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S U M M A R Y
Coda-wave interferometry is a technique which exploits tiny waveform changes in the coda
to detect temporal variations of seismic properties in evolving media. Observed waveform
changes are of two kinds: traveltime perturbations and distortion of seismograms. In the last
10 yr, various theories have been published to relate either background velocity changes to
traveltime perturbations, or changes in the scattering properties of the medium to waveform
decorrelation. These theories have been limited by assumptions pertaining to the scattering pro-
cess itself—in particular isotropic scattering, or to the propagation regime—single-scattering
and/or diffusion. In this manuscript, we unify and extend previous results from the literature us-
ing a radiative transfer approach. This theory allows us to incorporate the effect of anisotropic
scattering and to cover a broad range of propagation regimes, including the contribution of
coherent, singly scattered and multiply scattered waves. Using basic physical reasoning, we
show that two different sensitivity kernels are required to describe traveltime perturbations
and waveform decorrelation, respectively, a distinction which has not been well appreciated
so far. Previous results from the literature are recovered as limiting cases of our general ap-
proach. To evaluate numerically the sensitivity functions, we introduce an improved version of
a spectral technique known as the method of ‘rotated coordinate frames’, which allows global
evaluation of the Green’s function of the radiative transfer equation in a finite domain. The
method is validated through direct pointwise comparison with Green’s functions obtained by
the Monte Carlo method. To illustrate the theory, we consider a series of scattering media dis-
playing increasing levels of scattering anisotropy and discuss the impact on the traveltime and
decorrelation kernels. We also consider the related problem of imaging variations of scattering
properties based on intensity perturbations observed in the coda. The impact of anisotropy is
particularly pronounced for the scattering and decorrelation sensitivity kernels, which probe
spatial/temporal changes in the scattering properties of the medium. Compared to the isotropic
case, scattering anisotropy strongly increases the sensitivity of coda waves in the vicinity of
the single-scattering ellipse, which may have important implications for imaging applications.
In addition to demonstrating the impact of non-isotropic scattering on the sensitivity kernels
of coda waves, our work offers a practical solution to model this process accurately.

Key words: Seismic tomography; Theoretical seismology; Wave scattering and diffraction.

1 I N T RO D U C T I O N

The seismic coda is composed of waves scattered by Earth inhomogeneities (Aki 1969; Aki & Chouet 1975), and has been traditionally
used to infer the scattering and absorption properties of the lithosphere (see Sato et al. 2012, for a comprehensive review). More recently,
thanks to the rapid development of the Green’s function reconstruction technique using ambient noise, waveform changes in the coda have
been exploited to monitor and characterize temporal variations in active regions, such as volcanoes and fault zones (see Brenguier et al.
2011; Sens-Schönfelder & Wegler 2011, for reviews). One of the interesting aspects of the mapping problem lies in the fact that the medium
properties can display large lateral variations at different scales. For instance, at scale lengths ranging from a few tens of kilometres to a few
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hundred kilometres, it has been observed that the rate of decay of coda waves depends strongly on the geological environment (e.g. Mitchell &
Cong 1998; Carcolé & Sato 2010; Calvet et al. 2013). At scales of a few kilometres to a few tens of kilometres, irregular coda decay as well as
traveltime changes of coda waves have been observed in the vicinity of active seismic faults (e.g. Nishigami 2000; Wegler & Sens-Schönfelder
2007; Brenguier et al. 2008a; Chen et al. 2010; Nakata & Snieder 2011; Yu & Hung 2012; Froment et al. 2013). In addition, continuous
seismic monitoring of active volcanoes has revealed that traveltimes changes observed in the coda are strongly dependent on the propagation
path between source and station, thereby suggesting medium variations at a scale of a few hundred metres or even less (e.g. Sens-Schönfelder
& Wegler 2006; Brenguier et al. 2008b; Sens-Schönfelder et al. 2014). Finally, it has recently been shown experimentally, numerically and
theoretically that the distortion of waveforms observed in the coda could be used to locate and characterize temporal variations of mechanical
properties in an evolving medium (Larose et al. 2010; Planès et al. 2015). This approach has been applied with success to the detection
of medium changes preceding/accompanying volcanic eruptions (Obermann et al. 2013a). Therefore, whether this pertains to the static or
dynamic mapping of Earth’s heterogeneities, there is an interest in developing a unified theory of coda-wave sensitivity for observables, such
as intensity, waveform decorrelation, or traveltime changes in realistic media.

The key to carry out this task lies in an accurate description of energy transport from source to receiver. In highly scattering media,
where polarization and anisotropy are being washed out very rapidly compared to the typical detection time in the coda, the diffusion equation
is a simple and efficient transport model. Numerous applications to the mapping of velocity changes in evolving media have been developed.
However, in more weakly scattering media the intensity distribution can be highly anisotropic and the diffusion approximation breaks down.
In particular, in the vicinity of the source, there is always a part of the energy which propagates ballistically, in sharp contrast with the physical
assumptions underlying the diffusion approach. As recently put forward by Mayor et al. (2014) in the context of seismology, an accurate
physical modeling of coda-wave observables requires the knowledge of the full energy distribution in phase space (ω, t, r, n), where ω is the
central frequency of the signal, t is the lapse time in the coda, r is the position vector and n is a unit vector indicating the propagation direction
of the waves. This distribution is known in the physical literature as the specific intensity I (r, t, n). More precisely, the amount of energy (per
unit frequency) flowing across an oriented surface dS during time dt in direction n is given by: d E = I (r, t, n)n · dSdt (see e.g. Chandrasekhar
1960). In practice, the signal is filtered in a narrow frequency band [ω, ω + δω[ with δω/ω � 1. As explained in Section 3 (‘Green’s function
calculation’), the specify intensity satisfies a radiative transfer (or transport equation) in a scattering and absorbing medium. From now on, the
frequency dependence of the specific intensity will be implicitly assumed. The radiative transfer approach has been adopted in many fields,
including atmospheric optics, ultrasonics, medical imaging with I-R light and astrophysics, where scattering effects are important. We refer
the interested reader to the review paper of Margerin (2005) or the monograph of Sato et al. (2012) for seismological applications.

In this paper, we use basic concepts of radiative transfer theory to derive heuristically two basic coda-wave sensitivity functions. Our
treatment emphasizes the difference between medium changes that modify the propagation paths between source and receiver, versus changes
that do not. The former (respectively latter) situation corresponds to an active (respectively passive) perturbation. Although the two scenarios
are of course idealizations of the true impact of a medium change, it is conceptually important to distinguish between them. Using the
(positive-definite) passive and active sensitivity kernels, we calculate the perturbation of key observables which may be employed to image
temporal/spatial variations in the Earth using coda waves. In imaging applications, either a diffusion or isotropic scattering approximation
has been employed so far. While in volcanic regions the isotropic scattering model has shown good agreement with the data (Yamamoto &
Sato 2010), the effect of scattering anisotropy may be much more pronounced in the crust (e.g. Hoshiba 1995; Gusev & Abubakirov 1996;
Takahashi et al. 2009; Calvet et al. 2013). Therefore, an extension of the concept of sensitivity functions to this case appears worthwhile.
To address this problem, we introduce a spectral technique to evaluate the Green’s function of the radiative transfer equation. This allows us
to describe accurately the angular dependence of the specific intensity in anisotropically scattering media. This spectral method is used to
approximate numerically the sensitivity kernels for three important observables: traveltime shifts, decorrelation of waveforms and intensity
perturbations. The first two observables can be employed to detect temporal changes of the medium, while the latter probes spatial variation
of scattering properties. The theory is illustrated with a series of 2-D numerical examples, which demonstrate the influence of coherent
propagation and scattering anisotropy on the spatial dependence of coda-wave sensitivities.

