westward winds on the night side of the
planet. Globally, it appears that both meridional and vertical
accelerations set up the initial superrotation (with the vertical
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Fig. 7. (a) (ρ u) (kg m−2 s−1) as a function of pressure and latitude
after 50 days of simulation with ∆Teq,top = 100 K. (b) Vertical eddy
acceleration (kg m−2 s−2) for the same simulation. (c) Meridional eddy
acceleration (kg m−2 s−2) for the same simulation.

accelerations being dominant), which then tends to decrease and
even change the sign of the vertical acceleration. Subsequently,
the global meridional motions act to sustain the jet once the
vertical eddy acceleration is negative.

A key question is whether one reaches a limiting level of the
day-night temperature contrast as a proxy for the radiative forc-
ing at which the superrotation would transition. Such a transition
would occur once the nonlinear terms become significant and it
would depend on the state of the atmosphere at that point. If the

atmosphere is similar to that of Fig. 1a, then superrotation would
be favoured, but for a state such as 1b, the superrotation would be
impeded. In our simulations, it seems that there is no threshold to
superrotation because the vertical accelerations spin up the ini-
tial jet in all cases. The only limiting aspect is the time required
to reach a nonlinear superrotating state as the forcing gets lower.

In the case of long drag and short radiative timescales,
Komacek & Showman (2016) have already noted that the merid-
ional motion of the linear steady state is opposite to what is
necessary to drive superrotation, although they do observe that
the nonlinear steady state is actually superrotating. We have
explained this by considering the time-dependent linear state
in Sect. 5.3.1. More precisely, Fig. 9 shows the meridional and
vertical accelerations as a function of time for two simulations
adopting ∆Teq,top = 1 K and ∆Teq,top = 100 K and the same dis-
sipation. Figure 10 shows the evolution of the zonally averaged
zonal wind for comparison.

For both simulations, Figs. 9a and b, in the first two days
meridional and vertical accelerations are both positive and of
comparable magnitude. This was expected as over the course
of the first few days, the atmosphere is comparable to the
MG steady state explored by Showman & Polvani (2011). The
zonally-averaged zonal speed in Fig. 10 is almost zero, as
expected from the propagation of waves with zonal wavenum-
ber m = 1. In the low-forcing case, the vertical accelerations
eventually dominate by almost one order of magnitude and the
meridional terms can even end up opposing the creation of a jet
(for a given pressure level, which is not seen on the vertically
averaged Fig. 9). This is due to the fact that the atmosphere has
reached the linear steady state of Fig. 6a, associated with strong
vertical accelerations but with almost zero (or negative) merid-
ional accelerations. For the high-forcing case, although vertical
accelerations contribute to the initiation of superrotation, they
get smaller with time as the jet is being created, and eventually
become negative (after ∼60 days, not shown). This confirms that
the vertical accelerations initiate the jet but then tend to extend
it to deeper pressure, while meridional momentum convergence
allows for an equilibrated state.

Globally, we can now resolve the discrepancy between
Figs. 4 and 5 of Komacek & Showman (2016), which is dis-
cussed throughout this paper (notably Sect. 2.2 and this section):
nonlinearly superrotating atmospheres can have linear steady
states that seem to oppose the triggering superrotation, which is
in contradiction with Showman & Polvani (2011). The study of
Tsai et al. (2014) in the limit of strong dissipation does not offer
explanation for the apparent paradox. Firstly, as we have shown,
the treatment of the time-dependent linear solution shows that
the linear steady state is not relevant in the high-forcing case.
After one day, the nonlinear terms become dominant, whereas
the MG steady state would require linear effects to dominate for
at least 10 days. The shape of the atmosphere after one day is
again given by our Fig. 1a: it is the usual chevron-shaped pat-
tern presented by Showman & Polvani (2011). Therefore, when
nonlinear effects become dominant, they tend to accelerate the
equator, whereas if the linear steady state had been reached, the
deceleration by meridional motion could have been dominant:
for adequate forcing in hot Jupiter conditions, the state of the
atmosphere after one day always leads to meridional momentum
convergence at the equator. Then, as seen in Figs. 8 and 9, the
vertical accelerations also need to be taken into account: at the
80 mbar pressure range, vertical motion triggers the emergence
of superrotation contrary to what is proposed by Showman &
Polvani (2011). Only when superrotation is settled (Fig. 7b) do
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Fig. 8. Left column: meridional eddy accelerations as a function of pressure and latitude in the ∆Teq,top = 100 K case after 1 (top), 5 (middle) and
20 (bottom) days. Right column: same for vertical eddy acceleration. Units in kg m−2 s−2.

the vertical accelerations tend to decelerate the jet, and extend it
deeper, that is, to higher pressures.

