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Abstract We present a novel method to determine solar wind proxies from sheath measurements at
Mars. Specifically, we develop an artificial neural network (ANN) to simultaneously infer seven solar wind
proxies: ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude and its vector
components, using spacecraft measurements of ion moments, magnetic field magnitude, magnetic field
components in the sheath, and the solar extreme ultraviolet flux. The ANN was trained and tested using
3 years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. When compared with
MAVEN spacecraft’s in situ measured values of the solar wind parameters, we find that the ANN proxies for
the solar wind ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude have
percentage differences of 50% or less for 84.4%, 99.9%, 86.8%, and 79.8% of the instances, respectively. For
the cone angle and clock angle proxies, 69.1% and 53.3% of instances, respectively, have angle differences
of 30∘ or less.

Plain Language Summary We introduce a new technique for determining solar wind parameter
values upstream of Mars using spacecraft-measured values of parameters in the plasma environment near
Mars. This technique involves using an artificial neural network. Data in the solar wind and the plasma
environment near Mars measured by the Mars Atmosphere and Volatile EvolutioN spacecraft, which has
been orbiting Mars since 2014, were used to train an artificial neural network to simultaneously infer seven
solar wind parameters: solar wind density, speed, temperature, and interplanetary magnetic field and its
three components. Comparison of the neural network-inferred values to the in situ measured values reveals
that the artificial neural network can infer the solar wind density, speed, temperature, and the interplanetary
magnetic field magnitude with high accuracies and the orientation of the magnetic field with moderate
accuracies. Thus, this artificial neural network can be successfully used for inferring solar wind parameters
at Mars. Since Mars lacks a dedicated solar wind monitor, unlike at Earth, this technique is useful for
obtaining solar wind parameters during times when a Mars orbiter does not traverse through the solar wind
upstream of Mars. Knowledge of the solar wind parameter values is essential for studying how the solar
wind influences Mars’ atmospheric escape.

1. Introduction
1.1. Need for Measuring Solar Wind Parameters
In situ observations by Phobos-2, Mars Global Surveyor, Mars Express (MEX), and recently by the Mars
Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have revealed that solar wind parameters, typically
referred to as solar wind drivers, influence plasma boundary locations, sheath ion moments, turbulence,
and atmospheric escape at Mars. Moreover, organizing observations in the Mars plasma environment based
on upstream parameters enables to discover whether certain phenomena are influenced by the upstream
drivers. Thus, direct measurement of solar wind parameters or deriving their proxies is crucial for investi-
gating plasma environment dynamics at Mars. The objective of this paper is to develop a novel method of
deriving solar wind proxies at Mars by using an artificial neural network (ANN) and in situ measurements of
magnetosheath parameters made by the MAVEN spacecraft. Before describing our method, below, we will
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first describe how the Mars plasma environment is influenced by the solar wind drivers to emphasize the need
for direct measurement or deriving solar wind proxies at Mars.

The bow shock location at Mars is influenced by the upstream parameters such as convection electric field
direction, magnetic field orientation, Mach number, dynamic pressure, and extreme ultraviolet (EUV) flux. The
bow shock tends to be located at a larger distance in the hemisphere in the direction of the upstream con-
vection electric field (Dubinin et al., 1998). The quasi-perpendicular bow shock tends to lie farther upstream
than the quasi-parallel bow shock (Dubinin et al., 1998; Halekas, Brain, et al., 2017). The bow shock location
lies much closer to the planet during the times of high Mach number (Edberg, Lester, et al., 2010; Halekas,
Ruhunusiri, et al., 2017) and dynamic pressure (Edberg et al., 2009; Halekas, Ruhunusiri, et al., 2017; Hall et al.,
2016). However, the bow shock is found to lie much farther upstream during the times of high EUV flux (Edberg
et al., 2009; Halekas, Ruhunusiri, et al., 2017; Hall et al., 2016). The magnetic pileup boundary (MPB) is also
influenced by the upstream parameters (Brain et al., 2005; Edberg et al., 2008, 2009).

