
HAL Id: insu-03674456
https://insu.hal.science/insu-03674456

Submitted on 20 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Latitudinal differential rotation in the solar analogues 16
Cygni A and B

M. Bazot, O. Benomar, J. Christensen-Dalsgaard, L. Gizon, S. Hanasoge, M.
Nielsen, P. Petit, K. R. Sreenivasan

To cite this version:
M. Bazot, O. Benomar, J. Christensen-Dalsgaard, L. Gizon, S. Hanasoge, et al.. Latitudinal differential
rotation in the solar analogues 16 Cygni A and B. Astronomy and Astrophysics - A&A, 2019, 623,
�10.1051/0004-6361/201834594�. �insu-03674456�

https://insu.hal.science/insu-03674456
https://hal.archives-ouvertes.fr


A&A 623, A125 (2019)
https://doi.org/10.1051/0004-6361/201834594
c© ESO 2019

Astronomy
&Astrophysics

Latitudinal differential rotation in the solar analogues
16 Cygni A and B

M. Bazot1,2, O. Benomar2, J. Christensen-Dalsgaard3, L. Gizon2,4,5, S. Hanasoge2,6, M. Nielsen2,
P. Petit7, and K. R. Sreenivasan2

1 Division of Sciences, New York University Abu Dhabi, UAE
e-mail: mb6215@nyu.edu

2 Center for Space Science, NYUAD Institute, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
3 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120,

8000 Aarhus C, Denmark
4 Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany
5 Institut für Astrophysik, Georg-August-Universität Göttingen, Göttingen, Germany
6 Department of Astronomy & Astrophysics, Tata Institute of Fundamental Research, Mumbai 400005, India
7 Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse UPS–OMP / CNRS, 14, avenue Édouard Belin,

31400 Toulouse, France

Received 7 November 2018 / Accepted 7 January 2019

ABSTRACT

Context. Asteroseismology has undergone a profound transformation as a scientific field following the CoRoT and Kepler space
missions. The latter is now yielding the first measurements of latitudinal differential rotation obtained directly from oscillation fre-
quencies. Differential rotation is a fundamental mechanism of the stellar dynamo effect.
Aims. Our goal is to measure the amount of differential rotation in the solar analogues 16 Cyg A and B, which are the components
of a binary system. These stars are the brightest observed by Kepler and have therefore been extensively observed, with exquisite
precision on their oscillation frequencies.
Methods. We modelled the acoustic power spectrum of 16 Cyg A and B using a model that takes into account the contribution of
differential rotation to the rotational frequency splitting. The estimation was carried out in a Bayesian setting. We then inverted these
results to obtain the rotation profile of both stars under the assumption of a solar-like functional form.
Results. We observe that the magnitude of latitudinal differential rotation has a strong chance of being solar-like for both stars, their
rotation rates being higher at the equator than at the pole. The measured latitudinal differential rotation, defined as the difference of
rotation rate between the equator and the pole, is 320 ± 269 nHz and 440+363

−383 nHz for 16 Cyg A and B, respectively, confirming that
the rotation rates of these stars are almost solar-like. Their equatorial rotation rates are 535 ± 75 nHz and 565+150

−129 nHz. Our results are
in good agreement with measurements obtained from spectropolarimetry, spectroscopy, and photometry.
Conclusions. We present the first conclusive measurement of latitudinal differential rotation for solar analogues. Their rotational
profiles are very close to those of the Sun. These results depend weakly on the uncertainties of the stellar parameters.
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1. Introduction

Rotation is a ubiquitous characteristic of stars; it has many con-
nections to convection, stellar pulsations, and magnetic fields
(e.g. Tassoul 2000). It can also be related to the evolution of
close-by planets through tidal effects (e.g. Privitera et al. 2016).
Despite this central role that it plays in stellar physics, a full
understanding of its behaviour remains elusive. Only for the Sun
are measurements precise enough to provide a proper insight on
rotation (e.g. Thompson et al. 2003), owing to the large num-
ber of observed solar pulsation eigenmodes (Hill et al. 1996).
The spherical-harmonic degrees of the detected modes reach val-
ues as high as l ' 200 at low radial orders (Larson & Schou
2008). Higher values, up to &1500, can be reached by fitting
ridges in the power spectrum (Couvidat 2013). In a spherically
symmetric, non-rotating star, the eigenfrequencies of the non-
radial modes are degenerate with respect to the azimuthal order.
However, perturbations to the velocity field caused by the rota-
tional flow can lift this degeneracy. The resulting frequency

splitting is related to the rotational flow by a linear integral
equation. It is possible to invert this relation to obtain infor-
mation on the solar rotation rate (see e.g. Thompson 1991). In
contrast, the degrees of the eigenmodes observed in other stars
are typically in the range l = 0 − 2, with some observations
detecting l = 3 modes (Bouchy & Carrier 2001; Bazot et al.
2012; Appourchaux et al. 2012; Metcalfe et al. 2012). As a con-
sequence, inverting the eigenfrequencies becomes far more
challenging.

There nevertheless exist sources of information on rotation
in stars other than Sun. Spectroscopic measurements offer esti-
mates of the surface velocity as it broadens absorption lines
through the Doppler effect. In general, the velocity is known
up to a sin i factor, with i the inclination of the spin axis of
the star with respect to the observer’s line of sight; this cannot
be estimated from spectroscopic measurements alone. Recently,
however, progress has been made through the advent of astero-
seismology, and in particular, through the space missions CoRoT
(Baglin et al. 2009) and Kepler (Borucki et al. 2010).
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Improvements have come in two ways. First, it is now possi-
ble to measure frequency splittings with precision (Gizon et al.
2013; Appourchaux et al. 2014; Nielsen et al. 2014). These
relate to the average rotation rate of a star. Furthermore, the
inferred value of the rotational splitting is geometrically tied to
the inclination of the star (Gizon & Solanki 2003) through its
effect on the observed mode amplitudes. Adequate estimates of
the former therefore require estimates of the latter. Combined
with spectroscopic measurements and radius determinations,
splitting and inclination determinations have provided consis-
tency checks of the asteroseismically estimated surface rota-
tional velocity (Gizon et al. 2013). It has also been argued that
discrepancies between the two measurements can be interpreted
as a signature of radial differential rotation (Benomar et al. 2015;
Deheuvels et al. 2015).

The other major source of information on stellar rotation
rates comes from photometric light curves and is related to
stellar activity. It is well known that spots and plages transit-
ing the stellar surface induce drops and increases in the inte-
grated flux, respectively. If the activity signal is sufficiently
long and coherent, this produces a quasi-periodic modulation
of the intensity that is correlated with the stellar rotation rate.
Such signatures have been extensively studied for large sam-
ples of Kepler stars (Reinhold et al. 2013; Walkowicz & Basri
2013; García et al. 2014; McQuillan et al. 2014; Nielsen et al.
2013). Some caution is needed with the interpretation of these
rotation rates because they depend on the latitude of the spots
through the variation with latitude of the surface rotation
rate.

Latitudinal differential rotation is indeed a major character-
istic of the solar rotation profile. It is well established that the
Sun rotates faster at the equator than at the poles by a fac-
tor of roughly 1.4. It has also been shown (Schou et al. 1998;
Chaplin et al. 1999; Thompson et al. 2003) that this latitudinal
differential rotation remains approximately constant as a func-
tion of radius throughout the convective zone. In the radiative
zone, at least outside its inner 20%, the rotation rate becomes
that of a solid body. For this reason, latitudinal differential rota-
tion is believed to be the result of the interplay between rotation
and convective flows.

Much uncertainty currently remains as to which convec-
tive scale is the main driver of this phenomenon. On the one
hand, it has been speculated that a mean-field approach of tur-
bulent convection can explain differential rotation. The basic
picture consists of describing the convective flow as a station-
ary component plus a time-dependent turbulent term that after
insertion in the Navier-Stokes equations for a rotating fluid,
gives rise to Reynolds stresses. The latter is in turn related to
the radial and latitudinal gradients of the rotation rates, that
is, to differential rotation (Rüdiger 1974, 1980, 1982). This
type of model can reproduce the observations made for the
Sun in a rather satisfactory way (Kitchatinov & Rüdiger 1995;
Kitchatinov & Nepomnyashchikh 2017). On the other hand,
the global approach consists of solving the full set of the
equations of hydrodynamics using the proper spherical coor-
dinates and boundary conditions. This work was initiated by
Gilman & Glatzmaier (1981). Given the spherical arrangement
of the system, differential rotation is caused by the Coriolis force
acting on large-scale convective motion (Tassoul 2000). Recent
work has allowed modelling enough spatial convective scales
so that these simulations can reproducethe solar observations
to some extent (Guerrero et al. 2013, 2016). These two expla-
nations need not be mutually exclusive. Finally, hydrodynamic
simulations for different stellar masses and rotation rates have

been carried out (see e.g. Brun et al. 2017). These show a wide
range of morphologies for rotation flows in Sun-like stars. It
is therefore clear that observing differential rotation is key to
understanding the interplay between convection and rotation. It
is our goal to provide such information for Sun-like stars.

