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ABSTRACT

Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in
planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and
should be correctly treated.
Aims. We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up
to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital
evolution.
Methods. We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this
coupling to rotating stars with masses between 0.3 and 1.4 M�. As a first step, this formalism assumes a simplified bi-layer stellar
structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged
treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the
radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal
dissipation predictions for advanced phases of stellar evolution.
Results. On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the
contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar
winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by
about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural
changes.
Conclusions. The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From
the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the
orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets
are mainly sensitive to the star’s early history.
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1. Introduction

Thanks to space observatories and to the increase in the precision
of modern techniques (e.g. radial velocity and transit methods),
we now have access to a huge number of exoplanets that belong
to a wide variety of star–planet system configurations where the
host stars range from M red dwarf to intermediate-mass A-type
stars (Fabrycky et al. 2014). Among these discovered exoplan-
ets, a fairly large number of them are found close to their host
stars, as is the case for the well-known hot-Jupiter class exoplan-
ets (Mayor & Queloz 1995; Charbonneau et al. 2000).

The presence of planets is usually not taken into ac-
count in the numerical codes dealing with the evolution
of stellar rotation, such as angular momentum evolution
codes (e.g. Reiners & Mohanty 2012; Gallet & Bouvier 2013,
2015; Johnstone et al. 2015; Lanzafame & Spada 2015) or
stellar evolution codes including angular momentum trans-
port (e.g. Endal & Sofia 1976, 1981; Pinsonneault et al. 1990;
Brott et al. 2011; Amard et al. 2016; Choi et al. 2016). The

increasing number of detected and confirmed exoplanets, es-
pecially because most of them are found close to their host
star, means that star-planet interactions should not be neglected
(as shown by the studies of Strugarek et al. 2014; Strugarek
2016, for the magnetic interactions; and of Bolmont & Mathis
2016, for tidal interactions). Indeed, in these close-in configu-
rations, the dissipation of tidal waves inside the turbulent con-
vective envelope of low-mass stars is thought to strongly af-
fect the orbit of the surrounding planet (Jackson et al. 2008;
Husnoo et al. 2012; Lai 2012; Guillot et al. 2014), the spin-
orbit inclination (Barker & Ogilvie 2009; Winn et al. 2010;
Albrecht et al. 2012), and – in the case of a massive planet
– the rotational evolution of the star (Ogilvie & Lin 2007;
Bolmont et al. 2011, 2012; Albrecht et al. 2012; Ogilvie 2014;
Auclair-Desrotour et al. 2014; Mathis 2015; Bolmont & Mathis
2016) and possibly its internal structure (de Boer & Seggewiss
2008).

In stars, there are two components to describe the tidal inter-
action, equilibrium tides and dynamical tides. Equilibrium tides
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correspond to a large-scale hydrostatic adjustment of a body
and the resulting flow due to the gravitational field of a given
companion (Zahn 1966; Remus et al. 2012). It is usually em-
ployed in the framework of the constant time lag model (see
Mignard 1979; Hut 1981; Eggleton et al. 1998; Bolmont et al.
2011, 2012), which allows a fast computation of the orbital
evolution of the planet and works for all eccentricities (Hut
1981; Leconte et al. 2010). In this model, the dissipation of
the kinetic energy of the equilibrium tide inside the star is of-
ten taken to be constant throughout the system evolution and
calibrated on observations (Hansen 2010, 2012). While consid-
ering such a constant equilibrium tide dissipation is a sensible
assumption, several studies have shown that this quantity might
vary during the different phases of stellar evolution. For ex-
ample, Zahn & Bouchet (1989) showed that the dissipation of
the equilibrium tide by the turbulent friction in the convective
envelope of late-type stars is strongest during their PMS. Us-
ing this theoretical framework, Villaver & Livio (2009, see also
Verbunt & Phinney 1995) recalled that the variation of the semi-
major axis of a planet induced by such friction can be expressed
as a function of the ratio of the mass of the convective enve-
lope to the total mass of the star, the ratio between the radius
of the star and the orbital semi-major axis (to the power 8), and
finally of a power of the ratio between the tidal period and the
convective turnover timescale. This allows the loss of efficiency
of tidal friction to be modelled for rapid tides (e.g. Zahn 1966;
Goldreich & Keeley 1977). Because of the variations of these
quantities during post-MS phases (e.g. Charbonnel et al. 2017),
this could lead to a more efficient dissipation than during the
MS. Finally, Mathis et al. (2016) demonstrated that the action of
rotation on convection deeply modifies the turbulent friction it
applies on the equilibrium tide. In the regime of fast rotation,
which corresponds to the end of PMS and early MS phase, the
friction is several orders of magnitude lower than in a model
ignoring rotation. This may lead to a loss of efficiency of the
dissipation of the equilibrium tide. This shows that care should
be taken when assuming a calibrated constant dissipation of the
equilibrium tide during the evolution of stars.

On the other hand, dynamical tides correspond to the exci-
tation of tidal waves inside the star (Zahn 1975; Ogilvie & Lin
2007). In the dynamical tide formalism, the tidal dissipation
in the convective envelope of low-mass stars is due to the ac-
tion of the convective turbulent friction applied on tidal iner-
tial waves (mechanical waves that are generated inside rotating
fluid bodies) driven by the Coriolis acceleration (Ogilvie & Lin
2007; Mathis et al. 2016). In the radiative layers, the dissipa-
tion is due to thermal diffusion and breaking mechanisms acting
on gravito-inertial waves (e.g. Zahn 1975; Terquem et al. 1998;
Barker & Ogilvie 2010).

The properties of a star, its internal structure (relative masses
and radii of the radiative core and convective envelope), and
its rotation rate actively evolve throughout the stellar life. The
temporal evolution of the radius and mass of the radiative core
and of the surface rotation rate has strong consequences on
the evolution of the amplitude of the tidal dissipation in stars
during their evolution (Zahn 1966, 1975, 1977; Ogilvie & Lin
2007; Siess et al. 2013; Mathis 2015; Mathis et al. 2016). This
could explain observations of star–planet and binary-star sys-
tems that show a range of tidal dissipation varying over several
orders of magnitude, as reported by Ogilvie (2014). Moreover,
the tidal dissipation strongly impacts the dynamical evolution
of planetary systems along the evolution of their host stars (e.g.
Bolmont et al. 2012; Bolmont & Mathis 2016). We thus need to

take into account its potential variations as a function of stellar
age using the best available ab initio modelling.