2 S E N S I T I V I T Y F U N C T I O N S

In this section, we introduce two basic sensitivity functions for coda-wave tomography. The first one may be termed ‘passive’ and describes
all possible paths between source and receiver which visit an arbitrary small control volume in a scattering medium (see Fig. 1). It can be
viewed as an extension of the sensitivity function introduced by Pacheco & Snieder (2005) in the framework of diffusion theory. The second
one may be termed ‘active’ in the sense that it quantifies the effect of new propagation paths which are generated by a local perturbation of the
scattering properties in the medium (see Planès et al. 2014; Mayor et al. 2014,and Fig. 1). By combining the ‘passive’ and ‘active’ kernels, it
is possible to derive sensitivity functions for the relevant observables in the seismic coda.

Let us consider a point source and a receiver located at r0 and r, respectively. We denote by G(r, t, n; r0, n0) the probability for a ‘seismic
phonon’ (a term coined by Shearer & Earle 2004) leaving the source in direction n0 at time t = 0 to arrive at the receiver at time t in direction
n. This probability density function can be physically interpreted as the specific intensity generated by an impulsive and mono-directional
unit source acting at r0. Hereafter, we always assume excitation by a unit source which allows us to use directly the specific intensity as an
expression of probability. If we are not interested in the particular direction in which the phonon reaches the receiver, we may introduce the
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652 L. Margerin et al.

Figure 1. Passive (left) versus active (right) medium perturbations. The filled circles and solid lines represent distributed heterogeneities and multiple-scattering
trajectories, respectively. Depending on its effect on the propagation paths, a medium perturbation (shaded area) may be qualified as passive or active. A
passive perturbation (left) is assumed not to affect the propagation paths in the medium. An active perturbation (right) generates new propagation paths in the
medium through an additional scattering event. These new trajectories are represented by thick dashed lines. Depending on the observable, a perturbation may
be considered as passive, active, or both (see the text for details).

angular integral of G which we denote by I (r, t ; r0, n0). It represents the total probability to be detected at r at time t. In the case of an isotropic
source, we denote by I (r, t, n; r0) the probability that a seismic phonon launched at t = 0 be detected in direction n, at time t and position
r. This quantity may again be interpreted as a specific intensity in the framework of transport theory. Finally, we introduce I (r, t, ; r0), the
probability that a seismic phonon which has been launched at t = 0 by the isotropic source is located at r at time t. The following relations
hold:

I (r, t, n; r0) = 1

Sd

∫
Sd

G(r, t, n; r0, n0)dn0 (1a)

I (r, t ; r0) =
∫

Sd
I (r, t, n; r0)dn (1b)

I (r0, t, −n0; r) = 1

Sd
I (r, t ; r0, n0) (1c)

where Sd denotes the unit sphere in space dimension d, as well as its area in a slight abuse of notation. The factor 1/Sd in the RHS of eqs (1a)
and (1c) is required to preserve the normalization of probabilities. Eq. (1c) is a basic reciprocity relation in transport theory (Case & Zweifel
1967). To facilitate the understanding of the derivations, Table 1 summarizes the various probability distributions introduced in eqs (1a)–(1c).
Note again that all probabilities are normalized in the sense that integration over r (for omni-directional detection), or over r and n (for
mono-directional detection) yields 1 at all times. It is also worth noting that the probability distributions appearing in Table 1 are Green’s
functions of the transport equation to be introduced in Section 3 (Green’s function calculation). As such, their dimension is [L]−d, where [L]
stands for length and d is the space dimension. This further justifies their interpretation as probability densities.

Let us now consider the following typical problem in coda-wave interferometry. A slight relative change of background velocity δc/c
occurs in a small volume dV (r′) of the propagation medium between two data acquisitions. If the scatterers are away from resonance, such
a change will not affect the propagation paths in the heterogeneous medium, but will manifest itself as a small lapse-time-dependent shift of
waveforms (Snieder 2006). To predict the time-shift, we need to evaluate the typical time spent in dV (r′) by seismic phonons propagating
from source to receiver. This problem may be formulated probabilistically as follows. Consider an isotropic source of seismic phonons acting
at r0 and t = 0. Let A denote the following event: a seismic phonon propagating in direction n′ is detected at time t′ in the volume dV (r′). Let

Table 1. Pictorial explanation of the four probability distributions introduced in the text.
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B denote the event: a seismic phonon reaches the receiver r at time t (in any propagation direction). We want to evaluate the probability of A
conditioned by B (P(A|B)). Application of Bayes formula yields:

P(A|B) = P(B|A)P(A)

P(B)
= I (r, t − t ′; r′, n′)I (r′, t ′, n′; r0)dV (r′)

I (r, t ; r0)
(2)

From eq. (2), we deduce the total time Te spent by seismic phonons propagating in direction n′ in the volume dV (r′) as the integral over all
possible times t′. This leads to a temporal convolution of specific intensities:

Te(dV (r′), n′, t ; r, r0) = dV (r′)
∫ t

0

I (r, t − t ′; r′, n′)I (r′, t ′, n′; r0)dt ′

I (r, t ; r0)
(3)

At this point, our formalism still keeps track of the propagation direction n′ of the phonons, which may be useful when the velocity perturbation
is anisotropic. In the isotropic case, we may integrate over all possible intermediate propagation directions n′ to obtain the traveltime shift
induced by a local, weak change of velocity:

δt = − δc

c
(r′)

∫
Sd

Te(dV (r′), n′, t ; r, r0)dn′

= − δc

c
(r′)Ktt (r

′, t ; r, r0)dV (r′) (4)

Eq. (4) introduces the traveltime or passive sensitivity kernel Ktt:

Ktt (r
′, t ; r, r0) = Sd

∫ t

0

∫
Sd

I (r′, t − t ′, −n′; r)I (r′, t ′, n′; r0)dt ′dn′

I (r, t ; r0)
(5)

where the reciprocity theorem (1c) has been used in the final expression. Note that the intensity I has dimension [L]−d (Paasschens 1997)
so that the kernel has dimension [t][L]−d. The same sensitivity kernel has already surfaced in the seismological literature in the context of
mapping the spatial distribution of absorption in the Earth using coda waves (Mayor et al. 2014). Note that the theory should also be valid
when the medium is absorbing, although the normalization of probability breaks down in this case. In the case of uniform absorption, the
validity of eq. (5) is obvious, as the extra exponential decay terms entailed by dissipation cancel out of the expression. Physically, the kernel
Ktt allows one to keep track of the phonons that propagate from r0 to r in time t. An observer who could visualize all seismic phonon
trajectories in the medium would be able to evaluate Ktt by measuring the time spent inside the volume dV by each phonon reaching the
receiver, as a function of the lapse time t (see Fig. 1). In this sense, the kernel (5) may indeed be deemed ‘passive’. The kernel (5) differs
from the one derived by Pacheco & Snieder (2005) simply because their approach relies on a diffusion approximation, which assumes that
the anisotropy of the energy flux is negligible. When this condition applies, the specific intensity may be replaced by its angular average and
the result of Pacheco & Snieder (2005) is recovered. Note however that the diffusion approximation always breaks down in the vicinity of the
source/receiver.

