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ABSTRACT

Aims. We examine the constraints imposed by Faraday rotation measures of extragalactic point sources on the structure of the magnetic
field in the halo of our Galaxy. Guided by radio polarization observations of external spiral galaxies, we look in particular into the
possibility that field lines in the Galactic halo have an X shape.
Methods. We employ the analytical models of spiraling, possibly X-shape magnetic fields derived in a previous paper to generate
synthetic all-sky maps of the Galactic Faraday depth, which we fit to an observational reference map with the help of Markov Chain
Monte Carlo simulations.
Results. We find that the magnetic field in the Galactic halo is slightly more likely to be bisymmetric (azimuthal wavenumber, m = 1)
than axisymmetric (m = 0). If it is indeed bisymmetric, it must appear as X-shaped in radio polarization maps of our Galaxy seen
edge-on from outside, but if it is actually axisymmetric, it must instead appear as nearly parallel to the Galactic plane.
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1. Introduction

Interstellar magnetic fields are an important component of the
interstellar medium (ISM) of galaxies. They play a crucial role
in a variety of physical processes, including cosmic-ray ac-
celeration and propagation, gas distribution and dynamics, star
formation, . . . However, their properties remain poorly under-
stood. The main difficulty is the lack of direct measurements,
apart from Zeeman-splitting measurements in dense, neutral
clouds. In addition, all existing observational methods provide
only partial information, be it the field strength, the field direc-
tion/orientation, or the field component parallel or perpendicular
to the line of sight.

In the case of our own Galaxy, magnetic field observations
are particularly difficult to interpret, because the observed emis-
sion along any line of sight is generally produced by a number
of structures, whose contributions are often hard to disentan-
gle and locate along the line of sight. In contrast, observations
of external galaxies can give us a bird’s eye view of the large-
scale structure of their magnetic fields. High-resolution radio
polarization observations of spiral galaxies have shown that
face-on galaxies have spiral field lines, whereas edge-on galax-
ies have field lines that are parallel to the galactic plane in
the disk (e.g., Wielebinski & Krause 1993; Dumke et al. 1995)
and inclined to the galactic plane in the halo, with an incli-
nation angle increasing outward in the four quandrants; these
halo fields have been referred to as X-shape magnetic fields
(Tüllmann et al. 2000; Soida 2005; Krause et al. 2006; Krause
2009; Heesen et al. 2009; Braun et al. 2010; Soida et al. 2011;
Haverkorn & Heesen 2012).

In a recent paper, Ferrière & Terral (2014; Paper I) presented
a general method to construct analytical models of divergence-
free magnetic fields that possess field lines of a prescribed shape,
and they used their method to obtain four models of spiraling,

possibly X-shape magnetic fields in galactic halos as well as two
models of spiraling, mainly horizontal (i.e., parallel to the galac-
tic plane) magnetic fields in galactic disks. Their X-shape mod-
els were meant to be quite versatile and to have broad applica-
bility; in particular, they were designed to span the whole range
of field orientation, from purely horizontal to purely vertical.

Our next purpose is to resort to the galactic magnetic field
models derived in Paper I to explore the structure of the mag-
netic field in the halo of our own Galaxy. The idea is to ad-
just the free parameters of the different field models such as to
achieve the best possible fits to the existing observational data –
which include mainly Faraday rotation measures (RMs) and syn-
chrotron (total and polarized) intensities – and to determine how
good the different fits are. Evidently, a good field model must be
able to fit both Faraday-rotation and synchrotron data simulta-
neously. However, we feel it is important to first consider both
types of data separately and examine independently the specific
constraints imposed by each kind of observations. This is ar-
guably the best way to understand either why a given model is
ultimately acceptable or on what grounds it must be rejected.

In the present paper, we focus on fitting our galactic mag-
netic field models to the existing Faraday-rotation data. In prac-
tice, since we need to probe through the entire Galactic halo, we
retain exclusively the RMs of extragalactic point sources (as op-
posed to Galactic pulsars). For each considered field model, we
simulate an all-sky map of the Galactic Faraday depth (FD),
which we confront to an observational reference map based on
the reconstructed Galactic FD map of Oppermann et al. (2015).
The fitting procedure relies on standard χ2 minimization, per-
formed through a Markov Chain Monte Carlo (MCMC) analysis.

Our paper is organized as follows: in Sect. 2, we present
the all-sky map of the Galactic FD that will serve as our
observational reference. In Sect. 3, we review the magnetic field
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Fig. 1. All-sky map, in Aitoff projection, of the observational Galactic
Faraday depth, FDobs, as reconstructed by Oppermann et al. (2015). The
map is in Galactic coordinates (`, b), centered on the Galactic center
(` = 0◦, b = 0◦), and with longitude ` increasing to the left and latitude b
increasing upward. Red [blue] regions have positive [negative] FDobs,
corresponding to a magnetic field pointing on average toward [away
from] the observer. The color intensity scales linearly with the absolute
value of FDobs up to |FDobs| = 400 rad m−2 and saturates beyond this
value.

models derived in Paper I and employed in this study. In Sect. 4,
we describe the fitting procedure. In Sect. 5, we present our
results and compare them with previous halo-field models. In
Sect. 6, we summarize our work and provide a few concluding
remarks.

Two different coordinate systems are used in the paper. The
all-sky maps are plotted in Galactic coordinates (`, b), with lon-
gitude ` increasing eastward (to the left) and latitude b increasing
northward (upward)1. In contrast, the magnetic field models are
described in Galactocentric cylindrical coordinates, (r, ϕ, z), with
azimuthal angle ϕ increasing in the direction of Galactic rotation,
i.e., clockwise about the z-axis, from ϕ = 0◦ in the azimuthal
plane through the Sun. As a result, the coordinate system (r, ϕ, z)
is left-handed. For the Galactocentric cylindrical coordinates of
the Sun, we adopt (r� = 8.5 kpc, ϕ� = 0, z� = 0).

2. Observational map of the Galactic Faraday depth

2.1. Our observational reference map

Faraday rotation is the rotation of the polarization direction of
a linearly-polarized radio wave that passes through a magneto-
ionic medium. The polarization angle θ rotates by the angle
∆θ = RM λ2, where λ is the observing wavelength and RM is
the rotation measure given by

RM = (0.81 rad m−2)
∫ L

0
ne B‖ ds, (1)

with ne the free-electron density in cm−3, B‖ the line-of-sight
component of the magnetic field in µG (positive [negative] for a
magnetic field pointing toward [away from] the observer) and
L the path length from the observer to the source measured
in pc 2. Clearly, RM is a purely observational quantity, which

1 Throughout the paper, the north, south, east, and west directions al-
ways refer to Galactic coordinates.
2 The original expression of RM is an integral from the source to the
observer, which explains the sign convention for B‖. Here, however, it
proves more convenient to have the origin of the line-of-sight coordinate

Données

Fig. 2. All-sky map, in Aitoff projection, showing the disposition of the
428 bins covering the celestial sphere, together with their average obser-
vational Galactic Faraday depth, before subtraction of the contribution
from Wolleben et al.’s (2010) magnetized bubble. Positive [negative]
values are plotted with red circles [blue squares], following the same
color intensity scale as in Fig. 1. The coordinate system is also the same
as in Fig. 1.

can be defined only for a linearly-polarized radio source located
behind the Faraday-rotating medium.

More generally, one may use the concept of Faraday depth
(Burn 1966; Brentjens & de Bruyn 2005),

FD(d) = (0.81 rad m−2)
∫ d

0
ne B‖ ds, (2)

a truly physical quantity, which has the same formal expression
as RM but can be defined at any point of the ISM, independent
of any background source. FD simply corresponds to the line-
of-sight depth of the considered point, d, measured in terms of
Faraday rotation. Here, we are only interested in the FD of the
Galaxy, in which case d represents the distance from the ob-
server to the outer surface of the Galaxy along the considered
line of sight.

As an observational reference for our modeling work,
we adopt the all-sky map of the Galactic FD recon-
structed by Oppermann et al. (2015), denoting the observa-
tional Galactic FD by FDobs (see Fig. 1). To create their map,
Oppermann et al. compiled the existing catalogs of extragalactic
RMs, for a total of 41 632 data points (37 543 of which are from
the NVSS catalog of Taylor et al. (2009), which covers fairly ho-
mogeneously the sky at declination δ ≥ −40◦), and they em-
ployed a sophisticated signal reconstruction algorithm that takes
spatial correlations into account.

The all-sky map of FDobs in Fig. 1, like previous all-sky
RM maps, shows some coherent structure on large scales. This
large-scale structure in the RM sky has often been assumed to re-
flect, at least to some extent, the large-scale organization of the
Galactic magnetic field (e.g., Simard-Normandin & Kronberg
1980; Han et al. 1997; Taylor et al. 2009). In reality, however,
nearby small-scale perturbations in the magneto-ionic ISM can
also leave a large-scale imprint in the RM sky (see Frick et al.
2001; Mitra et al. 2003; Wolleben et al. 2010; Mao et al. 2010;
Stil et al. 2011; Sun et al. 2015, and references therein). The
most prominent such perturbation identified to date is the nearby
magnetized bubble uncovered by Wolleben et al. (2010) through
RM synthesis (a.k.a. Faraday tomography) on polarization data
from the Global Magneto-Ionic Medium Survey (GMIMS). This

at the observer and to integrate from the observer (s = 0) to the source
(s = L). This does not affect the sign of RM provided one keeps the
original sign convention for B‖.
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bubble, estimated to lie at distances around ∼150 pc, is centered
at (` ' +10◦, b ' +25◦) and extends over ∆` ' 70◦ in longitude
and ∆b ' 40◦ in latitude, thereby covering '5% of the sky.

Another potential source of strong contamination in the
RM sky is the North Polar Spur (NPS), which extends from the
Galactic plane at ` ≈ +20◦ nearly all the way up to the north
Galactic pole. However, Sun et al. (2015) showed, through Fara-
day tomography, that the actual Faraday thickness (∆FD) of the
NPS is most likely close to zero. They also showed that the ∆FD
of the Galactic ISM behind the NPS cannot account for the en-
tire Galactic FD toward the section of the NPS around b ' 30◦.
From this they concluded that if the NPS is local (such that the
∆FD of the ISM in front of the NPS is very small), the Galac-
tic FD must be dominated by the ∆FD of Wolleben et al.’s (2010)
magnetized bubble, which must then be larger than estimated by
Wolleben et al. Clearly, the argument can be taken the other way
around: if the ∆FD of the magnetized bubble is as estimated by
Wolleben et al. (an assumption we will make here), the Galac-
tic FD must have a large contribution from the ISM in front of the
NPS, which implies that the section of the NPS around b ' 30◦
is not local. This last conclusion is consistent with the results of
several recent studies, which systematically place the lower part
of the NPS beyond a few 100 pc – more specifically: beyond the
polarization horizon at 2.3 GHz, ∼(2−3) kpc, for b <∼ 4◦ (from
Faraday depolarization; Sun et al. 2014), behind the Aquila Rift,
at a distance >∼1 kpc, for b <∼ (15◦−20◦) (from X-ray absorption;
Sofue 2015), and beyond the cloud complex distributed between
300 pc and ∼600 pc and probably much farther away (again from
X-ray absorption; Lallement et al. 2016).

Since the focus of our paper is on the large-scale mag-
netic field, we will subtract from the FDobs map of Fig. 1
the estimated contribution from Wolleben et al.’s (2010) mag-
netized bubble3. We will then proceed on the assumption that
the resulting FDobs map can be relied on to constrain the large-
scale magnetic field structure. As it turns out, the removal of
Wolleben et al.’s bubble will systematically lead to an improve-
ment in the quality of the fits.

For convenience, we bin the FDobs data and average them
within the different bins, both before (Fig. 2) and after (Fig. 3)
removal of Wolleben et al.’s (2010) bubble. Following a binning
procedure similar to that proposed by Pshirkov et al. (2011), we
divide the sky area into 18 longitudinal bands with latitudinal
width ∆b = 10◦, and we divide every longitudinal band into a
number of bins chosen such that each of the two lowest-latitude
bands contains 36 bins with longitudinal width ∆` = 10◦ and
all the bins have roughly the same area '(10◦)2. This leads to
a total of 428 bins. For each of these bins, we compute the av-
erage FDobs before removal of Wolleben et al.’s bubble, and we
plot it in Fig. 2, with a red circle or a blue square according to
whether it is positive or negative. In both cases, the color inten-
sity increases with the absolute value of the average FDobs.

We then repeat the binning and averaging steps after removal
of Wolleben et al.’s bubble, and for visual purposes, we wash
out the obviously anomalous bin at (` ' 0◦−10◦, b = 20◦−30◦).
The underlying RM anomaly can be identified as the H ii re-
gion Sh 2-27 around ζ Oph (Harvey-Smith et al. 2011). Our
exact treatment of the anomalous bin is of little importance,
because its weight in the fitting procedure will be drastically
reduced through an artificial tenfold increase of its estimated
uncertainty, σi, in the expression of χ2 (Eq. (38)). In prac-
tice, we just blend the anomalous bin into the background by

3 The ∆FD values needed to subtract the bubble’s contribution to FDobs
were kindly provided to us by Maik Wolleben.

Formdatfinal

FDobs

Disque

FDobs,S

Halo

FDobs,A

Fig. 3. All-sky maps, in Aitoff projection, showing the disposition of
the 356 bins with latitude |b| ≥ 10◦, which are retained for the fitting
procedure, together with their average observational Galactic Faraday
depth, FDobs, after subtraction of the contribution from Wolleben et al.’s
(2010) magnetized bubble (top panel). Also shown is the decomposition
of FDobs into a symmetric part, FDobs,S (middle panel), and an antisym-
metric part, FDobs,A (bottom panel). The coordinate system and the color
code are the same as in Figs. 1 and 2. The grey band along the Galactic
plane masks out the 72 bins with |b| < 10◦, which are excluded from the
fitting.

replacing its average FDobs with that of the super-bin enclosing
its 8 direct neighbors. The bin-averaged FDobs after removal of
Wolleben et al.’s bubble and blending of the anomalous bin is
denoted by FDobs.

Finally, since we are primarily interested in the magnetic
field in the Galactic halo, we exclude the 72 bins with |b| < 10◦,
which leaves us with a total of 356 bins. The FDobs of each of
these bins is plotted in the top panel of Fig. 3, again with a red
circle if FDobs > 0 and a blue square if FDobs < 0. The FDobs map
thus obtained provides the observational reference against which
we will test our large-scale magnetic field models in Sect. 4.