Later on, once the superrotation is settled, the study of Tsai
et al. (2014) can be applied to the slower evolution of the atmo-
sphere, which leads to the possible existence of a unique steady
state. This steady state is permitted by both meridional and ver-
tical accelerations, as we have seen throughout this work. This
explains why superrotation is reached even when the dissipation
is very low, although the initial acceleration is not included in
the explanation given in Tsai et al. (2014).

6. Conclusion

In this study, we explore the initial acceleration of superrotation
in the context of a hot Jupiter atmosphere. We also focuse on
the inherent discrepancy between the works of Showman &
Polvani (2011) and Komacek & Showman (2016). Showman
& Polvani (2011) propose that the superrotation is triggered
by nonlinear accelerations around the linear steady state
which converge momentum to the equator. On the other hand,
Komacek & Showman (2016) show that certain configurations
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Fig. 9. Eddy accelerations at the equator at the 80 mbar pressure level
(plain lines) or averaged from 40 mbar to 0.4 bar (dashed lines) as a
function of time for (a): ∆Teq,top = 1 K, (b): ∆Teq,top = 100 K.

that exhibit superrotation are also associated with momentum
divergence at the equator in the linear steady state limit.

In order to resolve this apparent contradiction, we studied
the general form of the time-dependent linear response of the
atmosphere to a constant, asymmetrical heating. This response
depends on the shape of the forcing, the global shape and fre-
quency of the waves it generates, and the decay rate of these
waves. Our first conclusion, based on the use of ECLIPS3D,
is that changing the longitudinal form of the forcing is not of
prime importance with regard to the qualitative understanding of
superrotation, although it does affect the results in a quantitative
sense. The use of a Newtonian cooling scheme with a wavenum-
ber of one in longitude is, therefore, a reasonable approximation.

We have also obtained an equation for the frequency and
decay rates of the propagating waves, as in Heng & Workman
(2014). We could not solve this equation analytically for Rossby
and gravity waves; so we have, therefore, estimated the asymp-
totic behavior of the waves numerically. For Kelvin waves, on
the other hand, the analytical solution is obtained. The estimated
decay rates are reported in Sect. 4.1.5 and Fig. 3.

From there, we explain in qualitative terms the structure of
the linear solutions with different drag and radiative timescales,
as presented in Fig. 5 of Komacek & Showman (2016) and our
Fig. 1. The zonal dependency had also already been estimated by
Wu et al. (2001) by other means. A major result of this present
work is that in the limit of short times (compared to the damping
rates), the waves present in the decomposition of the heating
function contribute almost equally to the time-dependent linear
solution. This tends to create a Matsuno–Gill like circulation
(Fig. 1a) in the first day of the evolution of a hot Jupiter atmo-
sphere in a GCM, although the actual linear steady state would
be a “reverse” Matsuno–Gill, exhibiting eastward momentum
divergence at the equator (Fig. 1b). With order-of-magnitude
analysis, we concluded that in simulations representative of hot
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Fig. 10. Zonally-averaged zonal speed at the 80 mbar pressure level
(plain lines) or averaged from 40 mbar to 0.4 bar (dashed lines) as a
function of time for (a): ∆Teq,top = 1 K, (b): ∆Teq,top = 100 K.

Jupiters, the linear steady state could not be reached, however,
nonlinear terms were dominant after approximately one day,
hence, when the atmosphere resembles that of the Matsuno–Gill
circulation. As a consequence, the equator is accelerated even
though the linear steady state would tend to decelerate the
equator, resolving part of the discrepancy between Komacek &
Showman (2016) and Showman & Polvani (2011).