We now consider a perturbation of the medium, such as damaging, magma injection or fracturing which locally modifies the scattering
properties. Such a medium change will entail the creation of new propagation paths between source and receiver which in turn result in a
distortion of waveforms in the coda. The distortion effect may be quantified by a decorrelation coefficient defined as (Planès et al. 2014):

dc(t) = 1 − 〈u1(t)u2(t)〉√
I1(t)I2(t)

, (6)

where u1, (2) denotes the wavefield acquired at date 1 (respectively 2), I1, (2)(t) = 〈u1, (2)(t)2〉 and the brackets represent an ensemble average.
In practice, averaging is performed over a short time window in the coda. Strictly speaking, I1 (or I2) is not an intensity. However, if we think
of u1(t) as the velocity of ground motions, then multiplication of 〈u1(t)2〉 by a factor ρc/2, with ρ the mass density and c the wave speed,
does convert I1 into an intensity. Clearly, the decorrelation coefficient increases from 0 to 1 as the effect of distortion becomes more and
more pronounced. If the changes in the medium are not too large, the intensities at date 1 and 2 will differ only slightly, which allows us to
introduce a number ε such that I2 = I1(1 + ε). For small ε, the difference between the geometric and arithmetic average is of order ε2 only,
which allows us to rewrite the decorrelation coefficient as:

dc(t) ≈ 1 − 2〈u1(t)u2(t)〉
I1(t) + I2(t)

≈ 〈(u2(t) − u1(t))2〉
I1(t) + I2(t)

≈ 〈(u2(t) − u1(t))2〉
2I1(t)

(1 − ε/2) (7)

In the last equality of eq. (7), the second term inside the parentheses is a small intensity correction which will be neglected. In the denominator,
I1 may be interpreted—up to a pre-factor ρc/2—as the intensity at time t in the coda before the change, an approximation of which is supposed
to be known. Similarly, the numerator may be interpreted as an extra intensity scattered by the local change of mechanical properties, which
will be modeled by the addition of scatterers in the medium. We denote by σ and f (n, n′) their scattering cross-section and normalized
differential cross-section, respectively. In the radiative transfer literature, f (n, n′) is also called ‘phase function’ and gives the probability
that a phonon propagating in direction n′ be deflected into direction n. For an isotropic point source, the amount of energy propagating in
direction n′ through a small surface d S(r′) with normal n′ in the time interval [t′, t′ + dt′] is given by F0 I (r, t ′, n′; r0)d S(r′)dt ′. Recalling that
the Green’s function I (r, t ′, n′; r0) has dimension [L]−d, F0 serves as a source term which ensures that the product F0 × I has the correct units
for intensity (i.e. Jmd − 1s−1, with d the space dimension). Let us assume that the small volume dV (r′) = d S(r′)cdt ′ (c is the wave speed)
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contains N = d(r′)dV (r′) new scatterers with number density d(r′). A basic principle in transport theory stipulates that the total amount of
intensity scattered off the incoming phonon beam is proportional to the ratio between the total scattering cross-section Nσ and the surface
element d S(r′) (e.g. Kourganoff 1969, p.36). Furthermore, taking into account that only the fraction f (n, n′) is deflected from direction n′ to
direction n, we obtain the following expression for the extra intensity emitted at time t′ and position r′ into direction n :

δ I = cdt ′σd(r′) f (n, n′)I (r′, t ′, n′; r0)F0 (8)

The next step of our derivation consists in propagating the intensity δI from r′ to the detector r. This may be achieved with the aid of the
Green’s function depicted in the second column of Table 1. The extra scattered intensity produced in the volume dV (r′) between t′ and t′ +
dt′ and recorded at r at time t is therefore given by:

δ Isc = d(r′)dV (r′)cdt ′σ I (r, t − t ′; r′, n) f (n, n′)I (r′, t ′, n′; r0)F0 (9)

It may be readily verified that δIsc has the units of an intensity as it should. At this stage, we still keep track of all the details of the scattering
process, that is, we follow exactly those phonons which are incident at r′ in direction n′ and are scattered into direction n. Such a formulation
is necessary to retrieve the full angular dependence of the scattering cross-section from the data. The overall decorrelation produced by the
extra scatterers may now be evaluated by reporting eq. (9) into eq. (7) and integrating over all propagation directions and over time:

dc(t) = d(r′)dV (r′)cσ Sd

2

∫ t

0

∫
Sd

∫
Sd

I (r′, t − t ′, −n; r) f (n, n′)I (r′, t ′, n′; r0)dt ′dn′dn

I (r, t ; r0)
(10)

Note that we have made use of the reciprocity relation (1c), and that upon normalization by I1 the source term F0 has canceled out. The result
(10) has been established for a change localized in a small volume dV (r′). In the case of an extended change, the total decorrelation may be
obtained by integration over r′. We may further simplify the analysis by assuming that the new scatterers are small enough with respect to the
wavelength to consider that their scattering pattern is isotropic ( f (n′, n) = 1/Sd ). The angular integrals may be performed thanks to eq. (1b)
which yields:

dc(t) = d(r′)dV (r′)cσ
2

Kdc(r
′, t ; r, r0), (11)

where we have introduced the following decorrelation or active sensitivity kernel:

Kdc(r
′, t ; r, r0) =

∫ t

0

I (r′, t − t ′; r)I (r, t ′; r0)dt ′

I (r, t ; r0)
(12)

This formula was previously obtained by Planès et al. (2014) based on a diagrammatic approach in the diffusion regime. Our derivation
provides support for the validity of this formula in the radiative transfer regime. Again, the result (12) is valid in the presence of uniform
absorption too. The kernel Kdc takes into account the new propagation paths which have been created thanks to the addition of scatterers
in the medium. In this sense, this kernel may be deemed ‘active’. The chief difficulty in applying the sensitivity kernels (5) and (12) to
coda-wave interferometry comes from the fact that the Green’s function of the radiative transfer equation is hard to evaluate either analytically
or numerically. In what follows, we take advantage of recent advances in spectral techniques (Panasyuk et al. 2006) to evaluate numerically
the traveltime and decorrelation sensitivity kernels in 2-D anisotropically scattering media. The next section is devoted to a brief description
of the spectral technique, and its validation against Monte Carlo simulations.

3 G R E E N ’ S F U N C T I O N C A L C U L AT I O N

In this section, we describe the method used to calculate the solution of the radiative transfer equation for a point-like, isotropic, impulsive
source of intensity in a statistically homogeneous medium:

∂ I (r, t, n)

∂t
+ cn · ∇ I (r, t, n) +

(
1

τa
+ 1

τs

)
I (r, t, n) = 1

τs

∫
2π

p(n, n′)I (r, t, n′)dn′ + δ(r)δ(t) (13)

In eq. (13) c denotes the wave speed, τ a = Qi(ω)/ω is the absorption time and τ s = Qsc(ω)/ω is the scattering mean-free time. Qi and Qsc

are the usual frequency-dependent intrinsic and scattering quality factors, respectively. The normalized differential cross-section p(n, n′)
describes the scattering anisotropy in the propagation medium. We have purposely employed a new notation to distinguish it from the scattering
anisotropy of the medium change—denoted by f (n, n′) in Section 2— because the two quantities are a priori different. Note that to be fully
consistent with the notations introduced in Table 1, we should have denoted the specific intensity by I (r, t, n; 0) (0 is the zero vector). Since
the medium is translationally invariant, the use of two spatial variables becomes redundant and we have simplified the notations accordingly.

The symmetry of the problem imposes that the specific intensity depend solely on the time t, the source–receiver distance r and the angle
φr between the propagation direction n̂ and the position vector r = r r̂ = (r cos ϕr, r sin ϕr) (see Fig. 2 for an illustration of the notations). In
this geometry, the radiative transfer equation may be rewritten as:(

∂

∂t
+ c cos(φr )

∂

∂r
− c sin(φr )

∂

r∂φr

)
I(r, t, φr ) +

(
1

τa
+ 1

τs

)
I(r, t, φr ) = 1

τs

∫ 2π

0
p(φr , φ

′
r )I(r, t, φ′

r )dφ′
r + δ(r )

2πr
δ(t), (14)
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Sensitivity kernels for coda waves 655

Figure 2. Definition of the geometrical variables used in the text.

where I (r, t, n) = I(|r|, t, φr ) with n = (cos(ϕr + φr ), sin(ϕr + φr )). In the rest of the paper, we will use the notation I to represent the
specific intensity, independent of the set of variables employed. The meaning should be clear from the context. Following Liemert & Kienle
(2011), we expand the specific intensity in a Fourier–Bessel series:

I (r, t, φr ) =
m=∞∑
m=0

am cos(mφr )
∫ +∞

0
Jm(kr )kdk

∫ +∞

−∞
Ĩm(k,�)e−i�t d�, (15)

where Jm denotes the regular Bessel function of order m and the constants am take the following values: a0 = 1/(4π ), am = 1/(2π ) for m >