Ion temperature and its anisotropy in the sheath and the foreshock are influenced by the upstream mag-
netic field orientation and Mach number (Halekas, Brain, et al., 2017). Parallel temperature has larger values
in the quasi-parallel flank than in the quasi-perpendicular flank, whereas the perpendicular temperature has
approximately the same values in both the quasi-parallel and quasi-perpendicular flanks. Thus, the temper-
ature anisotropy tends to be much larger in the quasi-perpendicular flank than in the quasi-parallel flank.
Under high Mach numbers, both the parallel and perpendicular temperatures have been found to increase.
However, the ion temperature anisotropy has been found to be higher for low Mach numbers than for high
Mach numbers.

Waves and turbulence at Mars are affected by the EUV flux, upstream convection electric field, magnetic field
orientation, Mach number, and proton beta. Low-frequency waves and turbulence levels are enhanced during
the times of high EUV flux (Romanelli et al., 2016; Ruhunusiri et al., 2017, 2018). The waves and turbulence show
asymmetries with respect to the upstream convection electric field direction and in the quasi-parallel versus
quasi-perpendicular foreshock regions and the adjacent sheath regions (Fowler et al., 2017; Ruhunusiri et al.,
2017; Wei & Russell, 2006). Mach number and proton beta have also been found to influence wave occurrence
rates of waves such as the 1-Hz waves (Ruhunusiri et al., 2018).

Atmospheric loss via acceleration of heavy ions is influenced by the upstream convection electric field
(Dubinin et al., 2011; Johnson et al., 2018). Acceleration of ions via the convection electric field together with
the large ion gyroradius effects lead to asymmetries in the heavy ion distribution in the Mars plasma environ-
ment (Dong et al., 2017; Fang et al., 2008; Jarvinen et al., 2015). Ion escape has also been found to be sensitive
to the EUV flux variation at Mars (Dong et al., 2017). Ion escapes have been observed to be enhanced during
upstream impulsive events such as coronal mass ejections suggesting that increase in solar wind fluxes lead to
enhanced ion loss (Edberg, Nilsson, et al., 2010; Futaana et al., 2008; Jakosky et al., 2015). Unraveling how the
upstream parameters influence the atmospheric escape is crucial to extrapolating Mars’ atmospheric escape
backward in time to determine the total atmospheric mass lost to space (Lillis et al., 2015).

Organizing the observations with the upstream parameters is necessary to determine how the Mars plasma
environment phenomena are influenced by them. For example, investigators typically organize observations
in the Mars Solar Electric coordinates system where X axis is aligned with the solar wind velocity, Y axis is
aligned with the magnetic field component perpendicular to the solar wind velocity, and Z axis is aligned
with the convection electric field direction. Dong et al. (2015), for example, used Mars Solar Electric coordinate
system to organize ion flux observations at Mars, which enabled them to characterize the contributions from
different escape channels such as tail versus plume.

1.2. Previous Methods for Determining Solar Wind Proxies at Mars
Since Mars lacks a dedicated solar wind monitor, the above described discoveries were made using a deriva-
tion of solar wind proxies at Mars. We will describe three most commonly used methods below. The first
method is extrapolating solar wind measurements at Earth to Mars. The second method is interpolating two
successive measurements made by the orbital assets when they are located upstream of the bow shock.
The third method is to use a physics-based model to infer upstream parameters using spacecraft in situ
measurements of the downstream parameters.
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In the method of extrapolation, the solar wind parameters measured at Earth are appropriately scaled consid-
ering how these parameters vary with the heliocentric distance (Edberg, Lester, et al., 2010). For example, the
solar wind density and magnetic field magnitude have a 1∕r2 dependence and the solar wind ion temperature
has a 1∕r2∕3 dependence with heliocentric distance r. However, this method can be utilized only when Mars
and Earth are located in approximately the same solar wind sector. Comparing the extrapolated solar wind
bulk velocities measurements from STEREO A and B to in situ measurements made by MEX, Opitz et al. (2010)
suggested that a reliable estimation can only be made when the longitudinal separation between Earth and
Mars is less than 65∘. Thus, the use of this method to derive solar wind proxies at Mars is limited to typically a
couple of months every 2 years.