Our refined picture of differential rotation in the Sun is due
to the large number of modes observed in this star, which greatly
helps the inversion process. The turning point of a given mode
in the stellar interior depends on its degree. Consequently, the
wide range of l values obtained for the Sun allows us to probe
many layers of its internal structure. Until recently, the relatively
low number of frequencies detected in other stars (typically
about 20 modes) had been an obstacle to inversion. Informa-
tion on latitudinal differential rotation was gathered from three
main sources. First, it is possible to invert the relation described
above between the spot rotation rates and differential rotation to
infer the latter (Donahue et al. 1996; Reinhold & Reiners 2013;
Lanza et al. 2014; Davenport et al. 2015). This is done through
spot modelling (e.g. Dumusque et al. 2014), which involves an
implicit physical model for the stellar spots. In the same spirit,
some studies have tried to identify variations in the measure-
ments of CaII emission lines, which are tied to active stel-
lar regions (Bertello et al. 2012). Interesting peculiar cases of
photometric spot modelling are encountered for planet-hosting
stars when the companion transits in front of stellar spots. The
resulting decrease in transit depth may allow a precise char-
acterisation of differential rotation (Valio et al. 2017). Another
method involves the use of Doppler maps obtained from spec-
troscopy or spectropolarimetry (e.g. Donati & Collier Cameron
1997; Marsden et al. 2011). The last approach available con-
sists of analysing the Fourier transforms of spectral absorp-
tion lines, whose side lobes are sensitive to the variation in
latitude of the rotation rate (Huang 1961; Gray 1977). This
strategy has been used extensively to detect differential rota-
tion in A- and F-type stars (Reiners & Schmitt 2002a,b, 2003;
Ammler-von Eiff & Reiners 2012). In a recent study, however,
Benomar et al. (2018) demonstrated the possibility of measuring
the magnitude of differential rotation in 13 Sun-like stars using
the techniques of asteroseismology on Kepler time series. We
extend this work here.

We report seismic detection of latitudinal differential rotation
for 16 Cyg A and B. These stars have physical characteristics
close to those of the Sun; in particular, the rotation rates obtained
from spectroscopy suggest roughly solar values (Takeda et al.
2005). For this reason, they have sometimes been dubbed “solar
analogues”. It is therefore of prime interest to assess whether the
measured latitudinal differential rotation is also close to solar-
like or if a difference exists. Most of the stars with measured
differential rotation reported in Benomar et al. (2018) are lean-
ing towards the F type. A handful of them have effective tem-
peratures closer to the Sun, but still hotter by roughly 300 K.
Therefore, 16 Cyg A and B are the best candidates to study
rotation under nearly solar conditions, which is supported by
the occasional classification of these stars as “solar twins” (e.g.
King et al. 1997 ; see also the introduction of Bazot et al. 2018
for a note on the class of solar twins).

Another important fact about 16 Cyg A and B is that they
are some of the brightest stars that the Kepler mission observed.
Therefore, their oscillation frequencies were estimated with
extremely good precision (Metcalfe et al. 2012; Davies et al.
2015). This gives us an opportunity to address the problem
of how the estimates of latitudinal differential rotation depend
on the uncertainties in the stellar parameters (mass, age, initial
chemical composition, and mixing-length parameter).
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In Sect. 2 we describe the general procedure for data fit-
ting, including the modelling of differential rotation effects. We
present its outcome in terms of coefficient estimates for a func-
tional expansion of the rotational splitting. In Sect. 3 we explain
the inversion methods used for both stars, with an emphasis
on the more difficult case of 16 Cyg B. We discuss in Sect. 4
the impact of the uncertainties on the stellar parameters on our
results. We also explore the implication of the measured stellar
deformation on the magnetic field of the stars.

2. Acoustic mode fitting with differential rotation

2.1. Data

The sources 16 Cyg A and B have been observed by Kepler from
13 September 2010 to 8 March 2013 (covering Kepler quarters
Q7 to Q16). Their magnitudes,V = 5.95 and 6.20, respectively
place them beyond the saturation limit of the on-board CCDs.
For this reason, it was necessary to produce a specific pixel mask
that allows measuring the flux with fewer pixels (Metcalfe et al.
2012). The raw data were treated using the procedure described
in García et al. (2011). It corrects for the instrumental pertur-
bations (outliers, jumps, drifts, etc.) and merges time series for
observations spanning multiple quarters.

The resulting precision on the measured flux, and subse-
quently, on the derived oscillation frequencies, are the best
obtained by Kepler, and to this day, for any Sun-like star in
addition to the Sun itself. Overall, 54 and 56 modes have been
detected for16 Cyg A and B (Davies et al. 2015), respectively,
with the precision ranging from 0.03 µHz to 2.74 µHz. Interest-
ingly, Davies et al. (2015) reported projected rotational-splitting
measurements of 411 ± 13 nHz for 16 Cyg A and 274 ± 17 nHz
for 16 Cyg B , that is, measurements that include a sin i factor,.
However, they did not detect conclusive signatures of differen-
tial rotation. Our goal is to remodel these acoustic power spec-
tra with a model that differs from those used in Metcalfe et al.
(2012) and Davies et al. (2015) in that it takes differential rota-
tion into account. We use the same time series as in Davies et al.
(2015).

2.2. Spectrum model

The fitting of the power spectra obtained from these times series
is based on principles that are commonly adopted in asteroseis-
mic studies. The first assumption is that the power spectrum in
each frequency bin we consider in the Fourier space is indepen-
dent of (and therefore not correlated to) its neighbours; that is,
we neglect leakage coming from the convolution of the Fourier
transforms of the signal and the window function. This allows
us to consider the probability density of the power in each fre-
quency bin separately. Making the further assumption that the
noise on the measurements is Gaussian, the power spectrum
Pi = P(ωi) at any frequency ωi is exponentially distributed, with
a probability density

f (Pk) =
1

P(ωk)
exp

(
−

Pk

P(ωk)

)
, (1)

withP(ωk) the average value of the power spectrum at ωk, where
k is an index of the frequency bins. A common model for the
average power spectrum is a sum of Lorentzian functions cen-
tred at the eigenfrequencies of the pulsation modes. This is suit-
able for regularly damped and re-excited modes such as those
observed in the Sun (Anderson et al. 1990). The central fre-
quencies, the widths, and the heights of the Lorentzian are free

parameters of the spectrum model. Usually, multiplets resulting
from a rotationally induced lifting of degeneracy are fit jointly
using a relation of the form νn,l,m = f (νn,l,m; (a j)1≤ j≤J). Here
νn,l is the “central” frequency of the multiplet, of radial order
n and angular degree l, m is the azimuthal order, and (a j)1≤ j≤J
is a vector of coefficients allowing us to expand the splitting
(Ritzwoller & Lavely 1991) as

δνn,l,m = νn,l,m − νn,l =

J∑
j=1

a j(n, l)ζ
(l)
j (m), (2)

with the functions ζ(l)
j (m) forming an orthogonal basis such that∑

m
ζ(l)

j (m)ζ(l)
i (m) = 0 for i , j.

In the expression of P(ωk) we introduce the effect of differ-
ential rotation. It is typical in asteroseismology to retain only the
first-order term in the above expansion. The a1 coefficient can be
interpreted as a weighted average of the rotation throughout the
star (Appourchaux et al. 2014; Davies et al. 2015). In this work,
however, we also consider the next term in Eq. (2), as suggested
by Gizon & Solanki (2004). This leads to a frequency distribu-
tion described by

νn,l,m = νn,l + ma1(n, l) + βn,l,m(ν) + ζ(l)
3 (m)a3(n, l). (3)

In the following we only consider splittings for l = 2, therefore
we use ζ(2)

3 (m) = (5m3 − 17m)/3. We also note that a frequency-
dependent term, βn,l,m(ν), has been added to the expression
resulting from Eq. (2). It includes the perturbation to the fre-
quencies stemming from the asphericities of the star. They may
be caused by the centrifugal forces, perhaps also by a large-scale
magnetic field (Gough & Thompson 1990), a tidal distortion, or
a strong anisotropic stellar wind. We show in Fig. 1 a typical
multiplet, chosen at n = 20, l = 2, as observed in the power
spectrum of 16 Cyg A and modelled using Eq. (3). The effects of
the higher-order term and departure from sphericity are smaller
than the contribution of a1 to the splitting. This is shown in the
right panel of Fig. 1, where we represent the individual contribu-
tions to the non-degenerate frequencies. It is interesting to note
that ma1 and ζ(l)

3 (m)a3 are symmetric functions of the azimuthal
order m, while βn,l,m is antisymmetric in m.

The coefficients a1 and a3 now become parameters of the
model to be fitted to the observed spectrum. The relative heights
of the modes in a multiplet also depend on the inclination i
(Gizon & Solanki 2003). We denote the parameters necessary to
describe the spectrum as

θ = (θS, a1, a3, i,βS,B). (4)

Here θS ∈ R
3N is a vector grouping of νn,l, Hn,l , and Γn,l, which

are the frequency, height, and width of the Lorentzian describ-
ing the expectation value of the line profile of mode (n, l) in the
power spectrum. N oscillation frequencies have been observed.
Other parameters are a1, a3, the stellar inclination i ∈ [0, 2π],
and βS, a vector grouping of the parameters we used in the func-
tional form of βn,l,m. We also used a model to describe the noise
contribution to the power spectrum. Its parameters are collec-
tively denoted as B, and we refer to Benomar et al. (2009) for
a discussion of the issues of background-noise fitting in seismic
spectra.

These parameters were estimated in a Bayesian framework,
that is, we estimated the posterior density function of the param-
eter vector θ, conditional on y, the data

πθ|y(θ|y) ∝ πθ(θ)L(θ). (5)
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Fig. 1. Left panel: spectrum of 16 Cyg A in the region of the (l, n) = (2, 20) multiplet. Black shows the observations and red is the theoretical model
corresponding to the MAP estimates of the parameters θ (cf. Eq. (4)). The vertical red ticks mark the position of the non-degenerate frequencies
with −l ≤ m ≤ l. Right panel: splitting diagram for the multiplet. The contributions of the terms in Eq. (3) are represented individually. The final
red horizontal ticks correspond to those in the left panel.