Finally, we considered the nonlinear accelerations taking
place during the spin-up of superrotation from 3D GCM sim-
ulations with different contrasts in temperature between the day
and night or in strengths of forcing to assess the importance of
the vertical accelerations. Once the jet is formed, the vertical
acceleration tends to decelerate the upper part of the jet while
extending it to deeper pressure. The meridional accelerations
oppose this deceleration and a steady state can be reached, as
already shown by Tsai et al. (2014) and Showman & Polvani
(2011). On the other hand, during the acceleration, the vertical
component contributes equally to the meridional component to
form an initial superrotation. This is in disagreement with Fig. 11
of Showman & Polvani (2011); however, the data for this fig-
ure are averaged across the upper atmosphere (above 30 mbar)
where superrotation does not develop or it is weaker. Numeri-
cally, it seems that as a jet is initiated, the vertical circulation is
altered, preventing the vertical deposition of eastward momen-
tum at the equator, whereas the meridional circulation is roughly
unchanged.

Overall, in this work, we study the acceleration of superrota-
tion based on theoretical and semi analytical grounds. We have
provide a complement to previous studies to provide a coher-
ent understanding of the initial acceleration of the equator of
hot Jupiters. Combined with the works of Showman & Polvani
(2011); Tsai et al. (2014); Komacek & Showman (2016) and
Hammond & Pierrehumbert (2018), a relatively complete picture

A2, page 20 of 26

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936110&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201936110&pdf_id=0


F. Debras et al.: Superrotation

of the initial phase of the atmospheric dynamics of simulated hot
Jupiters can now be drawn.

Our simulations suggest that there are regions of parameter
space for which the linear steady state does not accelerate super-
rotation but the early spin-up from the rest does so. This suggests
that multiple long term nonlinear states might be possible (as
explored by, e.g., Thrastarson & Cho 2010; Liu & Showman
2013) depending on initial conditions and it might be a track
towards understanding unusual observations in the field, such
those of Dang et al. (2018).
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Appendix A: Non-orthogonality in the case
τrad , τdrag

In the case of τrad = τdrag, Matsuno (1966) obtained a sim-
ple equation linking un,l and vn,l, the horizontal speeds of the
eigenvector (n, l), from Eqs. (7) and (9):

un,l =
ωn,lyvn,l + k∂vn,l/∂y

i(ωn,l − k)(ωn,l + k)
. (A.1)

A similar equation is obtained for hn,l. As vn,l ∝ ψn(y) =

Hn(y)e−y
2/2, with Hn the nth Hermite polynomial, the use of the

recurrence relations of the Hermite polynomials:

dHn(y)
dy

= 2nHn−1(y), (A.2)

Hn+1(y) = 2yHn(y) − 2nHn−1(y), (A.3)

implies that the eigenvector (n,l) is simply written as:

vn,l
un,l
hn,l

 =


i(ω2

n,l − k2)ψn(y)
1
2

(ωn,l − k)ψn+1(y) + n(ωn,l + k)ψn−1(y)

1
2

(ωn,l − k)ψn+1(y) − n(ωn,l + k)ψn−1(y)

 . (A.4)

The orthogonality of the eigenvectors is easily proven, and
the completeness is proved by use of the completeness of the
Hermite polynomial functions.

In the case τrad , τdrag, Eq. (A.1) is slightly changed to get:

un,l =

(
iωn,l + τ−1

rad

)
yvn,l + ik∂vn,l/∂y

k2 +
(
iωn,l + τ−1

rad

) (
iωn,l + τ−1

drag

) , (A.5)

and we recall that vn,l ∝ Hn(cn,ly)e−c2
n,ly

2/2 where

c4
n,l =

iωn,l + τ−1
rad

iωn,l + τ−1
drag

. (A.6)

Therefore, the expression of the eigenvector (n,l) is:


vn,l

un,l

hn,l

 =



(
k2 +

(
iωn,l + τ−1

rad

) (
iωn,l + τ−1

drag

))
ψn(cn,ly)

1
2

 iωn,l + τ−1
rad

cn,l
− ikcn,l

ψn+1(cn,ly) + n
 iωn,l + τ−1

rad

cn,l
+ ikcn,l

ψn−1(cn,ly)

1
2

(
cn,l

(
iωn,l + τ−1

drag

)
−

ik
cn,l

)
ψn+1(cn,ly) − n

(
cn,l

(
iωn,l + τ−1

drag

)
+

ik
cn,l

)
ψn−1(cn,ly)


.