The work of Mathis (2015) constituted the first step towards
a complete description of tidal dissipation along stellar evolu-
tion. Using a simplified two-layer model, as in Ogilvie (2013),
Mathis (2015) followed the dissipation of the dynamical tide in-
side the convective envelope along the standard stellar evolu-
tion tracks of Siess et al. (2000). Bolmont & Mathis (2016) then
included in their orbital evolution code (Bolmont et al. 2011,
2012) the prescription for the dynamical tide of Mathis (2015)
coupled to a simplified description of the evolution of the stellar
surface rotation rate. This work led to the complete re-evaluation
of the effects of star–planet tidal interactions on the orbital evolu-
tion of massive close-in planets. In particular, Bolmont & Mathis
(2016) reported outward and inward migrations of close-in hot
Jupiters orbiting solar-type stars while little or no evolution was
initially found when including only the equilibrium tide com-
ponent. While these pioneer developments represent an impor-
tant step forward in understanding the complexity of the tidal
interactions between stars and planets, we now need to properly
account for the evolution of the rotation of the star and its inter-
connection with secular structure variations. This is particularly
important for characterizing the orbital evolution of short-period
systems. Actually, by using a constant (in time) quality factor
(Goldreich & Soter 1966) or time lag formalism, it is not pos-
sible to explain the hot-Jupiter desert that we observe around
rapidly rotating stars (Lanza & Shkolnik 2014; Teitler & Königl
2014; McQuillan et al. 2013; Mazeh et al. 2016). Providing a
simplified but realistic evolution of the tidal dissipation is crucial
to predicting the position at which planets are at any time and to
rapidly exploring the effects of initial conditions on their orbital
evolution and on possible planet engulfment that is expected to
strongly affect the surface rotation of hot stars (Siess & Livio
1999; Privitera et al. 2016a,b). Such tools will be essential for
the preparation and the exploitation of future observations with
CHEOPS (Broeg et al. 2015), TESS (Ricker et al. 2015), and
SPIRou (Moutou et al. 2015).

In this context, the originality of the present work is that
we introduce for the first time in a stellar evolution code
(STAREVOL) the prescription of Mathis (2015) for the dissi-
pation of the dynamical tide inside stellar convective envelopes.
This allows us to follow this quantity self-consistently together
with the secular and rotational history of stars, from the pre-
main sequence (PMS) up to the red-giant branch (RGB). We
also take into account the equilibrium tide using the constant
time lag model. This paper is organized as follows. In Sect. 2 we
recall the formalism and the assumptions used to analytically ex-
press the frequency-averaged tidal dissipation (see Ogilvie 2013)
and the microphysics and assumptions used in STAREVOL. In
Sect. 3 we describe the evolution of the dissipation as a function
of mass, evolutionary phase, and rotation for stars ranging be-
tween 0.3 and 1.4 M�. In Sect. 4 we show the influence of the
evolving structure and tidal dissipation on the orbital evolution
of close-in planets around 1 M� and 1.2 M� stars. We conclude
and discuss the perspectives of this work in Sect. 5.

2. Model description

2.1. Tidal dissipation formalism

In this section we describe the method we use to couple, for
the first time, the structural and rotational evolution of low-mass
stars to tidal dissipation in their convective envelope.
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2.1.1. Generalities

Let us consider two bodies: a deformable star and a point-mass
planet. The planet exerts a differential force on the star that
causes its deformation and leads to the generation of tidal flows.
These tidal flows are submitted to friction in its interior (as is the
case for the synchronization of massive binaries by the damping
of gravity waves near the stellar surface; Goldreich & Nicholson
1989b). Part of the kinetic energy associated with the flows is
converted and lost in the thermal energy inside the star, and part
of it is transferred to the planet’s orbit via angular momentum
exchanges. These processes are governed by the tidal dissipation
which depends on the dissipative processes and the stellar inter-
nal structure. The complex tidal interactions between star and
planets is decomposed into the equilibrium tide and the dynam-
ical tide (e.g. Zahn 1966, 1975, 1977; Mathis & Remus 2013;
Ogilvie 2014), which are both considered in the present study.

The equilibrium non-wave-like tide corresponds to the in-
ternal large-scale flows produced by the hydrostatic adjustment
of the stellar structure due to the presence of a companion
(Zahn 1966; Remus et al. 2012; Ogilvie 2013). This tide is ef-
ficiently dissipated in the convective envelope of rotating low-
mass stars by turbulent friction due to convection motion (Zahn
1966, 1989; Ogilvie & Lesur 2012; Mathis et al. 2016). In most
of the studies of the tidal evolution of planetary systems, only the
equilibrium tide is taken into account (e.g. Mignard 1979; Hut
1981; Leconte et al. 2010; Bolmont et al. 2011). In this work we
model this component using the framework of the constant time
lag model (see Mignard 1979; Hut 1981; Eggleton et al. 1998;
Bolmont et al. 2011, 2012).

On the other hand, the dynamical tide comes from iner-
tial waves propagating through the convective envelope that
are driven by the Coriolis acceleration and excited when the
tidal excitation frequency |ω| is smaller than 2Ω?, where Ω?

is the stellar spin. The tidal frequency is defined in Ogilvie
(2014) as the linear combination of the orbital and spin fre-
quencies with small integer coefficients. If the star-planet sys-
tem is coplanar and the planet is on a circular orbit, the tidal
frequency can be expressed as ω ≡ 2(n − Ω?), where n is
the orbital frequency (Ogilvie & Lin 2004). For tidal frequen-
cies |ω| > 2Ω? the tidal dissipation is almost independent of
Ω? at any given tidal frequency because in that regime the ef-
fect of the Coriolis force is weak (Ogilvie & Lin 2007). In the
radiative core the dynamical tide is driven by internal gravity
waves (see Zahn 1975, 1977; Goldreich & Nicholson 1989a,b;
Terquem et al. 1998) which can be affected by the Coriolis ac-
celeration (Ogilvie & Lin 2007).

Both the equilibrium and the dynamical tidal effects must
in principle be accounted for to properly model tidal evolution
(Bolmont & Mathis 2016). However, while the equilibrium
tide weakly depends on the excitation frequency variation
(Remus et al. 2012), the dynamical tide strongly depends on
it, and also on the evolutionary stage, mass, and rotation
rate of the star (see the discussion in Ogilvie & Lin 2004,
2007; Barker & Ogilvie 2010; Auclair-Desrotour et al. 2014;
Witte & Savonije 2002).

The formalism associated with the dynamical tide (see
Ogilvie 2013, 2014; Mathis 2015) is currently too complex
to be implemented in secular orbital evolution codes (see
Bolmont & Mathis 2016) and to perform wide explorations of
the parameter space (planet and stellar masses, initial rotation,
and orbital configurations along the whole stellar evolution). In-
deed, the dynamical tide dissipation spectrum harbours complex
behaviours; it evolves as a function of the stellar properties and

age, which are computationally expensive. A first step to make
significant progress is to follow the evolution of the tidal dissi-
pation using rotating stellar models, considering first the dissi-
pation inside the convective envelope of the stars.

2.1.2. Frequency-averaged tidal dissipation

In the formalism of Ogilvie (2013) and Mathis (2015), the stel-
lar convective envelope is assumed to be in solid-body rotation
with angular velocity Ω?. Moderate rotation is assumed, i.e. the
squared ratio of Ω? to the critical angular velocity Ωc is such that

(Ω?/Ωc)2 =

(
Ω?/

√
GM?/R3

?