Here y = (P1, . . . , PK) is the observation vector. We always note
the probability density of a variable x by πx. Likewise, if the
probability is conditional on y, for instance, the corresponding
density is noted πx|y.

The likelihood function L is the product of the individual
exponential distributions for all the bins considered.

L(θ) =

K∏
k=1

1
P(ωk; θ)

exp
(
−

Pk

P(ωk; θ)

)
. (6)

We recall that this function is the probability density of the data
when y is the variable and is called the likelihood when seen as a
function of the parameters, θ. In that case, it is not a probability
density of the parameters.

The prior πθ adopted for the parameters can be decomposed
as the product of priors on the individual parameters by assum-
ing that they are independent of each other. The priors on the
usual parameters (frequencies, mode heights, and line widths)
are described in the Appendix of White et al. (2016). In addi-
tion, we chose uniform priors on a1 and a3. The coefficient a1
was assumed to be positive. Furthermore, because we do not
expect the stars to be fast rotators, an upper boundary was set
to 5 µHz. The boundaries for the prior on a3 were more diffi-
cult to set, and we used a test-and-trial procedure. We finally set
−0.1 µHz ≤ a3 ≤ 0.1 µHz. We chose the following functional
form for βn,l,m (see also Sect. 4):

βn,l,m(νn,l,m) = β0Ql,mνn,l. (7)

Here we have Ql,m = [L2 − 3m2]/[(2l − 1)(2l + 3)], with L2 =
l(l+1) (Gough & Thompson 1990; Kjeldsen et al. 1998), and βS
reduces to the scalar β0.

The corresponding posterior density was sampled using an
adaptive Markov chain Monte Carlo algorithm based on the
scheme described by Haario et al. (2001), with some modifi-
cations inspired by Atchadé (2006). The simulations were run
for 1 000 000 iterations. We used a burn-in sequence of 100 000
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Fig. 2. Marginal densities for the spectrum parameters a1, a3, i, and β0
of 16 Cyg A. The central panels show the joint marginal densities of the
paired parameters. In the side panels we plot the individual marginal
densities.

samples. In Fig. 1 we represent part of the spectrum obtained for
the values of the parameters corresponding to the global maxi-
mum of πθ|y, that is, the maximum a posteriori (MAP).

The resulting joint marginal densities for a1, a3, i, and β0 are
displayed in Figs. 2 and 3. The parameters seem fairly uncorre-
lated in general. The only exception worth noting is the obvi-
ous trend that can be observed in the joint density of (a1, i).
It is well documented (Gizon et al. 2013; Nielsen et al. 2014;
Benomar et al. 2015) that the inferred average rotation rate,
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Fig. 3. Same as Fig. 3 for 16 Cyg B.

which is the main component of the splitting δνn,l,m, increases
when the inclination decreases. This is related to the lower visi-
bility of the modes with m , 0 when i . 30◦, so that only larger
splittings can be distinguished at lower angles. Two effects fur-
ther complicate the fit of multiplets. First, if the mode lifetimes
are too short, the splitting and widths of the modes become com-
parable, producing the blending of the non-degenerate modes.
We recall that the mode lifetime τ is related to the width of the
Lorentzian at half-maximum by Γ = 2/τ (see e.g. Chaplin et al.
1999). Second, l = 0 modes may obstruct l = 2 modes, which
are of smaller amplitudes, if the widths of the peaks are too large.
These effects will be aggravated when the signal-to-noise ratio
becomes low.

In Fig. 2 all marginal densities are normal to a good approx-
imation. The inclination of 16 Cyg A is 58.5◦ ± 6.8◦, which
confirms the findings of Davies et al. (2015), who obtained a
posterior estimate of 56◦ +6◦

−5◦ . As previously discussed, this is
an important parameter. The visibility of the modes at such an
inclination will be low for the central frequency and higher for
m = ±1, as shown in Fig. 1. The estimated value for a1 is
464 ± 43 nHz. It is in good agreement with the splitting value
derived in Davies et al. (2015). After deprojecting, their result
is 486.3+40

−29 nHz. The first main result of this study is that we
obtain a probability of 86% for a3 to be strictly positive. Spec-
ifying further, we can define a 68.3% credible interval a3 =
11.15 ± 10.95 nHz (given the Gaussian shape of the marginal
density, this can be interpreted as a 1σ interval). Finally, the
asphericity parameter is β0 = 0.1± 0.1, that is, it is non-zero at a
1σ level. The significance of this result is discussed in Sect. 4 in
relation to the magnetic properties of the star.

The situation is different for 16 Cyg B, as shown in Fig. 3.
The probability densities of two parameters, namely i and a1
, show a bimodal behaviour. The most likely explanation is a
poor constraint on the inclination, which is also reported in
Davies et al. (2015). According to the correlation between the
inclination and the rotational splitting described above, this in
turn impacts the a1 coefficient. The resulting bimodality of many
marginal joint PDFs makes interpreting the inversion results dif-
ficult. These are discussed in Sect. 3. We note here that there are

some differences with the results found in Davies et al. (2015).
We tried to fit the power spectrum of 16 Cyg B setting a3 =
0 nHz. In that case, we found the same results as they did. There-
fore, we interpret the differences between our study and theirs as
due to the including a3.

3. Inversion of the rotation profile

The ultimate goal of this study is to provide a map of the rota-
tion rates of 16 Cyg A and B. The derivation of the probability
densities for a1 and a3 allows us to use methods that initially
were developed for helioseismology to do so. The entire proce-
dure relies on expanding the splitting according to Eq. (2) and
the rotation rate, expressed in rad s−1, in the form

Ω(r, θ) =

S∑
s=0

Ωs(r)Ws(θ), (8)

with r the stellar radius and θ the co-latitude, the system being
considered azimuthally symmetric.

In general, the orthogonality of the functions ζ(l)
j (m) ensures

that only modes with s ≥ j contribute to a j (Brown et al. 1989).
However, a particular set of functions Ws exists such that there is
a one-to-one relation between a2 j+1 and Ω j (Ritzwoller & Lavely
1991; Schou et al. 1994; Pijpers 1997). This is obtained from the
relation between the splitting and the rotation-rate components.
If the rotational velocity field can be treated as a small pertur-
bation to the hydrostatic equilibrium (Lynden-Bell & Ostriker
1967), the antisymmetric part of the frequency splitting can
be related to the rotation rate through the linear integral
equation

νn,l,m − νn,l,−m

2
=

∫ π

0

∫ R?

0
Kn,l,m(r, θ)

Ω(r, θ)
2π

rdθdr. (9)

Here Kn,l,m is the rotation kernel for the mode defined by n,
l, and m, and expressed as (Hansen et al. 1977)

Kn,l,m(r, θ) =
m
In,l

[
ξn,l(r)

[
ξn,l(r) −

2
L
ηn,l(r)

]
Pm

l (x)2

+

(
ηn,l(r)

L

)2 (dPm
l

dx

)2

(1 − x2) + 2Pm
l

dPm
l

dx
x


+

m2

1 − x2 Pm
l (x)2

]
ρ(r)r sin θ. (10)

We recall the classical notation used above: considering spheri-
cal coordinates defined by the basis (er, eθ, eφ), the total displace-
ment of a fluid element from its equilibrium state is

δrn,l,m(r) = ξn,l(r)Ym
l (θ, φ)er + ηn,l(r)∇hYm

l (θ, φ),

with r the position vector and Ym
l (θ, φ) the spherical harmonics.

We have used the normalised associated Legendre polynomials,
Pm

l , and defined x = cos θ. We also introduced the mode inertia

In,l =

∫ R

0
ρ(r)r2[ξn,l(r)2 + ηn,l(r)2]dr. (11)

In the following, we assume that the radius-dependent coeffi-
cients Ωs(r) are piecewise constant functions that can be written
explicitly as

Ω(r, θ) =

{
Ω0 if r < RCZ,

Ω0 + Ω1W1(θ) if r ≥ RCZ.
(12)
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We have used W1(θ) = 1.5(5 cos2 θ − 1) for the first-order
basis function (Ritzwoller & Lavely 1991; Schou et al. 1994).
The kernels were computed from Eq. (10) using the out-
put of the code for stellar structure and evolution ASTEC
(Christensen-Dalsgaard 2008a) and the stellar pulsation code
adipls (Christensen-Dalsgaard 2008b). The results, discussed
below, are summarised in Table 1.

It may then be shown (Gizon & Solanki 2004) that

2πa1 = Ω0

∫ π

0

∫ R?

0
K2,2(r, θ)rdθdr, (13)

= Ω0K0, (14)

2πa3 = Ω1

∫ π

0

∫ R?

RCZ

[K2,2(r, θ) − K2,1(r, θ)]
5

W1(θ)rdθdr, (15)

= Ω1K1, (16)

where R? and RCZ are the radius of the star and of the bottom
of its convective envelope, respectively. The functions Kl,m =
〈Kn,l,m〉n are the rotational kernels Kn,l,m averaged, with equal
weights, over the radial orders.