(A.7)

Due to the dependency with cn,l in the parabolic cylinder
function, the eigenvectors of Eq. (A.7) are not orthogonal any-
more (the calculation is cumbersome but not difficult). On the
other hand, it is easily shown that the set of eigenvectors (n,l)
are linearly independent (thanks to the Hermite polynomials). A
rigorous proof would be needed to assess that they form a com-
plete set, allowing for a projection of the heating function onto
these eigenvectors. A graphical representation of these waves is
provided in Appendix C.

Appendix B: Solutions to Eq. (40)

B.1. The argument principle

The left-hand side of Eq. (39) may be confused with a second
order polynomial but the dependency of c with ω actually leads
to a polynomial of order 6. Based on Eqs. (39) and (34), we
obtain an equation for X = c2:

− X6 +

(
2i(2n + 1)∆τ

k

)
X5+ (3 + 2ik∆τ)X4 −

(
4i(2n + 1)∆τ

k

)
X3

+

(
−3 +

8i∆τ3

k
− 4ik∆τ

)
X2 +

(
2i(2n + 1)∆τ

k

)
X

+ (1 + 2ik∆τ) = 0, (B.1)

with ∆τ = (τ−1
drag − τ

−1
rad)/2. Determining the number of propagat-

ing waves consists, therefore, of determining the number of roots
of Eq. (B.1) with a positive real part, as explained in Sect. 4. We
make use of the argument principle: denoting P(X) the polyno-
mial in X of Eq. (B.1), the number N of roots of P in a domain
K is given by:

N(γ) =
1

2iπ

∮
γ

P′(z)
P(z)

dz, (B.2)

where γ is a positively oriented contour encompassing K. Denot-
ing C1/2,r the semi-circle of radius r, centered on the origin and
cut by the pure imaginary line (Fig. B.1), the number of zeros of
P with positive real part is given by Eq. (B.2) with γ = C1/2,r in
the limit r → ∞.

The right hand side of Eq. (B.2) can be estimated by decom-
posing the integral on the pure imaginary line and on the circle
of radius r. Namely:

2iπN(C1/2,r) =

∫ −r

r

P′(it)
P(it)

idt +

∫ π/2

−π/2

P′(r exp(iθ))
P(r exp(iθ))

ri exp(iθ)dθ.

(B.3)

For large r, the second term of this expression can be cal-
culated thanks to the asymptotical expansion of a polynomial of
order 6:

P′(r exp(iθ))
P(r exp(iθ))

=
6

r exp(iθ)
+ O

(
1
r2

)
. (B.4)

Hence the second term in the right hand side of Eq. (B.3) tends
to 6iπ when r → ∞.

The first term deserves further consideration. If the image of
the imaginary numbers by P does not cross a given half line D
with origin at z = 0, said otherwise P(iR) ⊂ C \D, we can define
a holomorphic function Ln such that Ln(exp(z)) = exp(Ln(z)) =
z and in that case:∫ −r

r

P′(it)
P(it)

idt =

∫ −r

r

d
dt

Ln(P(it))dt

= Ln
(

P(−ir)
P(ir)

)
→r→∞ Ln(1) = 0, (B.5)

where the limit comes from the fact that P is an even degree
polynomial. In that case, our two expressions for the terms of the
right hand side of Eq. (B.3) would yield:

N(C1/2,∞) = 3, (B.6)
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iR

R

r

-r
C
1/2,r

Fig. B.1. Graphical representation of the C1/2,r contour, encompassing
the complex numbers with positive real part when r → ∞.

confirming that Eq. (40) has exactly three roots of positive real
part. We go on to show, therefore, that (except for n = 0) the
image of the imaginary numbers by P is always included in C \
iR− or C \ iR+, where iR− and iR+ are the imaginary numbers
with negative and positive imaginary part, respectively.