The second method is to interpolate two adjacent measurements of a solar wind parameter made by a space-
craft when it is in the solar wind to determine the corresponding value of that parameter when the spacecraft
is located downstream of the bow shock. For example, MAVEN spacecraft periodically ventures into the solar
wind when its apoapsis is located outside Mars’ bow shock. So when the spacecraft is located downstream
of the bow shock, in order to infer the solar wind proxies, first two adjacent measurements of the solar wind
parameters are linearly interpolated. Then, it is assumed that the interpolated value is equal to the value of
the solar wind parameter of interest. Alternatively, one can assume that a solar wind proxy for a parameter is
equal to its most recent measurement made when the spacecraft was located upstream of the bow shock. A
statistical study of the solar wind parameters using the MAVEN spacecraft measurements has revealed that
this latter approximation is suitable as long as the time duration is less than or equal to about a couple of
hours (Marquette et al., 2018). Implementation of these techniques is not possible during the times when the
spacecraft does not have upstream solar wind coverage due to a precession of the orbit.

In the third approach, certain solar wind parameters are inferred based on the spacecraft measurements of
the downstream parameters using a physics-based model. For example, assuming that the magnetic field
pressure in the MPB balances the incident solar wind dynamic pressure, the upstream solar wind dynamic
pressure can be inferred based on magnetic field measurements in the MPB (Crider et al., 2003).

Alternatively, two spacecraft measurements can be used to obtain direct measurements of the solar wind
in the absence of a dedicated monitor. When one spacecraft is located downstream of the bow shock, if a
second spacecraft is simultaneously located upstream of the bow shock, the measurements of the second
spacecraft in the solar wind can be used to determine the solar wind parameters corresponding to the times
when the first spacecraft was located downstream of the bow shock. This method has recently been used by
the MEX and MAVEN spacecraft (Harada et al., 2018). However, this ideally works if two spacecraft have iden-
tical instruments. While Mars currently has six orbiters, they all do not have identical plasma instruments. For
example, while the MAVEN spacecraft has a magnetometer, the MEX lacks a magnetometer. Thus, interplan-
etary magnetic field (IMF) can only be obtained for times when MAVEN ventures upstream of the bow shock.
Recent studies have also utilized magnetohydrodynamic models to derive solar wind proxies at Mars (Fang
et al., 2018; Ma et al., 2018).

The influence of upstream parameters on the Mars plasma environment dynamics and the need for these
parameters for organizing downstream observations, as we discussed in the previous section, emphasize the
need for continuous solar wind monitoring or developing techniques to derive solar wind proxies that are
complementary to existing methods that we discussed above. In this paper, we introduce a novel method to
infer solar wind proxies at Mars. We, in particular, develop an ANN to infer solar wind proxies using MAVEN
particle and field measurements in the sheath. This is the first time that an ANN has been employed to derive
solar wind proxies at any planet. This is also the first time that an ANN has been used for an application involv-
ing plasma observations at Mars. The combination of our method for deriving solar wind proxies using MAVEN
spacecraft observations in the sheath with its direct measurements of the solar wind parameters will enable
to provide solar wind proxies for majority of times from September 2014 onward. Thus, this work should be of
interest to a large scientific community who are involved in investigating the impact of the upstream drivers
on the Mars plasma environment. The methods developed in this paper should also be of interest to the
planetary-physics and heliospheric scientific communities.

1.3. ANNs
Here we briefly introduce ANNs and their applications. ANNs consist of computational units called neurons
which are analogous to the biological neurons (Samarasinghe, 2007). A neuron consists of one or more inputs
and outputs. The neuron computes a weighted sum of its inputs (and also applies a bias to this weighted sum).
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Then, it produces an output using a transfer function which can be either linear or nonlinear. A typical ANN
contains hundreds of such neurons. The number of inputs, outputs, and transfer functions of the neurons in
the ANN must be user specified. The ANN determines the weights and biases during a process called training
by comparing the outputs it produces, for a set of inputs provided by the user, to a set of targets also provided
by the user.

