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A record of igneous evolution in 
Elysium, a major martian volcanic 
province
David Susko1, Suniti Karunatillake1, Gayantha Kodikara2, J. R. Skok3, James Wray4, 
Jennifer Heldmann5, Agnes Cousin6 & Taylor Judice1

A major knowledge gap exists on how eruptive compositions of a single martian volcanic province 
change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a 
major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows 
of this volcano, which provides the context for this study of variability of martian magmatism. The 
southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to 
several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in 
northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern 
province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical 
and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate 
compositional variation within a single volcanic province on Mars. We interpret the geochemical and 
temporal differences between the SE and NW lava fields to be consistent with primary magmatic 
processes, such as mantle heterogeneity or change in depth of melt formation within the martian 
mantle due to crustal loading.

The lava fields surrounding Elysium Mons and its neighboring super-shield volcanoes, Albor Tholus and Hecates 
Tholus (Fig. 1), record some of the most recent volcanism on Mars1–4. Most of the surface of Elysium Volcanic 
Province dates to the Amazonian period5–7 (beginning between 3.3 and 2.9 Ga), with a considerable areal extent 
of Late Amazonian age (beginning 0.6 to 0.3 Ga)4. Past work estimates that the age of the basement lava flows, the 
stratigraphically lowest and oldest we are able to observe in the region, date to ~4 Ga4. Other studies have iden-
tified late periods of volcanic activity in isolated areas of the southern portion of the Elysium Volcanic Province 
to extend to the last 250 Ma, including some remarkably young episodes as recent as 16.2–13.5 Ma, 4.3 Ma, and 
3–2.5 Ma8. These dates highlight The Elysium Volcanic Province as particularly interesting, given its long and con-
tinuous history of volcanic activity. This long history suggests that these lavas could record varied magmatic evo-
lution that can provide important constraints on the evolution of Mars as a geologically active and diverse planet. 
The Elysium Volcanic Province may also provide important insight for the geologic evolution of Amazonian 
terrains, given its geographic isolation in the northern lowlands away from other volcano-tectonic regions.

Mid-latitude (exclude latitudes poleward of ~± 45°) mapping of mass fraction distributions of the 9 elements: 
Al, Ca, Cl, Fe, H, K, Si, S, and Th, obtained from the γ  spectral data from the Mars Odyssey Gamma and Neutron 
Spectrometer (GRS) instrument suite2,9–13, showed a unique geochemical signature for Amazonian lava flows7 in 
the southeastern portion of the Elysium volcanic province (Fig. 1). Here, work by Karunatillake et al.2 identified 
depletions in both K and Th (two elements characterized by the strongest geochemical affinity during igneous 
processes)9,14 by more than the combined standard deviation and typical standard error relative to their respective 
global averages. The depletion in these elements indicate that the southeastern lava fields are chemically anom-
alous when compared to the compositions of the martian mid-latitudinal regolith to decimeter depth scales11. 
These anomalous geochemical signatures identify the Southeast Elysium lava fields as promising candidates for 
further geochemical investigation.
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Recently, Baratoux et al.3 used γ  data from the Northwest Elysium lava fields (Fig. 1) to investigate the ther-
mal history of Mars during the Amazonian period. These authors investigated the composition of the lavas, 
and compared them to the compositions of Hesperian and Amazonian volcanic provinces elsewhere on Mars3. 
Abundances of SiO2, FeO and ThO were used to estimate mantle potential temperature, degree of partial melting, 
and lithospheric thickness in correspondence with these volcanic provinces when these eruptions took place3. In 
this work, we compare the Southeast (SE) Elysium region to the Northwest (NW) Elysium region in order to con-
strain the spatial and temporal variation of composition of lava flows across a single martian volcanic province.

Previous investigations in the Radar Stealth region2 suggests that data from the High Resolution Imaging 
Science Experiment (HiRISE), on board the Mars Reconnaissance Orbiter (MRO), can lead to inferences about 
the physical properties of surface-to-subsurface material. In this work we use HiRISE imagery to complement in 
our interpretation of geochemical signatures.

Cerberus Fossae, an area overlapping the southern portion of the chemically anomalous region in SE Elysium, 
contains evidence of chemical layering involving volatile elements in the subsurface, potentially due to complex 
interactions among lava flows, volcanic aerosols and eolian sediment15. Morphologies, such as mesas and other 
related features in close proximity to Cerberus Fossae, have been ascribed to phreatomagmatism1,16,17, lava-water 
interactions18 and relict ice floes19,20. Observations of patterned ground with a remarkable similarity to terres-
trial periglacial environments21 also suggest the likelihood of geologically recent aqueous processes. All these 
processes could explain some of the observed chemistry. However, radar sounding data appear consistent with 
interbedded lava flows and weakly compacted sediments or porous rocks22.