B.2. Image of the polynomial

Based on further calculation, it can be shown that the polynomial
P from Eq. (B.1) may be written as:

P(iY) = (1+Y2)2(Y2−2αnY +1)+2ik∆τ(Y4−2(2α2
0−1)Y2 +1),

(B.7)

for Y ∈ R and with αn = (2n + 1)∆τ/k. Hence we can write the
imaginary part of P(iY) as:

=(P(iY)) = 2k∆τ(Y2 − 2α0Y + 1)(Y2 + 2α0Y + 1). (B.8)

We have two cases: (i) if |α0| = |∆τ/k| < 1, the imaginary part of
P(iY) has no roots for Y ∈ R. Hence for all n, P(iR) ⊂ C \ iR−

or P(iR) ⊂ C \ iR+ depending on the sign of ∆τ, and we have
the result: for all n, there are exactly three roots of positive real
part of Eq. (40), hence only three waves propagate. (ii) For |α0| =

|∆τ/k| > 1, the real part of the polynomial is:

<(P(iY)) = (1 + Y2)2(Y2 − 2αnY + 1), (B.9)

which has two real roots:

y±n = αn ±

√
α2

n − 1. (B.10)

Calculating the imaginary part of P for Y = y±n yields:

=(P(iy±n )) = (2k∆τ)(α2
n − α

2
0)(4y±n

2). (B.11)

Hence, for n > 0 the imaginary part of P(iy±n ) is always of the
same sign as ∆τ: for all y, P(iy) cannot be an imaginary number
with a negative (resp. positive) imaginary part if ∆τ is positive
(resp. negative). Therefore P(iR) ⊂ C \ iR− (resp. P(iR) ⊂ C \
iR+) and we have the same result: for n > 0, there are exactly
three roots of positive real part of Eq. (40).

We confirm, therefore, that for |∆τ/k| < 1, only three waves
propagate for all n and this result holds for |∆τ/k| > 1 and n > 0.
The case of |∆τ/k| > 1 and n = 0 is more complicated as when
the real part of P(iy) cancels out its imaginary part as well and we
can’t apply the same argument as for n > 0. However, it means
that the polynomial P for n = 0, P0, can be easily factorized:

P0(iY) = (Y2 − 2α0Y + 1)
{
(1 + Y2)2 + 2ik∆τ(Y2 + 2α0Y + 1)

}
,

(B.12)
which yields:

P0(Y) = (−Y2 + 2iα0Y + 1)

×

{
(1 − Y2)2 + 2ik∆τ(−Y2 − 2iα0Y + 1)

}
≡ (−Y2 + 2iα0Y + 1)Q(Y). (B.13)

Looking for the roots of P0 with a positive real part is, therefore,
equivalent to looking for the roots of Q with positive real part.
If we can show that Q(iR) ⊂ C \ iR− or Q(iR) ⊂ C \ iR+, then
we can use the argument principle on Q, a polynomial of order 4,
and Eq. (B.3) ensures that P has only two roots with positive real
part. This is easily proven by looking at the real part of Q:

<(Q(iY)) = (1 + Y2)2 > 0, (B.14)

and, hence, for all y ∈ R, the real part of Q(iy) never cancels out,
so that Q(iR) ⊂ C \ iR: P has only two roots of positive real part
and only two waves can propagate.

It might seem surprising to obtain a different behavior for
n = 0 but this was already found by Matsuno (1966), where only
two of the three solutions of the n = 0 case were actual solu-
tions of the linearized equations of motion. When considering
that τdrag , τrad, this degeneracy is removed when |∆τ/k| > 1,
where only two roots of the polynomial have a positive real part.
These findings have been tested and confirmed numerically.
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Appendix C: Waves when τrad, τdrag , 0
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Fig. C.1. Temperature (colors) and winds (arrows), both in arbitrary
unit, as a function of longitude and latitude for the shallow water solu-
tions of Eqs. (40) and (A.7) considering τrad = τdrag = 2.8 which is
∼105 s in dimensional units. Presenting (a) westward propagating
gravity wave; (b) Rossby wave; and (c) Kelvin wave.

This appendix aims to demonstrate the change in the structure
of the waves when τrad, τdrag , 0 based on the numerical solu-
tions of Eqs. (40) and (A.7). Figure C.1 shows a Rossby, gravity,
and Kelvin wave when τrad = τdrag = 0.35, which corresponds to
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Fig. C.2. Temperature (colors) and winds (arrows), both in arbitrary
unit, as a function of longitude and latitude for the shallow water solu-
tions of Eqs. (40) and (A.7) considering τrad = 2.8 and τdrag = 28.
Presenting (a) westward propagating gravity wave; (b) Rossby wave;
and (c) Kelvin wave.