ANNs are powerful at identification of patterns in the observational data analogous to their biological coun-
terparts. Thus, ANNs have been successfully used in a variety of applications in many fields such as hydrology
(Hsu et al., 1995), chemostratigraphy (Malmgren & Nordlund, 1996), climatology (Jiang et al., 2018), seismol-
ogy (Dai & MacBeth, 1997), and cosmology (George & Huerta, 2018). Applications of ANNs in space physics
include Earth’s magnetospheric response and parameter prediction (Chu, Bortnik, Li, Ma, Angelopoulos, &
Thorne, 2017; Chu, Bortnik, Li, Ma, Denton, et al. 2017; Gleisner & Lundstedt, 1997), ionospheric parameter pre-
diction (Tulunay et al., 2006), and plasma wave identification (Ruhunusiri, 2018). In this paper, we will describe
the development of an ANN to derive solar wind proxies at Mars.

2. Method

Our overall approach was to develop an ANN that can simultaneously infer seven solar wind proxies: solar
wind ion density, ion speed, ion temperature, and IMF magnitude and its three vector components. As we
discussed in section 1.1, there is an interrelation between sheath ion moments and magnetic field to the
solar wind ion moments, IMF, and EUV flux, and these interrelations also generally depend on the spatial
location within the Mars plasma environment. Thus, we used following inputs to the ANN: magnetosheath
location, magnetosheath ion density, ion speed, ion temperature, magnetic field magnitude, magnetic field
components, and EUV flux. Since the dependencies of the sheath parameters to the solar wind parameters
may not be necessarily linear, we used nonlinear elements in the ANN such as nonlinear transfer functions.

2.1. ANN Architecture
We used a feedforward neural network (Beale et al., 2010) with 11 inputs, a normalization layer, two hidden
layers, an output layer, a denormalization layer, and seven outputs (see Figure 1). Similar neural network archi-
tectures have been successfully used in nonlinear regression applications (Rojas, 1996). The inputs are the
spacecraft location in cylindrical coordinates (XMSO, RMSO, and 𝜃 = tan−1(YMSO∕ZMSO) where MSO stands for
Mars Solar Orbital coordinate system), the magnetosheath ion density, ion speed, ion temperature, magnetic
field magnitude, magnetic field components (in MSO coordinates), and the EUV flux. A normalization layer
was used to normalize the input values between −1 and +1. The first hidden layer contains 24 neurons each
with a hyperbolic tangent sigmoid (tansig) transfer function which is a standard nonlinear function used in
neural networks, and this has the form 2∕(1+ e−2n)−1 where n = Σ(Ii ⋅wi +bi). Here Ii are the input values, wi

are the weights, and bi are the bias values. The reason for normalization of the inputs to the range between
−1 and 1 is that the output of the tansig transfer function reaches limiting values of −1 and 1 for n values less
than −1 and greater than 1, respectively. The second hidden layer contains 12 neurons each also with tansig
transfer functions. The output layer contains seven neurons each with a linear transfer function of the form
y = x where y is the output of a neuron and x is the input to a neuron. The outputs from the output layer
are then denormalized by the denormalization layer to scale the parameters to the realistic range of values.
Finally, the ANN produces seven outputs: solar wind ion density, ion speed, ion temperature, IMF magnitude,
and IMF components.

The ANN for solar wind inference was constructed, trained, validated, and tested using the MATLAB neural
network toolbox (Beale et al., 2010; Demuth & Beale, 2002). We will describe the data selection, ANN train-
ing, validation, and testing procedures below. Training and validation were used to train the network and to
select the best architecture. Testing was used to determine the ability of the network to infer the solar wind
parameters from sheath measurements.

2.2. Data Selection
To perform ANN training, validation, and testing, we require sheath parameters and solar wind parameters
corresponding to the times where the sheath parameter measurements were made so that during training the
ANN can learn the relationships between the sheath parameters and the solar wind parameters. We selected
3 years of MAVEN spacecraft data spanning from 1 December 2014 to 31 January 2018 to perform ANN train-
ing, validation, and testing. Whether the spacecraft was in the solar wind was determined using an automated
procedure described in section 3.1 of Halekas, Ruhunusiri, et al. (2017). When the spacecraft was determined
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Figure 1. The architecture of the ANN used for inferring solar wind proxies using sheath measurements. The ANN has 11
inputs for spacecraft location, sheath ion moments, magnetic field magnitude and components, and EUV flux and seven
outputs for solar wind ion moments and magnetic field magnitude and components. The ANN consists of two hidden
layers consisting of 24 and 12 neurons in the first and second hidden layers, respectively. The neurons in the hidden
layers have tansig nonlinear transfer functions, and the neurons in the output layer have linear transfer functions.
ANN = artificial neural network; EUV = extreme ultraviolet; MSO = Mars Solar Orbital coordinate system; sw = solar wind;
IMF = interplanetary magnetic field.

