

Detection of extreme events from IASI observations

Adrien Vuvan, Anne Boynard, Pascal Prunet, Dominique Jolivet, Olivier Lezeaux, Patrice Henry, Claude Camy-Peyret, Pierre-François Coheur, Lieven Clarisse, Cathy Clerbaux

► To cite this version:

Adrien Vuvan, Anne Boynard, Pascal Prunet, Dominique Jolivet, Olivier Lezeaux, et al.. Detection of extreme events from IASI observations. 5th IASI International Conference, Dec 2021, Evian, France. insu-03676741

HAL Id: insu-03676741 https://insu.hal.science/insu-03676741v1

Submitted on 24 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Near real time detection of exceptional events using principal component analysis on IASI atmospheric spectra

A. Vuvan^{1,2}, A. Boynard^{1,2}, P. Prunet², D. Jolivet³, O. Lezeaux², P. Henry⁴, C. Camy-Peyret⁵, P.-F. Coheur⁶, L. Clarisse⁶ and C. Clerbaux^{1,6} ¹LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France ²SPASCIA, Toulouse, France ³HYGEOS, Lille, France ⁴CNES, Centre National d'Etudes Spatiales

⁶Université Libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium

⁵Institut Pierre-Simon Laplace, Paris, France

Introduction

• The 3 IASI instruments on-board the Metop satellites have been sounding the atmospheric composition since 2006 allowing the monitoring of atmospheric chemistry (Clerbaux, et al 2009) and the detection of exceptional events such as fires (Coheur et al., 2009; R'Honi et al., 2013), volcanic eruptions (Clarisse et al., 2008) or pollution events

Method

The Principal Component method

- The reference database is generated using nearly 120 000 spectra randomly selected in 2013 over the entire globe.
- From the reference database, eigenvectors are created to statistically depict the atmospheric variability during a full year, around different conditions of acquisition over the entire globe.
- By projecting raw apodized spectra (y) on the eigenvectors, reconstructed spectra \tilde{y} are obtained, which are

(Boynard et al, 2014).

- The early detection of extreme events is key to take appropriate decisions regarding protection of inhabitants and the environment.
- With IASI providing global observations twice a day in near real time, a new way for the systematic and continuous detection of exceptional atmospheric events to support operational decisions is possible.

Objectives

- Using and improving a method for the detection and characterization of extreme events, which relies on the principal component analysis method (Atkinson, N. C., 2010, 2011; Chefdeville S., 2010).
- Creating a record of extreme events (volcanic eruption and fires) based on IASI data.
- Characterizing and classifying fire, volcanic eruption and pollution events.

supposed to contain only information on the standard atmospheric variability, except for anomalous events.

• The residual normalized by the IASI noise (N) is calculated as follows: $r = N^{-1}(y - \tilde{y})$.

Spectral bands (cm ⁻¹)	Peaks (Spectroscopic Database)	Molecule ID
667.250 - 667.750	667.5 cm ⁻¹ (Q-branch CO ₂)	CO ₂
711.500 - 713.500	713 cm ⁻¹ (Q-branch of HCN v_2)	HCN
729.250 - 730.000	729.25 cm ⁻¹ (C_2H_2 Q-branch v ₅)	C ₂ H ₂
763.000 - 763.750	763 cm ⁻¹ (v ₈ HNO ₃)	HNO ₃
821.750 - 822.250	822 cm ⁻¹ (C_2H_6 Q branch v_7)	C ₂ H ₆
853.500 - 854.250	854 cm ⁻¹ (NH ₃ Q branch)	NH ₃
867.750 - 868.750	868 cm ⁻¹ (NH ₃ Q branch)	NH ₃
878.500 - 880.000	879 cm ⁻¹ (v ₅ HNO ₃)	HNO ₃
887.250 - 888.250	888 cm ⁻¹ (NH ₃ Q branch)	NH ₃
891.750 - 892.250	892 cm ⁻¹ (NH ₃ Q branch)	NH ₃
895.500 - 896.750	896 cm ⁻¹ (v ₆ HNO ₃)	HNO ₃
908.000 - 909.000	908.3 cm ⁻¹ (NH ₃ Q branch)	NH ₃
931.750 - 933.750	930 cm ⁻¹ (transition NH ₃ Q branch)	NH ₃
949.000 - 950.500	949 cm ⁻¹ (v ₇ band vibration liaison CH ₂)	C ₂ H ₄
966.000 - 968.000	967 cm ⁻¹ (transition NH ₃ Q branch)	NH ₃
991.750 - 993.500	992.8 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1007.750 - 1008.250	1008 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1034.000 - 1034.750	1034 cm ⁻¹ (CH ₃ OH Q branch)	CH₃OH
1046.250 - 1047.250	1047 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1065.750 - 1066.250	1066 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1075.750 - 1076.250	1076 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1084.500 - 1085.750	1085 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1103.000 - 1104.250	1104 cm ⁻¹ (NH ₃ Q branch)	NH ₃
1104.500 - 1105.750	1105 cm ⁻¹ (v ₆ band Q branch)	НСООН
1180.500 - 1184.750	1184 cm ⁻¹ (v_8 band Q branch)	CH₃COOH
1121.500 - 1122.750	1122 cm ^{-1} (NH ₃ Q branch)	NH ₃
1325.750 - 1326.250	1326 cm ⁻¹ (v ₃ HNO ₃)	HNO ₃
1344.500 - 1346.500	1345 cm ⁻¹ (SO ₂ v_3 band)	SO ₂
1370.500 - 1372.000	1371 cm ⁻¹ (estimate absorption in the SO ₂ v_3 band)	SO ₂
1375.750 - 1377.000	1376 cm ⁻¹ (absorption in the SO_2v_3 band)	SO ₂
1710.750 - 1711.500	1711 cm ⁻¹ (Q branch HNO_3)	HNO ₃
1776.750 - 1777.250	1777 cm ⁻¹ (HCOOH v_3 band)	НСООН
2032.500 - 2087.000	2050.2 - 2069.65 cm ⁻¹ (v ₃ OCS branch)	OCS
2111.000 - 2112.250	2111.50 cm ⁻¹ (P-branch CO)	СО
2123.000 - 2124.250	2123,75 cm ⁻¹ (P-branch CO)	СО
2130.000 - 2132.250	2131.75 cm ⁻¹ (P-branch CO)	СО
2157.750 - 2158.725	2158.00 cm ⁻¹ (R-branch CO)	СО
2164.750 - 2166.000	2165.75 cm ⁻¹ (R-branch CO)	СО
Not defined	Unkown	UNKNOWN