∼105 s in dimensional units. Their shape is similar to the waves
studied by Matsuno (1966) as the only difference is in the decay
timescale, which is not zero but equal to τdrag.

Subsequently, Figs. C.2 and C.3 show the same waves when
either the drag or radiative timescales has been multiplied by
ten, respectively. The shape of the waves is almost unaltered for
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Fig. C.3. Temperature (colors) and winds (arrows), both in arbitrary
unit, as a function of longitude and latitude for the shallow water solu-
tions of Eqs. (40) and (A.7) considering τrad = 28 and τdrag = 2.8.
Presenting (a) westward propagating gravity wave; (b) Rossby wave;
and (c) Kelvin wave.

gravity and Kelvin waves, apart from a tilt of the perturbation
with latitude. Rossby waves, on the other hand, are more affected
by the change in the drag and radiative timescale.

Finally, Fig. C.4 shows the same waves when τrad = 1 and
τdrag = 28, which is about 3.5 × 104 s and 106 s, respectively.
The tilt in the gravity and Kelvin modes is amplified in compar-
ison to Fig. C.2 and the shape of the Rossby wave is extremely
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Fig. C.4. Temperature (colors) and winds (arrows), both in arbitrary
unit, as a function of longitude and latitude for the shallow water solu-
tions of Eqs. (40) and (A.7) considering τrad = 1 (∼3.5 × 104 s in
dimensional units) and τdrag = 28 (∼106 s in dimensional units). Pre-
senting: (a) westward-propagating gravity wave; (b) Rossby wave; and
(c) Kelvin wave.

altered. Because the majority of the energy of the Rossby wave
is in very high latitudes, where the equatorial β-plane framework
breaks, we excluded these modes in our semi-analytical treat-
ment. Physical Rossby waves are, nonetheless, recovered in 3D
by ECLIPS3D with such timescales. For more, see Sect. 4.2.
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Appendix D: Numerical development of the linear
steady state

In this appendix, we show the development of the linear steady
state for a simulation with ∆Teq,top = 1 K, τdrag = 106 s and τrad
following the prescription of Iro et al. (2005) and the same sim-
ulation with ∆Teq,top = 100 K. Our estimates show that such a
drag timescale should lead to a linear steady circulation sim-
ilar to Fig. 1b after ∼20 days of evolution in the low-forcing
case; whereas the time to depart from the linear evolution in the
highly forcing case should be about approximately one day. This
is clearly recovered in Fig. D.1.

Figure D.1 shows the temperature and winds of both simula-
tions after one, three, and 50 days of evolution. We see that the
low-forcing simulation resembles Fig. 1b after 50 days while the
highly forced simulation is superrotating.

After one day of simulation, a MG-like circulation is recov-
ered in both cases. The maximum speed in the high-forcing case
is a hundred times the maximum speed of the low-forcing case.
After just three days, the maximum speed of the high forcing
case is more than 100 times that of the low-forced case. After
50 days, there is a factor of 200 in the difference between the
two cases, highlighting the influence of nonlinear terms.

In the low-forcing case, the propagation and dissipation of
mid-latitude Rossby waves shifts the circulation obtained after
one day towards a reverse-MG state after 50 days, whereas in
the highly-forced case the eddies from the circulation after one
day accelerate the equator towards a superrotating state. Notably,
we see on the middle panel of Fig. D.1 that the winds in the
low-forced simulation are slowly shifted westward by the mid-
latitude Rossby waves, whereas the highly forced simulation
leads to a shrink of the westward winds that disappear after
∼30 days.
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Fig. D.1. Temperature (colors) and winds at a height corresponding to 80 mbar pressure at t = 0. τdrag = 106 s and τrad follow the prescription
of Iro et al. (2005) for all simulations. The left column has ∆Teq,top = 1 K. while the right column has ∆Teq,top = 100 K. Finally, the top panel
shows the atmosphere after one day of evolution, middle panel after three days, and bottom panel after 50 days. Maximum speeds are (a) 1 m s−1;
(b) 100 m s−1; (c) 2 m s−1; (d) 300 m s−1; (e) 5 m s−1 and ( f ) 1000 m s−1.
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