Pure water is unstable on the surface of Mars23–25. Brines, however, could have been free-flowing on the surface 
and could still be present in subsurface reservoirs of Mars26, and thus could be thought of as agents for alteration 
of surface rock. Common secondary minerals on Mars, such as Ca- and Mg- Sulfates and Fe-Oxides could be 
deposited by low pH, sulfur-rich, aqueous solutions in very low water-to-rock ratio, and subsequently, limited 

Figure 1. Location and geological setting of the Southeast (Green) and Northwest (Blue) Elysium lava fields 
with corresponding GRS pixels. Geology map adopted from the work by Tanaka et al.6 and made publically 
available at http://pubs.usgs.gov/sim/3292/pdf/sim3292_map.pdf. Inset image is a global reference map for 
Mars with overlain MOLA topography from Google Earth. The areal fraction of each unit within each region 
is quantified using ArcGIS software (pie charts). AHv is”Amazonian and Hesperian Volcanic unit”, lAv is “Late 
Amazonian Volcanic unit”, lAvf is “Late Amazonian Volcanic field unit”, lHvf is “Late Hesperian Volcanic Field 
unit”, Hve is “Hesperian volcanic Edifice unit”, Htu in the pie charts stands for “Hesperian Transition units” and 
is a combination of 3 geologic units: HNt (Hesperian-Noachian transition unit), lHt (Late Hesperian transition 
unit), and AHtu (Amazonian-Hesperian transition unit).

http://pubs.usgs.gov/sim/3292/pdf/sim3292_map.pdf
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Al-mobilization conditions27. Evaporite minerals, such as Halite (NaCl) and anhydrite (CaSO4), could have pre-
cipitated following evaporation of highly saline aqueous solutions. If the volatiles detectable by the GRS, (S, Cl, 
and H2O) are enriched in either SE or NW Elysium, this could support the presence of such minerals at regional 
scales.

In addition to observations made by orbiting spacecraft, we make comparisons between the regional chem-
istry in Elysium and in situ samples analyzed from rover landing sites on Mars and the martian meteorites. The 
compositional data for several martian meteorites as well as in situ samples from Gusev Crater, analyzed using 
the Alpha Particle X-ray Spectrometer (APXS) onboard the MER Spirit Rover, are used for comparison with the 
γ  data. The martian meteorites, which have been used in the past to model the compositions for bulk silicate 
Mars28,29, provide the most detailed information about the martian mantle’s evolution and magmatic differentia-
tion of any data set available to us. In order to better understand igneous alteration trends, which may be applica-
ble to the Elysium Volcanic Province, we use previously categorized in situ rock samples from Gusev, which have 
been divided into unaltered and altered igneous samples30–33. In this study, we were able to rule out the presence 
of a secondary geochemical signature, and establish igneous processes as the principal factor controlling Elysium’s 
anomalous compositions.

Geologic Setting and Characteristic Geomorphology
The Elysium lava flows erupted from the edifices of the three super-shields, from volcanic fissures, and from at 
least 22 topographically low shield volcanoes scattered across the Elysium Volcanic Province8. Using the most 
recent mapped geologic units of Mars6,7, we quantified the areal fraction of each geologic unit comprising both 
NW and SE Elysium (Fig. 1). The SE Elysium region (1.37 ×  106 km2 in areal extent) is dominated by Amazonian 
volcanic units, which comprise nearly 90% (1.23 ×  106 km2) of its areal fraction. The most abundant unit type 
is the Amazonian-Hesperian volcanic unit (AHv), making up more than 60% (8.22 ×  105 km2) of the surface 
(Fig. 1). The AHv contains low viscosity flood lavas and stacked, gently sloping, lobate flows of highly variable 
ages, which are sourced from vent systems and local fissures rather than large volcanic edifices6. Late Amazonian 
volcanic units and volcanic fields, lAv and lAvf respectively, make up nearly 30% (4.11 ×  105 km2). They contain 
planar deposits consisting of troughs, ridges, and platy textures which we identified in HiRISE image Fig. 2F. 
These units are young, and include pristine flows and occasional sinuous lava channels (Fig. 2D). The rest of 
the region is made up of Hesperian transition units (Htu) and the Hesperian Volcanic Edifice (HVe) of the 
super-shield Albor Tholus6 (Fig. 1).