The derivation of Eq. (15) is straightforward using Eq. (9)
and the expression for ζ(2)

3 (m). To obtain Eq. (13), we assumed
that δνn,1,1 ' δνn,2,2/2. This is well justified for 16 Cyg A and B.
The typical departure between the two splittings is usually below
2%, which is well below the final uncertainties obtained on Ω0,
of the order of 10% or more. This assumption allowed us to use
a1 as estimated for modes with l = 2. This could be an advantage
since the splittings are easier to measure for higher degree.

The rotational kernels are thus key quantities to the forward
problem, that is, computing the rotational splitting using a theo-
retical stellar model. They depend in particular on the density of
the stratified equilibrium model, ρ(r), and on the radial and hor-
izontal mode displacements ξn,l(r) and ηn,l(r). These functions
can be obtained by solving the equations for stellar structure,
evolution, and pulsation. In order to compute them, a prereq-
uisite is to obtain a realistic stellar model. As described in
Appendix A, the model was obtained by fitting observed stellar
properties, including asteroseismic data. In this section, we con-
sider the best stellar models we obtained from our simulations.
They are defined as those that maximise the posterior density
function for the stellar parameters and are given in Table A.3.

After we computed the stellar models for 16 Cyg A and B are
computed, the rotation kernels were obtained using Eqs. (13) and
(15). We note that these two relations are sufficient to invert the
profile because we only have access to a1 and a3. We tested spec-
trum models that included a5 (sensitive only to l = 3 modes) in
the truncation of the sum of the right-hand side of Eq. (8), but did
not detect any significant departure from zero for this coefficient.

3.1. 16 Cyg A

The inversion for the rotation profile can be carried out straight-
forwardly for 16 Cyg A. The posterior marginal densities for
a1 and a3, πa1 |y and πa3 |y, which we plot in the side pan-
els of Fig. 2, K0 and K1, are known quantities. We can
therefore obtain the posterior densities for Ω0 and Ω1. We
applied Eqs. (14) and (16) to the samples obtained from
the MCMC simulations {a(1)

1 , . . . , a(T )
1 } and {a(1)

3 , . . . , a(T )
3 }, with

T the number of realisations in our sample. These are dis-
tributed approximately as πa1 |y and πa3 |y. This scaling gives
us two new samples {a(1)

1 /2πK0, . . . , a
(T )
1 /2πK0} ∼ πΩ0 |y and

{a(1)
3 /2πK1, . . . , a

(T )
3 /2πK1} ∼ πΩ1 |y (with the symbol “∼”

Table 1. Differential rotation parameters for 16 Cyg A and B.

16 Cyg A

Ω0/2π 471 ± 43
Ω1/2π −42.7 ± 41.5

16 Cyg B
p1 = 0.40 p2 = 0.33 p3 = 0.27

Ω0/2π 518 385 618
Ω1/2π −47.1 −43.6 −68.1
σ1,1 2562 1557 4157
σ2,2 2029 3873 1849
σ1,2 −108 60.1 −647

Notes. For the former, the posterior mean and standard deviation are
given in nHz. For the latter, we give the parameters of the three-
component Gaussian mixture model used to represent the joint poste-
rior density, as inferred using the EM algorithm. The weights are pk,
k = 1, 2, 3. The vector (Ω0/2π, Ω1/2π) is the mean vector of each
component (in nHz). The coefficients σi, j, i, j = 1, 2, of the covariance
matrices are given in nHz2. We note that σ1,2 = σ2,1.

meaning “distributed as”), which we used to approximate the
desired marginal posterior probability densities.

This simple scaling obviously preserves the general struc-
ture of the posterior probability densities of the splitting coef-
ficients. The densities for Ω0 and Ω1 are thus approximately
described by normal densities. We estimated, in the sense of
the posterior mean (PM), Ω0/2π = 471 ± 43 nHz and Ω1/2π =
−42.7 ± 41.5 nHz. Here, we used the posterior standard devia-
tion as a 68.3% credible interval. As expected, the non-null 1σ-
level detection of latitudinal differential rotation obtained from
a3 translates into the rotation-rate coefficient. As before, the sign
of Ω1 can be assigned a probability, and the probability for it to
be negative is still 86%.

The profile corresponding to the PM of Ω0 and Ω1 is given
in Fig. 4 (left panel). It ranges from 534 nHz at the equator to
215 nHz at the pole, that is, a ratio of 2.5, which is signifi-
cantly higher than that observed for the Sun. The uncertainties
on this rotation profile are also shown in Fig. 4 (right panel).
Their behaviour is a good indication of the regions of the stellar
surface we can probe efficiently using the current seismic data.
The overall structure of the posterior standard deviation seen in
Fig. 4 is due to the functional form retained for Ω. The variance
of Ω(R?, θ) for a given co-latitude θ results from the posterior
variances of Ω0 and Ω1. In Eq. (12) the term depending on Ω0
does not vary with θ, hence it implies a minimum uncertainty on
the rotation rate at any latitude. In contrast, Ω1 is modulated by
W1 , and we have W1(θ = 63.4◦) = 0. At this co-latitude, the
rotation rate is equal in the radiative and convective envelopes
and the variance on the rotation rate is minimal since Ω1 does
not contribute.

The immediate result is that the higher latitudes are poorly
constrained. This is not surprising because even in the solar
case, these regions are the most difficult to probe using seismol-
ogy (see e.g. Thompson et al. 2003, and references therein). The
uncertainty at co-latitude 0◦ is approximately ±260 nHz, which
represents an error of ∼120%. The constraint is so poor that
some extreme models even show an inversion of their rotation
rate between the pole and the equator. Such models, although
likely nonphysical, are formally admissible when only Eq. (12)
is considered. Thus, the results at high latitudes should not be
overinterpreted. The main conclusion that ought to be drawen
is that stronger observational constraints are needed to tighten
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Fig. 4. Left panel: rotation-rate profile of 16 Cyg A corresponding to the PM estimates of Ω0 and Ω1. The dashed line marks the bottom of the
convective envelope in the assumed stellar model. Right panel: distribution of the surface rotation rate as a function of the stellar co-latitude. The
red shade represents probability densities at each latitude. The black line marks the surface rotation model for the PM values of Ω0 and Ω1 and
corresponds to the map in the right panel at r = R?. The black dashed lines mark the mean surface rotation model plus (right curve) or minus (left
curve) the corresponding posterior standard deviation estimated at each latitude.
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Fig. 5. Left panel: joint marginal posterior density for (Ω0,Ω1) in 16 Cyg B. The black dots are the MCMC sample. The continuous curves show
some iso-probability levels of the corresponding three-component Gaussian mixture model. Right panel: projections on the Ω0 and Ω1 axis of the
two-dimensional joint probability. The histograms show the MCMC sample and the red lines the mixture model. The dashed lines show contributions
of the two main peaks in the joint density (where the main peak combines components 1 and 3, and the secondary peak is component 2; see Table 1).
The dot-dashed line in the Ω1 projection shows the result using a normal distribution with the mean and variance of the MCMC sample.

the precision of the inversion near the pole. Such constraints
could help to improve our results in two ways. First, by better
constraining Ω1, large discrepancies of the rotation rate at high
latitudes might be prevented. Second, by providing constraints
to more accurate models, for instance, expansions of the form
of Eq. (8) at higher orders (typically including a5). We note that
using such alternative rotation rates requires kernels that are sen-
sitive to lower co-latitudes (see e.g. Lund et al. 2014).

Our results are much more constrained near the equator
and up to co-latitude ∼50◦. At the equator, the uncertainty on
the mean rotation rate is ±70 nHz, amounting to 13%. It then
decreases to 42 nHz at ∼65◦, that is, an 8% uncertainty. The rel-
ative statistical error reaches 50% at roughly 35◦.

3.2. 16 Cyg B
The case of 16 Cyg B is more subtle and demands greater care.
As we have discussed in Sect. 2, we observe some correlations
in the joint marginal densities of some parameters. At first sight,
this does not concern a3. In Fig. 3 this parameter indeed looks as
if it were not correlated to a1 or i, and its marginal density πa3 |y

appears to be roughly Gaussian. A normal approximation may
thus be seen as suitable for modelling this density.

An examination of Eq. (3) gives some hints as to what may
cause the observed bimodality. It shows that the frequency spac-
ings between the rotationally split m-components of the l = 2
modes are νn,2,2 − νn,2,−2 = 4(a1 + a3) and νn,2,1 − νn,2,−1 =
2(a1 − a3). This can lead to degeneracies between a1 and a3 that
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can only be lifted if the mode blending (typically defined by the
ratio a1/Γ) and the noise level are not substantial.

When we estimate the first moments of the distribution
with our MCMC sample, we obtain a3 = 13.89± 13.95 nHz.
Likewise, when we invert a3 using the model discussed above
and Eq. (15) to obtain Ω1, the corresponding sample gives
Ω1/2π= − 51.68± 51.94 nHz. These values clearly indicate a
non-detection of latitudinal differential rotation at a 68.3% level,
that is, zero is included in the 1σ credible interval when we
retain the posterior mean estimator in the Gaussian approxima-
tion. This said, the probabilities for a3 to be strictly positive, or
conversely, for Ω1 to be strictly negative, remain high, at ∼85%.