0. Note that we have carefully distinguished between the central frequency of the waves ω and the modulation frequency �, the latter being
the Fourier conjugate variable of the lapse time t. The forward transform is given by:

Ĩm(k,�) = 1

π

∫ 2π

0
cos(mφr )dφr

∫ +∞

−∞
ei�t dt

∫ +∞

0
Jm(kr )I (r, t, φr )rdr (16)

Reporting expansion (15) into the radiative transfer eq. (14), one obtains the following tridiagonal system for the unknowns Ĩm(k, �):

(−i� + 1/τa + 1/τs(1 − pm)) Ĩm(k, �) + ck

2
( Ĩm+1 − Ĩm−1)(k,�) = S̃m(k,�), (17)

with Ĩ−1 = − Ĩ1. In eq. (17), S̃ denotes the source of intensity and the pm are the Fourier coefficients of the phase function p:

p(φr , φ
′
r ) = p(cos(φr − φ′

r )) = 1

π

[
1

2
+

∑
m>0

pm cos(m(φr − φ′
r ))

]
, (18)

where p0 = 1 because the phase function is normalized. Note that there is a slight abuse of notation in eq. (18): the same symbol p is employed
to denote the phase function expressed either in terms of the incoming and outgoing scattering angle, or in terms of the cosine of the scattering
angle. In the same vein, we will also denote by p(n, n′) the probability of scattering from direction n′ to direction n. Sato (1994) has developed
an alternative Fourier–Bessel representation of the Green’s function of the radiative transfer equation. His starting point is the integral form
of the transfer equation, so that the system of equations to be solved differs from (14). It will be interesting to further compare the integral
and integro-differential formulations in the future.

In the numerical applications, we employ the Henyey–Greenstein phase function which is defined by pm = gm, where g is the mean
cosine of the scattering angle. In this case, summation of the series (18) yields:

p(φr , φ
′
r ) = 1 − g2

2π (1 + g2 − 2g cos(φr − φ′
r ))

. (19)

Provided the following identification is made: g = (1 + 2k2a2 − √
1 + 4k2a2)/2k2a2, the Henyey–Greenstein model can be considered as an

end-member of the general Von-Karman phase function of the form:

p(φr , φ
′
r ) = N (ka, κ)

(1 + 2k2a2(1 − cos(φr − φ′
r ))κ+1

(20)

in the limit κ → 0 (see Sato et al. 2012, p. 24). In eq. (20), N(ka, κ) denotes a normalization factor which guarantees that the integral of p
over φr ∈ [0, 2π ] equals 1.

At very low frequency, inhomogeneities are small compared to the wavelength and scattering is usually isotropic (or non-preferential),
which corresponds to the case g = 0. As the wavelength decreases (or as the frequency increases), waves become sensitive to the details of
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the inhomogeneities and a peak of scattering usually develops around the forward direction (see e.g. Sato et al. 2012, p. 132). As a result,
g increases with frequency (but remains always bounded below 1). This prediction is in agreement with recent observations and models of
crustal coda waves by Calvet et al. (2013). In seismology, the Henyey–Greenstein phase function has been introduced by Margerin & Nolet
(2003) to model wave scattering in the lower mantle in connection with the spatiotemporal distribution of PKP precursors.

Liemert & Kienle (2011) solve a system equivalent to eq. (17) for the total intensity including the coherent contribution. In this work,
following Sato (1994) we subtract the coherent and single-scattering terms from the total intensity. In this way, the convergence of the series
expansion for the multiple-scattering intensity is substantially improved, and exact analytical expressions can be employed for the singular
terms. We recall that the coherent wave carries the fraction of intensity which has not been scattered at all. This wave decays exponentially
with the distance to the source. The single-scattering term corresponds to waves which have changed propagation direction only once since
their departure from the source. Together with higher order scattering terms, they form the diffuse intensity. The calculation of the coherent
and single-scattering terms in the space–time and transformed domains is detailed in the next paragraph.

As previously noted, the coherent term Ic(r, t, φr) corresponds to the part of the intensity which propagates from source to receiver
without undergoing any scattering event. This term satisfies the following equation:(

∂

∂t
+ c cos(φr )

∂

∂r
− c sin(φr )

∂

r∂φr

)
I c(r, t, φr ) +

(
1

τa
+ 1

τs

)
I c(r, t, φr ) = δ(r )δ(t)

2πr
(21)

and can be expressed analytically as (Paasschens 1997):

I c(r, t, φr ) = δ(r − ct)δ(φr )

r
e−t/τe H (t), (22)

where we have introduced the inverse extinction time: 1/τ e = 1/τ a + 1/τ s, and where H denotes the Heaviside distribution. Eq. (22) confirms
the exponential decay of the coherent wave. In the Fourier–Bessel domain, the coherent term may be expressed as (Gradshteyn & Ryzhik
2007, p. 694):

Ĩ c
m(k, �) = (

√
k2 + α2 − α)m

πckm
√

k2 + α2
, (23)

where α = (1/τ a + 1/τ s − i�)/c.
The single-scattering term corresponds to the part of the intensity which has been scattered only once on its path from source to station.

This term is the solution of the following equation:(
∂

∂t
+ c cos(φr )

∂

∂r
− c sin(φr )

∂

r∂φr
+ 1

τe

)
I sg(r, t, φr ) = 1

τs

∫ 2π

0
p(φr , φ

′
r )I c(r, t, φ′

r )dφ′
r = p(cos φr )e−t/τe δ(r − ct)H (t)

τsr
(24)

and can be expressed as:

I sg(r, t, φr ) = p(n · r̂s(t))e−t/τe H (ct − r )

cτs(ct − r cos φr )
, (25)

where rs(t) is the position vector of the scatterer which contributes to the intensity propagating in direction n, at time t at the receiver. As
usual, the hatˆindicates a unit vector. The cosine of the scattering angle can be expressed as:

n · r̂s(t) = 2r 2 sin2 φ

r 2 − 2ctr cos φ + c2t2
− 1. (26)

Eq. (25) may be obtained by convolving the source term S(r, t, n) = p(n̂, r̂)H (t)e−t/τe δ(r − ct)/r in the right-hand side of eq. (24) with the
coherent Green’s function Gc(r, t, n; r0, n0) = δ(r − r0 − ctn0)δ(n − n0)e−t/τe H (t). The latter is the solution of eq. (24) for a directional and
point-like unit source (see first column of Table 1). To find the expression of the single-scattering term in the Fourier–Bessel domain, it is
convenient to write it again as a convolution integral in the frequency domain:

I sg(r, �, n) = 1

c2τs

∫
R2

e−α(rs+|r−rs |)

rs |r − rs | δ

(
r − rs

|r − rs | − n

)
p(n · r̂s)drs, (27)

with α = (i� + 1/τ e)/c. The transform of the convolution product can now be found in a straightforward manner using the results of Baddour
(2009):

Ĩ sg
m (k, �) = (

√
k2 + α2 − α)m

πc2τskm(k2 + α2)

( ∑
0≤q≤m

pq +
∑
q>0

(−1)q (pq + pm+q )
(
√

k2 + α2 − α)2q

k2q

)
(28)

In the case of the Henyey–Greenstein phase function, the sums inside the parenthesis can be performed analytically which yields closed form
expressions for the single-scattering intensity in the transformed domain. Using eqs (18) and (28), the source term for the multiple-scattering
intensity can be expressed as:

S̃m(k, �) = pm

τs
Ĩ sg

m (k, �) (29)
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The system of eq. (17) with the source term (29) can be solved using standard linear algebra libraries such as LAPACK. To transform the
multiple-scattering solution Ĩ hi

m (k,�) back to the (r, t, φr) domain, the continuous Hankel and Fourier transforms are replaced by their discrete
versions. In practice, the intensity was evaluated at 384 points in the frequency domain with �f = 0.23/π . This choice allows us to evaluate
the specific intensity up to a lapse time t = 12 mean-free times in the coda, which should be sufficient for most applications. As a rule,
the spatial domain considered in the simulation has a radius R = c/�f, where �f is the step size in the frequency domain. Regarding the
discretization of the angular and spatial domains, we typically retain 124 terms of the Fourier cosine expansion and evaluate Ĩm at 1500 (for
g = 1/2) and 2500 (for g = 9/10) discrete wavenumbers, respectively. After application of a discrete Hankel transform of order m (Johnson
1987), and of a fast inverse Fourier transform (Frigo & Johnson 2005), the complete solution can be written as:

I (r, t, φr ) = I c(r, t, φr ) + I d (r, t, φr ) = I c(r, t, φr ) + I sg(r, t, φr ) + 1

2
I hi

0 (r, t) +
∑
m>0

I hi
m (r, t) cos mφr , (30)

where the analytical expression (25) for the single-scattering term can be employed for accuracy. Note that the formulae given above
correspond to a non-normalized point source which injects a total intensity of 2π in the medium. To suppress high-frequency noise, the
numerical solution is convolved with a normalized Kaiser–Bessel window defined as (Butz 2006):

K (t) = β I0(β
√

1 − (2t/T )2)

T sinh β
. (31)

The numerical results have been obtained with a window width T = 0.25 and a parameter β = 22.
In Fig. 3, we compare the results of the spectral approach and Monte Carlo simulations of the transport process obtained with a scalar

version of the code developed by Margerin et al. (2000). We calculate the diffuse intensity at three angles φr = π/4, π/8, π/180 from the
forward and backward directions, in a random medium described by a Henyey–Greenstein phase function with anisotropy parameter g = 0.5
or g = 0.9. Note that in the exact forward direction the specific intensity diverges, which is impractical for numerical comparisons (hence
the choice φr = π/180). The source–receiver distance varies from r = 0.05l to r = 4.05l (l = cτ s is the scattering mean-free path) and
the absorption time is taken as τ a = 2τ s. Note that the two numerical solutions have been convolved with the same source time function
(31). Excellent agreement is found between the two approaches, including in the vicinity of the source (r = 0.05l) for both weak and strong
scattering anisotropy. The calculations reveal that a strong peak of intensity develops in the forward direction as the anisotropy parameter g
increases. This point is further illustrated in Fig. 4, where we show snapshots of the scattered intensity field at lapse times t = 3τ s, 6τ s for
increasing values of the scattering anisotropy (g = 0, 1/2, 2/3, 4/5). Increasing the scattering anisotropy tends to concentrate the scattered
intensity near the coherent front, giving rise to a large ballistic peak, which persists up to the transport mean-free time τ ∗ ≈ τs/(1 − g) in the
coda. We recall that the transport mean-free time can be interpreted as the typical time for a wave to loose memory of its initial propagation
direction. In the case of isotropic scattering, the randomization of propagation directions is complete after one scattering event only (τ ∗ = τs).
To the contrary, when scattering anisotropy is strong, it takes a large number of scattering events before the propagation direction has been
randomized (τ ∗ � τs). Interestingly, the spatial distribution of energy is rather flat behind the ballistic peak which is reminiscent of the energy
flux model of Frankel & Wennerberg (1987). In the next two sections, the impact of scattering anisotropy on the sensitivity of coda waves is
studied numerically based on the spectral formulation of the radiative transfer equation in 2-D.

4 T R AV E LT I M E S E N S I T I V I T Y K E R N E L S

In this section, we evaluate numerically the sensitivity kernel (5) in a variety of configurations which are relevant in seismology. We focus
on relatively short propagation times (typically less than 8 mean-free times) and distances (less than five mean-free paths). In this weakly
scattering regime, it is crucial to decompose the specific intensity into a sum of coherent and diffuse parts (Planès et al. 2014). In particular, the
coherent intensity which is absent in the diffusion approximation (strong scattering regime) contributes significantly to the energy transport
between source and receiver. This results in four contributions to the total sensitivity function: coherent–coherent, diffuse–coherent (and
coherent-diffuse) and diffuse–diffuse. In the absence of scattering (i.e. in a homogeneous medium), all the energy is transported by coherent
waves and it is instructive to examine this simple situation first. Substituting the coherent intensity Ic into eq. (5) and integrating over all space
directions n, the traveltime sensitivity kernel can be put into the following form:

K cc
tt (r′, t ; r, r0) =

∫ t

0
δ

(
r′ − r0 − ct ′ r − r0

|r − r0|
)

dt ′, (32)

which demonstrates that the sensitivity is fully concentrated on the ray path between source and receiver. While this result does not come as
a surprise, it is reassuring to see that radiative transfer theory contains as a special case the well-known predictions of geometrical optics.

We now examine the general situation of a scattering and absorbing medium. The coherent–diffuse term may be expressed as:

K cd
tt (r′, t ; r, r0) = 2π

I (r, t ; r0)

∫
R

∫
2π

I d (r′ − r, t − t ′,−n)I c(r′ − r0, t ′, n)dt ′dn

= e−|r′−r0|/cτe

c|r′ − r0|I (r, t ; r0)
I d

(
r′ − r, t − |r′ − r0|

c
,

r0 − r′

|r′ − r0|
)

(33)
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658 L. Margerin et al.

Figure 3. Diffuse intensity at r = 0.05, 0.55, 1.05, 2.05 and 4.05 mean-free paths from a point-like isotropic source. For each distance, the specific intensity is
calculated in two opposite propagation directions. The angular deviation φ from the forward (or backward) propagation direction decreases from top to bottom:
φ = π/4, π/8, π/180. The random medium is described by a Henyey–Greenstein phase function with anisotropy parameter g = 0.5 (left) and g = 0.9 (right).
The solid and dotted lines show the results of the Monte Carlo and spectral calculations, respectively. Good agreement is found between the two solutions.

The diffuse–coherent term is obtained by interchanging r and r0 in eq. (33). For completeness, we also give the expression of the diffuse–diffuse
term:

K dd
tt (r′, t ; r, r0) = 2π

I (r, t ; r0)

∫
R

∫
2π

I d (r′ − r, t − t ′, −n)I d (r′ − r0, t ′, n)dt ′dn

= 2π 2

I (r, t ; r0)

∫
R

(
I d

0 (|r′ − r|, t − t ′)I d
0 (|r′ − r0|, t ′)

2
+

∑
m>0

(−1)m I d
m(|r′ − r|, t − t ′)I d

m(|r′ − r0|, t ′) cos m(ϕr′−r − ϕr′−r0 )

)
dt ′,

(34)

where we have used the Fourier cosine expansion of the diffuse intensity to evaluate the angular integrals and ϕr denotes the angle between
the vector r and the x-axis (see Fig. 2). Because the single-scattering intensity displays a singularity in the forward direction, this term
should be evaluated—in all rigors—with the aid of the analytical result (25) and the spectral expansion (15) applied to the multiple-scattering
intensity Ihi only. However, even for very anisotropic scattering (g = 0.9) and short distance from the source or receiver (typically of the
order of l/20), the computational gain of the spectral expansion is so large, and the induced loss of accuracy so small, that it is almost
always beneficial to use the cosine expansion of the single-scattering term. This is all the more true as the sensitivity is dominated by the
coherent–diffuse(diffuse–coherent) term in the vicinity of the source(receiver), whose algebraic divergence is treated analytically. Pacheco &
Snieder (2006) have developed a theory of traveltime perturbations of coda waves in the single-scattering regime and it seems worthwhile to
briefly examine this case. To do so, we assume like Pacheco & Snieder (2006) that the transport is dominated by singly scattered waves (I = Isg)
and neglect higher order terms. We also assume isotropic scattering. The only terms that survive these assumptions are the coherent–diffuse

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/204/1/650/636209 by C

N
R

S - ISTO
 user on 23 M

ay 2022



Sensitivity kernels for coda waves 659

Figure 4. Snapshots of the spatial distribution of intensity in the coda at lapse time t = 3τ s (left) and t = 6τ s (right) for increasing levels of scattering
anisotropy (see the legend). On the horizontal axis, the distance to the source is normalized by the scattering mean-free path. Note that the coherent intensity
is independent of g and has not been plotted.

and diffuse–coherent terms. Inserting expressions (25) and (22)—after normalization of each term by a factor 1/2π—into eq. (33) and
integrating, we obtain:

K sg
tt = 1

2πc2t

⎡
⎢⎢⎣

√
c2t2 − |r − r0|2

|r′ − r0|
(

1 − (r0−r)·(r0−r′)
ct |r0−r′ |

) +
√

c2t2 − |r − r0|2

|r′ − r|
(

1 − (r′−r)·(r0−r)
ct |r−r′ |

)
⎤
⎥⎥⎦ (35)

Using standard identities of analytic geometry, this equation may be shown to be equivalent to eq. (39) of Pacheco & Snieder (2006). Note
however that these authors use slowness perturbations instead of velocity perturbations which causes slight notational differences. While
radiative transfer successfully reproduces the single-scattering approximation as a limiting case, the theory incorporates effortlessly higher
orders of scatterings, which constitutes a notable advantage. This point will be illustrated in detail in the rest of the paper.