Several Hesperian geologic units are mapped in the NW region of Elysium (5.06 ×  105 km2 in areal extent)6,7. 
While the majority of the region is characterized as AHv (~54% of the surface, or 2.72 ×  105 km2), a significant 
portion (~22% or 1.11 ×  105 km2) of the surface is covered by the Late Hesperian volcanic field unit (lHvf). The 
lHvf unit is hundreds of meters thick and is made up of far flowing, low viscosity lavas which are locally modified 
by troughs and fissures6, such as those shown in Fig. 2C. The remaining ~24% of the NW region (1.21 ×  105 km2) 
is covered by the HVe unit (~24%), which makes up the edifice of the super-shield volcano Elysium Mons6. These 
Hesperian units, which did not experience the same Amazonian volcanic resurfacing events as SE Elysium, con-
tribute substantially to the observed geochemistry in the NW region.

Morphologies indicative of effusive volcanic eruptions are observed throughout both the SE and NW Elysium 
regions. Figure 2 shows some representative morphologies. In terrestrial settings, basaltic magma often gener-
ates effusive eruptions that build deep, sinuous lava channels5, which are analogues to features shown in various 
HiRISE images. Terrestrial observations, suggesting greater flow distance with lower viscosities remain applicable 
to the Elysium lava flows (Fig. 2A). These images also show other low viscosity morphologies such as infilled cra-
ters, lobate flows, and platy ridge flows. Pa’hoe’hoe lava features form when low viscosity lava cools and becomes 
more viscous, this results in an over-folding, ropy morphology. Analogous features are present within the SE 
Elysium region (Fig. 2E and H). The crater shown in Fig. 2C, located in NW Elysium, is not an impact crater, 
but is thought to be a collapse feature of a lava tube, as evident by the presence of scalloped walls and the lack of 
ejecta blanket, raised rim, or central peak1. This collapse feature exposes layered lava flows, effectively revealing 
the stratigraphic record of lava flows that have created the Elysium Volcanic Province over its geologic history4,8.

Other morphologies may suggest the presence of alternative geologic processes taking place concurrently with 
these lava flows. Figure 2H shows rootless cone structures, identifiable based on their clustered behavior on top 
of lava flows and the lack of extruded material around their circular bases18. These features have been interpreted 
to be a product of lava flow emplacement over a hydrated surface16. The local ground water or ice is volatilized by 
the hot, flowing, lavas and creates a phreatomagmatic explosion resulting in these cones16,18,34,35. These features, 
also visible roughly 1 km south of the infilled crater in Fig. 2G, were identified in the SE Elysium region, but were 
not observed in the NW.

Results
While past analysis has looked at the ages of Elysium Planitia broadly4 or on a more localized basis8,35, we sought 
to estimate the average age of all the lava flows within surface areas of similar regional geochemistry within 
Elysium2,3. The total number of craters (N) greater than 1 km in diameter was found to be N =  925 for the SE 
Elysium region and N =  482 for the NW. The cumulative crater frequency reveal the average age of the surface in 
SE Elysium province is 2.59 ±  0.08 Ga, while the surface in NW Elysium is estimated to be 3.44 ±  0.02 Ga (Fig. 3). 
Both dates are comparable to previous studies of the ages of various lava flows within Elysium, which estimated 
the oldest lava flows to range between 4 and 2 Ga4.

Ratio bound box plots2 (Methods) show meaningful differences in compositional distributions between the 
SE and NW regions. In this work, an elemental abundance in a region “A” is refered to as a “major” enrichment 
or depletion, relative to a region “B”, when the lower (25th%tile/75th%tile) or upper (75th%tile/25th%tile) bound, 
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Figure 2. Selected HiRISE imagery from both SE and NW Elysium regions. (A) ESP_022915_2070 (26.949°N, 
142.844°E) shows flows down a crater slope in NW Elysium. (B) ESP_013157_2015 (21.498°N, 149.738°E) 
shows lava flows on the south flank of Elysium Mons within NW Elysium. (C) PSP_004046_2080 (27.49°N, 
143.21°E) shows fissures and pit crater collapse feature of lava tubes in the NW region. The collapse of the 
lava tube has exposed stratified lava flows. (D) ESP_037802_1880 (8.1°N, 154.7°E) shows lava channels and 
accompanying lava levees within SE Elysium. (E) PSP_005984_1850 (5°N, 156.4°E) shows pa’hoe’hoe style  
flows and a lava-draped channel at its terminus within SE Elysium. (F) ESP_014278_2050 (24.71°N, 143.6°E)  
shows the lava flow boundary between separate geologic units HVe and lHvf in the NW region. (G) ESP_028466_ 
1955 (15.22°N, 162.45°E) shows an image from the SE with an infilled crater in the top half of the image and 
rootless cones (circled) in the bottom half. (H) ESP_012524_1855 (5.58°N, 153.07°E) shows more prominent 
rootless cone structures as well as abundant Pa’hoe’hoe analog style flows within SE Elysium.  
(I) ESP_034967_1885 (8.48°N, 149.19°E) shows a large crater infilled by the lava flows from SE Elysium. North 
is up in all pictures. The yellow arrows represent inferred direction of flows.
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respectively, surpasses unity. In turn, the enrichment or depletion is considered “minor” when the ratio of medi-
ans surpasses unity but the lower or upper bounds do not. An abundance is considered similar between the two 
regions if the ratio of the 50th%tile/50th%tile is within one standard error. We list the error-bound median ratio in 
parenthesis following the element.