All things being equal, this conclusion remains valid only as
long as the normal approximation is accurate enough to describe
πa3 |y or πΩ1 |y. In the following, we consider an alternative way
to model the joint density πΩ0,Ω1 |y for (Ω0,Ω1) derived from the
joint density πa1,a3 |y. We use a semi-parametric model (see e.g.
Bishop 1995) called Gaussian mixture model. It provides an ana-
lytic form that can approximate the density of a random vector
x ∼ π and is defined as

π(x) =

K∑
k=1

pkNk(µk,Σk). (17)

Here,Nk is a multivariate normal density of mean µk and covari-
ance matrix Σk. The coefficients pk are such that

∑
k pk = 1. All

these quantities are parameters that need to be estimated so that
they reproduce the observed density satisfactorily, in our case, as
approximated by the MCMC sample. We adopted a maximum-
likelihood framework to do so. A classical way to obtain esti-
mates of µk, Σk and pk is then the expectation-minimisation
algorithm (EM, Dempster et al. 1977). It is also necessary to
fix the number, K, of Gaussian components to be used. We
proceeded through trial-and-error steps.

Based on these principles, we proceeded in two steps. First,
setting x = (Ω0,Ω1) in Eq. (17), we modelled the joint density
πΩ0,Ω1 |y. This can be done straightforwardly using the one-to-one
mappings relating a1 and Ω0, on one hand, and a3 and Ω1, on the
other. Inversion then amounts to independently scaling the com-
ponents of each vector and preserves the structure of the den-
sity. We selected a three-component Gaussian mixture model,
which we consider to be the best trade-off between reproducing
the main features of the joint probability density and over-fitting.
It also has the advantage of being a simple enough model, so
that it remains easy to interpret. This approach is still very sim-
ple. There exist many subtleties to mixture model fitting, with
a vast literature treating them (e.g. Frühwirth-Schnatter 2006).
Our goal here was to show that an improvement of the statistical
model could lead us, at the 68.3% credibility level considered in
this study as the reference detection threshold, from a relatively
marginal non-detection to a relatively marginal detection. It is
clear that from there on, significant improvements require better
data. Therefore, we did not pursue more advanced techniques for
the mixture modelling.

The results of the mixture modelling are shown in Fig. 5. The
left panel shows the MCMC sample in the (Ω0,Ω1) plane and the
estimated mixture model. The components of the latter can be
separated into two groups. Two of them, those with the highest
mean values on the Ω0 axis (components k = 1 and 3 in Table 1),
account for the peak to the right of the distribution, with a maxi-
mum Ω0/2π > 500 nHz. They form the bulk of the density, which
can be seen from the fact that the sum of their weights is 0.67.
Two components in the model were necessary to account for the
slightly longer tail of the main peak at higher values of a1. The last

component, with a weight of 0.33, represents the mode to the left,
peaking at Ω0/2π < 400 nHz. The global mode of the distribu-
tion is located at (Ω0/2π,Ω1/2π) = (558 nHz,−56.6 nHz) and is
marked by a red dot. The right panel of Fig. 5 shows the projection
of πΩ0,Ω1 |y on the Ω0 and Ω1 axis. The mixture model accounts for
the marginal densities. In particular, it reproduces the two max-
ima in πΩ0 |y well. In the case of the marginal density of Ω1, we also
represented the results discussed above and obtained them from
a Gaussian approximation.

We now consider all three components. A first result was
obtained by comparing the marginal density for Ω1 resulting
from the projection of the mixture model to the Gaussian approx-
imation. The former is clearly a better approximation. Impor-
tantly, when we compute a 68.3% credible interval relative to
its mode, we obtain Ω1/2π = −54.45+52.12

−50.06 nHz. This clearly
excludes Ω1/2π = 0 nHz. We thus showed that a proper mod-
elling of the density for Ω1 allows us to obtain a more convincing
detection of latitudinal differential rotation. After we established
that there is a differential rotation signal in the frequencies of 16
Cyg B, we derived a map of the rotation rate of the star Ω(r, θ).
Unlike what was done in Sect. 3.1, where we retained the pos-
terior mean (PM) estimates of Ω0 and Ω1, we used the MAP
estimates of these parameters here. The resulting map is shown
in the left panel of Fig. 6. The surface rate varies from 604 nHz
at the equator to 235 nHz at the pole, for a ratio 2.6, which is
only slightly higher that the rate observed for 16 Cyg A.

The right panel of Fig. 6 shows the uncertainties on the surface
rotation rate. It is apparent in the band of co-latitude 40◦–75◦ that
the density is bimodal, reflecting the shape of πΩ0,Ω1 |y. Here, we
also represent the two estimates of Ω(R?, θ) that we obtained: one
from the direct modelling of the density πΩ(R?,θ),|y, the other from
the MAP estimate of the parameters Ω0 and Ω1. The latter is an
approximation to the former. It was convenient to distinguish the
two becauseπΩ(R?,θ),|y allowed us to compute a credible interval on
the surface rotation rate, while the MAP estimates of Ω0 and Ω1
were used to derive the map in the left panel. The approximation
is valid since the two solutions never differ by more than 25% of
the total width of the credible interval (with a maximum close to
the pole) and is, in general, around or below 10% at co-latitudes
higher than 15◦. The advantage of the rotation profile based on the
MAP estimates of the rotation parameters is that using the param-
eters given in Table 1, it can be cast in the close simple analytic
form of Eq. (8) and compared to other studies (see Sect. 4). The
credible interval displayed in Fig. 6 was not as straightforward to
derive as the interval shown in Fig. 4, for which we were able to
use a Gaussian approximation. In this case we modelled the den-
sity of the surface rotation rate at each latitude, πΩ(R?,θ),|y, using
a Gaussian mixture model. The equatorial rotation rate obtained
using this estimate is 565+150

−129 nHz.
The modelling of πΩ0,Ω1 |y allowed us to push the analysis fur-

ther. It is possible to invert rotation profiles corresponding to
the two main peaks found in the density. The less-likely com-
ponent gives an MAP estimate Ω1/2π = −43.6+63.0

−62.5 nHz. The
corresponding a3 coefficient is 11.7+16.9

−16.8 nHz, which implies a
marginal non-detection at a 68.3% level if this is the solution
(the probability for Ω1 to be negative remains high, however).

The main peak corresponds to the highest values of a1, with
an MAP credible interval 531+90

−61 nHz. The corresponding esti-
mate of the a3 coefficient is −15.2+12.5

−12.2 nHz. If this turns out to
be the solution, then it would correspond to a detection better
than the 68.3% level. We represent the corresponding solution
in Fig. 7 to provide a sense of the results that could be achieved
if the data were good enough to constrain the inclination better
and, consequently, a1 and a3.
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Fig. 6. Left panel: rotation profile Ω(r, θ) of 16 Cyg B corresponding to the MAP estimates of Ω0 and Ω1. The dashed line marks the bottom of the
convective envelope. Right panel: distribution of the surface rotation rate as a function of the stellar co-latitude. The red shade represent probability
densities. They have been normalised with respect to the rotational rate at fixed latitude. The black line marks the mode of the corresponding
density, obtained from a Gaussian mixture model. The long-dash line shows the associated 68.3% credible interval. The short-dash line shows the
model corresponding to the MAP estimates of Ω0 and Ω1.
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Fig. 7. Same as Fig. 6, but for the mode corresponding to the two components with the highest mean values in Table 1.

4. Discussion

4.1. Impact of forward modelling

Up to this point, our inversion for differential rotation has relied
on stellar models obtained from the MAP estimates of the stel-
lar parameters. However, as we show in Appendix A, we also
estimated uncertainties on these parameters. A legitimate ques-
tion is thus whether such uncertainties can significantly affect
our measurements of latitudinal differential rotation. In particu-
lar, the inferred value of Ω1 could, in theory, be sensitive to the
errors on the age and the mixing-length parameter. This could
occur through the dependence of the model provided in Eq. (12)
on the location of the bottom of the convective zone. The depth
of the convective-radiative transition is controlled by the mixing-
length parameter, which determines the magnitude of the supera-
diabatic gradient in the uppermost part of the convection zone
and hence the entropy and structure of the adiabatically stratified
bulk of the convection zone. Moreover, on the main sequence,

this depth is known to decrease with the stellar age. Therefore,
we determined the accuracy of the forward modelling, from stel-
lar parameters to Ω1, in light of these errors.

In Appendix A we obtain approximations to the joint poste-
rior density of the stellar parameters θ? ∼ πθ? |X?

, where X? are
the observations given in Table A.1 and θ? the stellar parame-
ters. After this, we can also obtain approximations to the den-
sities of a function h = h(θ?), that is, πh(θ?)|X?

(h(θ?)|X?). The
first step is to formulate a model for the stellar parameters. This
can be done using the Bayesian framework we described in
Sect. 2.

Table A.3 and Figs. A.1 and A.2 give for 16 Cyg A and B
the estimates of the stellar parameters in the sense of the PM
and the MAP and the marginal two- and one-dimensional prob-
ability densities for the stellar parameters, respectively. All the
one-dimensional marginal densities are close to Gaussian. Only
in the case of X0 is the density slightly truncated as a result of
the prior we chose.
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Fig. 8. Densities for the differential rotation parameter Ω1 for 16 Cyg A (left panel) and B (right panel). The black lines show the densities after
marginalisation over the K1 coefficients given by Eq. (19). The red dashed lines show the densities for our best-fit stellar model.