A29, page 3 of 23

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629572&pdf_id=3


A&A 600, A29 (2017)

2.2. General trends

A few trends emerge from the observational map of the aver-
age FDobs in Fig. 2:

1. a rough antisymmetry with respect to the prime (` = 0◦)
meridian;

2. a rough antisymmetry with respect to the midplane in the
inner Galactic quadrants away from the plane (|`| < 90◦ and
|b| >∼ 10◦);

3. a rough symmetry with respect to the midplane in the inner
quadrants close to the plane (|`| < 90◦ and |b| <∼ 10◦) and in
the outer quadrants (|`| > 90◦).

These three trends appear to persist after removal of
Wolleben et al.’s (2010) bubble (see top panel of Fig. 3, for
|b| ≥ 10◦). We will naturally try to reproduce them with our
magnetic field models, but before getting to the models, a few
comments are in order.

First, the rough symmetry with respect to the midplane at
|b| <∼ 10◦ and all ` suggests that the disk magnetic field is sym-
metric (or quadrupolar)4, as already pointed out by many authors
(e.g., Rand & Lyne 1994; Frick et al. 2001).

Second, the rough antisymmetry [symmetry] with respect to
the midplane at |b| >∼ 10◦ and |`| < 90◦ [|`| > 90◦] suggests one
of the two following possibilities: either the halo magnetic field
is antisymmetric in the inner Galaxy and symmetric in the outer
Galaxy, or the halo magnetic field is everywhere antisymmet-
ric, but only toward the inner Galaxy does its contribution to the
Galactic FD at |b| >∼ 10◦ exceed the contribution from the disk
magnetic field. The first possibility is probably not very realistic
(although it cannot be completely ruled out): while the disk and
halo fields could possibly have different vertical parities (see,
e.g., Moss & Sokoloff 2008; Moss et al. 2010), it seems likely
that each field has by now evolved toward a single parity. The
second possibility may sound a little counter-intuitive at first, but
one has to remember that the halo field contribution to the Galac-
tic FD is weighted by a lower free-electron density than the disk
field contribution (especially toward the outer Galaxy); more-
over, the halo field can very well be confined inside a smaller
radius than the disk field. Such is the case in the double-torus
picture originally sketched by Han (2002) and later modeled
by Prouza & Šmída (2003), Sun et al. (2008), Jansson & Farrar
(2012a): in these three models, the toroidal field of the halo falls
off exponentially with r at large radii, i.e., much faster than the
disk field, which falls off approximately as (1/r).

Third, the rough antisymmetry with respect to the prime
meridian (east-west antisymmetry) can a priori be explained by
an axisymmetric, predominantly azimuthal magnetic field. How-
ever, the situation is a little more subtle.

– For the disk, RM studies (mainly of Galactic pulsars, and
also of extragalactic point sources) converge to show that the
magnetic field is indeed predominantly azimuthal, though
not with the same sign everywhere throughout the disk, i.e.,
the field must reverse direction with Galactic radius (e.g.,
Rand & Lyne 1994; Han et al. 1999, 2006; Brown et al.
2007). The exact number and the radial locations of these
reversals are still a matter of debate, which we do not
whish to enter. Here, we are content to note that field rever-
sals naturally arise in a bisymmetric (azimuthal modulation

4 A magnetic field is symmetric/antisymmetric with respect to the mid-
plane (or quadrupolar/dipolar) when its horizontal components, Br and
Bϕ, are even/odd functions of z and its vertical component, Bz, is an
odd/even function of z.

∝ cos mϕ, with m = 1) or higher-order (m > 1) configu-
ration, but can also be produced in the axisymmetric case
(Ferrière & Schmitt 2000).

– For the halo, most existing models have settled on a purely
azimuthal, and hence axisymmetric, magnetic field. Here, we
inquire into the other possibilities.
Let us first ask whether a purely poloidal (possibly, but not
necessarily, X-shape) magnetic field would be a viable alter-
native. Clearly, a purely poloidal field that is axisymmetric
automatically leads to an FD pattern with east-west symme-
try, inconsistent with the observed FD distribution. In con-
trast, a purely poloidal field that is bisymmetric can lead to
a variety of FD patterns, depending on the azimuthal angle
of maximum amplitude: if the maximum amplitude occurs
in the azimuthal plane parallel to the plane of the sky (ϕ =
±90◦) [in the azimuthal plane through the Sun (ϕ = 0◦)],
the FD pattern has east-west antisymmetry [symmetry], in
agreement [disagreement] with the observed FD distribution.
Hence, a purely poloidal magnetic field can possibly match
the FD data, provided it is bisymmetric (or higher-order) and
favorably oriented.
Let us now turn to the more general and more realistic
situation where the magnetic field has both azimuthal and
poloidal components, as required by dynamo theory. If this
general field is axisymmetric, the observed east-west anti-
symmetry in FD implies that it must be mainly azimuthal. In
contrast, if the general field is bisymmetric, it could in princi-
ple cover a broad range of orientation, from mostly azimuthal
to mostly poloidal. What happens here is that, in the pres-
ence of an azimuthal field component, the azimuthal modu-
lation, which is presumably carried along field lines, crosses
azimuthal planes. The resulting FD pattern becomes more
difficult to predict: it may become more complex and fluc-
tuating than in the axisymmetric case, and large-scale lon-
gitudinal trends may be partly washed out, but a priori the
predominance of neither the azimuthal nor the poloidal field
component can be ruled out.
To sum up, the halo magnetic field could either be axisym-
metric and mainly azimuthal or bisymmetric (or higher-
order) with no clear constraint on its azimuthal-versus-
poloidal status.

3. Magnetic field models

3.1. Magnetic fields in galactic halos

In Paper I, we derived four different models of spiraling, pos-
sibly X-shape magnetic fields in galactic halos, which can be
applied to the halo of our own Galaxy. Each of these models
was initially defined by the shape of its field lines together with
the distribution of the magnetic flux density on a given reference
surface. Using the Euler formalism (e.g., Northrop 1963; Stern
1966), we were able to work out the corresponding analytical
expression of the magnetic field vector, B = (Br, Bϕ, Bz), as a
function of Galactocentric cylindrical coordinates, (r, ϕ, z). The
main characteristics of the four halo-field models are summa-
rized below, and a few representative field lines are plotted in
Fig. 4.

In models A and B, we introduced a fixed reference ra-
dius, r1, and we labeled field lines by the height, z1, and the
azimuthal angle, ϕ1, at which they cross the centered vertical
cylinder of radius r1. In models C and D, we introduced a fixed
reference height, z1 (more exactly, one reference height, z1 = 0,
in model C where all field lines cross the galactic midplane, and
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(a) Model A1 (b) Model B

(c) Model C (d) Model D

Fig. 4. Small set of field lines for each of our four models of spiraling, possibly X-shape magnetic fields in galactic halos, as seen from an
oblique angle. The shapes of field lines for the three halo-field models A1, B, and D are also representative of our three disk-field models Ad1,
Bd, and Dd. All the plotted field lines lie on the same winding surface (Eq. (26) with ϕ∞ = 0◦ and gϕ(r, z) given by Eq. (23) with p0 = −9◦,
Hp = 1.5 kpc, and Lp = 45 kpc), and their footpoints, (r1, ϕ1, z1), on the relevant reference surface (r = r1 in models A1 and B, and z = z1

in models C and D) are given by: a) (3 kpc, 172◦, 0.5 kpc) and (3 kpc, 357◦, 2 kpc) in model A1 (with a = 0.05 kpc−2); b) (3 kpc, 326◦, 1 kpc),
(3 kpc, 357◦, 2 kpc), and (3 kpc, 198◦, 3 kpc) in model B (with n = 2); c) (2.5 kpc, 336◦, 0) and (7.5 kpc, 318◦, 0) in model C (with a = 0.01 kpc−2);
and d) (2.5 kpc, 168◦, 1.5 kpc), (5 kpc, 47◦, 1.5 kpc), and (7.5 kpc, 339◦, 1.5 kpc) in model D (with n = 0.5). The galactic plane is represented by
the red, solid circle of radius 15 kpc, and the rotation axis by the vertical, black, dot-dashed line.

two reference heights, z1 = ±|z1|, in model D where field lines
do not cross the midplane), and we labeled field lines by the ra-
dius, r1, and the azimuthal angle, ϕ1, at which they cross the hor-
izontal plane (or one of the two horizontal planes) of height z1.
Thus, in all models, the point (r1, ϕ1, z1) of a given field line
can be regarded as its footpoint on the reference surface (vertical
cylinder of radius r1 in models A and B and horizontal plane(s)
of height z1 in models C and D).

3.1.1. Poloidal field

The four models are distinguished by the shape of field lines
associated with the poloidal field (hereafter referred to as the

poloidal field lines), and hence by the expressions of the radial
and vertical field components.

In model A, the shape of poloidal field lines is described by
the quadratic function

z = z1
1 + a r2

1 + a r2
1

, (3)

where a is a strictly positive free parameter governing the open-
ing of field lines away from the z-axis, r1 is the prescribed
reference radius, and z1 is the vertical label of the considered
field line. Conversely, the vertical label of the field line passing
through (r, ϕ, z) is given by

z1 = z
1 + a r2

1

1 + a r2 · (4)

A29, page 5 of 23

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629572&pdf_id=4


A&A 600, A29 (2017)

It then follows (see Paper I for the detailed derivation) that the
poloidal field components can be written as

Br =
r1

r
z1

z
Br(r1, ϕ1, z1) (5)

Bz =
2 a r1 z1

1 + a r2 Br(r1, ϕ1, z1), (6)

with, for instance, Br(r1, ϕ1, z1) obeying Eq. (11).
In model B, the corresponding equations read

z =
1

n + 1
z1

[(
r
r1

)−n

+ n
r
r1

]
, (7)

with n a power-law index satisfying the constraint n ≥ 1,

z1 = (n + 1) z
[(

r
r1

)−n

+ n
r
r1

]−1

, (8)

and

Br =
r1

r
z1

z
Br(r1, ϕ1, z1) (9)

Bz = −
n

n + 1
r1 z2

1

r2 z

[(
r
r1

)−n

−
r
r1

]
Br(r1, ϕ1, z1)· (10)

In both models A and B, the radial field component on
the vertical cylinder of radius r1 is chosen to have a linear-
exponential variation with z1 and a sinusoidal variation with ϕ1:

Br(r1, ϕ1, z1) = B1 fsym

[
|z1|

H
exp

(
−
|z1| − H

H

)]
× cos

(
m

(
ϕ1 − gϕ(r1, z1) − ϕ?

))
, (11)

where B1 is the normalization field strength, fsym is a factor
setting the vertical parity of the magnetic field ( fsym = 1 for
symmetric fields and fsym = sign z1 for antisymmetric fields;
see footnote 4), H is the exponential scale height, m is the az-
imuthal wavenumber, gϕ is the shifted winding function defined
by Eq. (23), and ϕ? is the orientation angle of the azimuthal pat-
tern. The term gϕ(r1, z1), which will be discussed in more detail
in Sect. 3.1.2, ensures that the phase of the sinusoidal modulation
remains constant on the winding surfaces defined by Eq. (26)
(see comment following Eq. (26)).

Models C and D are the direct counterparts of models A and
B, respectively, with the roles of the coordinates r and z inverted
in the equations of field lines.

In model C, the reference height is set to z1 = 0, and
the shape of poloidal field lines is described by the quadratic
function

r = r1 (1 + a z2), (12)

with a a strictly positive free parameter governing the opening
of field lines away from the r-axis and r1 the radial label of the
considered field line. Conversely, the radial label of the field line
passing through (r, ϕ, z) is given by

r1 =
r

1 + a z2 · (13)

The poloidal field components can then be written as

Br =
2 a r3

1 z
r2 Bz(r1, ϕ1, z1) (14)

Bz =
r2

1

r2 Bz(r1, ϕ1, z1), (15)

with, for instance, Bz(r1, ϕ1, z1) obeying Eq. (20).

In model D, where every field line remains confined to one
side of the galactic midplane, a reference height, z1 = |z1| sign z,
is prescribed on each side of the midplane, such that the ra-
tio (z/z1) is always positive. We then have

r =
1

n + 1
r1

[(
z
z1

)−n

+ n
z
z1

]
, (16)

with n ≥ 0.5,

r1 = (n + 1) r
[(

z
z1

)−n

+ n
z
z1

]−1

, (17)

and

Br = −
n

n + 1
r3

1

r2 z

[(
z
z1

)−n

−
z
z1

]
Bz(r1, ϕ1, z1) (18)

Bz =
r2

1

r2 Bz(r1, ϕ1, z1)· (19)

In both models C and D, the vertical field component on the
horizontal plane(s) of height z1 is chosen to have an exponential
variation with r1 and a sinusoidal variation with ϕ1:

Bz(r1, ϕ1, z1) = B1 f̄sym exp
(
−

r1

L

)
cos

(
m

(
ϕ1 − gϕ(r1, z1)− ϕ?

))
,

(20)

with B1 the normalization field strength, f̄sym a factor setting
the vertical parity of the magnetic field ( f̄sym = 1 in model C,
which is always antisymmetric, and in the antisymmetric ver-
sion of model D, and f̄sym = sign z1 in the symmetric version
of model D; see footnote 4), L the exponential scale length,
m the azimuthal wavenumber, gϕ the shifted winding function
(Eq. (23)), and ϕ? the orientation angle of the azimuthal pattern.

3.1.2. Azimuthal field

In all four models, field lines are assumed to spiral up or down
according to the equation

ϕ = ϕ1 + fϕ(r, z), (21)

where fϕ(r, z) is a winding function starting from the field line’s
footpoint on the reference surface and, therefore, satisfying
fϕ(r1, z1) = 0. If we consider that field lines are somehow an-
chored in the external intergalactic medium5, it proves more con-
venient to shift the starting point of the winding function to in-
finity. This can be done by letting

fϕ(r, z) = gϕ(r, z) − gϕ(r1, z1), (22)

where gϕ(r, z) is a shifted winding function starting from the
field line’s anchor point at infinity6 and, therefore, satisfying

5 We emphasize that this is only one possibility. Another possibility
would be that galactic field lines loop back on themselves, without con-
necting to an extragalactic magnetic field. In Paper I, we took a differ-
ent approach, based on the magnetic pitch angle rather than the winding
function itself, which did nor require discussing the anchoring of field
lines.
6 In models B and D, field lines actually have two anchor points at
infinity. By construction, both anchor points have the same azimuthal
angle, ϕ∞.
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gϕ(r, z) → 0 for r → ∞ and for |z| → ∞. A reasonably sim-
ple choice for the shifted winding function is

gϕ(r, z) = cot p0

ln
[
1 − exp

(
−

r
Lp

)]
1 +

(
|z|
Hp

)2 , (23)

with p0 the pitch angle (i.e., the angle between the horizontal
projection of a field line and the local azimuthal direction) at the
origin ((r, z) → 0), Hp the scale height, and Lp the exponen-
tial scale length. With this choice, gϕ(r, z) defines, in horizontal
planes (z = const.), spirals that are logarithmic (constant pitch
angle) at small r and become increasingly loose (increasing pitch
angle) at large r. The spirals also loosen up with increasing |z|.

