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Abstract Solar extreme ultraviolet and X-ray photons are the main sources of ionization in the Martian
ionosphere and can be enhanced significantly during a solar flare. On 10 September 2017, the Mars
Atmosphere and Volatile EvolutioN orbiter observed an X8.2 solar flare, the largest it has encountered
to date. Here we investigate the ionospheric response before, during, and after this event with the
SuperThermal Electron Transport model. We find good agreement between modeled and measured
photoelectron spectra. In addition, the high photoelectron fluxes during the flare provide adequate
statistics to allow us to clearly and repeatedly identify the carbon Auger peak in the ionospheric
photoelectron energy spectra at Mars for the first time. By applying photochemical equilibrium, O+

2 and
CO+

2 densities are obtained and compared with Mars Atmosphere and Volatile EvolutioN observations.
The variations in ion densities during this event due to the solar irradiance enhancement and the neutral
atmosphere expansion are discussed.

Plain Language Summary Solar extreme ultraviolet and X-ray photons are the main source
of ionization in the Martian ionosphere, photoionizing the neutral particles and producing photoelectrons
and ions. These short-wavelength photon fluxes can be enhanced by a factor of a few to orders of
magnitudes during a solar flare (the result of the rapid conversion of magnetic energy to kinetic energy
in the solar corona). On 10 September 2017, the Mars Atmosphere and Volatile EvolutioN mission
encountered the largest solar flare (X8.2) to date. The comprehensive measurements from Mars Atmosphere
and Volatile EvolutioN provide us with an opportunity to evaluate the ionospheric response to this flare
event in detail with models. In particular, we investigate the photoelectron flux and ion density response to
the flare with an electron transport model. The modeled and measured photoelectron fluxes are in a good
agreement. Ion density enhancement at a fixed altitude is from tens of percent to 1500% due to a
combination of intensified solar photon fluxes and the heated and then expanded neutral atmosphere
during this flare event.

1. Introduction

Solar extreme ultraviolet (EUV, 10–100 nm) and X-ray (<10 nm) photons are the main sources of ionization
in the Martian ionosphere, photoionizing the neutral atmosphere (mainly CO2 and O) and creating the M2
and M1 layers at Mars, respectively (e.g., Fox, 2004a; Withers, 2009), analogous to Earth’s F1 and E regions (cf.
Bougher et al., 2017). Many properties of the M2 layer observed by previous Mars missions (cf. Withers, 2009)
can be explained by Chapman theory (Chapman, 1931a, 1931b). In contrast, the M1 peak is hard to reproduce
without sophisticated photochemical models (e.g., Fox, 2004b). The monochromatic assumption of Chapman
theory fails at the M1 layer because the photoionization cross section of CO2 for soft X-rays decreases rapidly
with decreasing wavelength. In addition, electron impact ionization (EII) from photoelectrons becomes more
important below the main (M2) peak (Withers, 2009). Simulating EII can be achieved by employing either an
electron transport model (e.g., Fox & Dalgarno, 1979) or a wavelength-dependent yield function to represent
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multiple ion-electron pairs being created by a single photon (e.g., Bougher et al., 2001; Fallows et al., 2015a;
Haider et al., 2012; Lollo et al., 2012; Mendillo et al., 2006).

Solar EUV and X-ray fluxes vary strongly with solar activity. In particular, during a solar flare, these
short-wavelength photons can be enhanced by a factor of a few to orders of magnitude. Photoelectrons are
created during the photoionization process and transfer energy to the thermosphere and ionosphere via
electron-neutral collisions and electron-electron Coulomb collisions, causing heating, ionization, and emis-
sion (e.g., Fox & Dalgarno, 1979). Photoelectron energy spectra are very sensitive to solar spectral variations
(e.g., Peterson et al., 2012; Sakai et al., 2015; Xu, Liemohn, Peterson, et al., 2015). Peterson et al. (2016) inves-
tigated how photoelectron spectra change before and after a solar flare with Mars Atmosphere and Volatile
EvolutioN (MAVEN) measurements and simulations, including three photoelectron production models and
two solar irradiance models. The variation in the solar spectrum is also reflected in ionospheric properties.
Gurnett et al. (2005) first reported the flare-induced ionospheric enhancement at and above the M2 peak
with measurements from the Mars Advanced Radar for Subsurface and Ionosphere Sounding onboard Mars
Express. The first observation of the M1 layer’s response to a solar flare was reported by Mendillo et al. (2006)
with radio occultation measurements of electron density with the Mars Global Surveyor (MGS) spacecraft,
which showed an enhancement of up to 200% in density at 90–95 km. More recently, ionospheric elec-
tron density responses to flares were investigated with MGS and Mars Express data (e.g., Fallows, Withers, &
Gonzalez, 2015; Fallows et al., 2015b; Haider et al., 2009; Mahajan et al., 2009; Nielsen et al., 2007). There were
also modeling efforts dedicated to reproducing the low-altitude ionospheric responses to flares (e.g., Haider
et al., 2012, 2016; Lollo et al., 2012).