)2
≡ ε2 � 1 (so as to neglect the

centrifugal effect), where G is the gravitational constant, and M?

and R? are the stellar mass and equatorial radius, respectively.
In this article we use the two-layer model introduced in Ogilvie
(2013) and Mathis (2015) to evaluate the frequency-averaged
tidal dissipation in the stellar convective envelope, and we fo-
cus on solar metallicity stars with initial masses between 0.3 and
1.4 M�. In this mass range, the convective envelope surrounds
the radiative core of radius Rc and mass Mc. Both core and en-
velope are assumed to be homogeneous with respective average
densities ρc and ρe. This constitutes a necessary first step that
allows us to derive an analytical expression for the frequency-
averaged dissipation and to explore a broad range of parameters.
In the near future, we shall evaluate the impact of the radial vari-
ations of the density, which varies in stellar convection zones
over several orders of magnitude during the evolution of stars.
This may lead to weaker dissipation rates.

In the case of a coplanar star–planet system in which the orbit
of the planet is circular, the frequency-averaged tidal dissipation
(Ogilvie 2013; Mathis 2015) is given by

〈D〉ω =

∫ +∞

−∞

Im
[
k2

2(ω)
] dω
ω

=
100π

63
ε2

(
α5

1 − α5

)
(1 − γ)2 (1)

× (1 − α)4
(
1 + 2α + 3α3 +

3
2
α3

)2 [
1 +

(
1 − γ
γ

)
α3

]
×

[
1 +

3
2
γ +

5
2γ

(
1 +

1
2
γ −

3
2
γ2

)
α3 −

9
4

(1 − γ)α5
]−2

,

with

α =
Rc

R?
, β =

Mc

M?
, γ =

ρe

ρc
=
α3(1 − β)
β(1 − α3)

< 1. (2)

Here k2
2 is the second-order Love number corresponding to the

quadrupolar mode (km
l , with l = 2 and m = 2 the components

of the time-dependent tidal potential proportional to the spheri-
cal harmonic Ym

l ) that gives the ratio between the perturbation of
the gravitational potential induced by the presence of the plan-
etary companion and the tidal potential evaluated at the stellar
surface. Its imaginary component Im

[
k2

2(ω)
]

is a direct estima-
tion of the tidal dissipation. The interest of this formalism is that
it is possible to decompose Eq. (1) into two parts: the factor ε2

on the one hand, and the part of Eq. (1) that is a unique function
of α and β on the other hand. The first part takes into account the
rotation rate of the star (via ε), and the second part only takes
into account the dependence on the internal stellar structure (via
the structural parameters α and β). As in Mathis (2015), we can
therefore express the frequency-averaged dissipation at a fixed
rotation,

〈D〉Ωω = ε−2〈D〉ω = ε−2
〈
Im

[
k2

2(ω)
]〉
ω
, (3)
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which only depends on α and β. We can also define a second
frequency-averaged dissipation using the critical angular veloc-
ity of the Sun Ω�c instead of that of the star,

〈D̂〉Ωω = ε̂−2〈D〉ω =

(
M?

M�

)−1 (
R?

R�

)3

〈D〉Ωω , (4)

where ε̂2 ≡

(
Ω?/

√
GM�/R3

�

)2
=

(
Ω?/Ω

�
c
)2 with M� and R� the

mass and radius of the Sun, which allows us to express the varia-
tion of the radius of the star along time. The frequency-averaged
dissipation provides us with a reasonable order of magnitude of
the friction applied on tidal inertial waves in a rotating convec-
tive envelope as a function of its structural properties (radius and
mass aspect ratios) and rotation rate. However, Ogilvie & Lin
(2007) showed how the dissipation of these waves can vary over
several orders of magnitude when inertial waves are excited.
This may lead, for a given frequency, to strong differences with
the frequency-averaged value. Taking into account such a com-
plex frequency-dependence would require coupling coherently
high-resolution hydrodynamical numerical simulations of tidal
inertial waves to secular stellar evolution and orbital codes and
to heavy computation procedures (e.g. Witte & Savonije 2002).
Using, as a first step, frequency-averaged dissipation thus con-
stitutes an intermediate and necessary step that allows us to ex-
plore a broad parameter space for planetary systems and their
host stars.

2.1.3. Modified equivalent tidal quality factor

In a large number of studies on the tidal evolution of plane-
tary systems, a quantity called the equivalent tidal quality fac-
tor is used (e.g. Goldreich & Soter 1966). This quantity comes
from the modelling of the tidal response with an idealized sys-
tem made of a harmonic oscillator (the forcing frequency cor-
responds to the excitation frequency imposed by the perturbing
body and the Coriolis acceleration is the restoring force) and a
damper (corresponding in this framework to a turbulent viscos-
ity, see Greenberg 2009). Following Ogilvie & Lin (2007), the
equivalent modified tidal quality factor Q′ is introduced and ex-
pressed in terms of the tidal dissipation 〈D〉ω as

Q′ =
3

2〈D〉ω
=

3
2

Q
k2
· (5)

In this equation, we also recall the usual expression as a func-
tion of the equivalent tidal quality factor Q and the second-order
Love number k2. For a homogeneous fluid body k2 = 3/2 and
Q′ = Q. Using Q′ allows us to avoid explicitly computing k2.
Indeed, we recall that the real physical quantity is the dissipation
while its expression as a function of k2 and Q comes from the
simplified constant tidal quality factor model (e.g. MacDonald
1964). By definition, the lower the equivalent tidal quality fac-
tor, the more thermal energy is liberated into the star by the tidal
dissipation process and the stronger the impact on the planet’s
orbit.

The modified equivalent tidal quality factor is usually
considered as a free parameter to fit to a given star–planet
system (Jackson et al. 2008; Ferraz-Mello et al. 2015). More-
over, this quantity is often assumed to be constant through-
out the entire stellar evolution (e.g. Mardling & Lin 2002;
Jackson et al. 2008; Ferraz-Mello et al. 2015), which leads
to non realistic orbital evolution that cannot reproduce the

observed dearth of hot-Jupiter planets around rapidly ro-
tating stars (Lanza & Shkolnik 2014; Teitler & Königl 2014;
McQuillan et al. 2013; Mazeh et al. 2016).

Just as we could estimate the impact of the stellar structure
on tidal dissipation (i.e. the tidal dissipation at a fixed rotation
rate), we can define the equivalent structural quality factor as
follows:

Q′s = ε̂2Q′ =
3
2

ε̂2

〈D〉ω
=

3
2

1
〈D̂〉Ωω

· (6)

2.1.4. Orbital evolution model

In order to compute the orbital evolution of close-in planets we
use the model introduced in Bolmont & Mathis (2016). The evo-
lution of the semi-major axis a of a planet on a circular orbit
is given by (Hansen 2010; Leconte et al. 2010; Bolmont et al.
2011, 2012)

1
a

da
dt

= −
1

T?

[
1 −

Ω?

n

]
, (7)

where n is the orbital frequency of the planet and T? is an evo-
lution dissipation timescale given by

T? =
2
9

M?

Mp(Mp + M?)
a8

R5
?