In Fig. 8 we show the distributions for Ω1 obtained using the
MAP estimates for the stellar parameters, which were used to
derive the rotation profiles in Figs. 4 and 6. We also display the
probability density obtained by taking into account the variabil-
ity of the scaling coefficientK1 in Eq. (15) that is induced by the
uncertainty on the stellar parameters. In order to obtain this lat-
ter density, we assumed that the a3 parameter measured from the
acoustic spectrum and the scaling coefficient are statistically inde-
pendent. This is justified because the effect of rotation on stellar
oscillations is treated as a perturbation and we did not take into
account the effect of rotation on the stellar structure. In particu-
lar, the transport of angular momentum was neglected. Rewriting
Eq. (15) as Ω1 = 2πa3/K1, we can derive the probability density
πΩ1 |X?,y for Ω1|X?, y using a standard relation from probability
theory that gives the density of a ratio of random variables,

πΩ1 |X?,y(Ω1|X?, y) =

∫
πa3 |X?,y

(
Ω1K1

2π

∣∣∣∣∣X?, y

)
× πK1 |X?

(K1 | X?)|K1|dK1,

≈
∑

i

πa3 |y

(
Ω1K1,i

2π

∣∣∣∣∣X?, y

)
|K1,i|. (18)

The density πK1 was obtained from the MCMC simulations
described above. We note that for any value of the stellar parame-
ters we can compute new oscillation kernels and the correspond-
ing values for the integral K1, thus obtaining an approximation
to the density πK1 . The second line in Eq. (18) is the approxi-
mation of the preceding integral using this MCMC sample. The
sum is taken over all realisations. In order to compute this term,
we need to know the density for a3|y. This was done in a simi-
lar fashion as for Ω1. We modelled the joint density for (a1, a3)
using a three-component mixture model, each of them being
bivariate Gaussian densities N(ζk,Λk) associated with weights
qk, k = 1, . . . , 3. This model can be marginalised analytically
over a1

πa3 |y(a3|y) =

3∑
k=1

qk

exp
[
− 1

2

(
λ2,k −

λ2
12,k

λ1,k
(a3 − ζ2,k)2

)]
√

2πλ1,k |Λk |
−1/2

, (19)

with ζ2,k the second coefficient of ζk and λ1,k, λ2,k, and λ12,k the
coefficients of the co-variance matrix Λk.

In Fig. 8 we show that the resulting densities are extremely
close to those obtained using the MAP estimates. At any rate,
this does not change our conclusions about differential rotation
for 16 Cyg A and B. We can safely assess that differential-
rotation measurements depend only weakly on the exact value of
the stellar parameters. This is expected to hold as long as rota-
tion can be treated as a perturbation. It is also important that the
quality of the seismic data on 16 Cyg A and B offers a very good
precision on the age and mixing-length parameters; this gives
us an indication of the range, in the parameter space, over which
our results can be regarded as robust. It remains to be understood
at which level of precision this breaks down.

Another difficulty with forward modelling is the lack of
information on the terms of higher order in the expansion
of Ω(r, θ). Potentially, these might counteract the effects of
the leading non-constant term in cos2 θ. This is difficult to
assess, however, since we were unable to measure a5. Fur-
thermore, adopting a slightly different decomposition Ω(r, θ) =∑

Ω?
s (r) cos2s θ (Ritzwoller & Lavely 1991; Schou et al. 1994),

Ω?
1 and Ω?

2 might be constrained using a3. Of course, we loose
in the process the one-to-one relation between a j and Ω?

s . The
meagre information obtained from spectrum fitting makes it dif-
ficult to properly estimate these parameters. So far, the best
argument in favour of the preservation of latitudinal differen-
tial rotation when higher-order terms are included is the extrap-
olation from the solar case. We know that the term in cos4 θ in
the above expression also decreases the rotation rate as the co-
latitude decreases. A common expression for the solar surface
rotation rate in the convective zone is Ω�(R�, θ)/2π = 454 −
55 cos2 θ−76 cos4 θ (Gizon & Solanki 2004). At the pole, the last
term of the right-hand side contributes to ∼60% of the equator-
to-pole braking. The missing information on higher-order terms
is thus responsible for the poor constraints at high latitudes. As
discussed in Sect. 3.1, the form used to describe the rotation rate
implies a minimum variance at θ = 63.4◦. This is no longer
the case when we introduce a term in cos4 θ. In the Sun, this
latter dominates differential rotation at co-latitudes .32◦, and
hence the variance of the surface rotation rate in correspond-
ing proportions. We postulate that the missing information on
higher-order terms is responsible for the poor constraining of
the rotation rate at high latitudes, &40◦, that we see in Figs. 4, 6,
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and 7. A possible solution to this problem is to obtain longer
time series, potentially involving several l = 3 modes, which
would allow measuring the a5 coefficients. In that case, there
would be a one-to-one relation between the former and the Ω2
coefficients. These weight the function W2(θ) in which the cos4 θ
terms appear.

We also disregarded the effect of subsurface flows on the
rotation rate. It is well established in the solar case that it
increases rapidly immediately below the surface (Deubner et al.
1979). For regions located in the co-latitude range 60◦−90◦,
the angular velocity gradient remains approximately constant.
The layer at r = 0.97R� rotates ∼3% faster than the surface
(Corbard & Thompson 2002). At lower co-latitudes, the gradi-
ent decreases in magnitude as a function of θ and even becomes
positive below ∼35◦. This may bias the results presented here.
The modes we used to infer a3 are not the most sensitive to
these subsurface layers, and the values derived here for latitudi-
nal differential rotation may be more representative of the bulk of
the convective zone rather than the surface itself, or the regions
immediately below. The subsurface shear layer thus remains
to be properly taken into account, as discussed for instance in
Lund et al. (2014), in which the change in the rotational rate is
uniformly modelled using a latitude-independent gradient.

4.2. Other differential rotation measurements

To our knowledge, no previous detection of differential rota-
tion in 16 Cyg A or B has been reported so far. It is notewor-
thy that these stars are included in the BCool snapshot program
(Marsden et al. 2014). This survey aims at detecting the average
longitudinal component of stellar magnetic fields (Semel 1989;
Landi Degl’Innocenti et al. 1992). Stars with conclusive detec-
tion then undergo further modelling of their magnetic topology.
As a by-product, this provides an estimate of latitudinal differ-
ential rotation. The model used to reproduce the observations
is a parametrisation of the magnetic field (Hussain et al. 2001)
whose output is then transformed to reproduce the Zeeman pro-
file. The latter is deconvolved from the observed V Stokes pro-
file (Donati et al. 1997; Asensio Ramos et al. 2016). The mapping
from the magnetic field to the one-dimensional Zeeman profile
involves a convolution of the theoretical spectrum by the rotation
profile of the star, also described here by Eq. (12). The differential
rotation parameters are obtained, alongside those describing the
magnetic field, using least-square minimisation. Unfortunately,
the variations in the V Stokes spectra of 16 Cyg A and B could not
be attributed with confidence to the magnetic field, which so far
implies that their magnetic activity is not strong enough to allow
a proper characterisation of the rotational profile.

Latitudinal differential rotation is usually quantified using
either ∆Ω = Ω − Ω(R?, 0◦) or the so-called shear parameter
∆Ω/Ω, where we set Ω = Ω(R?, 90◦), the equatorial rotation
rate. In the case of 16 Cyg A and B, we measured ∆Ω/2π = 320±
269 nHz and 440+363

−383 nHz, respectively, and ∆Ω/Ω = 0.65+0.47
−0.50

and 0.76+0.55
−0.58. These limits correspond, as usual, to 68.3% cred-

ible intervals. We note also that the probabilities of the shear
parameter to be positive are 85% and 86% for 16 Cyg A and B.

We can gain some perspective by comparing these results
to the other measurements of latitudinal differential rotation
provided by Benomar et al. (2018) and to other measurements
obtained using spectroscopy. The asteroseismic measurements
of these quantities are of a similar order of magnitude as those
found for 16 Cyg A and B. However, with the exception of
KIC 10963065, all the estimated shear parameters are higher.
The most extreme case is KIC 9025370, for which the shear
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Fig. 9. Measured latitudinal differential rotation as a function of the
effective temperature for 16 Cyg A and B (in red) and stars observed
using spectropolarimetry, photometric transit, and asteroseismology.
The Sun is represented by the blue � symbol. The grey triangles repre-
sent the upper bound provided by Ammler-von Eiff & Reiners (2012).

parameter is ∼4 times higher than in 16 Cyg A. This may be the
reflection of a trend of deceasing magnitude for differential rota-
tion with age. However, several factors may be at work here. As
discussed below, the effective temperature (see below) is also of
importance. More precise, statistical statements on the full sam-
ple of star with asteroseismically-measured latitudinal differen-
tial rotation are beyond the scope of this paper. The correlation
between differential rotation and other stellar parameters will be
considered in future studies.

Some other measurements of latitudinal differential rotation
have also been obtained using observational techniques other
than asteroseismology. In the following we focus on results
obtained using spectroscopy. Even though claims of latitudi-
nal differential rotation detection have been made using pho-
tometry (Reinhold et al. 2013; Lanza et al. 2014), it was pointed
out by Aigrain et al. (2015) that the methods considered might
not be entirely reliable. Therefore we do not consider them
here. The only notable exception is the planet-hosting star
Kepler-17 (Valio et al. 2017), for which the particular orbital
configuration of the planetary system allows a precise measure-
ment of latitudinal differential rotation. However, we recall that
the method employed in this study might not lead to many detec-
tions in the future. However, even though these investigations
used Kepler data, these data were not analyzed using asteroseis-
mic techniques.