On 10 September 2017, MAVEN observed an X8.2 solar flare, the largest it has encountered to date. The EUV
and X-ray fluxes increased by ∼100% (a factor of ∼2) and ∼1,000% (a factor of ∼11), respectively, for this
event. During the flare’s declining phase, MAVEN was taking in situ measurements of neutral and ion densi-
ties for multiple species with the Neutral Gas and Ion Mass Spectrometer (NGIMS) instrument (Mahaffy et al.,
2015), the thermal electron density and temperature with the Langmuir Probe and Waves (LPWs) instrument
(Andersson et al., 2015), and superthermal electron fluxes with the Solar Wind Electron Analyzer (SWEA;
Mitchell et al., 2016). Additionally, EUV irradiance measurements in three wavelength bands made by the
Extreme UltraViolet Monitor instrument (Eparvier et al., 2015) are used to drive a spectral irradiance model,
providing predictions of solar irradiance from 0.1 to 189.5 nm (Thiemann et al., 2018). These comprehensive
measurements provide an opportunity to evaluate the ionospheric response to this flare event in detail with
validated numerical models, using direct measurements or measurement-constrained simulations as inputs.
This study investigates the low-altitude ionospheric response to the flare, which is an important part of how
the Martian environment responds to such a space weather event. To the best of our knowledge, this is also
the first to compare model results directly to ion measurements.

2. Observations and Modeling of Photoelectrons

The ionizing 0- to 91-nm solar flux due to this flare increases sharply at 15:43:40 UT on 10 September 2017,
reaching the peak value within ∼10 min, where it remains for ∼24 min. The flux then decays to half of its max-
imum after ∼36 min and returns to the preflare level near the end of day (Thiemann et al., 2018). In this study,
we choose three time periods to investigate this event: the periapsis pass before the flare, during the flare
peak when MAVEN was at its apoapsis, and the first periapsis pass after the peak, when the flare was in its
declining phase. MAVEN in situ observations of the ionosphere were obtained during both periapsis passes.
The SuperThermal Electron Transport (STET) model (Khazanov & Liemohn, 1995; Liemohn et al., 2003; Xu &
Liemohn, 2015; Xu, Liemohn, Peterson, et al., 2015) is used to simulate photoelectron spectra and ion pro-
duction rates. Around the time of the flare, MAVEN had a periapsis altitude of ∼155 km at a solar zenith angle
(SZA) of 70∘, which is above the M2 peak. For this event, we use neutral and plasma density and temperature
measurements from MAVEN as model inputs. In order to extend simulations down to 100 km to examine the
response of both the M1 and M2 layers, we adopt neutral profiles from simulation results with the Mars Global
Ionosphere-Thermosphere Model (M-GITM; Bougher et al., 2015) for this event.

2.1. Inputs for STET Modeling
The STET model solves the gyroaveraged Boltzman equation and calculates the superthermal electron flux
along a single magnetic flux tube. The cross-section information for photoionization and excitation in the
Mars environment used by the STET model is from Fox (1991), with an updated electron impact cross section
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Figure 1. (a) Solar irradiance for 0.1–60 nm from a spectral irradiance model (Thiemann et al., 2018) for the three
periods. (b) Electron temperature profiles for the prepeak flare (solid) and postpeak flare (dashed) periods. (c) Profiles of
the CO2 density (black) and the O density (magenta) for the prepeak flare (solid) and postpeak flare (dashed) periods.
(d) The density ratio of the postpeak flare and prepeak flare periods for CO2 (black) and O (magenta). The prepeak flare
profiles are used to model the peak flare period as well.

from Fox and Sung (2001). See more details about the STET model in Xu and Liemohn (2015) and Xu, Liemohn,
Peterson, et al. (2015). The solar spectra for these three time periods from Thiemann et al. (2018) are dis-
played in Figure 1a. The solar flux enhancement due to this flare event exhibits large, wavelength-dependent
variations and is up to 1–2 orders of magnitude for wavelengths < 15 nm.