The first ratio bound box plot compares the regional geochemistry of the SE Elysium region to the com-
position of the average martian crust (Fig. 4A). In addition to the previously identified major depletions of K 
(0.72 ±  0.05) and Th (0.63 ±  0.05)2, this region differs significantly from the typical martian crust in several ele-
ments detectable with γ  spectra, as shown by Fig. 4A. The region has a minor depletion in Si (0.97 ±  0.02) and Al 
(0.91 ±  0.05), while Ca (1.26 ±  0.10) and Fe (1.11 ±  0.08) display major enrichments throughout the region. For 
example, the lowest values, represented in the 25th percentile, of Ca and Fe, exceed most of the highest values, 
represented in the 75th percentile, of the martian crust. This amounts to enrichments in Fe to over 16% of the bulk 
composition in some parts of the region, which is significant, considering that average for the martian crust is 
only 12.6 ±  0.7%. A major regional enrichment in S (1.14 ±  0.04) is also observed.

Mars has a history of global-scale dust storms which mobilize layers of high albedo fine material of few 
microns to tens of micron size scale (i.e., dust) across the planetary surface36. Elysium in particular has a thick 
layer of this dust37. We renormalize the γ  derived geochemistry to a volatile and “mobile” element-free basis 
in order to ensure the compositions investigated in Elysium represent the igneous components at the surface, 
rather than those affected by interference from the dust. The normalization factors were calculated for each pixel 
using the standard equation 100/(100-[H2O]-[SO3]-[Cl])10. A constant oxidation state of + 6 is assumed for S 
when converting to SO3

10. The results (Fig. 4B) reveal that the volatile-free compositions show the same relative 
trends between the SE and the martian crust as the volatile-bearing compositions, indicating the compositions 
are cation-conserving27, and volatiles merely dilute the abundances of the major elements, rather than dominate 
a surficial layer.

Compared with the average martian crust, the NW Elysium region has minor enrichments in Ca (1.13 ±  0.03) 
and H2O (1.11 ±  , 0.07), as well as a major depletion in Si (0.96 ±  0.01) and a major enrichment of S (1.11 ±  0.02). 
The NW region also shows a minor depletion in Al (0.80 ±  0.08) and major depletions in K (0.79 ±  0.02) and Th 
(0.81 ±  0.05). These results are shown in ratio bound box plot for Fig. 4C.

When compared to one another, the two regions of the Elysium Volcanic Province reveal several interest-
ing geochemical trends (Fig. 4D). The SE Elysium region displays a minor enrichment of Ca (1.11 ±  0.07) and 
major enrichments in Al (1.34 ±  0.08) and Fe (1.09 ±  0.08). Both regions have nearly identical abundances of Si 
(1.02 ±  0.03). Despite both regions having major depletion in the high spectral precision elements, K and Th, rel-
ative to the martian crust, the depletion is even more significant in the SE region, which shows a major depletion 
relative to the NW.

We use molar ternary plots27,31,33,38 to further our geochemical analysis of the Elysium provinces and test 
whether aqueous alteration could explain the observed geochemical anomalies. We selected a ternary diagram 

Figure 3. CraterStats2 results for planetary surface age dating using crater counting7,55. 925 craters greater 
than 1 km in diameter were identified for the SE Elysium region, while only 482 craters of the same size were 
identified in the smaller NW region. This figure plots Diameter of Craters vs Cumulative Crater Frequency. 
Southeast Elysium (green) is estimated to be younger at 2.59 ±  0.08 Ga and Northwest Elysium (blue) older at 
3.44 ±  0.02 Ga.
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which has been used to describe the aqueous weathering trends of olivine‐bearing basalts, given their pervasive-
ness in the martian crust, under both moderate pH regimes of typical terrestrial settings38 and low pH conditions, 
with low water to rock ratios, where most chemical weathering processes on Mars occur27. The apices of this ter-
nary are (Al2O3) −  (CaO +  Na2O +  K2O) – (MgO +  FeO) [A-CNK-MF] (Fig. 5). For the moderate pH conditions 
on Earth, altered rocks progress from below the feldspar-olivine tie-line, which connects the pure end-member 
compositions of general feldspar [(K,Na,Ca)(Al,Si)2Si2O8] and olivine [(Mg,Fe)2SiO4], toward the Al2O3 compo-
sition38,39. This terrestrial trend is shown by the black “weathering” arrow in Fig. 5. The second trend-line corre-
sponds to the results from the alteration of synthetic martian rocks under low pH laboratory conditions, with the 
altered rock progressing toward to A-CNK edge of the ternary and the alteration fluid progressing toward to MF 
apex27. Even though the ternary plots have both Na2O and MgO components, these oxides lack the associated 
γ -derived chemical data. Consequently, we use the method by Baratoux et al.40 to estimate Na2O and MgO mole 
fractions (Methods).