For the numerical applications, we evaluate the sensitivity kernels on a fixed grid with horizontal and vertical spacings 0.04l. The first
row of gridpoints is located at 0.02l from the horizontal axis (X), in order to avoid the singularities at the source and receiver. Once the spectral
expansion of the specific intensity has been obtained at each point of the grid, the calculation of the sensitivity kernels is immediate. Note that
all the numerical results presented in this paper have been obtained after convolution of the exact specific intensity (including the coherent
term) with the Kaiser–Bessel window (31). This procedure guarantees that the signal does not contain energy beyond the Nyquist frequency.
In the case of isotropic scattering, we have reproduced the results of Mayor et al. (2014), which are based on the analytical solutions of Shang
& Gao (1988) and Paasschens (1997), with excellent accuracy.

Fig. 5 illustrates the impact of anisotropic scattering on the traveltime sensitivity kernels (5). The reference isotropic case (g = 0) is shown
on the left. The centre and right columns correspond to moderate (g = 0.67) and strong anisotropy (g = 0.9), respectively. The epicentral
distance R and lapse time t in the coda increase from top to bottom as follows: R = 0.48l, t = 2τ s; R = 0.96l, t = 4τ s; R = 1.92l, t = 6τ s;
R = 3.84l, t = 8τ s. In the Earth, the mean-free time (or mean-free path) varies over several orders of magnitude. Around 2 Hz for instance,
the mean-free time can be as large as 500 s in the mantle (Margerin & Nolet 2003; Shearer & Earle 2004) and as small as 1 s in volcanic
regions (Yamamoto & Sato 2010). Because the numerical value of the sensitivity depends strongly on a parameter which varies wildly in the
Earth, we have chosen to normalize the kernels by the total spatial sensitivity, approximated by straightforward numerical summation. For
the same reason, we have chosen to express all spatial and temporal measures in mean-free path and mean-free time units, respectively. This
normalization procedure also facilitates the comparison of the sensitivity functions for different values of the anisotropy parameter g. In the
case of crustal coda studies around a few hertz, the ratio between the epicentral distance (25–200 km) and the mean-free path (say 50 km) can
typically vary between 0.5 and 4. Likewise, the ratio between the detection time (30–120 s) in the coda and the mean-free time (say 15 s) varies
between 2 and 8. We therefore believe that the choice of parameters adopted in our study covers a number of practical situations. Of course,
in real-case applications, the sensitivity should be calculated more precisely. Independent of the scattering anisotropy, the map of sensitivity
is dominated by the coherent diffuse term, which diverges algebraically at the source and receiver. In the case of isotropic scattering, we
observe that a zone of high sensitivity is located around the direct ray between source and station. This feature is much less pronounced in
the case of moderate and strong anisotropic scattering. As scattering anisotropy increases, the diffusivity is enhanced and the scattered waves
explore the propagation medium more rapidly. This effect may be quantified by considering the diffusivity of the multiply scattered waves. In
the 2-D isotropic case, this parameter is given by D0 = c2τ s/2 and is related to the diffusivity D in the anisotropic case by D = D0/(1 − g).
For g = 2/3 or g = 9/10, we find that the diffusivity is enhanced by a factor 3 or 10, respectively. As a consequence, the sensitivity carried
by the diffuse waves tends to be more uniformly distributed inside the causality (or single-scattering) ellipse. At sufficiently large epicentral
distance and lapse time (bottom row, centre and right panels), one can clearly distinguish the short-range, high sensitivity of coherent waves
superposed upon the slowly varying, weak sensitivity of diffuse waves. This shows that the coherent/incoherent decomposition of the intensity
adopted in our approach is both mathematically convenient and physically sound.
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660 L. Margerin et al.

Figure 5. Traveltime sensitivity kernels of coda waves. The scattering anisotropy increases from left to right: g = 0, 0.67, 0.9. For each value of g, the kernels
have been normalized by the total spatial sensitivity. The four rows correspond to the following epicentral distance and lapse time in the coda (from top to
bottom): R = 0.48l, t = 2τ s; R = 0.96l, t = 4τ s; R = 1.92l, t = 6τ s; R = 3.84l, t = 8τ s. To facilitate the visualization, the colour scale has been saturated by
clipping all values larger than half the maximum sensitivity.

5 D E C O R R E L AT I O N S E N S I T I V I T Y K E R N E L

We pursue our exploration of sensitivity functions by considering the decorrelation kernel (12). We recall that decorrelation of coda waveforms
is a manifestation of changes in the scattering properties of the medium. These changes may be represented by the addition of new scatterers
with phase function f (n, n′). In the derivation that follows, we first consider an arbitrary f before specializing to the simple case of small
objects which scatter waves isotropically ( f (n, n′) = 1/2π ). Following again Planès et al. (2014), we express the total intensity as a sum of
coherent and diffuse components, which in turn allows us to decompose the decorrelation sensitivity kernel into a sum of four contributions:
coherent–coherent, coherent–diffuse (diffuse–coherent) and diffuse–diffuse. The coherent–coherent part can be written as:

K cc
dc(r′, t ; r, r0) = 2π

I (r, t ; r0)

∫ t

0

∫
2π

∫
2π

I c(r′ − r, t − t ′, −n′) f (n′, n′′)I c(r′ − r0, t ′, n′′)dt ′dn′dn′′ (36)

Substituting the expression of the coherent term (22) into eq. (36) and integrating yields:

K cc
dc(r′, t ; r, r0) = e−(|r′−r|+|r′−r0|)/cτe

2πc|r′ − r||r′ − r0|I (r, t ; r0)
f

(
r − r′

|r − r′| ,
r′ − r0

|r′ − r0|
)

δ(|r′ − r| + |r′ − r0| − ct), (37)
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which reduces to:

K cc
dc(r′, t ; r, r0) = e−(|r′−r|+|r′−r0|)/cτe

(2π )2c|r′ − r||r′ − r0|I (r, t ; r0)
δ(|r′ − r| + |r′ − r0| − ct) (38)

in the case of an isotropically scattering perturbation, in agreement with Mayor et al. (2014). The sensitivity of the coherent-coherent
term decays exponentially with the distance to the source and is fully concentrated on the single-scattering ellipse. Comparison with the
coherent–coherent term of the traveltime sensitivity kernel (32) illustrates the importance of distinguishing between active and passive medium
perturbations. The coherent–diffuse term can be expressed as:

K cd
dc (r′, t ; r, r0) = 2π

I (r, t ; r0)

∫ t

0

∫
2π

∫
2π

I d (r′ − r, t − t ′, −n′) f (n′, n′′)I c(r′ − r0, t ′, n′′)dt ′dn′dn′′

= e−|r′−r0|/cτe

c|r′ − r0|I (r, t ; r0)

∫
2π

f

(
n,

r′ − r0

|r′ − r0|
)