Q′s
ε̂2

|n −Ω?|

G
, (8)

which depends on the semi-major axis a of the planet, the
mass M? and radius R? of the star, the mass Mp of the planet,
the stellar equivalent structural quality factor Q′s, and G the
gravitational constant. Equation (8) shows that 1) the farther
away the planet, the higher the evolution timescale; 2) the
smaller the radius of the star, the higher the evolution timescale;
and 3) the higher the quality factor Q′s, the higher the evo-
lution timescale. We would like to point out here a typo in
Bolmont & Mathis (2016), where a k2 factor was forgotten in
Eqs. (4) and (10)1. Despite the typo, however, the numerical re-
sults of Bolmont & Mathis (2016) are correct.

As in Bolmont et al. (2012) and Bolmont & Mathis (2016),
we consider the influence of tides and of the stellar wind on the
rotation of the star. The expression for the angular momentum
loss rate is from the modified Kawaler (1988) braking law pro-
posed in Bouvier et al. (1997),

1
J

dJ
dt

=
−1
J

KΩ
µ
?ω

3−µ
sat

(
R?

R�

)1/2 (
M?

M�

)−1/2

+
1
J

h
2T?

[
1 −

Ω?

n

]
, (9)

where J and h are the stellar and orbital angular momentum,
respectively. The parameters K, µ, and ωsat are wind parame-
ters of the model from Bouvier et al. (1997). We refer the reader
to Bolmont & Mathis (2016) for the values of these parameters.
We also recall that the braking law used in this orbital evolution
model is somewhat outmoded compared to the recent theoretical
advances in this field (see Matt et al. 2015; Réville et al. 2015).
While including a more realistic braking law will not affect the
general conclusion of this work, it could lead to small deviation
in a given orbital evolution. Conversely, and since the star is con-
sidered a solid body in this work, including the core-envelope
decoupling in the model will lead to very distinct orbital evolu-
tion. In this framework, we are now investigating the effect of

1 Equation (4) in Bolmont & Mathis (2016) is k2/Q = sin [2δ], but it
should be k2/Q = k2 sin [2δ] (Remus et al. 2012). This leads to ∆τ? =

3
4k2Q′ |n−Ω? |

.
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Fig. 1. Stellar evolution tracks in the Hertzsprung-Russell diagram for
the rotating models of 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, and
1.4 M� at solar metallicity. We show the evolution up to the RGB for
the more massive stars or up to the evolution stage the models reach at
20 Gyr for the less massive stars. Legend: the first step in each evolution
sequence (triangle), the ZAMS (square), and the TAMS (cross).

a more realistic rotational evolution on the orbital evolution of
close-in planets, which will be presented in a forthcoming paper.

When the dynamical tide is driving the evolution, the struc-
tural equivalent tidal quality factor (Q′s) is given by Eq. (6).
When the equilibrium tide is driving the evolution, we use the
observational constraints of Hansen (2012), which are given
in terms of a constant normalized tidal dissipation factor σ?,
depending on the stellar mass. We refer to Bolmont & Mathis
(2016) for the correspondence between the tidal quality factor
and the tidal dissipation factor σ?. For instance, the normalized
dissipation factor for a 1.0 M� star is taken to be σ? = 3 × 10−7;
for a 1.2 M� star it is σ? = 7.8 × 10−8. We recall that assum-
ing a constant dissipation of the equilibrium tide constitutes a
simplified model, which should be improved in the near future.
Indeed, as explained in the introduction, it varies along the evolu-
tion of stars (e.g. Zahn & Bouchet 1989; Villaver & Livio 2009;
Mathis et al. 2016).

While the work of Mathis (2015) provides a realistic evalu-
ation of the evolution of the tidal dissipation for low-mass stars
from the PMS to the subgiant (SG) phase, it was done at fixed
stellar rotation along the evolution. Here we go one step further
and treat rotation evolution coherently in STAREVOL. This al-
lows us to follow the impact of rotation on the stellar structure
and evolution tracks, and to study self-consistently the dissipa-
tion of the tidal waves inside the convective envelope of rotating
stars over a wider range of evolutionary phases.

2.2. Models of low-mass stars including rotation

This study is based on a grid of stellar models of rotating stars
we computed with the code STAREVOL (see e.g. Amard et al.
2016) for a range of initial masses between 0.3 and 1.4 M� at so-
lar metallicity (Z = 0.0134; Asplund et al. 2009). Figure 1 shows
the stellar evolution tracks of these models in the Hertzsprung-
Russell diagram. Table 1 summarizes at which evolutionary step
the models in this work stop.

The references for the basic input microphysics (equation
of state, nuclear reactions, and opacities) can be found in

Table 1. Phases and ages reached by our models at the end of each of
the simulations.

M? Phase Age
0.3 M� PMS 30.21 Gyr
0.4 M� MS 20.17 Gyr
0.6 M� MS 19.98 Gyr
0.7 M� MS 20.49 Gyr
0.8 M� MS 19.99 Gyr
0.9 M� RGB 19.29 Gyr
1.0 M� RGB 13.05 Gyr
1.1 M� RGB 9.12 Gyr
1.2 M� RGB 6.59 Gyr
1.4 M� RGB 3.73 Gyr

Amard et al. (2016) and in Lagarde et al. (2012). The initial
helium abundance and mixing length parameter are calibrated
without atomic diffusion to reproduce a non-rotating Sun with
respect to the solar mixture of Asplund et al. (2009) with a 10−5

precision for the luminosity and the radius at the age of the Sun.
The corresponding mixing length parameter and initial helium
abundance are αMLT = 1.6267 and Y = 0.2689.

The stellar evolution models are computed taking into ac-
count rotation:

– The evolution of angular momentum in the stellar interior is
calculated from the first iteration step on the PMS phase up to
the RGB following the formalism developed by Zahn (1992),
Maeder & Zahn (1998), and Mathis & Zahn (2004). This
formalism takes into account advection by meridional circu-
lation and diffusion by shear turbulence (see Palacios et al.
2003, 2006; Decressin et al. 2009). The internal transport
prescriptions used to describe turbulent diffusion coeffi-
cients are Mathis et al. (2004) in the horizontal direction and
Talon & Zahn (1997) in the vertical direction.

– The convective region is assumed to be in solid-body rota-
tion and is subject to magnetic braking from the PMS onward
and up to the RGB following the Matt et al. (2015) prescrip-
tion. The mass loss rate is estimated using the prescription of
Cranmer & Saar (2011).

– Star–disc interaction is taken into account during the early-
PMS phase (i.e. during the first 2 to 10 Myr). Following
Gallet & Bouvier (2015), the surface rotation rate is assumed
to be held constant during a characteristic timescale (the
disc’s lifetime). This phase is considered an initial condition
for angular momentum evolution and is fixed by the obser-
vations (see Gallet & Bouvier 2015).

– The initial stellar rotation is fixed using the calibration for
fast rotators from Gallet & Bouvier (2015): an initial rota-
tion period of 1.4 days (corresponding to Ω? = 18 Ω�) and
a disc lifetime of 3 Myr corresponding to the calibration of
the solar-type stars. We applied this parameterization to the
whole range of masses (0.3 to 1.4 M�) to analyse the im-
pact of the stellar mass on the evolution of the dissipation.
To reproduce the observed distribution of surface rotation
period in star-forming regions and young-open clusters, we
should have calibrated the initial conditions for each stel-
lar mass (Gallet & Bouvier 2013, 2015; Amard et al. 2016).
However, this calibration is beyond the scope of the present
study, where we perform a wide exploration of the parameter
space.