Figure 5 shows the majority of the Elysium chemical provinces’ pixels plotting directly on the low pH system 
aqueous alteration trend line32. Pixels from both the NW region (blue) and the SE region (red) overlap and plot 
near the alteration under low pH trend line (dashed line), close to the unaltered rock composition (white disk), 
away from the altered composition of basalts (orange disk). The martian meteorites, generally plot below the trend 
line for low pH aqueous alteration, closer to the CKN-MF edge of the ternary. The APXS-analyzed in situ rocks 
from Gusev Crater generally plot between the low pH aqueous alteration trend line and the Feldspar-Olivine 
Tie-Line. The unaltered igneous samples plot closer to the martian meteorites, while the altered rocks plot above 
them, closer to the feldspar-olivine tie-line. The NW and SE Elysium pixels plot on the trend line between the 
martian meteorites and the unaltered Gusev igneous rock.

Figure 4. Ratio bound box plots indicate compositional ratios of one target region to another as 75th/25th 
percentile, 50th/50th percentile, and 25th/75th percentile for the mass fraction of the elements: Al, Ca, Cl, Fe, 
H2O, K, S, Si, Th, and the ratios of Fe/Si, K/Th, and Cl/H2O. Deviation of the median ratio from unity would 
suggest tentative compositional distinctness, while the lack of overlap with unity for a given box would show 
a significant change, even for small relative differences. Error bars were calculated as the uncertainty of the 
median average deviations (MAD) using the equation MAD =  median [|Xi-median (Xi)|], where median (Xi) 
is the median of all values Xi

54. The MAD of a set of values is particularly robust and is more resilient against 
outliers in the data when compared to the standard deviation. Red lines highlight the 1 to 1 ratio, values below 
the line represent depletion, while values above represent enrichments. (A) Chemical differences between the 
Southeast Elysium region and the chemical average for the martian crust. (B) SE Elysium vs martian crust, 
normalized for an observed volatile-free basis, removing Cl, S, and H2O from the bulk composition. (C) NW 
Elysium Chemical province vs martian crust. This plot highlights the similarities in trends away from the 
martian crust compositions for both the NW and the SE regions (shown in a). (D) NW Elysium Chemical 
province vs the SE Elysium chemical province, showing the differences between regions, most notably in Ca, Fe, 
K, and Th.
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Discussion
In this work, we identify a compositional shift temporally and spatially across the Elysium Volcanic Province 
from the older NW region (3.44 ±  0.02 Ga) to the more recent SE region (2.59 ±  0.08 Ga). Through the conver-
gence of multiple data sets, we quantify the compositional changes in lavas of variable ages across the province. 
Our results indicate that the unique geochemistry of the Elysium Volcanic Province represents igneous processes 
as opposed to secondary aqueous alteration of the surface or interference from eolian superficial dust.

The resulting 0.85 ±  .08 Ga difference between the SE and NW Elysium regions estimated by crater counting 
provides the province with a record of varied magmatic compositions over its geologic history. This in turn, helps 
to constrain the evolution of Mars as a geologically active planet. The Hesperian/Amazonian temporal boundary 
is estimated to be between 3.3 to 2.9 Ga, but could also vary as much as from 3.4 to 2.0 Ga due to poorly con-
strained martian cratering and erosional rates during the time41. With this chronology in mind, the SE Elysium 
region is decidedly Amazonian, while the older NW Elysium province falls at end of the late Hesperian era, 
just prior to the Hesperian/Amazonian Boundary. Consequently, prior analyses by Baratoux et al.3 that focused 
exclusively on the NW region, may not represent the thermal history of the Elysium Volcanic Province during the 
Amazonian period as directly as the SE province.