Table.1 : Definition of molecule indicators using known absorption peaksfor the characterisation of PCA detections.

The MIN_MAX_RESIDUALS method

- For a given granule, the extreme values of the residuals are saved for each IASI channel for the entire spectral domain (645cm⁻¹ to 2760cm⁻¹) → we obtain an array called « MIN_MAX_RESIDUAL » (*Fig. 1*).
- By analyzing the signal in each IASI channel of the MIN_MAX_RESIDUALS, we compare the strongest peaks to predefined micro-windows where specific molecular signatures are expected (*Table.1*).
- The method is applied on a granule basis to allow the detection in real time.

Wavenumber (cm⁻¹) Fig.1 : Example of strongest features observed in Australian fires residuals during the day (2020/01/01) from the MIN_MAX_RESIDUALS.

Results: analysis of the year 2020

Volcanic eruption events HNO₃ 60°N 60°N 30°N 30°N 0 30°S 30°S 60°S 60°S 90°S 90°S Fig.3 : Spatial distribution of PCA detection pixels for indicators SO_2 (left) and for indicators HNO_3 (right) for the year 2020. 2019/07/20 $r^2 = 0.9668$ 45°W 135°W 180° 60°N 30°N 0° 30°S 80 PCA signal 60°S 1368 1370Wavenumber (cm⁻¹) 90°5 Fig.5 : Scatterplot between the SO₂ PCA detection and L2 data 180° for the Ubinas volcanic eruption 2019/07/20. The PCA method is able to detect volcanic *Fig. 4 : Spatial distribution of IASI L2 SO*₂ *total column*

Fire events

Fig.7 : Spatial distribution of PCA detection pixels for indicators CO, NH_3 , HCOOH, HCN, C_2H_2 and C_2H_4 for the year 2020.

- Indicators for CO, NH₃, HCOOH, HCN, C_2H_2 and C_2H_4 are used for the detection of fires and show different molecular species emitted by fires in Australia, Siberia, Brazil, Africa and California (*Fig.7*).
- The method allows to detect extreme events, especially in case of the presence of large concentrations.

for the year 2020.

Fig.6 : Maximum absolute intensity of PCA signal for the 2020 year with referenced eruptions in black.

- eruptions with the indicators for HNO_3 and SO_2 (*Fig. 3*).
- The PCA method detect more volcanic eruptions than the L2 data (*Fig. 4*).
- An excellent agreement is found between SO₂ PCA and L2 data. This allow potentially a fast quantification of this molecule (*Fig. 5*).
- Record of volcanic eruption events for 2020 with PCA (*Fig. 6*).
- Multiple indicators can detect same events, allowing a characterization and a classification of an extreme event.

Future work

- Extending the record of volcanic eruption events based on IASI L1 data for the entire IASI period.
- Validating the method for fire events (comparison with Level 2 data).
- Characterizing and classifying the events.

References

- 1. Atkinson N. C. et al.: Potential for the use of reconstructed IASI radiances in the detection of atmospheric trace gases, https://doi.org/10.5194/amt-3-991-2010, 2010.
- 2. Boynard A. et al.: First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China, https://doi.org/10.1002/2013GL058333, 2014.
- 3. Chefdeville S.: Analyse de trois années d'« outliers » dans les mesure de l'instrument IASI : détection et étude d'évènements extrêmes, rapport de stage Master 1, 2010.
- 4. Clarisse L. et al.: Tracking and quantifying volcanic SO₂ with IASI, the September 2007 eruption at Jebel at Tair. https://doi.org/10.5194/acp-8-7723-2008, 2008.
- 5. Clerbaux C. et al.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos, https://doi.org/10.5194/acp-9-6041-2009, 2009.
- 6. Coheur P.-F. et al.: IASI measurements of reactive trace species in biomass burning plumes, https://doi.org/10.5194/acp-9-5655-2009, 2009.
- 7. R'Honi Y. et al.: Exceptional emissions of NH_3 and HCOOH in the 2010 Russian wildfires, https://doi.org/10.5194/acp-13-4171-2013, 2013.
- 8. Rothman L.S. et al.: The HITRAN2012 molecular spectroscopic database, https://doi.org/10.1016/j.jqsrt.2013.07.002, 2012.

Acknowldgements

IASI is a joint mission of EUMETSAT and the Centre National d'Etudes Spatiales (CNES, France). This study was supported by a CIFRE grant. The AERIS data infrastructure provides access to the Level 2 IASI data.