Combining Eqs. (21) and (22), we can rewrite the equation
describing the spiraling of field lines in the form

ϕ = gϕ(r, z) +
[
ϕ1 − gϕ(r1, z1)

]
, (24)

with
[
ϕ1 − gϕ(r1, z1)

]
constant along field lines. Conversely, the

field line passing through (r, ϕ, z) can be traced back to the az-
imuthal label

ϕ1 = ϕ − gϕ(r, z) + gϕ(r1, z1), (25)

where r1 and z1 either have prescribed values or are given func-
tions of (r, z) (see Eqs. (4), (8), (13), and (17) in Sect. 3.1.1). It
then follows from Eqs. (11) and (20) that the sinusoidal modula-
tion of the magnetic field goes as cos

(
m

(
ϕ − gϕ(r, z) − ϕ?

))
.

If we now consider the anchor point at infinity6 of the field
line passing through (r, ϕ, z), denote its azimuthal angle by ϕ∞,
and recall that gϕ(r, z) → 0 for r, |z| → ∞, we find that the spi-
raling of field line can also be described by

ϕ = gϕ(r, z) + ϕ∞. (26)

Equation (26) defines a so-called winding surface, formed by
all the field lines with the same azimuthal angle at infinity, ϕ∞,
and thus the same phase in the sinusoidal modulation, ϕ∞ − ϕ?.
The crest of the modulation occurs at phase ϕ∞ − ϕ? = 0◦, i.e.,
at ϕ∞ = ϕ?, which means that the free parameter ϕ? can be
interpreted as the azimuthal angle at infinity of the crest surface.

Since the magnetic field is by definition tangent to field lines,
Eq. (24) implies that its azimuthal component is related to its
radial and vertical components through

Bϕ =

(
r
∂gϕ

∂r

)
Br +

(
r
∂gϕ

∂z

)
Bz. (27)

Roughly speaking, the two terms on the right-hand side of
Eq. (27) represent the azimuthal field generated through shearing
of radial and vertical fields by radial and vertical gradients in the
galactic rotation rate, respectively. With the choice of Eq. (23),
Eq. (27) becomes

Bϕ = cot p0
1

1 +

(
|z|
Hp

)2

r
Lp

exp
(
−

r
Lp

)
1 − exp

(
−

r
Lp

) Br

− 2 cot p0

z
H2

p1 +

(
|z|
Hp

)22 r ln
[
1 − exp

(
−

r
Lp

)]
Bz. (28)

It is easily seen that the factor of Br has the same sign as cot p0
(usually negative) everywhere, while the factor of Bz has the
same sign as cot p0 above the midplane (z > 0) and the oppo-
site sign below the midplane (z < 0).

3.1.3. Total field

To sum up, the poloidal field is described by Eqs. (5)–(6) in
model A and Eqs. (9)–(10) in model B, with Br(r1, ϕ1, z1) given
by Eq. (11), and by Eqs. (14)–(15) in model C and Eqs. (18)–(19)
in model D, with Bz(r1, ϕ1, z1) given by Eq. (20). The azimuthal
field is described by Eq. (28) in all models. Together, the above
equations link the magnetic field at an arbitrary point (r, ϕ, z) to
the normal field component at the footpoint (r1, ϕ1, z1) on the
reference surface of the field line passing through (r, ϕ, z). The
footpoint, in turn, is determined by the reference coordinate (r1
in models A and B, and z1 in models C and D, with z1 = 0 in
model C and z1 = ±|z1| in model D), the poloidal label of the
field line (z1 given by Eq. (4) in model A and Eq. (8) in model B,
and r1 given by Eq. (13) in model C and Eq. (17) in model D),
and its azimuthal label (ϕ1 given by Eq. (25) in all models).

3.1.4. Regularization of model A

An important remark should be made regarding model A. Eq. (5)
together with Eq. (4) imply that Br → ∞ for r → 0, which re-
flects the fact that all field lines, from all azimuthal planes, con-
verge to the z-axis. The problem does not arise in model B, as
shown by Eq. (9) together with Eq. (8), because all field lines
are deflected vertically before reaching the z-axis (see Fig. 4b).
The singularity in model A is inescapable in the axisymmet-
ric case (m = 0 in Eq. (11)), where Br has the same sign all
around the z-axis, so that, at every height, a non-zero magnetic
flux reaches the z-axis. However, the singularity can be removed
in non-axisymmetric (m ≥ 1) configurations, where Br changes
sign sinusoidally around the z-axis, so that, at every height, no
net magnetic flux actually reaches the z-axis. It is then conceiv-
able to detach field lines from the z-axis, spread them apart in-
side a centered vertical cylinder, whose radius can be chosen to
be r1 (remember that r1 is still a free parameter at this stage),
and connect up two by two field lines with the same z1, oppo-
site ϕ1 (with respect to a node of the sinusoidal modulation in
Eq. (11)), and hence opposite Br, such as to ensure conservation
of the magnetic flux as well as continutity in its sign.

For instance, in the bisymmetric (m = 1) case, field lines
with the same z1 and opposite ϕ1 (with respect to gϕ(r1, z1) +
ϕ? ± π/2) can be connected up inside the vertical cylinder of
radius r1 through straight-line segments parallel to the direction
ϕ1 = gϕ(r1, z1) + ϕ?. In this case, magnetic flux conservation (or
continuity of Br) across the surface of the cylinder gives for the
magnetic field at an arbitrary point (r, ϕ, z) inside the cylinder:

B = Br
(
r1, gϕ(r1, z1) + ϕ?, z1

)
ê?(z1)

= B1 fsym

[
|z1|

H
exp

(
−
|z1| − H

H

)]
ê?(z1), r ≤ r1, (29)

with z1 = z, ê?(z1) the unit vector in the direction ϕ1 =
gϕ(r1, z1) + ϕ?, and the other symbols having the same mean-
ing as in Eq. (11).

In the following, the regularized bisymmetric version of
model A is referred to as model A1, where the number 1 in-
dicates the value of the azimuthal wavenumber.
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3.2. Magnetic fields in galactic disks

We now present three different models of spiraling, mainly hori-
zontal magnetic fields in galactic disks, which can be applied to
the disk of our own Galaxy. These models are directly inspired
from the three models for magnetic fields in galactic halos that
have nearly horizontal field lines at low |z|, namely, models A1,
B, and D in Sect. 3.1, and they are named models Ad1, Bd,
and Dd, respectively. Models Bd and Dd are directly taken up
from Paper I, with a minor amendment in model Dd (see below),
while model Ad1 is a new addition.

Model Ad1 has nearly the same descriptive equations as
model A1. Outside the reference radius, r1, the shape of field
lines is described by Eq. (3), with the parameter a assuming a
much smaller value than for halo fields, and by Eq. (24); the
vertical and azimuthal labels of the field line passing through
(r, ϕ, z) are given by Eqs. (4) and (25); and the three magnetic
field components obey Eqs. (5), (6), and (28), with

Br(r1, ϕ1, z1) = B1 fsym exp
(
−
|z1|

H

)
cos

(
m

(
ϕ1−gϕ(r1, z1)−ϕ?

))
.

(30)

All the symbols entering Eq. (30) have the same meaning as in
Eq. (11); the difference between both equations resides in the z1-
dependence of Br, which leads to a peak at |z1| = H (appropriate
for halo fields) in Eq. (11) and a peak at z1 = 0 (appropriate for
disk fields) in Eq. (30). Inside r1, field lines are straight, horizon-
tal (z = z1), and parallel to the unit vector ê?(z1) in the direction
ϕ1 = gϕ(r1, z1) + ϕ?, and the magnetic field vector is given by
Eq. (29) adjusted to Eq. (30):

B = Br
(
r1, gϕ(r1, z1) + ϕ?, z1

)
ê?(z1)

= B1 fsym exp
(
−
|z1|

H

)
ê?(z1), r ≤ r1. (31)

Model Bd is a slight variant of model B. Given a reference
radius, r1, the shape of field lines is described by

z =
1

2n + 1
z1

[(
r
r1

)−n

+ 2n
√

r
r1

]
, (32)

with n ≥ 2, and by Eq. (24); the vertical and azimuthal labels of
the field line passing through (r, ϕ, z) are given by

z1 = (2n + 1) z
[(

r
r1

)−n

+ 2n
√

r
r1

]−1

(33)

and by Eq. (25), respectively; and the three magnetic field com-
ponents obey

Br =
r1

r
z1

z
Br(r1, ϕ1, z1) (34)

Bz = −
n

2n + 1
r1 z2

1

r2 z

[(
r
r1

)−n

−

√
r
r1

]
Br(r1, ϕ1, z1), (35)

and Eq. (28), together with Eq. (30).
Model Dd is nearly the same as model D. Given a reference

height on each side of the midplane, z1 = |z1| sign z, the shape of
field lines is described by Eq. (16), with n = 0.5, and by Eq. (24);
the radial and azimuthal labels of the field line passing through
(r, ϕ, z) are given by Eqs. (17) and (25); and the three magnetic
field components obey Eqs. (18), (19), and (28), with

Bz(r1, ϕ1, z1) = B1 f̄sym F(r1) cos
(
m

(
ϕ1 − gϕ(r1, z1) − ϕ?

))
(36)

and

F(r1) =


1, r1 ≤ L

exp
(
−

r1 − L
L

)
, r1 ≥ L.

Equation (36) is the counterpart of Eq. (20), with the radial ex-
ponential cut off for r1 ≤ L. The effect of this cutoff is to reduce
the crowding of field lines along the midplane.

4. Method

4.1. Simulated Galactic Faraday depth

As explained earlier, our purpose is to study the structure of the
magnetic field in the Galactic halo. We are not directly interested
in the exact attributes of the disk magnetic field, but we may not
ignore the disk field altogether: since all sightlines originating
from the Sun pass through the disk (if only for a short distance
before entering the halo), we need to have a good description of
the disk field in the interstellar vicinity of the Sun.

Therefore, all our Galactic magnetic field models must in-
clude a disk field and a halo field. Moreover, in view of the gen-
eral trends discussed in Sect. 2.2, we expect the disk field to
be roughly symmetric and the halo field roughly antisymmetric
with respect to the midplane. Alternatively, we may consider that
the Galactic magnetic field is composed of a symmetric field,
which dominates in the disk, and an antisymmetric field, which
dominates in the halo. In other words, we may write the com-
plete Galactic magnetic field as

B = BS + BA, (37)

where BS is the symmetric field, described by one of the disk-
field models (models Ad1, Bd, or Dd; see Sect. 3.2), and BA is
the antisymmetric field, described by one of the halo-field mod-
els (models A1, B, C, or D; see Sect. 3.1).

Our knowledge of the large-scale magnetic field at the
Sun, B�, imposes two constraints on our magnetic field mod-
els. Since the Sun is assumed to lie in the midplane (z� = 0),
where BA vanishes, these constraints apply only to BS. From
the RMs of nearby pulsars, Rand & Kulkarni (1989) derived a
local field strength B� ' 1.6 µG, while Rand & Lyne (1994),
Han & Qiao (1994) obtained B� ' 1.4 µG. All three stud-
ies found B� to be running clockwise about the rotation axis
((Bϕ)� > 0). Han & Qiao (1994) also derived a local pitch angle
p� ' −8.2◦ (implying (Br)� < 0), close to the value p� ' −7.2◦
inferred from the polarization of nearby stars (Heiles 1996). In
the following, we restrict the range of B� to [1, 2] µG and the
range of p� to [−15◦,−4◦]. The implications of these restrictions
are discussed at the end of Appendix C.1.

To calculate the Galactic FD (Eq. (2)), we also need a
model for the free-electron density, ne. Here, we adopt the
NE2001 model of Cordes & Lazio (2002), with revised values
for the parameters of the thick disk component. Gaensler et al.
(2008) found that the scale height of the thick disk in the
NE2001 model was underestimated by almost a factor of 2;
they derived a new scale height of 1.83 kpc (up from 0.95 kpc)
and a new midplane density of 0.014 cm−3 (down from
0.035 cm−3). This revision prompted several authors to adopt
the NE2001 model and simply replace the parameters of the
thick disk with the new values derived by Gaensler et al., while
keeping all the other components unchanged (Sun & Reich
2010; Pshirkov et al. 2011; Jansson & Farrar 2012a). However,
Schnitzeler (2012) showed that this simple modification entails
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internal inconsistencies, as the thick disk of Gaensler et al. over-
laps with the local ISM and local spiral arm components of
the NE2001 model. By correctly accounting for all the compo-
nents of the NE2001 model, Schnitzeler (2012) updated the thick
disk with a scale height of 1.31 kpc and a midplane density of
0.016 cm−3. These are the values that we adopt for our FD cal-
culation. For future reference, the scale length of the thick disk
is '11 kpc.

For any considered magnetic field model, we can now use
Eq. (2) to calculate the modeled Galactic FD, FDmod, as a func-
tion of position in the sky. To produce a modeled FD map that
is directly comparable to the observational map of FDobs dis-
played in the top panel of Fig. 3, we divide the sky area into
the same 428 bins as in the FDobs map, and we only retain the
same Nbin = 356 bins with |b| ≥ 10◦. For each of these bins, we
compute FDmod along 20 well-separated sightlines (which is suf-
ficient, in view of the smoothness of our large-scale field mod-
els, to reach the required accuracy), and we average the com-
puted FDmod to obtain FDmod. The resulting modeled map of
FDmod can then be compared to the observational map of FDobs.

To disentangle the impact of the different model parameters
and to guide (and ultimately speed up) the global fitting pro-
cess, it helps to first consider BS and BA separately, denoting
the associated FDmod by FDmod,S and FDmod,A, respectively. If
the slight vertical asymmetry in the free-electron density distri-
bution (which essentially arises from the local ISM component
in the NE2001 model) is ignored, FDmod,S and FDmod,A represent
the symmetric and antisymmetric parts of FDmod. Accordingly,
we will first adjust FDmod,S to FDobs,S and FDmod,A to FDobs,A,
where FDobs,S and FDobs,A are the symmetric and antisymmet-
ric parts of FDobs (displayed in the middle and bottom panels of
Fig. 3). We will then combine the separate best-fit BS and BA

into a starting-guess B for the actual fit of FDmod to FDobs.