The NW region is depleted in Al, Ca, and Fe compared to the SE region, while K and Th show significant 
depletions in the younger flows. In order to compensate for the observed depletions in Al, Ca, and Fe, an unre-
ported major (> 10%) rock-forming element must be enriched in the NW to sum the total oxide mass fractions 
detected by the GRS up to unity for mass balance purposes. The only major rock-forming element not reported by 
the GRS is Mg, making it a reasonable candidate for the majority of the missing mass fraction. These differences 
in major element abundances between the two regions have major implications for time dependent changes to the 
composition of the martian mantle from the late Hesperian to the Amazonian periods.

Elemental ratios can be used to assess the likelihood of secondary geologic processes. Elysium, like much 
of the northern mid-latitudes, has a surficial layer of fine material dominated by tens of microns grain size, or 
“dust”42,43. This dust is characteristically bright, having high albedo and low thermal inertia, and has been found 
to partially dominate the geochemical signature of large regions of the planet44. Bright dust at the MER rover sites, 
Gusev and Meridiani, was analyzed using the APXS instrument and found to contain elevated abundances of the 
more mobile and volatile elements, S and Cl, relative to darker, less mobile soil and rock45. Evidence of abundant 
hydrated minerals within the soils was also found using the MER rovers’ MiniTES instrument46. An abundance 
of dust could cause the elevated levels of S in the SE and both S and H2O in the NW46,47. If the primary source of 
volatile elements at Elysium is attributed to a layer of globally-sampled dust deposited by atmospheric processes, 
then the chemical province should yield a Cl/H2O ratio similar to the global average. Rather, we observe a lower 
Cl/H2O ratio in both the SE and NW regions relative to the martian crust (Fig. 4A and C). More likely, the distinct 
Cl/H2O ratio and enrichment in S reflect the volatile content of the magma which formed the Elysium Volcanic 
Province, as these volatiles are readily sourced from volcanic degassing12.

Past work has described dust within the most heavily mantled regions of Mars to be enriched in K and Th 
rather than depleted44. These heavily mantled regions, which include Arabia, Tharsis, and Amazonis, are chemi-
cally distinct from one another, indicating that the γ  signature is reflective of locally, rather than globally, derived 

Figure 5. Ternary plot of (Al2O3) − (CaO + Na2O + K2O) − (MgO + FeO) as a proxy for the index of alteration 
for martian rocks. The black ellipse represents the range of values for the martian crust as detected by GRS. 
Open system aqueous alteration trend is shown with the black line, with altered rock (left circle), unaltered 
rock (middle), and alteration fluid (right). This line corresponds to the results from the alteration of synthetic 
martian rocks under low pH laboratory conditions by Hurowitz and McLennan29. Plots the pixels from both SE 
(red) and NW (blue) Elysium vs the martian meteorites (green), unaltered Gusev igneous rock (yellow), altered 
Gusev igneous rock (purple) and the rest of the GRS data (gray). The data sets form a trend in the direction 
of more exposure to alteration effects, with the martian meteorites representing compositions of little-to-no 
alteration, and the altered Gusev samples representing the most heavily altered igneous compositions.
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material11,44. If this is the case in Elysium, even if the GRS is sampling the signature from the dust, it still reflects 
the igneous compositions of the region. If the γ  signature had been influenced by the sampling of a thick layer 
of volatile-enriched dust on top of the bulk basaltic crust, the renormalizing to a volatile-free basis would have 
caused an apparent enrichment in the remaining elements. The volatile-free ratio bound box plot (Fig. 4B) com-
paring SE Elysium to the martian crust does not reveal any deviation from the relative abundance trends com-
pared to the bulk compositions. This supports the idea that the GRS is primarily sampling the bulk basaltic rock 
composition.

Effusive lava flows, which result from hot magma outpouring onto the surface, can be greatly influenced by 
H2O in its source; even just a few ppm of water in the lava could greatly reduce its viscosity5, and NW Elysium 
shows a minor enrichment of H2O in the γ  data relative to the martian crust. As mentioned previously in this 
work, morphologies characteristic of effusive flows such as ropey, lobate textures, sinuous channels, and lava 
tubes dominate the landscape across both regions of Elysium. The rootless cone structures within SE Elysium 
could indicate a wet environment with higher than average water-to-rock ratios on the surface during the time 
of emplacement of these lavas, but they do not appear to be widespread enough to dominate regional geochem-
istry. In addition to morphology, calculations done by prior work for the temperature of NW Elysium magmas 
also favor a relatively hot source, with mantle potential temperatures of 1405 °C, the highest of any Amazonian 
volcanic province analyzed by that work3. This high temperature would suggest a deep mantle origin and would 
agree with the undepleted magma compositions with high abundances of volatiles, such as H2O, that are observed 
in the γ  data.