to be in the solar wind, an orbit average of the solar wind parameters was determined for each orbit. We used
the Solar Wind Ion Analyzer instrument (Halekas, Ruhunusiri, et al., 2017; Halekas et al., 2015) measurements
to determine the solar wind ion moments (density, speed, and temperature) and the magnetometer (MAG)
(Connerney, Espley, Lawton et al. 2015, Connerney, Espley, DiBraccio et al. 2015) to obtain the IMF compo-
nents. The distribution of the measured solar wind ion moments and IMF magnitude and orientations (clock
and cone angles) are depicted in Figure 2. Time segments where the spacecraft was traversing through the
sheath was identified by determining whether the spacecraft was located between the nominal bow shock
and the MPB using the boundary models by Trotignon et al. (2006). Then, 4-min averages of the sheath ion
moments (determined using the Solar Wind Ion Analyzer instrument) and magnetic field magnitudes and its
components (determined using the MAG instrument) were computed to obtain average sheath parameters
to minimize the effects of turbulent fluctuations in the sheath. Then, for each of the locations in the sheath,
we determined the corresponding solar wind parameters by assuming that they are equal to the value of the
temporally closest measurements of the two adjacent solar wind measurements. We required that the tem-
porally closest measurement of the solar wind parameter should be available within a temporal separation
of less than 2 hr. Otherwise, both the sheath parameters and the corresponding solar wind parameters were
removed from the data set. We used the Lyman-alpha flux measured by the EUV monitor (Eparvier et al., 2015)
on board the MAVEN spacecraft as an input to the ANN which is a proxy for the EUV flux.

2.3. ANN Training, Validation, and Testing
We used 80% of the data for training and validation and the remaining 20% of the data for testing as typi-
cally done for ANNs after randomizing the data. The sheath parameters were used as the inputs to the ANN,
while the solar wind parameters were used as targets. The ANN was trained using the resilient backpropaga-
tion algorithm (Riedmiller & Braun, 1993) which determines the weights and biases of the neurons minimizing
the difference between network outputs and targets. We selected this algorithm because it yielded fast
convergence times while producing high accuracies.

A tenfold cross validation (Setiono, 2001) was performed using the training and validation data set to obtain
the best ANN architecture containing 24 neurons in the first hidden layer and 12 neurons in the second hidden
layer that we discussed in section 2.1. When the network complexity is lower, for example, ANNs consisting
of lower than 24 neurons in the first hidden layer and less than 12 neurons in the second layer, the accura-
cies are lower. For more complex architectures, for example, ANNs consisting of more than 24 neurons in the
first hidden layer and more than 12 neurons in the second hidden layer, the network accuracies do not sig-
nificantly improve compared to the one with 24 and 12 neurons in the first and second hidden layers. Also,
as the complexity of the ANN architecture is increased, the network training time increases and the ANN
tends to memorize the relationships between the inputs and targets rather than generalizing the relation-
ships between them (Samarasinghe, 2007). Thus, we selected the ANN with 24 neurons in the first hidden
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Figure 2. (a, c, e, g, i, k) Distributions of the MAVEN measurements of the solar wind ion moments and IMF magnitude
and orientations. (b, d, f, h, j, l) Distributions of the MAVEN measurements of sheath ion moments and magnetic field
magnitude and orientations. Here nSW, VSW, TSW, BSW, 𝜃SW, and 𝜙SW denote solar wind ion density, ion speed, ion
temperature, IMF magnitude, IMF cone angle, and IMF clock angle, respectively. These data were used for training,
validation, and testing the artificial neural network. Note that different scales are used for plotting the solar wind and
sheath ion moments and IMF magnitude. Here cone angle = cos−1(Bx∕|B|) and clock angle = tan−1(By∕Bz), where Bx ,
By , and Bz are the sheath or IMF magnetic field components in Mars Solar Orbital coordinates and |B| is the sheath or
IMF magnetic field magnitude. We use the four quadrants in the By-Bz plane determined by the signs of By and Bz to
obtain 0∘ –360∘ value range for the clock angle. MAVEN = Mars Atmosphere and Volatile EvolutioN; IMF = interplanetary
magnetic field.