Figure 2 shows the evolution as a function of time of the main
stellar quantities that enter in the expression of the equivalent
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Fig. 2. Top left: evolution of the stellar radius R? of stars from 0.3 to 1.4 M� as a function of time. Top right: surface angular velocity evolution
(scaled to the present Sun angular velocity Ω� = 2.87 × 10−6 s−1) for the different stellar masses. Bottom left: evolution of the radius aspect ratio
α = Rc/R? of stars from 0.3 to 1.4 M� as a function of time. Bottom right: evolution of the mass aspect ratio β = Mc/M? of stars from 0.3 and
1.4 M� as a function of time. Legend: the first step in each model (triangle), the ZAMS (square), and the TAMS (cross). Table 1 summarizes at
which evolutionary step the models in this work stop.

tidal quality factor, namely the stellar radius (R?), the surface
angular velocity (Ω?), the radius aspect ratio α = Rc/R?, and the
mass aspect ratio β = Mc/M?. This is shown for all the stellar
masses considered in the computations.

We note that our stellar evolution and orbital evolution mod-
els are not strictly coupled. Grids of structural quality factor Q′s
are initially computed using STAREVOL for stars with an ini-
tial rotation period of 1.4 days and later provided to the orbital
evolution code of Bolmont et al. (2012), with which we compute
the rotational evolution of the stars including the tidal torque and
the torque produced by the stellar winds (see Eq. (9)).

3. Tidal dissipation along the evolution of rotating
stars

As described by Eq. (1), the frequency-averaged tidal dissipa-
tion intrinsically follows the evolution of both the internal struc-
ture (through the α and β parameters and R?) and the rotation
rate (through the ε parameter) of the star. Here we investigate
successively the effect of the evolution on the stellar structure
(Sect. 3.1) and the effect of the rotation rate (Sect. 3.2) on the

evolution of the frequency-averaged tidal dissipation and the
equivalent modified quality factor.

3.1. Structural effect: evolution paths in the (α, β) plane

To analyse how the dissipation evolves with the stellar struc-
ture, we first consider the frequency-averaged dissipation at fixed
normalized angular velocity, as in Mathis (2015)2. Figure 3
shows the intensity of the frequency-averaged dissipation at
fixed normalized angular velocity (〈D〉Ωω) as a function of both
mass and radius aspect ratios (α and β) (colour-coded gradi-
ent). The right-hand lower white region in Fig. 3 is excluded
as it is the non-physical (α, β) area where the condition γ < 1
(i.e. the core denser than the envelope) is not fulfilled. The
value of 〈D〉Ωω exhibits a maximum in an island region around

2 The evolution models of Siess et al. (2000) used by Mathis (2015)
were computed without rotation. However, in the case of low-mass
stars, rotation has only a very modest effect on the stellar tracks (ef-
fective temperature and luminosity) and on the stellar structure (aspect
ratios). We thus expect to find behaviours that are very similar to the
Mathis (2015) predictions.
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Fig. 3. Variation of normalized dissipation 〈D〉Ωω as a func-
tion of the radius and mass aspect ratios (α and β, re-
spectively) in colour scale. Levels are for log〈D〉Ωω =
{−2,−2.1,−2.3,−2.5,−3,−3.5,−4,−4.5,−5,−5.5,−6,−6.5,−7,−7.5,
and −8}. The evolutionary paths of the stellar models of the different
masses (see labels) are overplotted in the (α, β) plane. Symbols are the
same as in Fig. 1.

(αmax = 0.572, βmax = 0.503) corresponding to an intensity of
1.091 × 10−2. We note that the regimes where stars are almost
fully convective correspond to regular inertial waves for which
dissipation is weak (Wu 2005, in black and dark blue), while
when the radiative core is sufficiently extended sheared wave at-
tractors with strong dissipation can form (Ogilvie & Lin 2007,
yellow to white).

The interest is then to overplot in the (α, β) parameter space
the evolution tracks of our stellar models (including rotation, but
see footnote 2) and to describe their behaviour at each evolution-
ary phase.

PMS-ZAMS

Since all the models start their evolution with a fully convec-
tive interior, α and β are initially equal to zero. Then both aspect
ratios increase as the star contracts and the radiative core devel-
ops during the PMS up to the zero-age main sequence (ZAMS).
As a consequence, the general behaviour of the tidal dissipation
shown in Fig. 3 can be easily understood. As both mass and ra-
dius aspect ratios of the models increase along the PMS, the stars
successively pass through regions of increasing intensity until
they brush against the islet of maximum intensity (surrounded
by the level log 〈D〉Ωω = −2, see Fig. 3). According to Fig. 2,
the stars with masses higher than 0.3 M� reach this islet on a
short timescale between 3 Myr (1.4 M�) and 100 Myr (0.4 M�).
Then they move away from this maximum intensity region as
both mass and radius aspect ratios continue to increase while the
stars approach the ZAMS. Just before the ZAMS, several reac-
tions have already been initiated, such as the p-p chain and the
CN reaction, which produce enough energy to stop the stellar
contraction. The more massive stars then develop a convective
core, while their effective temperature and luminosity slightly
decrease as they settle on the ZAMS. This affects the whole ra-
dius of the star, explaining the “bump” that is clearly visible in
Fig. 1 for all the quantities, and inducing a sharp increase of
the dissipation. This increase is not visible in Fig. 3, but clearly

visible in the left panels of Fig. 4 for the highest mass star. The
case of the 0.3 M� star is quite interesting because it hosts a very
small radiative core during a very brief moment (∆t = 50 Myr)
before reaching the ZAMS. This stellar mass represents the limit
between fully convective and partly radiative stars. As pointed
out before, the dynamical tide induced dissipation is lower for
fully convective stars because the tidal waves that propagate
through the convective envelope of the star require the presence
of a radiative core on which they can reflect to lead to an im-
portant dissipation. This effect is highlighted by Eq. (1), which
shows that the dissipation strongly depends on the mass and ra-
dius aspect ratio of the radiative core of the star. Since these ra-
tios are equal to zero in fully convective stars, compared to partly
convective stars, fully convective stars are then less dissipative.

ZAMS-TAMS

Even though the stars stay on the main sequence (MS) for about
90% of their life, their path in Fig. 3 evolves very little during
that phase, and remains in the low tidal dissipation region (upper
black era) with an almost constant frequency-averaged tidal dis-
sipation. This occurs because the stellar radius and internal struc-
ture (thus α and β) evolve only modestly along the MS. Close to
the terminal-age main sequence (TAMS; crosses in Fig. 2) the
stellar radius starts to increase more rapidly without noticeable
change in the mass of the convective envelope, which induces a
decrease in α at almost constant β.