I d

(
r′ − r, t − |r0 − r′|

c
, −n

)
dn

= e−|r′−r0|/cτe

c|r′ − r0|I (r, t ; r0)
×

[
1

2
I d

0

(
|r′ − r|, t − |r0 − r′|

c

)
+

∑
m>0

(−1)m fm I d
m

(
|r′ − r|, t − |r0 − r′|

c

)
cos m(ϕr′−r − ϕr′−r0 )

]
,

(39)

which reduces to:

K cd
dc (r′, t ; r, r0) = e−|r′−r0|/cτe

2c|r′ − r0|I (r, t ; r0)
I d

0

(
|r′ − r|, t − |r0 − r′|

c

)
(40)

in the case of an isotropic perturbation. In eq. (39), the fm are the Fourier coefficients of the phase function f of the medium change, akin to the
pm introduced in eq. (18). The diffuse–coherent term can be deduced from eqs (39) and (40) by interchanging r and r0. The diffuse–diffuse
decorrelation kernel can likewise be expressed as:

K dd
dc (r′, t ; r, r0) = 2π

I (r, t ; r0)

∫ t

0

∫
2π

∫
2π

I d (r′ − r, t − t ′, −n′) f (n′, n′′)I d (r′ − r0, t ′, n′′)dt ′dn′dn′′

= 2π 2

I (r, t ; r0)

∫ t

0

[
1

2
I d

0 (|r′ − r|, t − t ′)I d
0 (|r′ − r0|, t ′) +

∑
m>0

(−1)m fm I d
m(|r′ − r|, t − t ′)I d

m(|r′ − r0|, t ′) cos m(ϕr′−r − ϕr′−r0 )

]
dt ′ (41)

which reduces to:

K dd
dc (r′, t ; r, r0) = π 2

I (r, t ; r0)

∫ t

0
I d

0 (|r′ − r|, t − t ′)I d
0 (|r′ − r0|, t ′)dt ′ (42)

in the simple case of an isotropically scattering perturbation.
The impact of anisotropic scattering on the coda-wave decorrelation kernel is illustrated in Fig. 6, where we show sensitivity maps for

increasing values of the mean cosine of the scattering angle: g = 0 (isotropic case, left), g = 2/3 (moderate anisotropy, centre) and g = 9/10
(strong anisotropy, right). The grid employed to discretize the sensitivity kernels, as well as the pairs (epicentral distance, lapse time) are the
same as in Fig. 5 (from top to bottom: R = 0.48l, t = 2τ s; R = 0.96l, t = 4τ s; R = 1.92l, t = 6τ s; R = 3.84l, t = 8τ s). Three singularities show
up very clearly at the source, the receiver and on the single-scattering ellipse in this figure, but their relative weights are strongly influenced by
the details of the scattering. At fixed lapse time, we found that scattering anisotropy tends to concentrate the energy behind the coherent wave
(see Fig. 4), which in turn strongly accentuates the sensitivity in the vicinity of the single-scattering ellipse. To confirm this interpretation, we
note that the ballistic peak persists up to a lapse time t ≈ τ ∗, which roughly corresponds to the time at which the causality ellipse starts to lose
visibility in Fig. 6 (centre). In the case of the traveltime kernel Ktt, such a zone of high sensitivity was not visible (see Fig. 5). The different
behaviours may be explained by an examination of eqs (5) and (12). In the former equation, we remark that the integrand is the product of a
forward and a backward specific intensity. Keeping in mind that in the vicinity of the causality ellipse the intensity is strongly peaked in the
forward direction, one easily deduces that the integrand in eq. (5) must be much smaller than the one in eq. (12), where a product of average
intensities appears. Hence, the dissimilarity between Figs 5 and 6 follows.

Marked differences between the isotropic/anisotropic sensitivity maps persist at relatively long lapse time in the coda. In particular,
while the sensitivity is concentrated around the direct ray path in the isotropic case, anisotropic scattering tends to uniformly increase the
sensitivity in the bulk of the medium. This effect, which was also apparent in Fig. 5, is again related to the fact that diffusion is enhanced
by scattering anisotropy, so that the multiply scattered waves fill the propagation volume all the more rapidly as g increases. This feature is
again clearly visible on the snapshots shown in Fig. 4. These results clearly suggest that an estimation of scattering anisotropy is necessary
to correctly map mechanical changes in the Earth using coda waves. In the case of volcanoes, seismological observations tend to favour an
isotropic scattering model, but in the case of the crust the situation may be more complex and requires further analysis.

6 I N T E N S I T Y S E N S I T I V I T Y K E R N E L S

As a final illustration of our approach, we consider in this section the generalization of the intensity sensitivity kernels introduced by Mayor
et al. (2014) to the case of isotropic scattering perturbations embedded in an otherwise anisotropically scattering medium. In this case,
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662 L. Margerin et al.

Figure 6. Decorrelation sensitivity kernels of coda waves. The scattering anisotropy increases from left to right: g = 0, 0.67, 0.9. For each value of g, the
kernels have been normalized by the total spatial sensitivity. The four rows correspond to the following epicentral distance and lapse time in the coda (from top
to bottom): R = 0.48l, t = 2τ s; R = 0.96l, t = 4τ s; R = 1.92l, t = 6τ s; R = 3.84l, t = 8τ s. To facilitate the visualization, the colour scale has been saturated by
clipping all values larger than half the maximum sensitivity.

the focus is on the mapping of spatial variations of scattering properties from the spatiotemporal distribution of coda waves. To this end,
following the classical tomographic approach, one imagines a reference medium upon which lateral perturbations of scattering properties
are superposed. The objective is to relate deviations of the observed intensity from the one predicted in the reference medium to the lateral
variations of scattering properties quantified by:

δQ−1
sc (r) = Q−1

sc (r) − Q−1
0 . (43)

In eq. (43), Q−1
0 and Q−1

sc (r) represent the scattering attenuation in the reference model and in the true Earth, respectively. Our assumption of
isotropic scattering for the perturbation implies that the spatial variations of scattering attenuation are caused by geological features which are
small compared to the wavelength. This assumption is by no means necessary but simplifies the analysis and does not seem too unreasonable.

Physically, a (say positive) perturbation of scattering properties located in a small volume dV (r′) has two effects on the propagating
intensity. First, the excess scattering removes a part of the energy from the waves that propagate through. To calculate the fraction of intensity
lost in the process, it suffices to monitor all the seismic phonons that cross the volume dV (r′), which is precisely what the passive kernel Ktt

allows us to do. Second, the addition of scatterers to the medium gives rise to new propagation paths which in turn increase the probability
for seismic phonons to reach the receiver. The fraction of intensity gained in the process can be directly evaluated with the aid of the active
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Figure 7. Intensity sensitivity kernels of coda waves for scattering perturbations. The scattering anisotropy increases from left to right g = 0, 0.67, 0.9. For
each value of g, the kernels have been normalized by the total spatial sensitivity. The four rows correspond to the following epicentral distance and lapse time
in the coda (from top to bottom): R = 0.48l, t = 2τ s; R = 0.96l, t = 4τ s; R = 1.92l, t = 6τ s; R = 3.84l, t = 8τ s. To facilitate the visualization, the colour scale
has been saturated by clipping all values larger than one-third the maximal sensitivity.

kernel Kdc. Based on this energy balance, we conclude that the perturbation of intensity caused by a perturbation of scattering properties in
dV (r′) at time t in the coda can be expressed as:

δ I

I
(dV (r′), t ; r, r0) = ωδQ−1

sc (r′)Ksc(r
′, t ; r, r0)dV (r′), (44)

where the intensity sensitivity function for scattering perturbations is simply the difference between the active and passive kernels:

Ksc(r
′, t ; r, r0) = Kdc(r

′, t ; r, r0) − Ktt (r
′, t ; r, r0) (45)

The result (45) has been established using a perturbative approach by Mayor et al. (2014). These authors also demonstrate that eq. (45) implies
conservation of energy, which means that integrating the kernel Ksc over all detection points r gives 0. In this work, we have employed basic
physical reasoning to recover these results.