layer and 12 neurons in the second hidden layer as the optimum ANN architecture for deriving solar wind
proxies using sheath measurements.

After selection of the optimum network architecture, the testing data set was used to assess the accuracies
of the ANN. A comparison of the measured solar wind parameters and ANN-inferred solar wind proxies for a
5-day period in the testing data set is depicted in Figure 3. The ANN inference accuracies and uncertainties
associated with those inferences, determined using the entire testing data set, are depicted in Figure 4 (see
Figure S1 in the supporting information for the corresponding parameters for an ANN trained and tested using
70% and 30% of data, respectively). The uncertainties shown in Figure 4 are the 50% and 75% confidence
intervals for the absolute difference between the ANN estimates based on the 4-min averaged sheath values
and the corresponding orbit-averaged values of the solar wind parameters.

3. Results and Discussions

We find that the ANN can infer the solar wind ion density, ion speed, ion temperature, and magnetic field
magnitude with high accuracies and the clock angle and the cone angle with moderate accuracies. Figure 3
depicts a comparison of the measured solar wind parameters and the ANN solar wind proxies for a 5-day
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Figure 3. (a) Mars Atmosphere and Volatile EvolutioN spacecraft altitude with a color coding to indicate different
regions in the Mars plasma environment. (b) A times stack of ion energy spectra from Solar Wind Ion Analyzer
instrument which were used to determine the solar wind and sheath ion moments. (c) Time series of the three
components of the magnetic field in Mars Solar Orbital coordinate system measured by the MAG instrument.
(d–i) Measured versus ANN proxies for solar wind ion moments and IMF magnitude and orientations. The measured
solar wind values are depicted in black, whereas the ANN proxies are depicted in red. Here nANN, VANN, TANN, BANN,
𝜃ANN, and 𝜙ANN denote ANN proxies for solar wind ion density, ion speed, ion temperature, IMF magnitude, IMF cone
angle, and IMF clock angle, respectively. Each data point represents the orbit averages of the measured solar wind
values and the ANN proxy values. ANN = artificial neural network; IMF = interplanetary magnetic field.

period. Note that Figure 3 depicts the orbit-average values of the measured upstream values and the ANN
predicted values. For the time period shown in Figure 3, for a majority of times, the ANN solar wind proxies lie
within a factor of 2 of the solar wind measurements.

In order to assess the overall performance of the ANN, we computed the accuracies of the ANN solar wind
proxies using the entire testing data set. For ion moment and the magnetic field magnitude ANN proxies,
we computed the percentage differences as a measure of their accuracies where percentage difference =
|ANN proxy-measured value|×100∕(measured value), while for the magnetic field cone and clock angle ANN
proxies, we computed the difference between the ANN proxy values and the measured values as a measure of
the angle accuracies. The histograms of these percentage differences and angle differences for the ANN solar
wind proxies are shown in Figure 4. The percentage of instances where the ANN proxies for the solar wind
ion density, ion speed, ion temperature, and IMF magnitude have percentage differences of 50% or less are
84.4%, 99.9%, 86.8%, and 79.8%, respectively. For the cone angle and clock angle proxies, 69.1% and 53.3%
of instances, respectively, have angle differences of 30∘ or less. Thus, accuracies are highest for the ANN solar
wind ion speed proxies followed by ion density, temperature, and IMF magnitude proxies. Accuracies for ANN
cone angle proxies are higher than those for the clock angle proxies.