Evolved phase

As the stars evolve along the SG towards low effective temper-
atures, the stellar radius increases and the convective envelope
deepens in both mass and radius. This explains the sharp and
rapid decrease in both the mass and radius aspect ratios α and
β (Figs. 2 and 3). At the end of the first dredge-up on the RGB,
the convective envelope recedes again in mass, and β slightly in-
creases again. Consequently, during the SG and RGB phase the
evolution tracks in the (α, β) plane pass again through regions of
higher dissipation (up to an intensity of log 〈D〉Ωω = −2.5) before
heading in the region of very low dissipation towards the RGB
when the stellar radiative core is very small in both mass and
radius.

Summary: Hysteresis-like cycle along the evolution

In Fig. 3 we clearly see the evolutionary path followed by low-
mass stars in the (α, β) plane as well as the resulting evolution
of the tidal dissipation intensity (at fixed rotation). All the solar-
metallicity models with masses between 0.3 and 1.4 M� develop
a radiative core and follow an hysteresis-like cycle: the tidal dis-
sipation intensity is first very low, then it increases and reaches a
maximum value during the PMS phase before decreasing again
at the arrival on the ZAMS; it stays almost constant along the
MS, and increases again during the first dredge-up phase on
the SG and at the base of RGB before decreasing in the upper
part of the RGB. As expected, we confirm the results of Mathis
(2015) and extend the predictions towards more advanced evo-
lution phases.

3.2. Rotational effect: dissipation and equivalent modified
quality factor as a function of time and effective
temperature

We explore now the effects of the variations of the stellar rota-
tion rate along the evolution on the dissipation and equivalent
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Fig. 4. Upper panels: evolution of the frequency-averaged tidal dissipation 〈D〉ω = 〈Im
[
k2

2(ω)
]
〉ω, as a function of time (left) and effective

temperature (right) for stellar masses (M?) from 0.3 to 1.4 M�. Lower panels: same as the upper panels, but at a fixed normalized angular velocity
〈D̂〉Ωω = ε̂−2〈Im

[
k2

2(ω)
]
〉ω.

modified quality factor. As described in Sect. 2.2, the surface ve-
locity of our stellar models evolves under the action of the sec-
ular variations (expansion and contraction), of magnetic brak-
ing, and of internal transport processes. We refer to Amard et al.
(2016) for details. What matters for the present study are the gen-
eral trends. After a few Myrs on the PMS, a star is disconnected
from its disc, it spins up as its stellar radius decreases up to the
ZAMS. On the MS, the surface rotation decreases continuously
because of the wind braking. After the TAMS, the expansion of
the stellar radius leads to the continuous decrease of the stellar
angular velocity until the star reaches the tip of the RGB.

Figures 4 and 5 show the evolution of the frequency-
averaged tidal dissipation and its corresponding equivalent
quality factor, respectively. In each of these figures, the up-
per panels display the full dissipation/equivalent quality factor
including structural and rotational evolution effects; for compar-
ison, the lower panels display its normalized version (here nor-
malized to the sun’s critical ratio ε̂, see Eqs. (4) and (6)) where
rotational effects are filtered out. The left panels of Figs. 4 and 5
display the tidal dissipation and equivalent quality factor as a
function of time, while the right panels show these quantities as
a function of the effective temperature (which is a more physical
quantity compared to age). We note that the lower panels of our

Fig. 4 provide us with the results obtained in Fig. 4 of Mathis
(2015) on the PMS and the MS.

The evolution of the normalized tidal dissipation follows the
evolution of the internal structure of the star. In the lower left
panel of Fig. 4 we retrieve the different regimes followed by the
frequency averaged tidal dissipation intensity at fixed rotation as
described in Sect. 3.1. This structural modulation is also found,
but inverted, in the evolution of the equivalent structural qual-
ity factor as a function of time (see lower left panel of Fig. 5).
The main effects of relaxing the normalization on the rotation
rate are that the tidal dissipation is lower (on the PMS) by about
two orders of magnitude toward lower intensity as ε � 1, and
that the behaviour of the dissipation (on the MS) is drastically
changed (see Figs. 4 and 5) because of stellar spin-down driven
by magnetized winds.

Even if the rotation rate is evolving during the PMS phase
(see upper right panel of Fig. 2) it has no impact on the behaviour
of the tidal dissipation (or equivalent quality factor) since the ro-
tation itself is entirely controlled by the stellar contraction (i.e.
by the internal structure). During the Hayashi phase, as the star
contracts and its core develops, the tidal dissipation (equivalent
quality factor) first increases (decreases) at almost constant ef-
fective temperature (see right panels of Figs. 4 and 5). Then

A112, page 8 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730661&pdf_id=4


F. Gallet et al.: Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I.

Fig. 5. Upper panels: equivalent modified tidal quality factor Q′ = 3/(2〈D̂〉ω) as a function of time (left) and effective temperature (right). Lower
panels: equivalent structural modified quality factor Q

′

s = 3/(2〈D̂〉Ωω) as a function of time (left) and effective temperature (right).

on the Henyey phase, the dissipation (equivalent quality factor)
reaches a plateau while the effective temperature slightly de-
creases. Just before the ZAMS, the dissipation (equivalent qual-
ity factor) decreases (increases) as the star slightly expands.

During the MS phase, and as pointed out above, both the
mass and radius aspect ratios remain more or less constant. At
this point, the internal structure stops controlling the evolution of
the tidal dissipation (equivalent quality factor). From the ZAMS
and up to the TAMS, the tidal dissipation (equivalent quality fac-
tor) is controlled by the evolution of the surface angular velocity
and thus by the extraction of angular momentum (see Sect. 2.2).
As a consequence, the tidal dissipation (equivalent quality fac-
tor) continuously decreases (increases) towards the TAMS. We
note the stall in this evolution that is due to the transition between
saturated and unsaturated wind regime (see Matt et al. 2015, and
references therein, and the grey line in the upper left panel of
Fig. 4). Indeed, this stall in almost all rotational tracks is due
to a change in saturation regime induced by the saturation of
the magnetic field that observationally appears around Ro = 0.1
(Saar 1996, 2001; Reiners & Mohanty 2012). The effect of this
magnetic saturation is to reduce the efficiency of the braking law
(see Kawaler 1988). During this phase, while the temperature de-
creases, the tidal dissipation (equivalent quality factor) linearly
in logarithmic scales decreases (increases) at almost constant ef-
fective temperature.

Finally, after the TAMS and along the SG and RGB phases,
the dissipation (equivalent quality factor) first starts to increase
(decrease) as both mass and radius aspect ratio move closer to
the island of maximum intensity (see Fig. 3), and then decreases
(increases) as both aspect ratios are strongly reduced by the stel-
lar expansion, leading to structure closer to weakly dissipative
fully convective stars.

The tidal dissipation and equivalent quality factor are thus
strongly affected by the variations of the rotation rate along the
evolution of the star. The parameter Q′ reaches maximum values
up to 1012 (for the more massive stars in our sample) from 106

to 1010 yr, while Q′s reaches maximum values up to 108 during
the same period. Compared to the case of fixed angular velocity
(Sect. 3.1 and Mathis 2015) the variations of rotation along the
evolution lowers the values of the equivalent quality factor and
tidal dissipation by four orders of magnitude. This is especially
true on the MS when the structure (α, β, R?) is almost fixed but
the rotation rate evolves (decreases) significantly.