The temporal variation between the two regions is consistent with magmatic variability and provides a degree 
of insight into the igneous evolution of the Elysium Volcanic Province. The observed geochemical trends sug-
gest a difference in source signature between the older NW region and younger SE region (Fig. 4). Two possible 
interpretations arise to explain these temporal variations in geochemistry. The first is that of a heterogenous 
mantle, with pockets of distinct compositions contributing to the geochemical signatures we observe on the sur-
face at different periods in martian history. Multiple models exist to describe how the martian mantle might be 
compositionally heterogeneous both laterally and vertically. The possibility of a whole-mantle magma ocean on 
early Mars has been speculated. The model predicts solidification of multiple zones of cumulates in the mantle at 
different depths, which eventually differentiate into distinct lateral components when the deeper cumulates rises 
and settle at neutral buoyant forces nearer to the shallow zone48. This mantle overturn leads to lateral heterogene-
ity, with multiple zones of cumulates of different densities, within mantle sources. Differences in mineral content 
is expected to be observed in the eruptions from these sources, with regions of dominated by specific minerals, 
with lower density cumulates being enriched in MgO and higher density cumulates being enriched in FeO48. 
It is worth noting that Fe, which other than Si, is the most abundant element detectable by the GRS and shows 
significant variability between the two regions. Fe may prove to be a more useful indicator of mantle overturn at 
regional scales across Mars.

Recent work by Balta & McSween49 has described a separate model for martian mantle evolution which could 
lead to source heterogeneity. This model proposes that older Hesperian volcanoes were sourced from a por-
tion of the upper depleted mantle, while the younger Amazonian volcanoes were occasionally sourced from 
upwelling from a deeper undepleted portion of the mantle. This upwelling provides the surface with water-rich, 
shergottite-like compositions49. These lavas of distinct age and composition within Elysium could potentially rep-
resent a regional expression of this global mantle evolution. This is unlikely, however, because the compositions 
observed in the two regions of Elysium (i.e. relative enrichment in Fe and H2O for the younger SE region) do not 
match expectations of the model by Balta & McSween49, which predicts higher concentrations of Th and H2O and 
depletions in Fe for the younger eruptions.

The second interpretation of possible igneous processes exists as a change in depth of the melt formation in 
the mantle beneath the Elysium Volcanic Province. This is made possible by a model which predicts continual 
mantle plumes rising to the surface throughout Elysium’s lengthy eruptive history during the late Hesperian and 
Amazonian Eras1. The loading of the lithosphere by the formation of the super-shields could cause an increase in 
pressure on the mantle source over time, depressing the geothermal gradient. This increase in pressure would be 
accompanied by a decrease in degree of partial melting and an increasing depth of melt formation. The younger 
volcanism in the SE, where lithospheric thickness is considerably lower40, would take place with lower pressures 
and at shallower depths. With distinct depth to melt formations between the Hesperian and Amazonian, mag-
mas erupted with notably different abundances of elements. This is supported by the compositional distinctness 
between the NW region and SE region of several major and minor elements (Fig. 4D), most notably Th and Fe. 
The higher concentration of Th in NW Elysium suggests a lower degree of partial melting in the mantle source3, 
while the elevated Fe abundance in the SE is likely indicative of a change to a shallower source depth50 in SE 
Elysium.

Based on our results, the geochemistry seems most consistent with a model for the change in the depth of 
melt formation in the mantle beneath the Elysium Volcanic Province. This conclusion has major implications for 
the history of martian mantle evolution, such as how volcanic provinces were built up over time, and motivates 
future investigations into this province. Petrologic modeling techniques using pMELTS and SPICEs programs on 
the bulk silicate compositions of Mars proposed by Taylor29 might help us to constrain how the compositions of 
volcanic provinces changes with variable pressures and degrees of partial melting.

Methods
In order to investigate a potential sub-era variation in volcanism, we use mapped geologic units in the SE and 
NW Elysium chemical provinces6,7 and crater counting techniques to estimate crustal ages for each area. ArcGIS 
software in conjunction with the Mars Orbiter Laser Altimeter (MOLA) data was used to highlight the areas of 
interest. These highlighted areas were saved as shape files. Within each area, craters were marked by defining 



www.nature.com/scientificreports/

9SCIENTIFIC REpoRTS | 7:43177 | DOI: 10.1038/srep43177

three points around the rim, before being subsequently exported to the CraterStats2 program. The program then 
generated a crater diameter vs cumulative crater frequency graph in order to calculate the estimated ages for the 
two provinces41.