In the case of spectroscopy, Doppler imaging and (the closely
related) Zeeman Doppler imaging have been important providers
of latitudinal differential rotation estimates. Vogt et al. (1987)
initially stated that Doppler imaging requires fast rotators so
that it is the dominant mechanism that produces spectral line
broadening. The same remark applies to Zeeman Doppler imag-
ing, which can be seen, crudely, as a transposition of Doppler
imaging into V Stokes profiles (Semel 1989; Brown et al. 1991).
Petit et al. (2002) have shown that the method could be applied
to moderate rotators to obtain latitudinal differential rotation
measurements. In both cases, the methods require stellar spots
that modulate the observed spectrum.
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Compared to the estimates given in Sect. 3, Zeeman Doppler
imaging often leads to smaller errors on the parameters of the
rotation profile. An explanation is that the spot configurations
encountered on the observed stars often imply surface trac-
ers distributed on a wide range of latitudes, including, poten-
tially, near the pole. Such observations may therefore constrain
the rotation-rate profile over the entire stellar surface, while
asteroseismic inversions are controlled by the sensitivity of
the observed modes to the regions of the stellar interior that
form their resonant cavities. Spectropolarimetric detections are
always at levels &1.5σ (normal densities are assumed for the
uncertainties on the differential rotation parameters), and some-
times better than 40σ.

It has been suggested by Barnes et al. (2005) that a relation
between the effective temperatures of stars and the magnitude
of their latitudinal differential rotation exists, giving the power
law ∆Ω ∝ T 8.92±0.31

teff
. A theoretical explanation of this trend

has been advanced by Kitchatinov & Olemskoy (2012), although
not all behaviour could always be accounted for (Küker et al.
2011). In Fig. 9 we show a plot similar to Fig. 2 in Barnes et al.
(2005), in which we display the values of the latitudinal differ-
ential rotation for 16 Cyg A and B alongside those obtained by
Benomar et al. (2018), and others from Zeeman Doppler imag-
ing or spectrographic measurements. For most cases we used
the values published in this study for the effective tempera-
ture, except for HD 197890, for which we used the value of
Casagrande et al. (2011). When several measurements for ∆Ω
existed, we used a weighted mean and computed the correspond-
ing standard deviation assuming Gaussian errors. We note that
by doing so, we consider that the measurements are realisations
of a random process, and we might be disregarding a temporal
dependence of these variations that would correlate the measured
values. We also added some stars observed later using spectropo-
larimetry or photometry: Kepler-17 (Valio et al. 2017), 61 Cyg A
(Boro Saikia et al. 2016), HN Peg (Boro Saikia et al. 2015),
ξ Boo (Morgenthaler et al. 2012), HD 35296 and HD 29615
(Waite et al. 2017), EK Dra (Waite et al. 2017), HD 141943
(Marsden et al. 2011), HD10650 (Waite et al. 2011), and τ Boo
(Donati et al. 2008; Fares et al. 2009). The inclusion of 16 Cyg
A and B does not seem to contradict the law described above.
The use of weighted means seems to modify this result more than
our new measurements. Barnes et al. (2005) used all the individ-
ual measurements to fit the data.

Alongside these differential-rotation measurements, we also
display those given by Ammler-von Eiff & Reiners (2012). They
were obtained for A and F stars, which are relatively fast rota-
tors. However, these values have to be considered with caution
because they are only upper limits.

4.3. Asymmetries in the power spectrum

The last point we wish to discuss is the deformation of the star by
rotation and its effect on frequencies. Because stars are spheroids
in rotation, it is evident that the centrifugal force may play a
major role in determining the shape of the star.

Devising a method to detect the asphericity of a star might
therefore give clues about the ongoing mechanisms in the stel-
lar interior and at the surface. Interestingly, while the centrifugal
force causes the star to become oblate, this is not necessarily the
case for other forces. Typically, a toroidal magnetic field coun-
teracts the effect of the centrifugal force such that the star may
become prolate (Chandrasekhar 1953; Wentzel 1961).

The term βn,l,m defined in Eq. (7) is only due to the centrifugal
force, and so we can write

−2 −1 0 1
∆R/R

0

2

4

6

8
p(∆R/R> 0) = 0.24

−3 −2 −1 0 1
∆R/R

0

1

2

3

4

5 p(∆R/R> 0) = 0.04

Fig. 10. Probability densities for the asphericities of 16 Cyg A (upper
panel) and 16 Cyg B (lower panel). The red line shows the den-
sity resulting from a purely centrifugal force computed from a1.
The black line shows the measured effective asphericity ∆R/R|eff .
The probability that the star is oblate (∆R/R > 0) is given. The
shaded areas mark the 68.3% credible intervals of the corresponding
distributions.

βn,l,m =
4π
3

Qlm

Gρ?
νn,l Ω2(r, θ = 0) (20)

≈
4π

3Gρ�

∆ν2
�

∆ν2 Qlm ν a2
1 = η0 Qlm νn,l a2

1, (21)

where G is the gravitational constant and ρ? is the aver-
age density of the star, approximated by the measure of
the frequency spacing ∆ν of the pressure modes, ρ? ≈

ρ� (∆ν/∆ν�)2. Here we also assumed that the a1 coeffi-
cient is representative of the the equatorial rotation. In the
light of the result from the seismic inversion, this is indeed
justified.
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The actual pole-to-equator distortion of the star is then
(Gizon et al. 2016)

∆Rc

R
=

3
8π

η0 a2
1, (22)

with ∆Rc = Req−Rpole. Here Req is the equatorial radius and Rpole
the polar radius of the star.

To measure an asphericity that is not only due to the cen-
trifugal force, the general functional form βn,l,m = β0 Qlm νn,l
could be used. This relates to an effective asphericity coefficient
∆R/R by

∆R
R

∣∣∣∣∣
eff

=
3

8π
β0. (23)

This choice allows us to straightforwardly compare the case of
a pure centrifugal force with cases with additional distorting
forces.

In Fig. 10 we compare the effective ashericities and those
computed from a1 for 16 Cyg A and 16 Cyg B. They were deter-
mined using Eqs. (22) and (23). In the case of 16 Cyg B, although
we cannot reject the possibility that the star is oblate (24.4%
probability), it is striking that the measured asphericity is only
marginally consistent with the case of a pure centrifugal force.
The discrepancy is even more significant when considering 16
Cyg B, as the probability of being oblate is only 3.9%. One pos-
sible interpretation is that 16 Cyg A and B have a consequent
(measurable) toroidal (equatorial) field that dampens equatorial
waves such that they travel in a prolate cavity.

5. Conclusions

We have reported the detection of differential rotation for the
two good solar analogues 16 Cyg A and B. We followed
Benomar et al. (2018), where latitudinal differential rotation was
detected in a sample of stars that either rotate faster than the Sun
and/or with much higher differential rotation. In this case, the
inferred values for the stellar rotation rate and for differential
rotation are consistent with the solar regime.

We have described a way to model the latitudinal rotational
splitting of 16 Cyg A and B by taking into account the impact
of differential rotation. Using a Bayesian setting, we were able
to state that the a3 coefficients in these stars have a probability
&85% of being strictly positive. Using an expansion basis for
which a one-to-one relation exists between the coefficients for
the rotational splitting and rotation rate, we translated this result
into probabilistic statements on Ω1, the coefficient quantifying
the amount of latitudinal differential rotation in the convective
zone. Importantly, it has the same &85% probability of being
strictly negative for both stars. This indicates that it is very likely
that the azimuthal component of the flow in the convective zone
undergoes an equator-to-pole braking. We also provided sum-
mary statistics for Ω1 and associated 68.3% Bayesian credible
intervals that exclude zero for both stars. These results depend
only very weakly on the errors on the stellar parameters, which
reinforces the robustness of our conclusions.

These results agree very well with other estimates of lati-
tudinal differential rotation obtained either by spectropolarime-
try, spectroscopy, or photometry. In particular, they seem to
follow the ∆Ω − Teff relationship suggested by Barnes et al.
(2005). They are of particular significance in that they represent
the first conclusive detection for solar analogues, however. So far,
mostly young active stars, often still in the post-main sequence
stage, have yielded convincing measurements. Together with the

results of Benomar et al. (2018), this work has opened the door
for the study of differential rotation in main-sequence stars using
asteroseismology. More precisely, it demonstrates the feasibility
of such a detection for solar analogues. Studying such objects is
important since their physical states are similar to those of the Sun.
Therefore, theoretical models developed for this latter are likely to
still apply to these stars. A fascinating perspective would thus be
to gather similar data for other solar analogues and/or solar twins,
using instruments such as SONG, TESS, and PLATO, in order
to be able to constrain existing theoretical models for differential
rotation and even dynamo.
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Appendix A: Modelling 16 Cyg A and B

Table A.1. Non-seismic observational properties for the two stars of the
16 Cyg system.

Star Teff (K) [Fe/H] L/L� R/R�
A 5825 ± 50 0.10 ± 0.09 1.56 ± 0.05 1.22 ± 0.02
B 5750 ± 50 0.05 ± 0.06 1.27 ± 0.04 1.12 ± 0.05

A common exercise, albeit challenging, in stellar physics con-
sists of estimating stellar parameters such as the mass, M?, the
age, t?, the initial composition given by the initial hydrogen-
mass fraction, X0, and initial metallicity, Z0, and the mixing-
length parameter, α. In the following, we group them in a single
vector θ? = (M?, t?, X0,Z0, α). The parameters are real num-
bers. We not only wish to estimate the value of θ?, but also the
uncertainty in this value due to the errors on the observational
constraints.