In Fig. 7, we illustrate the impact of anisotropic scattering on the intensity sensitivity function Ksc. The reference isotropic case (g = 0)
is shown on the left, moderate anisotropy is considered in the centre (g = 2/3) and strong anisotropy (g = 9/10) on the right. The epicentral
distance R and lapse time t in the coda increase from top to bottom as before: R = 0.48l, t = 2τ s; R = 0.96l, t = 4τ s; R = 1.92l, t = 6τ s;
R = 3.84l, t = 8τ s. The spatial grid employed to discretize the kernel is the same as in Figs 5 and 6 and the kernels have been normalized by
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Figure 8. Comparison of isotropic (left), anisotropic (centre) and isotropic-equivalent (right) intensity kernels for scattering perturbations (see the text for a
definition of ‘isotropic-equivalent’). The top and bottom plots correspond to weak (g = 0.5) and moderate (g = 0.8) anisotropic scattering, respectively.

the integral of their absolute value. The singularities at the source, receiver and in the vicinity of the single-scattering ellipse are clearly visible
in Fig. 7 but the detailed pattern of sensitivity is rather complex. The most prominent effect of scattering anisotropy is to strongly accentuate
the positive sensitivity in the vicinity of the single-scattering ellipse, and to considerably reduce the sensitivity to scattering perturbations in
the bulk of the medium. The sensitivity on the single-scattering ellipse starts to decrease notably at a lapse time greater than the transport
mean-free time, which corresponds to the destruction of the ballistic peak behind the coherent wave (see ‘Decorrelation sensitivity kernels’ in
Section 5). We also observe that the overall shape of the kernel is strongly affected by the level of scattering anisotropy. In the isotropic case,
we remark that for a lapse time typically greater than 4 mean-free times, the kernel is dominated by a zone of negative sensitivity distributed
along the direct ray path of typical width one mean-free path. Anisotropic scattering modifies this picture in two ways. First, we observe that
in addition to a zone of negative sensitivity located in between the two stations, an area of strong positive sensitivity persists in the vicinity
of the single-scattering ellipse at longer lapse time (t ≥ 4τ s). This effect is all the more pronounced as the scattering anisotropy increases.
Second, we remark that the zone of negative sensitivity is itself affected by scattering anisotropy. In particular, the diffuse–diffuse contribution
is much more homogeneously distributed in the bulk of the medium in the anisotropic case than in the isotropic one, as a consequence of the
faster diffusion of the waves in the medium. This effect was previously noted in the last two sections.

It is well established that at sufficiently long lapse time—typically larger than the transport mean-free time—, energy transport in
an anisotropically scattering medium can be well modeled by an isotropic multiple-scattering process (see e.g. Sheng 2006, for details).
Therefore, as a conclusion to this section, we briefly examine the possibility to approximate the intensity sensitivity kernel for anisotropic
scattering, by an equivalent isotropic sensitivity kernel with mean-free time τ ∗ = τs/(1 − g). In the last equation, τ s and g refer to the
mean-free time and mean cosine of the scattering angle in the anisotropic scattering medium. The change of temporal scale τs → τ ∗ in
the isotropic approximation guarantees that the two processes share the same asymptotic diffusive behaviour. It is worth noting that the
substitution τs → τ ∗ does not correctly rescale the coherent part of the intensity, which decays at a rate controlled by the mean-free path
τ s (see eq. 22), independent of the fact that scattering is isotropic or not. It would be tempting to use two different timescales (τ s for the
coherent intensity, τ ∗ for the diffuse intensity) but this ad-hoc procedure would violate the conservation of energy. As a consequence, the
sensitivity in the vicinity of the source always differs between the anisotropic model and its isotropic approximation. In Fig. 8, we compare
the exact intensity sensitivity kernel for anisotropic scattering (centre) with the approximate kernel (right) based on the equivalent isotropic
multiple-scattering process defined above. For reference, we also show the sensitivity kernel for isotropic scattering with mean-free time τ s

(and not τ ∗). Two cases with respectively weak (g = 0.5, top) and moderate anisotropy (g = 0.8, bottom) are considered for one epicentral
distance R = 3.84l (R = 1.92l∗ for g = 0.5; R = 0.768l∗ for g = 0.8) and one lapse time t = 8τ s (t = 4τ ∗ for g = 0.5; t = 1.6τ ∗ for g =
0.8). In the two cases, we find that the equivalent isotropic kernel (right) bears similarities with its exact anisotropic counterpart centre, in
particular in comparison with the isotropic kernel obtained without rescaling (left). We remark that the equivalent isotropic kernel displays
extra sensitivity on the causality ellipse. This may be traced back to the substitution τs → τ ∗ which overestimates the intensity of the coherent
term in the isotropic approximation. In the anisotropic multiple-scattering process, the coherent waves are converted into diffuse which results
in a smearing of the kernel near the causality ellipse. In future work, it would be interesting to further quantify the error incurred by the use
of the isotropic approximation to image temporal changes in the medium.
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7 C O N C LU S I O N S A N D O U T L O O K

In this work, we have carefully studied the effect of scattering anisotropy on the sensitivity kernels for coda-wave interferometry and scattering
tomography. We have shown that each observable necessitates an appropriate sensitivity function and have discussed the relations with previous
works. In the diffusion regime our theory confirms that a single sensitivity function for traveltime and decorrelation of coda waves may be
employed as first shown by Planès et al. (2014) based on a diagrammatic approach. The results of geometrical optics and single-scattering
theory are recovered as limiting cases of our approach in the case of traveltime or intensity measurements. In the general situation, our results
indicate that an estimation of the amount of scattering anisotropy is necessary to correctly predict the effect of spatial (respectively temporal)
variations of scattering properties on the intensity of coda waves (resp. decorrelation of coda waves). Such an estimate may be obtained
through the direct modeling of the envelope shape of the ballistic pulse in the time domain (Hoshiba 1995; Gusev & Abubakirov 1996), by
an analysis of the delay time between onset and maximum of the seismogram envelope (Saito et al. 2005; Takahashi et al. 2009), or by a
modeling of the lapse-time dependence of the coda quality factor Qc (Calvet & Margerin 2013). This implies that the effect of scattering
anisotropy can be incorporated in the modeling of coda-wave sensitivity functions but requires an extra step compared to the isotropic
case. Our results have direct implications for imaging applications. Interestingly, the method of Nishigami (2000)—a form of migration
technique for scattering anomalies in the crust—, which assumes that the sensitivity of the coda is concentrated on the single-scattering
ellipse may be well founded in the presence of strong anisotropic scattering in the crust, as illustrated in Fig. 7. In monitoring applications
based on traveltime changes in the coda, a simplified sensitivity function has often been employed, which concentrates the sensitivity on
the direct ray path. Such an approximation may work very well if scattering is isotropic and sufficiently strong (see Fig. 5), as appears to
be the case in volcanoes. In absorption/scattering tomography, other approximate treatments emphasizing the sensitivity on the ray path
have recently been employed (Prudencio et al. 2013, 2015). In the future, our work may facilitate the implementation of more accurate
coda-wave sensitivity functions, thereby improving the spatial resolution of current techniques. As it stands, our theory may be useful in
cases where the propagation is effectively 2-D, as for example when the signal is dominated by Rayleigh waves. There is still an important
need to clarify the depth-sensitivity of coda waves as a function of lapse time. The analysis of Obermann et al. (2013b) based on numerical
simulations of the waveform provides an interesting perspective on this issue. The problem of imaging temporal changes in media that are not
statically homogeneous has not been considered in our study either. In a recent paper, Kanu & Snieder (2015) have tackled this interesting
issue using numerically simulated scattered wavefields. In future works, we plan to extend our approach to 3-D anisotropically scattering
media in order to clarify the depth-dependent sensitivity of body waves to medium changes.
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