To determine the uncertainties associated with the ANN proxies, we plot confidence interval plots in Figure 4.
The X axis in these confidence interval plots depict the ANN proxy value, and the two shaded regions show
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Figure 4. (a–h) Histograms for the percentage differences and confidence interval plots of uncertainties for the ANN
solar wind ion moment and IMF magnitude proxies. (i–l) Histograms for angle differences and confidence interval plots
of uncertainties for the ANN IMF cone and clock angle proxies. The two shaded regions in panels (b), (d), (f ), (h), (j), and
(l) depict the 50% and 75% confidence intervals for the uncertainties. The ANN has very good accuracies for solar wind
ion moment and IMF magnitude inferences, whereas it has moderate accuracies for IMF cone and clock angle
inferences. ANN = artificial neural network; IMF = interplanetary magnetic field.

where the uncertainties have 50% and 75% probabilities of being less than the upper boundary value of these
regions. For example, if the ANN solar wind ion density proxy value is 6 cm−3, there is a 50% probability that
the uncertainty is less than 1.1 cm−3 and a 75% probability that the uncertainty is less than 2.1 cm−3 (see
Figure 4b).

The ANN proxies have small uncertainties for values where they occur with a high percentage in the solar
wind. For example, 94% of the time, the solar wind ion density is less than 8 cm−3 and the remaining 6% of the
times it has values greater than 8 cm−3 as can be seen in Figure 2a and the ANN solar wind ion density proxy
values have uncertainties of typically 1 cm−3 for values less than 8 cm−3 (here we determine the typical uncer-
tainty using the 75% confidence interval for the uncertainty shown in Figure 4b), whereas the uncertainties
are larger, typically 3.5 cm−3, when the ANN proxy value is above 8 cm−3. If we consider another example,
the uncertainties for the ANN proxies for the IMF clock angles are small near 90∘ and 270∘ as can be seen in
Figure 4l. As can be seen in Figure 2k, these clock angles occur with a high percentage in the solar wind. Thus,
the larger uncertainty associated with values that occur with a lower probability in the solar wind should be
a consequence of the ANN not being able to sufficiently learn the relationships between the sheath parame-
ters and the solar wind parameters for those range of values. However, as the MAVEN mission progresses, we
will have more data to train the ANN. So the network performance can be improved even further with the use
of more data.
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The sheath parameters are sensitive to variability on suborbit timescales to the upstream parameters, and this
is not captured in the training data set as we used orbit-averaged values for the upstream parameters to train
and test the ANN. Consequently, the uncertainties shown in Figure 4 do not include the uncertainties arising
from the suborbit variation of the upstream parameters. However, if orbit-averaged ANN inferred values are
used as shown in Figure 3 instead of the ANN-inferred values based on the 4-min averaged sheath values,
the uncertainties shown in Figure 4 can be considered as worst case limits (see Figure S2 in the supporting
information).

The reader may be curious as to why the magnetic field magnitude and its three components were used
as inputs to the ANN instead of merely the three components of the magnetic field or the magnetic field
magnitude, cone angle, and the clock angle. The reason for this is that, during preliminary training and testing
of ANNs using the latter mentioned input combinations, we found that the ANN-inferred accuracies for the
IMF magnitude, clock angle, and the cone angle are much lower than those of the ANN that used the magnetic
field magnitude and its three components as inputs (see Figure S3 in the supporting information).

4. Summary

We developed an ANN to infer solar wind proxies using sheath measurements. The ANN was trained, vali-
dated, and tested using MAVEN data spanning 3 years. The ANN can simultaneously infer seven solar wind
parameters: ion density, ion speed, ion temperature, and magnetic field magnitude and its three components
using the corresponding measurements in the sheath and the EUV flux. We find that the ANN has very good
accuracies for the ion moment and magnetic field magnitude inferences and moderate accuracies for mag-
netic field orientation inferences. We also find that the ANN proxies have small uncertainties for values that
occur with larger probability in the solar wind than those value that occur with lower probability. Combin-
ing the ANN proxies of the solar wind with the measured values by the MAVEN spacecraft enables to provide
a solar wind data set at Mars for a majority of times from September 2014 onward which should be invalu-
able to numerous investigators who are involved in studying the response of the Mars plasma environment
to the solar wind drivers. The techniques developed here should also be of interest to the planetary physics
and heliospheric scientific communities.
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