4.2. Fitting procedure

For each magnetic field model, our fitting procedure relies on
the least-square method, which consists of minimizing the χ2 pa-
rameter defined as

χ2 =

Nbin∑
i=1

(
FDobs,i − FDmod,i

)2

σ2
i

, (38)

where Nbin = 356 is the total number of retained bins, subscript i
is the bin identifier, FDobs,i and FDmod,i are the average values
of the observational and modeled Galactic FDs, respectively,
within bin i, and σi is the uncertainty in FDobs,i (estimated in
Appendix A). We also define the reduced χ2 parameter,

χ2
red =

χ2

Nbin − Npar
, (39)

where Npar is the number of free parameters entering the consid-
ered magnetic field model. The advantage of using χ2

red instead
of χ2 is that χ2

red gives a more direct idea of how good a fit is. In
principle, a fit with χ2

red ≈ 1 [χ2
red � 1] is good [bad]. Here, how-

ever, because of the large uncertainties in σi (see Appendix A),
we do not ascribe too much reality to the absolute χ2

red, but we
rely on the relative χ2

red to rank the different fits by relative like-
lihood. In the following, the minimum values of χ2 and χ2

red are
denoted by χ2

min and χ2
red,min, respectively.

Because of the relatively large number of free parameters,
a systematic grid search over the Npar-dimensional parameter
space would be prohibitive in terms of computing time. There-
fore, we opt for the much more efficient MCMC sampling
method. We employ two different versions of this method, cor-
responding to two different implementations of the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970): in
the first version, the proposal distribution is centered on an edu-
cated guess for the best-fit solution, whereas in the second ver-
sion (random walk Metropolis-Hastings algorithm), the proposal
distribution is centered on the current point of the Markov chain
(see, e.g., Robert 2015, and references therein). After verifying
that both versions lead to the same results (within the Monte
Carlo uncertainties) and remarking that the second version is
systematically faster, we use only the second version in most
of our numerous trial runs. However, in our last series of runs
(leading to the final results listed in Table 2), we use again both
versions as a reliability check.

For every χ2 minimization, we run several, gradually more
focused simulations, whose sequence is optimized by trial and
error to converge as fast as possible to the correct target distribu-
tion. The key is to find a good compromise between sufficiently
broad coverage of the parameter space (to make sure the absolute
χ2 minimum is within reach) and sufficiently narrow bracketing
of the minimum-χ2 solution (to recover the target distribution in
a manageable time). We begin with a simulation having broad
proposal (q) and target (π) distributions. For the former, we gen-
erally adopt a Npar-dimensional Gaussian with adjustable widths,
which we take initially large enough to encompass all plausible
parameter values. For the latter, we adopt π ∝ exp(−χ2/2T ),
with T tuned in parallel with the Gaussian widths to achieve
the optimal acceptance rate for the next proposed point in the
Markov chain (see, e.g., Roberts et al. 1997; Jaffe et al. 2010).
Once a likelihood peak clearly emerges, we start a new simula-
tion with narrower q (smaller Gaussian widths) and π (smaller
T ) and with the starting point of the Markov chain close to the
emerging peak. We repeat the procedure a few times until T = 1,
as ultimately required. Note that we prefer to keep a handle on
how the proposal and target distributions are gradually narrowed
down, rather than implement one of the existing adaptive algo-
rithms that can be found in the literature.

We monitor convergence to the target distribution by visu-
ally inspecting the evolution of the histogram, the running mean,
and the minimum-χ2 (i.e., best-fit) value of each parameter as
well as the histogram of χ2 itself. We stop sampling when a sta-
tionary state appears to have been reached, and after checking
that the best-fit value of each parameter has achieved an accu-
racy better than 10% of the half-width of its 1σ confidence inter-
val7. The latter is taken to be the projection onto the parameter’s
axis of the Npar-dimensional region containing the 68% points of
the Markov chain (or second half thereof) with the lowest χ2.
For our final results (listed in Table 2), we simulate multiple
Markov chains in parallel, with overdispersed starting points,
we discard the first halves of the chains to skip the burn-in
phase, and relying on the Gelman-Rubin convergence diagnos-
tic (Gelman & Rubin 1992), we consider that our chains have
converged when, for each parameter, the variance of the chain
means has dropped below 10% of the mean of the chain vari-
ances, or nearly equivalently, when the potential scale reduction
factor,

√
R̂, has dropped below 1.05.

As mentioned at the end of Sect. 4.1, we apply our fitting
procedure first to the symmetric and antisymmetric components

7 In practice, this second condition is generally amply satisfied.
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of the Galactic FD separately, then to the total (symmetric +

antisymmetric) Galactic FD. The uncertainties in FDobs,S,i and
FDobs,A,i, σS,i and σA,i, are related to the uncertainties in FDobs,i

and FDobs,−i, σi and σ−i, through σ2
S,i = σ2

A,i = 1
4 (σ2

i + σ2
−i),

where subscript −i is used to denote the bin that is the symmet-
ric of bin i with respect to the midplane.

5. Results

5.1. Preliminary remarks

Before considering any particular magnetic field model, let us
make a few general remarks that will guide us in our explo-
ration of the different parameter spaces and help us optimize
the Metropolis-Hastings MCMC algorithm used for our fitting
procedure (see Sect. 4.2) – in particular, by making an informed
initial choice for the proposal distribution, q. These remarks will
also enable us to check a posteriori that the best-fit solutions do
indeed conform to our physical expectation.

First, the all-sky maps of the symmetric and antisymmetric
components of the bin-averaged observational Galactic Faraday
depth, FDobs,S and FDobs,A, displayed in the middle and bottom
panels of Fig. 3, show that FDobs,A is broadly distributed, both
in latitude and in longitude, while the distribution of FDobs,S is
thinner in latitude8 and more heavily weighted toward the outer
Galaxy. This suggests that the symmetric field, BS, has a flatter
distribution, which extends out to larger radii, while the antisym-
metric field, BA, has a more spherical distribution, which extends
up to larger heights. Clearly, these different distributions support
our choosing disk-field models (Ad1, Bd, Dd) to describe BS
and halo-field models (A1, B, C, D) to describe BA. Further-
more, out of our four halo-field models, we may already antici-
pate that model C, where the field strength has the most spher-
ical distribution (see Fig. 4c), is the best candidate to represent
the antisymmetric field. This expectation is in line with the no-
tion that models A, B, and D, where low-|z| field lines are nearly
horizontal (see Figs. 4a, b, d), could easily be explained by a
disk dynamo (together with a galactic wind advecting the disk-
dynamo field into the halo), which is known to favor symmetric
fields (see Paper I)9.

Second, the multiple sign reversals with longitude observed
in the map of FDobs,S (middle panel of Fig. 3) suggest that BS
is non-axisymmetric. In reality, an axisymmetric magnetic field
could very well lead to longitudinal FD reversals (in addition to
the two reversals, toward ` ≈ 0◦ and ` ≈ 180◦, naturally as-
sociated with an axisymmetric, nearly azimuthal field) if it re-
verses direction with radius. As a general rule, if the axisym-
metric field reverses n times with radius, FD can reverse up to
2 (n + 1) times with longitude. A case in point is provided by
the concentric-ring model of Rand & Kulkarni (1989), where the
field is purely azimuthal and reverses direction from one ring to
the next. What about our three disk-field models? As explained
in Sect. 3.2, model Ad1 is inherently bisymmetric. Model Dd has
no radial field reversals (see Eqs (18)–(19) for the poloidal field
and Eq. (28) for the azimuthal field), so it cannot lead to more
than two longitudinal FD reversals. Model Bd has one reversal

8 The thin distribution of FDobs,S is in fact largely hidden under the
grey band along the Galactic plane that masks out the region |b| < 10◦.
9 Although models A, B, and D do not seem to be well suited to de-
scribe the antisymmetric halo field of our own Galaxy, they remain good
candidates to describe the symmetric halo fields that could be observed
in external galaxies.

of Bz at radius r1 (see Eq. (35)), which must be accompanied
by one reversal of Bϕ at a slightly smaller radius (see Eq. (28));
the resulting radial reversal of the total field could account for a
maximum of four longitudinal FD reversals, which is still short
of the observed number of reversals. Ultimately, it appears that
none of our axisymmetric disk-field models is likely to repro-
duce the general sign pattern of the FDobs,S map. To strengthen
this conclusion, we note that our axisymmetric disk-field mod-
els would also be hard-pressed to reproduce the preponderance
of the outer Galaxy in the FDobs,S map.

Altogether, the remaining good candidates are model C for
the antisymmetric field, BA, and model Ad1 plus the non-
axisymmetric versions of models Bd and Dd for the symmetric
field, BS. If we retain only axisymmetric (m = 0) and bisym-
metric (m = 1) models, and label them with the value of the
azimuthal wavenumber, m, appended to the letters of the mod-
els, our full list reduces to models A1, B0, B1, C0, C1, D0, and
D1 for BA and models Ad1, Bd0, Bd1, Dd0, and Dd1 for BS,
amongst which the good candidates are models C0 and C1 for
BA and models Ad1, Bd1, and Dd1 for BS.

The impact of the model parameters on the FDmod map is dis-
cussed in detail in Appendix B, and a summary of the discussion
of the axisymmetric (m = 0) case is provided in Table 1.

5.2. Best fits

We consider 35 models of the total magnetic field, correspond-
ing to all the possible combinations of one of the 7 antisymmet-
ric halo-field models, A1, B0, B1, C0, C1, D0, and D1, with
one of the 5 symmetric disk-field models, Ad1, Bd0, Bd1, Dd0,
and Dd1. We apply the fitting procedure described in Sect. 4.2
to each of our 35 total-field models. As expected, we find that
6 total-field models have significantly lower χ2

red,min than the
other models, and that they correspond exactly to the 6 combina-
tions of good candidates identified in Sect. 5.1, namely, the com-
binations of C0 or C1 with Ad1, Bd1, or Dd1. The χ2

red,min values,
the best-fit parameter values, and the 1σ confidence intervals (in
the sense defined in Sect. 4.2) of these 6 total-field models are
listed in Table 2.

A first glance at the last column of Table 2 suggests that our
χ2

red,min values might be too large to qualify for good fits. How-
ever, one has to remember that the exact values of χ2

red should not
be taken too seriously; most importantly, they should not be con-
sidered individually, but only relative to each other as a means
of ranking the different models.

On the basis of this ranking, it emerges that (1) the three
total-field models with a bisymmetric halo field (described by
model C1; last three combinations in Table 2) perform systemat-
ically better than the three total-field models with an axisymmet-
ric halo field (described by model C0; first three combinations in
Table 2); and (2) for each halo-field model, the three disk-field
models (Ad1, Bd1, Dd1) are nearly equally good. The closeness
of the three best fits for each halo-field model lends credence to
their being the true absolute best fits, corresponding to the true
absolute χ2 minima. The differences between the three best fits
are smaller when the halo field is bisymmetric than when it is
axisymmetric, and in either case, models Ad1 and Bd1 tend to
lead to the closer best fits. This follows from the similarity in the
shape of their field lines outside the centered vertical cylinder of
radius r1 = 3 kpc (see Figs. 4a and b), it being clear that the
interior of the cylinder gives but a small overall contribution to
the FDmod maps.
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Table 1. List of all the free parametersa entering our magnetic field modelsb in the axisymmetric (m = 0) case.

Parameter Definition Models Impact on FDmod map

B1 Normalization field strength
(Eqs. (11) and (20))

All Overall amplitude

H Scale height of Br at r1
(Eq. (11))

A, B Latitudinal extent

L Scale length of Bz at z1
(Eq. (20))

C, D Longitudinal extent

p0 Pitch angle at origin
(Eq. (23))

All Longitudes of peaks & sign reversals
over the whole sky

Hp Scale height of winding function
(Eq. (23))

All Longitudes of peaks & sign reversals,
mainly at high |b|

Lp Scale length of winding function
(Eq. (23))

All Longitudes of peaks & sign reversals,
mainly at large |`|

r1 Reference radius A, B

|z1| Positive reference height C, D

a Opening parameter for poloidal field lines
(Eqs. (3) and (12))

A, C Amplitude & location of dominant patches;
location of sign reversal line

n Power-law index for poloidal field lines
(Eqs. (7) and (16))

B, D

Notes. (a) For the reasons explained in Appendix B, three of the initially free parameters (r1, |z1|, n) are actually assigned a fixed value before
the fitting process. (b) Only the halo-field models are listed here, but all the comments applying to one of the halo-field models A, B, or D also
apply to the corresponding disk-field models Ad, Bd, or Dd (the halo-field model C has no disk counterpart). Moreover, model A was retained for
completeness, even though its axisymmetric version diverges at r → 0.

The preference for a bisymmetric halo field can be under-
stood as follows10: a bisymmetric field leads to field reversals
along most lines of sight. The exact locations of the field rever-
sals, and hence the net result of integrating B‖ along the different
lines of sight (see Eq. (2)), and ultimately the appearance of the
FDmod maps, depend sensitively on the precise orientation angle
of the bisymmetric pattern, ϕ?. In other words, ϕ? offers a very
special degree of freedom, which makes it possible to produce a
great variety of FDmod maps. By fine-tuning the value of ϕ?, it is
generally possible to bring the FDmod maps into (relative) good
agreement with the observational FDobs map.

Let us now discuss the best-fit values of the free parameters,
starting with the parameters governing the field strength distri-
bution (B1, H, L, ϕ?) and the curvature of parabolic field lines in
models Ad1, C0, and C1 (

√
a), and continuing with the param-

eters governing the spiral shape of field lines (p0, Hp, Lp). The
1σ confidence intervals and the correlations between parameters
are discussed in Appendix C.

When the halo field is bisymmetric, it has a much larger nor-
malization field strength, B1 (by a factor ≈25−50) than when it is
axisymmetric, and the associated disk field also has a larger B1
(by a factor ≈2−15). The larger (B1)halo and (B1)disk obtained
with a bisymmetric halo field are needed to make up for the az-
imuthal modulation of the halo field and for the associated field
reversals, which lead to cancelation in the line-of-sight integra-
tion of B‖. The strong increase in B1 is accompanied by a weaker
decrease (by a factor ≈1−4) in the scale height at r1, H, and in the
scale length at z1, L. At the same time, the curvature parameter of
parabolic field lines,

√
a, decreases slightly (by a factor ≈1.2−2)

for the halo field and more significantly (by a factor ≈5) for the

10 The argument given here also applies to the disk field, explaining
why bisymmetric disk-field models lead to significantly lower χ2

red,min
than their axisymmetric counterparts (see first paragraph of Sect. 5.2).

disk field in model Ad1. The origin of these trends will become
clearer in Sect. 5.3.