The right panels of Figs. 4 and 5 also show the hysteresis cy-
cle followed by the higher mass stars considered here. From the
earliest steps of the PMS phase up to the RGB, the tidal dissi-
pation almost achieves a loop by nearly reaching its initial start-
ing point. We note that this hysteresis cycle, which is clearly
visible in the case of the normalized tidal dissipation, is not as
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Fig. 6. Frequency-averaged tidal dissipation 〈D̂〉ω (left) and equivalent modified tidal quality factor Q′ = 3/(2〈D̂〉ω) (right) as a function of time
in linear scale. Legend: the ZAMS (square) and the TAMS (cross).

pronounced in the case of the non-normalized dissipation be-
cause of the action of rotation.

4. Orbital evolution during evolved stellar phase

We showed in Sect. 3 that the tidal dissipation 〈D〉ω (or the
equivalent tidal quality factor Q′) strongly varies from the PMS
to the RGB along with the structural parameters and rotation
rate of the star3. These variations of several orders of magni-
tude should have an impact on the tidal evolution of close-in
planets. We investigate here the effect of the tidal dissipation
evolution during the evolved stellar phases on the orbital evolu-
tion of a 1 Mjup mass planet. The other phases of tidal evolution
have been intensively investigated in Bolmont & Mathis (2016).
In particular, the high dissipation occurring during the PMS
phase is responsible for important planetary migration. Indeed,
by including the frequency-averaged dynamical tide formalism
of Mathis (2015) and Ogilvie (2013) in an orbital evolution
code, Bolmont & Mathis (2016) pointed out strong outward mi-
gration of close-in planets outside the stellar co-rotation radius
and inward migration (where the planet eventually falls into the
star) for close-in planet initially inside of the co-rotation ra-
dius. With this work, they completely change the conclusion
of Bolmont et al. (2012) who only used the equilibrium tide
formalism.

The evolved phases correspond here to the SG phase and
RGB phase, which are represented in Fig. 1. The evolutionary
tracks can be divided into two parts: the SG phase occurring
just after the TAMS (cross symbol in Fig. 1), which is character-
ized by an almost constant luminosity and a decrease in effective
temperature, and the RGB phase, which is characterized by an
increase in luminosity and a decrease in effective temperature.
Figure 6 shows the evolution of the tidal dissipation (left) and
equivalent quality factor (right) as a function of time in linear
scale for these two late phases.

3 Our tidal orbital evolution models are not now strictly coupled to the
stellar evolution models. We use grids for the structural tidal dissipation
Q′s which come from grids of Q′ calculated for an initial rotation period
of 1.4 days. We then compute ε to recover a consistent Q′ from the
evolution of the stellar rotation given by the equations of Bolmont et al.
(2012) and Bolmont & Mathis (2016).

At the end of the MS phase, there is no more hydrogen in the
core and the helium core is then deprived of nuclear sources and
contracts. The stellar core becomes isothermal (the temperature
is insufficient to burn helium) and contracts. Hydrogen burning
then migrates into a shell around the helium core. The combina-
tion of core contraction and shell hydrogen burning leads to an
expansion of the stellar radius and to an inflation of the envelope.
The SG phase corresponds more precisely to a decrease in the ef-
fective temperature at almost constant luminosity, which is a di-
rect consequence of the convective envelope expansion and the
core contraction. The tidal dissipation therefore increases during
a short phase as the mass and radius aspect ratio of the radiative
core decreases toward lower values and the star crosses again
the (α, β) plane from top right to bottom left. However, once the
maximum is reached, the dissipation sharply decreases close to
zero. It results in a “bump” seen in Figs. 4 and 5 between 3 Gyr
(1.4 M�) and 20 Gyr (0.9 M�). The underlying idea is to know
whether this bump has an impact on the evolution of the semi-
major axis of a Jupiter-mass planet or not.

Figure 7 shows the evolution of the semi-major axis of a
1 Mjup planet orbiting a 1 M� star with an initial rotation period
of 1 day. The orbital evolutions were computed using Eqs. (7)
and (8) (see Sect. 2.1.4 and Bolmont & Mathis 2016, for more
details). In contrast to previous models that did not take into ac-
count the contribution of the dynamical tide, this model allows
a more complete picture of the stellar dissipation. We again note
that the rotational evolution of the stars is estimated using the
braking law from Bouvier et al. (1997). Even if the parametriza-
tion of the Bouvier et al. (1997) braking law is theoretically only
valid for stars between 0.5 and 1.1 M�, in our model the ro-
tational evolution of the 1.2 M� star is consistent with the ex-
pected behaviour of a 1.0 and 1.1 M� star (see Gallet & Bouvier
2015; Amard et al. 2016) with a surface rotation rate that reaches
a 10-day period between 1 and 2 Gyr.

Figure 7 (left and right) shows that this bump has no effect
on the evolution of the semi-major axis of the planets. There
are two main reasons for this behaviour. The first is that planets
susceptible to experiencing this bump in dissipation are located
too far away for tides to impact them significantly. Indeed, they
have to be in the region in which they excite the inertial waves
in the convective envelope (i.e. where Porb〉1/2P?, Porb is the
orbital period of the planet, and P? is the rotation period of the
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(a) 1.0 M� (b) 1.2 M�

Fig. 7. Evolution of the orbital distance of a Jupiter mass planet with different initial semi-major axis (top panel), the stellar rotation period (middle
panel) and the stellar dissipation factor (bottom panel) during the evolved phases (sub-giant and early RGB) of a 1.0 M� (left) and 1.2 M� (right)
star. Top panel: the orbital distance of the planet is represented in full coloured lines. The full black lines correspond to the co-rotation distance
(Porb = P?), and the dotted black lines to Porb = 0.5 P? delimiting the region where the dynamical tide operates. The long dashed black line
corresponds to the Roche limit and the dashed-dotted line to the stellar radius. Middle panel: the surface rotation period (in days) of the host
star. Bottom panel: the stellar dissipation 〈D〉ω. The time on the x-axis is given from an initial time tinit, which corresponds to the time of the
protoplanetary disc dispersal. This initial time is taken to be 5 Myr.

star) at the moment of the bump. The very close-in planets cross
the limit Porb = 1/2P? too early in the evolution of the system.
Only planets farther away than ∼0.3 AU are still in the dynamical
tide region at the time of the bump. The second reason is that the
star has slowed down so significantly that at the age of the bump
(around 12 Gyr for 1 M� and 6 Gyr for 1.2 M�), its rotation
is very slow (period of the order of 100 days). Mathis (2015),
Bolmont & Mathis (2016), and Fig. 6 show that the dissipation
in the star decreases as the star spins down, so that at the age
of the bump the dissipation is actually very low and does not
impact the orbital evolution of the planet. Figure 7 (left) shows
that due to the stellar spin down, the bump is actually not visible.
However, Fig. 7 (right) shows that for 1.2 M� the bump is visible.