In the present work, the data from all γ  pixels in the martian mid-latitudes, other than those identified as 
the two Elysium Chemical Provinces, collectively represent the bulk composition of the martian crust, down to 
depths of several decimeters29. Each GRS pixel has a spatial resolution of several hundred km2. The small frac-
tional area of Mars occupied by the Elysium chemical provinces also ensures that other data pixels approximate 
the bulk crust characterized before by Taylor et al.14 and McSween et al.51. Specifically, while the extent of the 
SE and NW Elysium chemical provinces (Fig. 1) are about 1.37 ×  106 km2 and 5.06 ×  105 km2, respectively, they 
constitute a sufficiently small area to ensure that their exclusion from the bulk crustal values does not make the 
bulk crustal estimate unreliable. Their exclusion enables unambiguous insight into compositional trends distinct 
from those in the typical martian crust. For our investigations using the γ  data, we use the maps constructed from 
cumulative gamma spectra mapping periods extending through 2009, refining the older compositional data for 
greater accuracy and precision that those used in Karunatillake et al.2. We also include previously unreported 
chemical maps for the elements Al and S. Our chemical data exclude latitudes poleward of ~± 45°, where high H 
concentrations cause both mass dilution effects and inaccuracies in γ  spectrum-to-elemental mass fraction deri-
vation2,11. We use mid-to-low latitudinal mass fraction maps generated from the GRS instrument. We bin each of 
the maps from their original dimensions to 5° ×  5° pixel size. This serves to reduce spatial uncertainty associated 
with the reduced degrees of freedom from spatial autocorrelation52,53. The radioactive elements K and Th are the 
two elements with the finest γ  spatial resolution, owing to the orbiting instrument’s detection of natural radioac-
tive decay and independence from neutron-driven scatter and capture processes, unique among the majority of 
elements detected by the GRS instrument11. It is for this reason that K and Th are the primary elements utilized 
for interpretation of geologic processes.

In the ratio bound box plot method, the ratio of the 25th percentile of a particular element’s reported mass 
fraction within a region “A” to the 75th percentile of values for the same element within a region “B” would bound 
how low the values are within “A” relative to those present within “B”. The ratio of the 25th%tile of “A”/75th%tile 
of “B” is represented by the bottom of each “box” in Fig. 4. Likewise, the ratio of the 75th percentile of region 
“A” compared to the 25th percentile within “B” bounds how high the values within “A” can be relative to those 
within “B”. The ratio of the 75th%tile of “A”/25th%tile of “B” is represented by the top of each “box” in Fig. 4. The 
ratio of the 50th percentile of “A” to the 50th percentile of region “B” (ratio of medians) indicates how the typical 
compositions compare with one another53, represented in the mid-section of each “box”. The error bars were 
propagated for the ratio of the 50th%tile/50th%tile using the median absolute deviations (MAD) for each element 
in both regions, using the equation MAD =  median [|Xi-median (Xi)|]54, where median (Xi) is the median of all 
values in Xi. These error bars are statistically robust and typically overcompensate the uncertainty of the values of 
various %tiles. When constructing the ratio bound box plot in Fig. 4B, the normalization to a volatile-free basis 
was done on a pixel-by-pixel. This prevented the normalization from being effectively canceled out as a common 
denominator in the ratios.

The method for MgO abundance calculation used in this study uses oxide ratios reported from mar-
tian meteorites to calculate values for the following oxides: Na2O (Na2O/TiO2 =  1.374 ±  0.337), TiO2 (TiO2/
P2O5 =  1.151 ±  0.265), P2O5 (P2O5/K2O =  4.297 ±  0.931), and MnO (MnO/FeO =  0.025 ±  0.001)40. Their calcu-
lated values were added to the oxide values converted from the elemental γ  spectral data (Al2O3, CaO, FeO, SiO2, 
and K2O) and normalized to be volatile-free. The subsequent value was subtracted from 100, and the remaining 
value was assumed to represent the MgO content, as Mg is the only remaining major rock forming element. Major 
caveats exist in this calculation and uncertainties are very large. To partially address these concerns, we ignore 
any GRS pixels for which these calculations return Mg# <  40 or > 70, as it is not consistent with an igneous crust 
from an initial mantle composition of roughly Mg# 75 28,40. The Mg# was calculated by using the mole fraction of 
the oxides MgO and FeO with the formula [Mg# =  100 * (MgO/(MgO +  FeO))].

The oxide data used in the construction of the geochemical ternary plot for the martian meteorites were 
obtained by previous studies in laboratory settings. They were accessed online from the publically available 
Martian Meteorite Compendium (http://curator.jsc.nasa.gov/antmet/mmc/). Similarly, the in situ samples 
analyzed with the Alpha Particle X-ray Spectrometer (APXS) by the MER rovers (Spirit) at Gusev Crater were 
obtained online, publically available at MERAnalyst, (https://an.rsl.wustl.edu/), part of NASA’s Planetary Data 
Systems interface.
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