More quantitatively, the halo field always has a short scale
length at z1 (L ≈ (2−5) kpc). The disk field has a longer
scale length at z1 (L ≈ (3−10) kpc in model Dd1), or a
short scale height at r1 (H ≈ 50 pc in model Ad1 and H ≈

(100−300) pc in model Bd1) combined with an outward flar-
ing of field lines (

√
a ≈ 1/(1−5) kpc in model Ad1 and n = 2

in model Bd1). The scale lengths in models C0, C1, and Dd1
are realistic, whereas the scale heights in models Ad1 and Bd1
are probably too short, even when their outward increase due to
the flaring of field lines is taken into account – for instance, the
scale height at the Sun is only ≈(140−360) pc in model Ad1 and
≈(120−440) pc in model Bd1.

With the above values of L, H,
√

a, and n, the ra-
tio (B1)halo/(B1)disk can be adjusted in such a way that the halo
[disk] field imposes its vertical antisymmetry [symmetry] to the
Galactic FD toward the inner [outer] halo, as required by the
north-south symmetry properties of the FDobs sky (see Sect. 2.2).
The resulting B1 are generally realistic, although when the halo
field is bisymmetric, the total field outside r = 3 kpc can become
quite strong at the crests of the azimuthal modulation (up to
≈200 µG and ≈150 µG at (r = 3 kpc, z = 0) in the combina-
tions C1-Ad1 and C1-Bd1, respectively)11. On the other hand,
the large (B1)disk (≈30 µG) in C1-Ad1 and C1-Bd1 are not in-
consistent with our imposed range of [1, 2] µG for the local field
strength, B� (see Sect. 4.1): indeed, it suffices for the Sun to fall
close to a node of the sinusoidal variation of the disk field. Nei-
ther is the very small (B1)disk (≈0.06 µG) in C0-Dd1 problematic,
as (B1)disk is only the peak vertical component of the disk field

11 We are not so much concerned with the even stronger fields that can
arise inside r = 3 kpc – in particular with model B1, where all field lines
unavoidably end up concentrating along the rotation axis (see Fig. 4b).
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Table 2. List of the 6 best models of the total (antisymmetric halo + symmetric disk) magnetic field.

Modela Fixed parametersb Best-fit free parametersb χ2
red,min

r1 [kpc] |z1| [kpc] n B1 [µG] H [kpc] L [kpc]c ϕ? [deg] a [kpc−2] p0 [deg] Hp [kpc]d Lp [kpc]e

C0 0 0.36+0.28
−0.16 3.0+1.3

−0.7 1.17+0.16
−0.16

−7.9+2.2
−2.9 >5 >18 2.37

Ad1 3 19+17
−9 0.055+0.019

−0.016 −54+180
−180 0.90+0.19

−0.13

C0 0 0.29+0.21
−0.15 3.4+1.8

−0.7 0.88+0.14
−0.14

−7.2+2.1
−2.8 >9 >16 2.42

Bd1 3 2 2.0+1.7
−0.7 0.32+0.10

−0.07 153+180
−180

C0 0 0.18+0.15
−0.07 4.8+3.2

−2.2 0.61+0.40
−0.38

−7.4+0.9
−1.3 4.2+1.0

−0.8 >22 2.26
Dd1 1.5 0.5 0.065+0.031

−0.013 9.8+∞
−3.8 14+180

−180

C1 0 9.0+2.6
−3.8 2.1+0.4

−0.2 198+50
−51 0.33+0.14

−0.14
−9.1+1.1

−0.6 1.2+0.1
−0.1 >38 2.02

Ad1 3 32+3
−4 0.054+0.040

−0.013 −31+46
−52 0.031+0.026

−0.029

C1 0 8.2+9.3
−5.3 2.2+0.7

−0.5 197+88
−68 0.38+0.24

−0.20
−9.0+1.2

−1.2 1.2+0.2
−0.1 >38 2.02

Bd1 3 2 24+22
−11 0.090+0.043

−0.033 −34+84
−65

C1 0 9.5+5.5
−5.7 2.1+0.6

−0.3 179+56
−71 0.45+0.30

−0.20
−8.4+1.3

−0.9 1.2+0.2
−0.1 >30 2.08

Dd1 1.5 0.5 0.40+0.24
−0.23 2.9+1.6

−0.8 120+53
−75

Notes. (a) For each total-field model, the first line refers to the antisymmetric halo field and the second line to the symmetric disk field. Models C0
and C1 are the axisymmetric (m = 0) and bisymmetric (m = 1) versions of model C, described in Sect. 3.1, while models Ad1, Bd1, and Dd1 are
the bisymmetric versions of models Ad, Bd, and Dd, described in Sect. 3.2. (b) The meaning of the different parameters is reminded in Table 1.
(c) When the 1σ upper confidence limit of L is�Le, it cannot be determined with any accuracy, so it is replaced by ∞. (d) When the best-fit value
of Hp is�He, it cannot be determined with any accuracy, so only an approximate 1σ lower limit is provided. (e) In all models, the best-fit value of
Lp is�Le, so it cannot be determined with any accuracy, and only an approximate 1σ lower limit is provided.

at (r1 ≤ L, z1 = ±1.5 kpc) (see Eq. (36)), which is much weaker
than the total field near the Galactic plane.

In each total-field model, the parameters governing the spi-
ral shape of field lines have common values for the disk and
halo fields. The pitch angle at the origin, p0, is always negative
and small (≈(−9◦)− (−7◦)), corresponding to a trailing magnetic
spiral with nearly azimuthal field at the origin (see Eq. (28)).
|p0| is slightly smaller when the halo field is axisymmetric, and
accordingly the field is slightly more azimuthal. The scale length
of the winding function, Lp, is always very large (best-fit value
>∼40 kpc), implying that the field remains nearly azimuthal out
to large radii. In contrast, the scale height of the winding func-
tion, Hp, is very sensitive to the azimuthal structure of the halo
field: when the halo field is axisymmetric, Hp is greater than
the free-electron scale height, He ' 1.3 kpc (see Sect. 4.1), so
that the field remains nearly azimuthal across the free-electron
layer (where the Galactic FD arises; see Eq. (2)), while in the
case of a bisymmetric halo field, Hp is comparable to He, so that
the field acquires a significant poloidal component within the
free-electron layer. The reason for this dichotomy as well as for
the slight difference in p0 is easily understood: in the axisym-
metric case, the field must remain nearly azimuthal in order to
reproduce the rough east-west antisymmetry in the FDobs sky,
whereas in the bisymmetric case, the field can a priori remain
nearly azimuthal or become more poloidal (see last paragraph of
Sect. 2.2).

5.3. Faraday-depth maps

Figure 5 presents the all-sky FDmod maps obtained with the best-
fit parameter values of the six magnetic field models listed in

Table 2. These modeled maps are to be compared with the ob-
servational map of FDobs in the top panel of Fig. 3.

As expected, the FDmod maps obtained with the axisymmet-
ric halo-field model C0 (left column in Fig. 5) are simpler and
show less spatial structure than those obtained with the bisym-
metric halo-field model C1 (right column), and for each halo-
field model, the three disk-field models, Ad1 (top row), Bd1
(middle row), and Dd1 (bottom row), make very little difference,
with variations noticeable only at low latitudes. Otherwise, all
FDmod maps reproduce the rough east-west antisymmetry as well
as the rough north-south antisymmetry [symmetry] toward the
inner [outer] Galaxy. The east-west pattern is actually slightly
shifted westward (by <∼10◦), with the longitudes of sign rever-
sals occurring not exactly at ` = 0◦, 180◦, but at slightly smaller
longitudes. This westward shift, which is also apparent in the ob-
servational FDobs map, is due to the slightly negative pitch angle.
Furthermore, when the halo field is bisymmetric, the westward
shift is compounded by an east-west asymmetry arising from the
azimuthal modulation of the halo field; this asymmetry is most
striking between the (very dim) north-east and (less dim) north-
west outer quadrants.

The FDmod values in the north outer quadrants are systemat-
ically too small, particularly when the halo field is axisymmetric
(left column in Fig. 5) and in the north-east outer quadrant when
the halo field is bisymmetric (right column). The problem arises
because the contributions from the symmetric disk field and from
the antisymmetric halo field partly cancel out in the north outer
quadrants, while they add up constructively in the south outer
quadrants. Since the disk-field contribution must be dominant
toward the outer Galaxy (see Sect. 2.2), the problem can be al-
leviated either by enhancing the disk-field contribution or by
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C0−Ad1 C1−Ad1

C0−Bd1 C1−Bd1

C0−Dd1 C1−Dd1

Fig. 5. All-sky maps of the bin-averaged modeled Galactic Faraday depth, FDmod, for the six best-fit magnetic field models listed in Table 2. The
left and right columns are for a halo field described by model C0 (axisymmetric) and C1 (bisymmetric), respectively, while the top, middle, and
bottom rows are for a disk field described by models Ad1, Bd1, and Dd1, respectively. The coordinate system and the color code of each map are
the same as in Fig. 3.

reducing the halo-field contribution toward the outer Galaxy,
while maintaining the dominance of the halo field toward the
inner Galaxy. Such tuning is more easily achieved with bisym-
metric fields, which possess the degree of freedom to orient their
azimuthal pattern in favor of either the outer Galaxy (for the
disk field) or the inner Galaxy (for the halo field). This is the
main reason why bisymmetric field models lead to lower χ2

red,min
than their axisymmetric counterparts (most strikingly for disk-
field models, whose axisymmetric versions were dropped from
the discussion earlier on) and why the FDmod maps obtained
with model C1 are in slightly better visual agreement with the
observational FDobs map than the FDmod maps obtained with
model C0.

We are now in a position to better understand two of the
more subtle results presented in Sect. 5.2. First, the possibility
to orient the azimuthal pattern of the halo field in model C1
in favor of the inner Galaxy explains why, when going from
model C0 to model C1, (B1)halo can increase more than (B1)disk
without the halo field imposing its north-south antisymmetry

to the outer Galaxy. Second, the lack of orientability for the
halo field in model C0 implies that combinations with C0 (first
three in Table 2) must rely more heavily on the disk field to fa-
vor the outer Galaxy; this is why they are found to have larger
best-fit values for the parameters Hdisk (in model Bd1), Ldisk (in
model Dd1), and adisk (in model Ad1) than combinations with
C1 (last three in Table 2).

5.4. Synchrotron polarisation maps

Having shown that the six best-fit magnetic field models listed in
Table 2 reproduce the observational FDobs map reasonably well,
we now use them to generate synthetic synchrotron polarization
maps of our Galaxy as would be seen by an external edge-on ob-
server. The procedure is similar to that described in Paper I: for
each of our six best-fit magnetic field models, we compute the
synchrotron emissivity, E ∝ nrel B(γ+1)/2

⊥ , throughout the Galaxy,
where B⊥ is the magnetic field component perpendicular to the
line of sight, nrel is the density of relativistic electrons (assumed
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C0−Ad1 C1−Ad1

C0−Bd1 C1−Bd1

C0−Dd1 C1−Dd1

Fig. 6. Synthetic maps of the magnetic orientation bars, inferred from the synchrotron polarized emission, of our Galaxy seen edge-on from the
position (r → ∞, ϕ = 90◦, z = 0), for the six best-fit magnetic field models listed in Table 2. The left and right columns are for a halo field
described by model C0 (axisymmetric) and C1 (bisymmetric), respectively, while the top, middle, and bottom rows are for a disk field described
by models Ad1, Bd1, and Dd1, respectively. Each map covers a circular area of radius 15 kpc, the trace of the Galactic plane is indicated by the
horizontal, red, solid line, and the rotation axis by the vertical, black, dot-dashed line. All magnetic orientation bars have the same length, and their
shade of grey scales logarithmically with the polarized intensity.
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to be ∝B2), γ is the power-law index of the relativistic-electron
energy spectrum (set to γ = 3), and the value of the proportion-
ality factor is irrelevant. We also compute the associated Stokes
parameters U and Q, knowing that synchrotron emission is (par-
tially) linearly polarized perpendicular to B⊥ and assuming that
the intrinsic degree of linear polarization is uniform throughout
the Galaxy. We then integrate U and Q along a large number
of sightlines covering the Galaxy to produce grids of polarized
intensity and polarization direction. Finally, we rotate every po-
larization direction by 90◦ to obtain the so-called magnetic ori-
entation bar, i.e., the headless vector giving the line-of-sight–
average orientation of B⊥, and we plot it in a greyscale that
varies logarithmically with the polarized intensity. The resulting
synchrotron polarization maps, which do not include any Fara-
day rotation, Faraday depolarization or beam depolarization ef-
fects, are displayed in Fig. 6 for an external observer located at
(robs → ∞, ϕobs = 90◦, zobs = 0). Their variation with ϕobs is
briefly discussed at the end of the section.

We first note that the polarization maps obtained with the
bisymmetric halo-field model C1 (right column in Fig. 6) are
perfectly symmetric with respect to the rotation axis, while those
obtained with the axisymmetric halo-field model C0 (left col-
umn) are only approximately symmetric. Indeed, in the former
case, the total field is the superposition of a bisymmetric halo
field + a bisymmetric disk field, so the total field vector is an-
tisymmetric with respect to the rotation axis and the magnetic
orientation bars form a symmetric pattern. In the latter case, the
total field is the superposition of an axisymmetric halo field + a
bisymmetric disk field, so the total field vector is neither per-
fectly symmetric nor perfectly antisymmetric with respect to
the axis and the magnetic orientation bars do not form a per-
fectly symmetric pattern; the reason why the polarization maps
look approximately symmetric is because (1) most regions in
space are dominated by either the axisymmetric halo field or the
bisymmetric disk field; and (2) asymmetries in the polarized in-
tensity are toned down by the logarithmic greyscale.

When the halo field is axisymmetric (left column in Fig. 6),
the magnetic orientation bars remain nearly horizontal almost
everywhere (or at least up to |z| ≈ 8 kpc in model C0-Dd1;
bottom-left panel) and no X shape emerges. In contrast, when
the halo field is bisymmetric (right column), the magnetic orien-
tation bars are nearly horizontal only in a thick layer along the
Galactic plane (|z| <∼ (4−5) kpc) and they turn into a V shape
(i.e., the upper or lower part of an X) on either side of this layer.
This split result is an immediate consequence of the dichotomy
in the values of the scale height of the winding function, Hp,
noted and explained in Sect. 5.2: with an axisymmetric halo
field, Hp is large (>∼4 kpc) and the field remains nearly azimuthal
up to high |z|, leading to nearly horizontal magnetic bars; with
a bisymmetric halo field, Hp is much smaller ('1.2 kpc) and
the field turns poloidal at much lower |z|, leading to an X-shape
pattern.

Here, too, the impact of the disk-field model is much weaker
than that of the halo-field model. The most obvious, yet rather
minor, difference between the three disk-field models is that the
region of nearly horizontal magnetic bars is somewhat broader
with models Ad1 (top row in Fig. 6) and Bd1 (middle row)
than with model Dd1 (bottom row). Another difference arises
in model Bd1: the magnetic bars along the rotation axis are ver-
tical, and fine-resolution maps show that they remain nearly ver-
tical out to projected distances of a few 100 pc from the axis.
This is because model Bd1 has a strong concentration of nearly
vertical field lines around the axis (see Fig. 4b), which dominates
the line-of-sight integration of the synchrotron emissivity.