Figure 7 (left and right) also show that when falling onto the
expanding star the planets make it accelerate significantly. For
instance, we find that a planet at 0.05 AU at 4.5 Gyr, induces
a decrease in the rotation period from ∼180 days (the value it
would have without planets) to 20 days. This corresponds to
an increase in surface velocity from 0.68 km s−1 to 6 km s−1.
Privitera et al. (2016b) also studied the influence of planet en-
gulfment on stellar spin up for stars and find the same type of
behaviour. However, their study was focused on higher mass
stars (>1.5 M�) and even later stages than in this work. They
also took into account the mass loss from the star and the head
wind planets feel due to the ejected matter. We did not take into
account these phenomena because the mass loss for the stellar
mass range and the phase we consider is not as important as for
the objects they study.

We consider here Jupiter-like planets; however, this model
could be used to investigate the future of the Earth as the Sun
expands (as was done in e.g. Schröder & Connon Smith 2008).
Nevertheless, the computed evolutionary models do not go to
sufficiently advanced phases for such a small-mass planet at
1 AU to be impacted, and here we do not take into account the ef-
fect of the mass loss from the star on the orbital evolution of the

planets, which begins to be important at more advanced stages
and which has a non-negligible effect on the orbital distances of
planets. Here, our 1 M� model stops on the RGB at an age of
13 Gyr when the radius of the star is about 0.04 AU. Figure 7
(left) shows that even a Jupiter-mass planet at 0.3 AU is only
just starting to be influenced by the tides at that age. This has
two consequences: 1) when an Earth-mass planet can be influ-
enced by the stellar tide (when the radius is large enough, see
Eq. (8)), the star has spun down enough so that the planet would
not evolve because of the dynamical tide but because of the equi-
librium tide; and 2) even if the planet evolved due to the dynam-
ical tide, the structure of the star would be such that the dynamic
tide would be very weak (due to the huge size of the convective
envelope). We would therefore not expect our model to change
the predictions for the future of the Earth as the Sun becomes a
red giant.

5. Conclusion

We extend the analysis of Mathis (2015) of the evolution of the
dissipation of tidal inertial waves propagating in the convective
envelope of low-mass stars from the PMS to the RGB tip. We
take into account for the first time the variations of both stellar
rotation and internal structure. As a first step, we assumed for
the tidal dissipation model a simplified bi-layer stellar structure
where the radiative core and the convective envelope have aver-
aged densities. This allows us to obtain an analytical expression
for the frequency-averaged tidal dissipation, which provides us
with a reasonable order of magnitude of the dissipation in stellar
convective envelopes as a function of their depth, mass, and rota-
tion. In forthcoming works, the strong frequency-dependence of
the dissipation of tidal inertial waves (Ogilvie & Lin 2007) and
the radial variation of the density, which could both affect the
strength of tidal friction should be taken into account. However,
numerical modelling will become more complex and heavy. Our

A112, page 11 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730661&pdf_id=7


A&A 604, A112 (2017)

approach thus constitutes a first and necessary step to explore a
broad parameter space for planetary systems and their host stars.
We use these new predictions for tidal dissipation to generalize
the work of Bolmont & Mathis (2016); we follow in particular
the orbital evolution of close in planets during advanced stages
of stellar evolution.

By coupling the stellar evolution code STAREVOL to the
frequency-averaged tidal dissipation and equivalent modified
tidal quality factor prescription of Mathis (2015) and Ogilvie
(2013), we have shown in this work that stellar evolution is
crucial in tidal interaction modelling. Indeed, both the stellar
structural evolution (through the presence of a radiative core,
which can enhance the tidal excitation of inertial waves, e.g.
Ogilvie & Lin 2007), and rotational evolution (through the scal-
ing in ε2 of the dissipation) strongly affect the evolution of the
tidal dissipation and the corresponding equivalent tidal quality
factor.

While the evolution of the stellar structure controls the evo-
lution of the dissipation during the PMS phase, rotation governs
its evolution during the MS phase. Indeed, during the PMS phase
the rotation itself is restrained by the evolution of the internal
structure through the stellar contraction, while during the MS
phase, the internal structure remains more or less constant leav-
ing room for a rotational modulation of the dissipation via the
wind braking mechanism.

Thanks to the coupling between STAREVOL and the
frequency-averaged tidal dissipation prescription, we can pro-
vide the community with an online tool4 that will provide tidal
dissipation and the equivalent quality factor evolution for each
stellar mass considered in this work.

This grid can be used to better constrain models dedi-
cated to the study of the orbital evolution of planetary systems.
More specifically it can be used by ongoing and past space
missions such as CoRoT and Kepler/K2 (CoRot Team 2016;
Borucki et al. 2010; Howell et al. 2014) and by future space
and ground-based observatories such as CHEOPS (Broeg et al.
2015), TESS (Ricker et al. 2015), PLATO (Rauer et al. 2014),
and SPIRou (Moutou et al. 2015).

In this paper, and based on the work of Bolmont & Mathis
(2016), we explored the orbital evolution of close-in planets dur-
ing evolved stellar phases (namely the RGB). Using the new
predictions of tidal dissipation for these evolution phases, we
pointed out that the bump observed during the RGB in the
frequency-averaged tidal dissipation for the dynamical tide has
no effect on the semi-major axis of close-in Jupiter-mass planets
orbiting 1 M� and 1.2 M� stars.

Thanks to these combined developments we now have ac-
cess to a complete model to follow both the evolution of the
tidal dissipation and of the planetary semi-major axis. Indeed,
we possess a simplified but robust theoretical prescription for
the dynamical tides, and we can follow the internal structure
and rotation rate of the star thanks to STAREVOL as well
as the planetary orbital evolution using the secular code from
Bolmont & Mathis (2016). We can thus use these results to per-
form modelling of planetary architecture and planetary popula-
tion synthesis.

The next step will be to directly couple stellar evolution
to orbital evolution code using the frequency-averaged tidal
dissipation formalism to fully study the possible retro-action
of tides and magnetic interactions on the internal structure
and rotation of both stars and planets (for instance, using the

4 https://obswww.unige.ch/Recherche/evol/starevol/
Galletetal17.php

prescriptions derived by Strugarek et al. 2014; Strugarek 2016;
Bolmont & Mathis 2016; and Gallet et al. 2017). In addition, we
will take into account realistic density profiles in the convective
envelope of low-mass stars (e.g. from the STAREVOL code).
This development will be done by solving the full linearized
spectral equations derived by Ogilvie (2013) for densities that
vary with radius. Finally, in this work we only included the dis-
sipation of tidal inertial waves inside the convective envelope of
rotating low-mass stars. The next step will be to extend this anal-
ysis to tidal dissipation inside the radiative core of these stars
(Ivanov et al. 2013; Guillot et al. 2014), hence completing the
present partial physical description. Other dynamical processes
such as the effects of differential rotation on tides should also be
taken into account (e.g. Favier et al. 2014; Guenel et al. 2016).
In this framework, frequency-averaged and frequency-dependent
dissipation should be considered.
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