The observational data can come from many different
sources, spectroscopy, photometry, interferometry, or astrome-
try. In the case of 16 Cyg A and B, we used an effective temper-
ature and surface metallicity, Teff and [Fe/H], derived from high-
precision spectroscopy measurements (Ramírez et al. 2009). The
radius was obtained using interferometry (White et al. 2013).
The luminosity was derived from the astrometric Hipparcos par-
allax (van Leeuwen 2007). The seismic data were processed
from the same Kepler time series as we used in this study, pub-
lished by Davies et al. (2015). We did not use the individual fre-
quencies directly to constrain our model because this demands
the introduction of heuristic surface correction to our theoretical
model. Rather, we used the frequency ratios

r01(n) =
νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0

8(νn,1 − νn−1,1)
, (A.1)

r02(n) =
νn,0 − νn−1,2

νn,1 − νn−1,1
, (A.2)

defined by Roxburgh & Vorontsov (2003). These are expected to
be far less sensitive to the surface and thus stand out as adequate
quantities for model fitting (Bazot 2013; Silva Aguirre et al.
2013). The non-seismic observational constraints are listed
in Table A.1. In the following, the observations are grouped
in a vector X? = (Teff , ([Fe/H],R, L, r01, r02)), with r01 =
(r01(n01,1), . . . , r01(n01,N)) and r02 = (r02(n02,1), . . . , r02(n02,M))
(the indices n01,i and n02,i represent the mode orders for which
the corresponding ratio can be evaluated from the observed oscil-
lation frequencies).

Many difficulties are present when fitting stellar data with
theoretical models. In brief, the main challenges stem from the
facts that the theoretically evaluated observables depend non-
linearly on θ? and that the computational cost of stellar mod-
els is relatively high. The former issue implies that sophisticated
methods of computational statistics may be required to solve the
estimation problem. The latter problem makes it difficult to use
such methods.

We are interested in obtaining approximations to the joint
posterior density of the stellar parameters, θ? ∼ πθ? |X?

. We
obtained an expression for this density using Bayes’ formula
Eq. (5) for θ? and X?. In this context, the likelihood was
obtained by assuming that the observations are the sum of a
deterministic and stochastic component

X? = S(θ?) + ε, (A.3)

Table A.2. Lower and upper bounds used for the prior uniform densities
for each stellar parameter.

Parameter Lower bound Upper bound

M (M�) 0.7 1.25
t? (Gyr) 1 13
Z0 0.010 0.027
X0 0.525 0.750
α 1. 3.

with S(θ?) a mapping from the space of parameters to the space
of observations that represents the stellar evolution code, and ε
the realisation of a random vector.

We assumed that the uncertainties on Teff , [Fe/H], L and R
are Gaussian with respective standard deviations σTeff

, σ[Fe/H],
σL , and σR the observational uncertainties. The components
of r01 and r02 are correlated, therefore we treated these vector
as two separate multivariate Gaussian densities N(µ01,Σ01) and
N(µ02,Σ02). The covariance matrices were estimated numeri-
cally. Independent samples were generated for each frequency
used for the evaluation of the components of r01 and r02, and
were used to obtain samples for both random vectors. Using
these samples, evaluating Σ01 and Σ02 is straightforward. The
resulting likelihood is therefore

π(X?|θ?) ∝ exp
[
−

1
2

(
(T − 〈Teff〉)2

σ2
Teff

+
([Fe/H] − 〈[Fe/H]〉)2

σ2
[Fe/H]

+
(L − 〈L〉)2

σ2
L

+
(R − 〈R〉)2

σ2
R

+ (r01 − µ01)TΣ01(r01 − µ01)

+ (r02 − µ02)TΣ02(r02 − µ02)
)]
. (A.4)

Here the average quantities, denoted by 〈.〉, are the observed
quantities. We note the difference of functional form between
Eq. (6) and Eq. (A.4). This stems from the difference in the
underlying statistical model.

The first term in Eq. (A.3) does not have an analytic
closed form. In order to express it, we must solve the equa-
tion for stellar structure and pulsations numerically. This was
achieved using the Aarhus Stellar Evolution Code (ASTEC) for
the former and adipls for the latter. We assumed spherical
symmetry and no magnetic field. The opacities were obtained
from OPAL tables (Iglesias & Rogers 1996), with low-T opac-
ities from Ferguson et al. (2005), and the equation of state
was interpolated from OPAL tables (Rogers & Nayfonov 2002).
Nuclear reaction rates were taken from the NACRE collab-
oration (Angulo et al. 1999) and supplemented by the values
given in Imbriani et al. (2005) for the 14N(p,γ)15O reaction. Con-
vection was treated using the prescription from Böhm-Vitense
(1958) for the mixing-length theory, the mean-free path of the
fluid elements being proportional to the pressure scale-height.

The stellar parameters were considered to be inde-
pendent. Therefore, the prior can be written π(θ?) =
π(M?)π(t?)π(X0)π(Z0)π(α). Priors were chosen as uniform
because we do not have previous measurements on any of
them. All these quantities are positive, therefore the lower
bounds of these prior densities should be non-negative. To set
both upper and lower bounds, we used the estimates obtained
by Metcalfe et al. (2015) as first initial guesses. These were
obtained using almost the exact same data. There are good indi-
cations of the range in which we expect the significant proba-
bility mass to be found. We then refined the boundaries on our
priors using successive trial-and-error stages. This was done in
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Table A.3. Stellar parameters (and helium-mass fraction) inferred using the ASTEC stellar evolution code for 16 Cyg A and B.

Star M/M� t? (Gyr) X0 Z0 α Y0

1.06 6.74 0.694 0.0240 2.12 0.282
16 Cyg A 1.07+0.02

−0.02 6.70+0.23
−0.17 0.698+0.013

−0.013 0.0237+0.0019
−0.0018 2.12+0.09

−0.07 0.279+0.012
−0.013

1.07 (0.02) 6.73 (0.19) 0.698 (0.013) 0.0238 (0.0018) 2.13 (0.08) 0.278 (0.012)
1.05 6.73 0.711 0.0234 2.09 0.266

16 Cyg B 1.05+0.02
−0.02 6.63+0.20

−0.19 0.706+0.014
−0.015 0.0242+0.0022

−0.0019 2.12+0.08
−0.07 0.270+0.013

−0.013
1.05 (0.02) 6.64 (0.18) 0.706 (0.014) 0.0245 (0.0020) 2.12 (0.07) 0.270 (0.013)

Notes. For each star, the first line gives the global MAP estimate. The second line is the MAP estimate for each marginalised density. The third
line gives the posterior mean estimate.
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Fig. A.1. Marginal densities for the stellar parameters M, t?, X0, Z0, and
α of 16 Cyg A. The central panels show the joint marginal densities of
the paired parameters. Individual marginal densities are plotted in the
side panels.

order to avoid to sharp cuts in the domain of definition of the
posterior density. This could indeed lead to numerical issues
when sampling from a posterior density using an MCMC algo-
rithm. The only notable exception to this procedure concerns
the initial hydrogen-mass fraction, which cannot be higher than
0.75, which is its value after the primordial nucleosynthesis (see
Bazot et al. 2012, 2016, for a discussion). The priors used in our
statistical model are given in Table A.2.

The posterior density was sampled using an MCMC algo-
rithm. The details of the algorithm can be found in Bazot et al.
(2018). It was run on ten independent chains. Each chain was
heated with a temperature T > 1, so that we initially sampled a
posterior density of the form π(θ?)π1/T (X?|θ?). This procedure,
known as simulated annealing according to Kirkpatrick et al.
(1983), allowed us to sample the space of parameters for densi-
ties with much weaker variations than the original target. There-
fore, proposals of an MCMC algorithm will tend to be accepted
more often after heating. This sometimes helps avoiding that a
Markov chain becomes stuck far from the real solution that is
sought for, in low-probability regions. It is therefore possible
to run a preliminary sequence of MCMC runs with decreasing
temperatures (with the last chain having T = 1), in order to
identify the regions of high probability. The parameter T was
assigned a decreasing sequence 2nT with nT an integer such that
0 ≤ nT ≤ 6. The number of iteration was 1000 for nT = 6 and
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Fig. A.2. Marginal densities for the stellar parameters M, t?, X0, Z0, and
α of 16 Cyg B. The central panels show the joint marginal densities of the
paired parameters. Individual marginal densities are plotted in the side
panels.

200 for 1 ≤ nT ≤ 5. For nT = 0, the chains were run until accept-
able convergence was obtained. The chains were initialised at
nT = 6 using an overdispersed density, crudely estimated from
a short test run. At subsequent stages, all chains were initialised
at the MAP value of the previous one. Convergence was tested
using several diagnostics: the cumulative mean, variance, and the
r ratio defined by Gelman & Rubin (1992).

The two-dimensional and one-dimensional posterior densi-
ties for the stellar parameters of 16 Cyg A and B are shown
in Figs. A.1 and A.2. Corresponding estimates are also given
in Table A.3. We also give the initial helium-mass fraction, Y0,
which is an often-used parameter in the literature. The MAP val-
ues computed from the five-dimensional joint density are given
in the first line. They are given without uncertainties. We also
give the MAP values obtained from each marginalised one-
dimensional posterior, as shown in the side panels of Figs. A.1
and A.2. In this case, we produced an associated credible inter-
val. The latter is defined as the smallest interval of probability
mass 0.683 that encompasses the MAP. Finally, we also give the
posterior mean and the posterior variance. All three estimates
agree with each other. The estimates so obtained are in fair agree-
ment with those of Metcalfe et al. (2015), even though a detailed
comparison with this work is well beyond the scope of our study.
The uncertainty on the parameters is remarkably low. In particu-
lar, the age is known with a precision of roughly 200 Myr.
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