The above conclusions are quite general, but the details of
the polarization maps depend on the viewing angle, ϕobs, espe-
cially when the halo field is bisymmetric. First, while the layer
of nearly horizontal magnetic bars maintains a roughly constant
thickness ('(4−5) kpc), its grey-shade distribution, which re-
flects the polarized-intensity distribution, varies with ϕobs. This
is easily understood if one remembers that the polarized intensity
depends sensitively on B⊥ near the crests of the azimuthal mod-
ulation. Second, in the X-shape region, the opening angle of the
upper and lower V that compose the X changes with ϕobs, as ex-
pected for a projected bisymmetric structure; in addition, there
may be a range of ϕobs for which magnetic bars near the axis
slope down toward the midplane instead of pointing outwards,
such that the upper and lower V actually turn into W. The latter
arises when the dominant portions of the crest regions occur in
the near-east and far-west parts of the Galaxy, where the Galactic
differential rotation tilts the projected orientation of an initially
X-shape poloidal field toward, and even past, the vertical.

In summary, amongst our six best-fit magnetic field models,
the three models with a bisymmetric halo field (model C1; right
column in Fig. 6) produce an X-shape pattern in synchrotron
polarisation maps, while those with an axisymmetric halo field
(model C0; left column) do not.

5.5. Comparison with previous work

Other authors have recently set out to determine, or at least con-
strain, the magnetic field structure in the Galactic halo. We now
briefly discuss their models, in comparison to ours.

Sun et al. (2008) modeled the large-scale magnetic field of
our Galaxy as the superposition of a disk field and a halo
field, which they constrained with an all-sky map of extragalac-
tic RMs. Their disk field was assumed to be purely horizontal,
following a logarithmic spiral (constant pitch angle), symmetric
in z, and either axisymmetric with radial reversals or bisymmet-
ric, while their halo field was assumed to be purely azimuthal,
in the form of a torus on either side of the Galactic plane, anti-
symmetric in z, and axisymmetric. Clearly, the purely azimuthal,
axisymmetric halo field is automatically divergence-free, but the
purely horizontal disk field is not – for instance, in the axisym-
metric case, the divergence-free condition implies Br ∝ 1/r,
which rules out radial reversals. Sun et al. (2008) found reason-
ably good fits to the RM data with axisymmetric disk fields hav-
ing a pitch angle of −12◦ (somewhat larger in absolute value
than in our best-fit models), whereas they found no good fits
with bisymmetric disk fields. This result is at odds with our con-
clusion that bisymmetric disk fields provide better fits. The dis-
crepancy can be mostly traced back to Sun et al.’s neglect of the
divergence-free condition, which allows their axisymmetric disk
field to undergo radial reversals and, therefore, makes it easier to
reproduce the RM data (see our discussion in the third paragraph
of Sect. 5.1).

Another problem with Sun et al.’s (2008) study is its reliance
on the NE2001 model for the free-electron density, which un-
derestimates the free-electron scale height, He (see Sect. 4.1).
An unrealistically strong halo field (≈10 µG) is then neces-
sary to account for the high-latitude extragalactic RMs, which,
in turn, requires truncating the relativistic-electron distribution
at |z| ≈ 1 kpc to avoid excessive synchrotron emission from
the halo. The problem was fixed by Sun & Reich (2010), with
the adoption of Gaensler et al.’s (2008) upward revision of He;
this led to a more realistic halo field (≈2 µG) and obviated the
need to artificially truncate the relativistic-electron distribution.
The revised model of Sun & Reich (2010) was then used by
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Sun & Reich (2012) to simulate the synchrotron emission of spi-
ral galaxies similar to our Galaxy and study their polarization
properties for various observing angles.

Later, Sun et al. (2015) noted that Sun & Reich’s (2010)
model underpredicted the Galactic FD at latitude b >∼ 50◦. They
argued that the halo field needed to have a vertical compo-
nent, and they showed that the inclusion of a dipole field with
Bz = −0.2 µG at the Sun was enough to bring the predicted
Galactic FD at b >∼ 50◦ up to the observed level. However, they
did not discuss how the Galactic FD at lower latitudes was af-
fected, nor did they specify whether the global fit to the RM data
(measured through χ2

red) was actually improved.
The vertical component of the halo field in the solar neigh-

borhood has been the subject of a few other studies. Based on the
structure of their NVSS RM map at high |b|, Taylor et al. (2009)
estimated Bz ' −0.14 µG above the midplane and Bz ' 0.30 µG
below the midplane. Mao et al. (2010), for their part, relied on
a set of more than 1000 WRST/ATCA extragalactic RMs at
|b| ≥ 77◦; after discarding outliers and anomalous RM regions,
they derived Bz ' 0.00 µG toward the north Galactic pole (with
a 3σ upper limit on |Bz| of 0.07 µG) and Bz ' +0.31 µG toward
the south Galactic pole. The south value is very close to that
of Taylor et al. (2009), but the north value is incompatible with
those of Taylor et al. (2009) and Sun et al. (2015). Nevertheless,
the results of both Taylor et al. (2009) and Mao et al. (2010) are
consistent with the notion that the large-scale Galactic magnetic
field is the superposition of a symmetric disk field and an anti-
symmetric halo field, whose contributions to high-|b| RMs can-
cel out above the midplane and add up below it. In Taylor et al.
(2009) the symmetric contribution would dominate (see foot-
note 4), while in Mao et al. (2010) both contibutions would be
comparable.

For comparison, in each of our six best-fit models, the av-
erage Bz toward either Galactic pole, as inferred from the ratio
of Galactic FD to free-electron column density, is positive. The
contribution from the halo field is always positive and dominant.
The weaker contribution from the disk field is negative [positive]
above [below] the midplane in models Ad1 and Bd1, and vice-
versa in model Dd1. This is a direct consequence of imposing
(Br)� < 0 (see Sect. 4.1), which, in view of the shape of poloidal
field lines, implies (Br)disk < 0 and (Bz)disk < 0 [(Bz)disk > 0] in
the northern [southern] halo in models Ad1 and Bd1, and the op-
posite in model Dd1, where poloidal field lines reverse direction
at z = z1 (see Eq. (18)). As a result, the average Bz is stronger to-
ward the south Galactic pole with models Ad1 and Bd1 (as found
by both Taylor et al. 2009 and Mao et al. 2010) and stronger to-
ward the north Galactic pole with model Dd1 (in conflict with
the measured high-|b| RMs). Hence, high-|b| RMs give more cre-
dence to models Ad1 and Bd1 than model Dd1.

Additional constraints on the halo field were obtained by
Mao et al. (2012), based on 641 extragalactic RMs at longitude
100◦ < ` < 117◦ and latitude |b| < 30◦. The vast majority of the
RMs are negative, as expected for a predominantly azimuthal,
clockwise magnetic field. The RM latitudinal distribution is ap-
proximately symmetric up to |b| ' 15◦, and it becomes increas-
ingly asymmetric at higher |b|, with significantly larger |RM|
in the southern hemisphere. Mao et al. (2012) noted that the
RM distribution at |b| <∼ 15◦ is consistent with a symmetric disk
field in the Perseus arm. They also showed that the RM distri-
bution at |b| >∼ 15◦ could be reproduced with a purely azimuthal
halo field confined to the radial range [8.8, 10.3] kpc (assum-
ing r� = 8.4 kpc), i.e., between the local and Perseus arms, and
to the vertical ranges ±[0.8, 2.0] kpc, with Bϕ = 2 µG [7 µG]
above [below] the midplane. Here, we see that the RM latitudinal

distribution can also be explained by the superposition of a sym-
metric disk field and an antisymmetric halo field, such that the
disk field contribution largely dominates at |b| <∼ 15◦ and the halo
field contribution becomes increasingly important at higher |b|,
opposing the disk field contribution in the northern hemisphere
and reinforcing it in the southern hemisphere. In our study, the
six best-fit models yield negative Galactic FD throughout the
17◦ × 60◦ area surveyed by Mao et al. (2012), except for slightly
positive values at b >∼ 15◦ with model C1, and they reproduce
the observed trends of RM versus b quite well.

The first, and to our knowledge only, authors to include an
X-shape component in their model of the large-scale Galactic
magnetic field are Jansson & Farrar (2012a,b). The disk field
in their model is symmetric in z, purely horizontal, and com-
posed of a ring between radii 3 kpc and 5 kpc plus 8 logarith-
mic spirals between 5 kpc and 20 kpc, with a common pitch an-
gle of −11.5◦ and separate field strengths constrained by global
magnetic flux conservation. The halo field has two axisymmet-
ric components: a purely azimuthal field with opposite signs
and different strengths on both sides of the midplane (similar
to the halo field of Sun et al. 2008; Sun & Reich 2010, but more
general because not perfectly antisymmetric in z), and a purely
poloidal field with an X shape (similar to the poloidal field in
our model C, but with straight field lines and a cusp at z = 0).
These two components are unrelated, in contradiction with dy-
namo theory which predicts that azimuthal field is generated
from poloidal field and vice-versa. Jansson & Farrar (2012a,b)
found that the inclusion of an X-shape component improved the
global fit to their data set, which contained the WMAP7 Galac-
tic synchrotron emission map together with a collection of more
than 40 000 extragalactic RMs. The improvement brought about
by an X-shape poloidal field is also obvious in our study, where
the pitch angle is found to have non-zero values to a high confi-
dence level.

6. Discussion

In this paper, we took a first important step in our efforts to un-
derstand the structure of the large-scale magnetic field in the
Galactic halo, with special attention to the possibility of uncov-
ering an X-shape magnetic configuration, as observed in external
edge-on spiral galaxies. We applied the analytical magnetic field
models developed in Paper I to the disk and halo of our Galaxy,
on the basis that these models can describe a broad range of spi-
raling, possibly X-shape magnetic fields, including purely hori-
zontal and purely vertical fields as limiting cases. We considered
35 models of the total (halo + disk) magnetic field, each com-
posed of one of our 7 antisymmetric halo-field models, A1, B0,
B1, C0, C1, D0, and D1, plus one of our 5 symmetric disk-field
models, Ad1, Bd0, Bd1, Dd0, and Dd1 (where 0 and 1 denote ax-
isymmetric and bisymmetric fields, respectively). For each total-
field model, we computed the average Galactic Faraday depth
in the 356 bins covering the sky area at |b| ≥ 10◦, and we con-
fronted the resulting modeled map of FDmod to the observational
map of FDobs displayed in the top panel of Fig. 3 (based on the
reconstructed Galactic FD map of Oppermann et al. 2015, from
which the contribution from Wolleben et al.’s 2010 magnetized
bubble was advantageously removed). The adjustment of FDmod

to FDobs was carried out through standard χ2 minimization, with
the help of MCMC simulations.

We found that the 6 total-field models composed of C0 or
C1 (for the halo field) plus Ad1, Bd1, or Dd1 (for the disk field)
(listed in Table 2) had significantly lower χ2

red,min than any of
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the other total-field models. Amongst them, models with C1
have slightly lower χ2

red,min (2.02−2.08) than models with C0
(2.26−2.42), and they provide a slightly better visual match to
the observational FDobs map (see Fig. 5). Neither the value of
χ2

red,min nor the appearance of the FDmod map is significantly af-
fected by the disk-field model. The only discriminating factor
comes from high-|b| RMs, which tend to favor models Ad1 and
Bd1 over model Dd1.

Thus, regardless of the bisymmetric disk field, the three mod-
els with a bisymmetric halo field perform slightly (but systemati-
cally) better with regard to the Galactic FD than the three models
with an axisymmetric halo field. As it turns out, the former also
produce an X-shape pattern in synchrotron polarisation maps,
while the latter lead to nearly horizontal magnetic orientation
bars throughout most of the maps (see Fig. 6). As explained in
Sects. 5.2 and 5.4, this difference in the polarisation maps stems
from the rough east-west antisymmetry in the FDobs sky, which
has strong implications for the azimuthal-to-poloidal field ratio:
in the axisymmetric case, the field must necessarily be nearly
azimuthal up to high |z| – hence the nearly horizontal magnetic
orientation bars, whereas in the bisymmetric case, the field can
turn poloidal at relatively low |z| – hence the X-shape pattern.

In conclusion, the existing RM data, interpreted with the help
of our (hopefully sufficiently general) magnetic field models,
suggest that the Galactic halo is slightly more likely to have a
bisymmetric field than an axisymmetric field. If the halo field is
indeed bisymmetric, it would probably be seen as X-shaped by
an external edge-on observer, while it would probably be seen
as nearly horizontal if it is instead axisymmetric. We empha-
size that the preference found here for a bisymmetric, X-shape
halo field cannot be regarded as definite, first because it is
based solely on RM data and second because the bisymmetric
halo field performs only slightly better than its axisymmetric
counterpart.

The results obtained for the disk field – in particular, the find-
ing that the disk field is more likely to be bisymmetric – are
even more subject to caution. Indeed, since our original inter-
est was in the halo field, we excluded all sightlines toward the
disk (|b| < 10◦), and the main reason why we needed to model
the disk field was because even sightlines toward the halo must
first pass through the disk. By essence, these sightlines miss a
sizeable fraction of the disk field, so our analysis can only give
partial information on the global properties of the disk field, such
as its axisymmetric versus bisymmetric status.

A severe limitation of the RM data arises from the relatively
rapid fall-off of the free-electron density with height, which
makes it hard to sample the Galactic magnetic field at large dis-
tances from the Galactic plane. Therefore, any method relying
exclusively on RM data is not particularly well suited to look into
the structure of the magnetic field in the Galactic halo. On the
other hand, RM data have the unique advantage of containing a
sign information, which is required to distinguish between sym-
metric and antisymmetric models or between axisymmetric and
bisymmetric models. Ultimately, RM data provide a unique, al-
beit limited, set of constraints on the properties of the large-scale
magnetic field in the Galactic halo. Obtaining a more complete
set of constraints will require fitting our magnetic field models
to other types of observations, such as synchrotron total and po-
larized emission.

Despite the inherent limitation of the RM data to explore the
magnetic field structure in the Galactic halo, our investigation of-
fers a first important glimpse. In addition, our search for a good
fit to the observational FDobs map led us to improve and refine

the analytical magnetic field models of Paper I. Most notably,
we derived a more realistic winding function (Eq. (23)), applica-
ble to all our field models, and we regularized the bisymmetric
version of model A by assuming a straight, horizontal magnetic
field inside a vertical cylinder of radius r1 centered on the ro-
tation axis (see Eq. (29) for halo fields and Eq. (31) for disk
fields). Finally, the method proposed in this paper is interesting
in its own right: it contains a number of original features, includ-
ing a detailed error estimation (see Appendix A), which can be
retained for similar investigations. As a possible application, we
suggest using our method to study the magnetic field structure in
targeted regions of the sky. We also suggest repeating the present
analysis when new RM data in the southern hemisphere become
available to fill in the gap at δ < −40◦ in Taylor et al.’s (2009)
NVSS catalog12, and when the nearby objects that significantly
perturb the FD sky have been identified, and their FD quanti-
fied, through RM synthesis (see Wolleben et al. 2010), such that
a more complete and cleaner all-sky FDobs map can be produced.
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Appendix A: Uncertainty estimation

When using the FDobs map in the top panel of Fig. 3 as our obser-
vational reference to model the large-scale magnetic field in the
Galactic halo, we have to take two main sources of uncertainty
into account: (1) the uncertainty in the reconstructed Galactic
FD map of Oppermann et al. (2015), which includes both the
measurement errors in the RM data and an extragalactic RM con-
tribution; and (2) the uncertainty due to turbulent fluctuations in
the magneto-ionic ISM. If, for each bin i, we denote the corre-
sponding uncertainties in FDobs,i byσrec,i andσturb,i, respectively,
and if we note that the two uncertainties add up quadratically, we
can write for the total uncertainty in FDobs,i, σi:

σ2
i = σ2

rec,i + σ2
turb,i. (A.1)

We now successively derive the appropriate expressions of σ2
rec,i

and σ2
turb,i.

The reconstructed Galactic FD map of Oppermann et al.
(2015) provides, for each pixel j, a value of the observational
FD, FDobs, j, and the accompanying uncertainty map provides
the associated uncertainty,σpixel, j. When the FDobs, j are averaged
over bin i, the individual uncertainties σpixel, j partially cancel out
(as in a random walk), such that the uncertainty squared in the
average value FDobs,i is equal to the mean individual uncertainty
squared divided by the number Ndata,i of independent data points
in bin i. Note that Ndata,i is generally less than the number Npixel,i
of pixels in bin i. With 41 632 extragalactic RM data points and
196 608 pixels distributed over 428 bins, we find that on aver-
age Ndata,i = 97 and Npixel,i = 459. Altogether, the uncertainty
in FDobs,i associated with the reconstruction of Oppermann et al.
(2015) is given by

σ2
rec,i =

1
Ndata,i

 1
Npixel,i

Npixel,i∑
j=1

σ2
pixel, j

 . (A.2)

To estimate the turbulent contribution to σ2
i , we adopt a very

crude model of interstellar turbulence, which we assume con-
sists of turbulent cells, all of which have the same size l, cause
a magnetic field perturbation δB with constant strength and ran-
dom direction, and produce no perturbation in the free-electron
density. The FD associated with an individual turbulent cell can
then be written as

σcell = ne δB‖ l, (A.3)

where ne is the background free-electron density at the cell’s
location (given by Schnitzeler’s 2012 updated version of the
NE2001 model, as described in Sect. 4.1) and δB‖ is the
rms line-of-sight component of δB. For an isotropic turbulent
magnetic field, δB‖ = δB/

√
3. Here, we adopt δB = 5 µG

(Rand & Kulkarni 1989; Ohno & Shibata 1993) and l = 100 pc
(Haverkorn & Spangler 2013, and references therein).

To properly account for the line-of-sight variations of the
number and FD of turbulent cells contributing to σ2

turb,i, we di-
vide the Galactic volume subtended by bin i into Nlayer,i succes-
sive layers of thickness l. For future reference, if we denote by
Li the effective path length from the observer to the edge of the
Galaxy in the direction of bin i, we simply have Nlayer,i = Li/l.
We identify each layer by its running number k (starting from
k = 1 in the closest layer), and we denote by Ncell,ik the statisti-
cal number of turbulent cells in layer k of bin i. As illustrated in
Fig. A.1, there is an important difference between distant and

nearby layers. A distant layer of bin i encloses several cells,
whose contributions to FDobs,i tend to statistically average out
over the layer. In contrast, a nearby layer of bin i can be com-
pletely filled with a single cell, which then gives a coherent con-
tribution (with no averaging-out) across the layer. Since all the
bins have an angular size θbin ' 10◦ (see Sect. 2.1), the transition
from a single cell to several cells per layer occurs at a line-of-
sight distance Ltr = l/θbin ' 570 pc, i.e., after a number of layers
Nnear = Ltr/l = 1/θbin ' 5.7. Thus, for k ≤ Nnear, Ncell,ik = 1,
while for k ≥ Nnear, Ncell,ik = (θbin k)2 = (k/Nnear)2.

The contribution from layer k of bin i to σ2
turb,i is equal to the

mean FD squared of the enclosed turbulent cells divided by the
number Ncell,ik of these cells:

σ2
layer,ik =

1
Ncell,ik

 1
Ncell,ik

∑
Ncell,ik

σ2
cell

 . (A.4)

Finally, the uncertainty in FDobs,i due to turbulent fluctuations in
the magneto-ionic ISM is the quadratic sum of the contributions
from the Nlayer,i layers of bin i:

σ2
turb,i =

Nlayer,i∑
k=1

σ2
layer,ik. (A.5)

Let us emphasize that Eq. (A.5) provides only a very rough
expression for σturb,i, which ignores spatial variations in the tur-
bulence parameters (e.g., in the size and field strength of turbu-
lent cells) as well as correlations between them (e.g., between
fluctuations in field strength and in free-electron density). In that
respect, we note that spatial variations in the turbulence param-
eters are partly washed out when summing over all the layers
along the line of sight to obtain σ2

turb,i (Eq. (A.5)) and when sum-
ming over all the bins to obtain χ2 (Eq. (38)). There might also
be some cancellation, for instance, between δB being larger and l
being smaller in spiral arms than in interarm regions (see, e.g.,
Beck 2009, Haverkorn et al. 2008, respectively) and between δB
decreasing (together with B) and l increasing with increasing |z|
(Ann Mao, priv. comm.). Incidentally, the variations of δB and l
with |z| are probably not too critical, as they are weighted down
by a decreasing ne.

Let us also remark that σturb,i is sensitive to the poorly known
values of l and δB. To quantify this sensitivity, we write out the
full expression of σ2

turb,i by inserting Eqs (A.3) into (A.4) and
Eqs. (A.4) into (A.5). If we denote by (n2

e)ik the mean value of n2
e

over layer k of bin i and by N′near the closest integer below Nnear
(defined above Eq. (A.4)), we readily obtain

σ2
turb,i =

1
3
δB2 l2

N′near∑
k=1

(n2
e)ik + N2

near

Nlayer,i∑
k=N′near+1

(n2
e)ik

k2

 , (A.6)

where the first term represents the contribution from the N′near
nearest layers, which contain a single cell (Ncell,ik = 1), and the
second term represents the contribution from the Nlayer,i − N′near
more distant layers, which contain more than one cell (Ncell,ik =
(k/Nnear)2). It emerges from Eq. (A.6) that σturb,i varies linearly
with δB. This is because σturb,i depends on δB only through the
FD of individual turbulent cells, σcell, which is a linear func-
tion of δB (see Eq. (A.3)). Variations with l are a little more
subtle: in addition to an explicit linear variation similar to that
found for δB, there is a more complex implicit variation through
(n2

e)ik = (n2
e)i(s = k l) and Nlayer,i = Li/l. The former arises

through σcell, which is a linear function of l (see Eq. (A.3)),
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Sun

layer k

Ltr

bin i

Fig. A.1. Schematic drawing illustrating the concept of turbulent cells and layers used in our estimation of σturb,i, the uncertainty in FDobs,i arising
from turbulence in the magneto-ionic ISM, for a particular bin i (see Eq. (A.5) and attendant discussion). The Galactic volume subtended by bin i
(delimited by the four black dotted lines originating from the Sun) is divided into transverse layers of thickness l (delimited by black solid lines).
These layers contain an increasing number of turbulent cells of size l (represented by opaque blue spheres, while transparent blue spheres represent
cells falling outside the bin). The distance Ltr from the Sun marks the transition between the so-called nearby layers, which can be completely
filled with a single cell, and the distant layers, which enclose several cells.

while the latter results from the way the individual σcell com-
bine together to produce a net σturb,i. As we now show, the im-
plicit variation with l is actually quite weak. Indeed, our chosen
parameter values pertain to the limit Li � Ltr or, equivalently,
Nlayer,i � Nnear, which has two important consequences. First,
the exact value of Nlayer,i, which enters Eq. (A.6) only as the up-
per bound of a rapidly converging series, has hardly any impact.
Physically, only the N′near nearest layers, with a single cell, and
the next few layers, with a small number of cells, contribute sig-
nificantly to σturb,i; more distant layers have their contributions
increasingly reduced by averaging over an increasing number of
cells (prefactor 1/Ncell,ik in Eq. (A.4), leading to the factor 1/k2

in the second term of Eq. (A.6)). Second, the value of (n2
e)ik in

the first few, significantly-contributing layers is not very differ-
ent from the local value of n2

e , and hence not very sensitive to l.
Altogether, σturb,i varies a little less than linearly with l.

Plotted in Fig. A.2 is the total uncertainty in FDobs,i, σi
(thick magenta line), for the 356 bins with latitude |b| ≥
10◦, together with the contributions from the reconstruction of
Oppermann et al. (2015), σrec,i (red line), and from turbulent
fluctuations, σturb,i (brown line). Also shown are the contribu-
tions to σturb,i from the N′near nearest layers, which contain a sin-
gle turbulent cell (thin green line), and from the Nlayer,i − N′near
more distant layers, which contain more than one cell (thin blue
line). It appears that, for our choice of parameter values, σturb,i
is typically one order of magnitude larger than σrec,i and σturb,i
generally has comparable contributions from nearby and distant

layers. There is a general tendency for σrec,i to decrease with
increasing |b| (toward the ends of the x-axis) and a weaker ten-
dency for σturb,i to do so above the midplane (in the right half
of the figure). In addition, both σrec,i and σturb,i undergo mod-
ulations with longitude, `. The modulation of σrec,i, mostly ap-
parent below the midplane (in the left half of the figure), arises
from a lack of data points with declination δ < −40◦. In con-
trast, the periodic fluctuations of σturb,i, visible at all latitudes,
are linked to the spatial (mainly longitudinal) variations of the
free-electron density in the local ISM. Finally, the sharp peaks
around i = 150 and i = 258 find their origin in strong, localized
enhancements in the free-electron density associated with nearby
interstellar structures (mainly the Gum nebula and the Vela su-
pernova remnant; see Purcell et al. 2015, and references therein).
These peaks hardly affect the results of our analysis: they only
reduce the weight of the corresponding bins in the expression of
χ2 (Eq. (38)).

Appendix B: Impact of the model parameters
on the FDmod map

For compactness, the present discussion focuses on the halo-field
models, A, B, C, and D (presented in Sect. 3.1), but all our con-
clusions also hold for the corresponding disk-field models, Ad,
Bd, and Dd (presented in Sect. 3.2) – remember that there is no
model Cd.
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Fig. A.2. Total uncertainty in FDobs,i, σi, as a function of bin identifier, i (thick magenta line), for the 356 bins with latitude |b| ≥ 10◦. Also plotted
are the two contributions to σi (see Eq. (A.1)), which arise from the reconstruction of Oppermann et al. (2015) (σrec,i; red line) and from turbulence
in the magneto-ionic ISM (σturb,i; brown line), respectively. The latter, in turn, is accompanied by its two contributions (see Eq. (A.6)), which arise
from the N′near nearest layers (thin green line) and from the Nlayer,i − N′near more distant layers (thin blue line), respectively. Bins are ordered by
bands of increasing latitude, from b = −90◦ to 90◦, and in each latitude band, by increasing longitude, from ` = −180◦ to 180◦. The vertical grey
band in the middle corresponds to bins with latitude |b| < 10◦, which are excluded from our study.

All the field models are expressed in terms of a small number
of free parameters, which are related to either the shape of field
lines or the field strength distribution. The parameters govern-
ing the spiral shape of field lines (p0, Hp, Lp; see Eq. (23)) are
common to all the models; the parameters governing the shape
of poloidal field lines (r1, |z1|, a, n; see Eqs. (3), (7), (12), (16))
apply each to one pair of models (A and B, C and D, A and C,
B and D, respectively); and the parameters governing the field
strength distribution (B1, H, L, m, ϕ?; see Eqs. (11) and (20))
enter either all the models or only one pair of models (all, A and
B, C and D, all, all, respectively). The azimuthal wavenumber, m,
stands apart for its discrete values, which we further restricted in
Sect. 5.1 to m = 0 (axisymmetric) and m = 1 (bisymmetric).
In this appendix, we successively consider these two values, and
for each, we discuss the impact of all the other free parameters
on the modeled FDmod map, noting that ϕ? is relevant only when
m , 0. Because the discussion of the m = 0 case will serve as a
basis for the m = 1 case, we prefer to keep model A in the for-
mer, even though the inherent singularity of model A can only be
removed in non-axisymmetric configurations (see Sect. 3.1.4).

B.1. Axisymmetric (m = 0) case

We first consider the parameters governing the field strength
distribution: the normalization field strength, B1 (in Eqs. (11)
and (20)), the exponential scale height, H (in Eq. (11) for mod-
els A and B), and the exponential scale length, L (in Eq. (20) for
models C and D). The effect of B1 is straightforward. The two
poloidal components of the magnetic field (given in Sect. 3.1.1),
as well as its azimuthal component (given by Eq. (28)), vary lin-
early with B1. The same must hold true for the line-of-sight field
component, and hence for the Galactic FD (Eq. (2)). In conse-
quence, B1 sets the overall amplitude of the FDmod map, with no
impact on its detailed structure. H and L, for their parts, con-
trol the vertical and radial profiles of the field strength on the

reference surface and, by implication, throughout the Galaxy.
Small values of H or L entail a rapid fall-off of the field strength
with |z| or r, which, in turn, tends to confine the large FD values
to low |b| or small `, respectively. Accordingly, the FDmod map
tends to be dominated by a band along the Galactic plane (with
longitudinal modulation; see next paragraph) or along the prime
(` = 0◦) meridian, respectively. Larger values of H or L tend to
maintain large FD values up to higher |b| or out to larger `, so
that the FDmod map tends to show a distribution that is more ex-
tended in latitude or in longitude, respectively. It should be em-
phasized, though, that the effect of H and L is weighted by the
free-electron density and, therefore, becomes increasingly weak
as H or L grows above the free-electron scale height or scale
length, respectively.

We now turn to the parameters governing the spiral shape of
field lines, i.e., the parameters involved in the shifted winding
function (Eq. (23)): the pitch angle at the origin, p0, the vertical
scale height, Hp, and the radial scale length, Lp. As indicated by
Eq. (28), the ratio of azimuthal-to-poloidal field varies with r and
z and goes to zero for r → ∞ or |z| → ∞. In the limit p0 → 0◦,
the field is purely azimuthal throughout the Galaxy, so that the
Galactic FD (Eq. (2)) reverses sign at ` = 0◦, 180◦ and peaks at
intermediate ` in the inner Galactic quadrants. The FDmod map
is then approximately13 antisymmetric with respect to the prime
meridian and dominated (in each hemisphere) by two patches of
opposite signs on either side of the prime meridian. Conversely,
in one of the three limits |p0| → 90◦, Hp → 0, or Lp → 0,
the field is purely poloidal everywhere (except at z = 0, when
only Hp → 0), so that the Galactic FD generally peaks around
` = 0◦, with a secondary peak around ` = 180◦, and reverses
sign at intermediate `. The FDmod map is then approximately13

symmetric with respect to the prime meridian and dominated (in
each hemisphere) by one patch straddling it. Between these two

13 Not perfectly, because the free-electron density distribution is not
perfectly axisymmetric.
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extremes, an increase in |p0| or a decrease in Hp or Lp tends
to make the field globally more poloidal, thereby shifting the
longitudes of FD reversals from ` = 0◦, 180◦ toward interme-
diate ` and the longitudes of peak FD from intermediate ` to-
ward ` = 0◦ (stronger peak) and ` = 180◦ (weaker peak). While
the value of |p0| affects the whole sky, the values of Hp and Lp
have more limited effects, which are mainly felt at high |b| and
large |`|, respectively.

We finish with the parameters governing the shape of
poloidal field lines: the reference radius, r1 (in models A and B),
the positive reference height, |z1| (in models C and D), the open-
ing parameter of parabolic field lines, a (in Eq. (3) for model A
and Eq. (12) for model C), and the power-law index, n (in Eq. (7)
for model B and Eq. (16) for model D). In the present study, the
reference radius is set to r1 = 3 kpc (a plausible value for the in-
ner radius of the Galactic disk), and the positive reference height
is set to |z1| = 0 in model C and |z1| = 1.5 kpc (a plausible
value for the transition height between the disk and the halo) in
model D. The power-law index turns out to have very little im-
pact on the FDmod map up to at least n = 5. This allows us, for the
purpose of speeding up the fitting process, to fix n at its smallest
acceptable value, i.e., n = 1 in model B, n = 0.5 in model D,
n = 2 in model Bd, and n = 0.5 in model Dd. The opening pa-
rameter is more critical, as we now discuss along general lines.
To simplify the discussion, we focus on one hemisphere, keep-
ing in mind that the situation in the other hemisphere is either
the same or opposite according to whether the magnetic field is
symmetric or antisymmetric.

– In model A, small values of a imply that the poloidal field is
nearly radial and the total field nearly horizontal. The Galac-
tic FD then has a sinusoidal-like variation with `, weighted
toward the inner Galaxy and with zero point depending on
pitch angle. Accordingly, the FDmod map is dominated by
two patches of opposite signs, with the innermost (lower |`|)
patch being predominant. For larger values of a, poloidal
field lines are curved toward the rotation axis, and their spac-
ing in azimuthal planes increases with increasing r, hence
a faster decline in poloidal field strength and (since Bϕ is
linearly related to Br and Bz; see Eq. (28)) in total field
strength. In the FDmod map, the two dominant patches be-
come weaker – especially the outermost patch, which rapidly
fades away – and the line of sign reversal between them
(where the field is on average perpendicular to the line of
sight) moves away from the pole, toward the innermost
patch.

– In model C, small values of a imply that the poloidal field is
nearly vertical. The associated Galactic FD keeps the same
sign throughout the considered hemisphere, but a generally
larger FD, which reverses sign across the prime meridian
arises from the azimuthal field. Accordingly, the FDmod map
has a single-sign background, onto which are superimposed
two patches of opposite signs on either side of the prime
meridian. For larger values of a, poloidal field lines are
curved toward the Galactic plane, and their spacing in az-
imuthal planes increases with increasing |z|, hence a faster
decline in total field strength. In the FDmod map, the two
patches can be either enhanced or weakened, and the line
of sign reversal between them moves toward the pole.

In both models A and C, the regions where field lines are most
affected by a change in a happen to be the regions where the
free-electron density is lowest. This automatically places a limit
to the influence of a.

B.2. Bisymmetric (m = 1) case

The bisymmetric case is generally more complex. The parame-
ters governing the field strength poloidal distribution (B1, H, L)
have basically the same impact on the FDmod map as in the ax-
isymmetric case. The other parameters have the same effect on
the spiral and poloidal shapes of field lines, but their exact im-
pact on the FDmod map is more difficult to determine, because it
now depends in a strong and fine way on a combination between
the shifted winding function, gϕ (Eq. (23)) and the orientation
angle of the azimuthal pattern, ϕ? (in Eqs. (11) and (20)).

As it turns out, clear predictions can be made only in the limit
|p0| → 90◦ (or, almost equivalently, Hp → 0 or Lp → 0), where
gϕ → 0 and, therefore, the magnetic field is purely poloidal (see
Eqs. (27) or (28)). In this limit, if ϕ? = 0◦ or 180◦, the field
azimuthal modulation (given by the cosine factor in Eqs. (11)
and (20)) reaches its maximum amplitude in the azimuthal plane
through the Sun (ϕ = 0◦), i.e., in the plane ` = 0◦, 180◦, where
the projection factor of the poloidal field onto the line of sight
is also maximum. It then follows that the FDmod map resembles
that obtained in the axisymmetric case: it is approximately sym-
metric with respect to the prime meridian, with (in each hemi-
sphere) a dominant patch straddling it and a line of sign reversal
on either side of this patch. In addition, FD has nearly the same
peak value, but falls off faster than in the axisymmetric case. If
ϕ? = ±90◦, the field azimuthal modulation reaches its maximum
amplitude in the azimuthal plane parallel to the plane of the sky
(ϕ = ±90◦) and goes through zero in the azimuthal plane through
the Sun (ϕ = 0◦), so that FD vanishes at ` = 0◦, 180◦. FD also
vanishes at two intermediate ` of opposite signs where the field
is on average perpendicular to the line of sight. The FDmod map
is then approximately antisymmetric with respect to the prime
meridian and composed (in each hemisphere) of four longitudi-
nal sectors of alternating signs. Moreover, the peak FD values
are smaller than in the axisymmetric case, because the poloidal
field in the plane of maximum amplitude loses a fraction of its
strength upon projection onto the line of sight. Intermediate val-
ues of ϕ? lead to asymmetric configurations with two or four
lines of sign reversal and with peak FD values smaller than in
the axisymmetric case.

When |p0| , 90◦, the magnetic field has a non-vanishing az-
imuthal component, which gives field lines a spiral shape. The
azimuthal modulation, imposed on the reference surface, is car-
ried along the spiraling field lines, such that the field generally
reverses direction one or several times along any given line of
sight. These field reversals lead to an overall reduction of the
FD values and to a more structured FDmod map, whose details
depend sensitively on the exact gϕ − ϕ? combination.

Appendix C: Confidence intervals and correlations

C.1. Confidence intervals

The different best-fit parameters discussed in Sect. 5.2 are ob-
tained with very different degrees of accuracy (see Table 2).
The most-accurately determined parameter is the pitch angle
at the origin, p0, which is obtained to better than ≈±3◦ at
the 1σ confidence level when the halo field is axisymmetric
(model C0) and better than ≈±1.3◦ when the halo field is bisym-
metric (model C1). At the other extreme, the orientation angle
of the azimuthal pattern, ϕ?, for a bisymmetric field is always
very poorly constrained: when the halo field is axisymmetric,
the 1σ confidence interval of (ϕ?)disk covers the entire ±180◦
range, and when the halo field is bisymmetric, the 1σ confidence
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intervals of (ϕ?)disk and (ϕ?)halo are nearly the same and both
≈100◦−160◦.

The parameters B1, H, L, and
√

a are obtained to better than
a factor ≈2, with two exceptions. First, in the combination C0-
Dd1, Ldisk approaches the free-electron scale length, Le ' 11 kpc
(see Sect. 4.1), such that its 1σ upper confidence limit can only
be inferred to be �Le (for that reason, it is set to ∞ in Table 2)
and its 1σ lower confidence limit is also quite uncertain. Second,
in C1-Ad1, the 1σ lower confidence limit of

√
adisk approaches

zero, corresponding to purely horizontal field lines.
The scale height of the winding function, Hp, is well con-

strained as long as Hp 4 He, with an accuracy better than
≈± 15% when the halo field is bisymmetric and ≈± 25% in C0-
Dd1. However, in C0-Ad1 and C0-Bd1, where Hp � He, neither
the best-fit value nor the 1σ upper limit of Hp can be derived
with any accuracy; only an approximate 1σ lower limit can be
drawn. Similarly for the scale length of the winding function, Lp:
in all the total-field models, Lp � Le and only an approximate
1σ lower limit can be drawn. This is because, when Hp � He
or Lp � Le, the magnetic field inside the free-electron region
(where the Galactic FD arises) depends only weakly on the ex-
act value of Hp or Lp, respectively, which, therefore, can hardly
be constrained by the FDobs map. As it turns out, this weak de-
pendence on Hp or Lp extends to the whole Galactic region with
non-negligible magnetic field, which means that the large un-
certainties in Hp or Lp are luckily not critical for our magnetic
field models. Thus, we may set Hp or Lp to a somewhat arbitrary
value that is large compared to the size of the Galactic magnetic
region and yet small compared to the distance to the external in-
tergalactic medium where field lines are supposed to be anchored
(see Sect. 3.1.2). For instance, we may let Lp = 50 kpc in all the
total-field models and Hp = 20 kpc in C0-Ad1 and C0-Bd1. In
the latter models, Eq. (28) then implies that the azimuthal field
component is simply given by Bϕ ' cot p0 Br, i.e., the pitch an-
gle is nearly constant, throughout the magnetic region.

Another issue that should be addressed here concerns the re-
strictions imposed on the large-scale magnetic field at the Sun,
namely, B� ∈ [1, 2] µG and p� ∈ [−15◦,−4◦] (see Sect. 4.1).
The imposed range of p� turns out to have no impact on the
final results, as the 1σ confidence intervals of p� in all six total-
field models fall well inside the imposed range of [−15◦,−4◦].
Note that p� is always close to p0: the best-fit values differ by
only '0.7◦−0.8◦ and the histograms look very similar. This is
obviously a direct consequence of the large values of Lp. On the
other hand, the imposed range of B� directly affects our results:
the 1σ confidence intervals of B� are clearly cut off either at
2 µG (in models C0-Ad1 and C0-Bd1) or at both 1 µG and 2 µG
(in the three models with C1).

C.2. Correlations

The confidence intervals shown in Table 2 ignore the possible
correlations and degeneracies between parameters. To uncover
the important correlations, we consider all the parameters two
by two, plot the associated 2D marginalized point densities from
the second halves of the relevant Markov chains (see Sect. 4.2),
visually examine the 2D density plots, and compute the Pearson
and Spearman correlation coefficients as indicators of linear and
nonlinear relations, respectively.

In all models, we find strong anti-correlations between B1
and either H (in models Ad1 and Bd1) or L (in models C0,
C1, and Dd1), as well as somewhat weaker anti-correlations
between p0 and both Hp and Lp. These conform to the ex-
pected anti-correlation between the normalization value and the
scale height/length of a governing quantity. We also find strong
anti-correlations between (B1)disk and p0, plus, in some models,
weaker anti-correlations between (B1)halo and p0. Physically, an
increase in p0, corresponding to a decrease in |p0|, entails an
increase in |Bϕ| (especially at low |z| (see Eq. (28)), i.e., in the
disk), and hence a global increase in |FDmod| (especially at low
|b| (see Eq. (2), with B‖ having a contribution ∝ cos b from Bϕ),
i.e., mostly through the disk). To recover a good fit to the ob-
servational FDobs map, this global increase in |FDmod| must be
counterbalanced by a decrease in (B1)disk, sometimes accompa-
nied by a decrease in (B1)halo.

The correlations between the disk and halo field parame-
ters are generally weak and not necessarily negative (as might
naively be expected). This is because the contributions from the
disk and halo fields to FDmod generally add up in some regions
and cancel out in other regions. There is, however, one notable
exception: when the halo field is bisymmetric, the orientation
angles (ϕ?)disk and (ϕ?)halo are nearly perfectly correlated. This
means that the azimuthal patterns of the disk and halo fields have
a narrowly-constrained relative orientation, so that they remain
locked to each other even as their combined pattern rotates about
its best-fit orientation and as the other parameters vary about
their best-fit values.

The orientation angle (ϕ?)disk is also strongly correlated with
the parameters of the winding function, p0, Hp, and Lp. Re-
member that (ϕ?)disk gives the orientation of the bisymmetric
azimuthal pattern of the disk field at infinity (see Sect. 3.1.2, be-
low Eq. (26)), whereas the FDmod map is most sensitive to its
orientation in the nearby outer Galaxy (see north-south symme-
try argument in Sect. 2.2). Both orientations are linked through
the winding function. Therefore, a change in (ϕ?)disk can roughly
preserve the azimuthal pattern of the disk field in the nearby
outer Galaxy if it is offset by appropriate changes in p0, Hp, Lp.
In practice, due to the tight winding of field lines, a small change
in p0 can be sufficient to offset any change in (ϕ?)disk. This ex-
plains the narrow (<∼±3◦) and total (±180◦) 1σ confidence inter-
vals of p0 and (ϕ?)disk, respectively, when the halo field is ax-
isymmetric. When the halo field is bisymmetric, the FDmod map
is also very sensitive to the orientation of its azimuthal pattern
in the inner Galaxy, which is linked, through the winding func-
tion, to (ϕ?)halo, which, in turn, is nearly perfectly correlated
to (ϕ?)disk. To maintain a good fit to the FDobs map, a change
in (ϕ?)disk must now roughly preserve the azimuthal patterns of
both the disk field in the nearby outer Galaxy and the halo field
in the inner Galaxy, which is again possible with appropriate
changes in p0, Hp, Lp, but only over a limited (≈100◦−160◦) in-
terval of (ϕ?)disk. Accordingly, the 1σ confidence interval of p0
is narrower (<∼±1.3◦) than when the halo field is axisymmetric,
and so are the confidence intervals of Hp and Lp. Another conse-
quence of the locking between the azimuthal patterns of the disk
and halo fields is that all correlations tend to be tighter when the
halo field is bisymmetric.
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