Other key input profiles for the STET model include the CO2 and O densities (three other neutral species, CO,
N2, and O2, are also included in the model but not shown) and electron temperatures, obtained through a
combination of MAVEN observations and M-GITM simulation results, which are shown in Figures 1b–1d. More
specifically, for the prepeak flare period, the O density from M-GITM is spliced directly to the NGIMS data
at altitudes below periapsis, where NGIMS measurements are not available; the CO2 density from M-GITM is
shifted up 10 km prior to splicing with the NGIMS data (to force the model absolute values to agree with the
data). For the postpeak flare period, we shift the M-GITM CO2 density up 15 km and the M-GITM O density up
9 km prior to splicing with the NGIMS data. Neutral density enhancements at a fixed altitude are due to heating
of the thermosphere during the flare (e.g., Qian et al., 2011; Thiemann et al., 2015). Finally, for the electron
temperature (Te) profiles, we use the M-GITM CO2 profiles below 115 km to estimate the lower thermosphere
temperature and linearly extrapolate the LPW measured Te to the neutral temperature at low altitudes, an
approach adopted by previous studies (e.g., Mendillo et al., 2011). Below 115 km, collisions between neutrals
and charged particles are so frequent that the electron temperature is expected to be similar to the neutral
temperature. A SZA of 70∘ is used in all simulations, which corresponds with MAVEN’s periapsis location for
these two orbits.

Because the flare peaks when MAVEN was near apoapsis, far above the ionosphere, we combine density and
temperature profiles from the periapsis pass before the peak with the solar spectrum at the peak to simu-
late the ionospheric response to the peak flare irradiance. Because the flare irradiance peaks rapidly (within
∼10 min; Thiemann et al., 2018) and the thermospheric response is expected to lag that of the ionosphere
(e.g., Thiemann et al., 2015), the preflare density profiles better represent the peak flare period. This also allows
us to isolate the ionospheric response solely to solar flux variations.

2.2. Data-Model Comparison of Photoelectron Spectra
The modeled photoelectron spectra at 155 km, convolved with SWEA’s energy response function (Mitchell
et al., 2016), for the prepeak, peak, and postpeak flare periods are shown with black, red, and blue thin lines,
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Figure 2. (a) The modeled photoelectron spectra at 155 km for the three periods are shown as thin lines in different colors. Overplotted as the black and
blue thick lines are observed photoelectron spectra from SWEA at 155 km for the prepeak flare and postpeak flare periods, respectively. (b) STET modeled
electron fluxes divided by the measured electron fluxes for the postpeak flare (blue) and prepeak flare (black) periods. (c) The electron flux ratio of the
postpeak flare and prepeak flare periods, the blue lines divided by the black lines in (a), from the SWEA data (thick) and STET model results (thin).
SWEA = Solar Wind Electron Analyzer; STET = SuperThermal Electron Transport.

respectively, in Figure 2a. The spacecraft potential is near −2.5 V for both the preflare and postpeak flare
periapses. This potential is applied to the modeled spectra as follows: the modeled spectra in units of differ-
ential energy flux (eV/cm2⋅s⋅ster⋅eV) are first converted to phase space density (cm−3 (cm/s)−3 ), where they
are shifted in energy by 2.5 eV, and then converted back to differential energy flux and finally convolved
with the SWEA energy response function. This procedure allows for direct comparison between modeled and
measured electron fluxes (thick lines). Several distinct features characteristic of ionospheric primary photo-
electrons (e.g., Coates et al., 2011; Frahm, Sharber, et al., 2006; Frahm, Winningham, et al., 2006; Frahm et al.,
2010; Liemohn et al., 2003; Mitchell et al., 2000; Sakai et al., 2015; Xu et al., 2017) are seen in the electron
energy spectra. These are caused by ionization of CO2 and O by discrete features of the solar ionizing spec-
trum, including (1) a cluster of peaks from 22 to 27 eV, corresponding to the intense 30.4-nm He-II solar line;
(2) a sharp flux drop from 60 to 70 eV, corresponding to a sharp decrease of solar irradiance at wavelengths
shorter than 17 nm; and (3) an oxygen Auger peak near 500 eV.

Auger peaks are produced by ionization of K-shell (inner-shell) electrons of carbon, nitrogen, or oxygen atoms
in CO2 and N2 by soft X-ray photons, creating electronically excited ions, which then deexcite mainly through
the emission of an Auger electron at fixed energies (e.g., Fox et al., 2008; Mitchell et al., 2000; Sakai et al., 2015).
The Auger electrons from the oxygen atom in CO2 create this peak near 500 eV. Carbon and nitrogen Auger
peaks, with energies of∼250 and∼360 eV, respectively, are harder to identify, because N2 is not the dominant
neutral species at Mars and the photoelectron flux decreases rapidly from 200 to 400 eV, which can mask the
presence of a low-amplitude peak (e.g., the black thick line in Figure 2a). A small fraction of the time (0.1%),
deexcitation takes place via X-ray emission. C, N, and O K-shell (Auger) X-rays were predicted by Cravens and
Maurellis (2001) and observed at Mars by the Chandra X-ray Observatory (Dennerl, 2002), providing evidence
that C, N, and O Auger processes are operating at Mars.

Sakai et al. (2015) hinted at the observation of C and N Auger electrons, as some of the SWEA energy spectra
show sharp features at energies around 250 and 360 eV. For this flare event, the high photoelectron fluxes due
to the enhanced short-wavelength photon irradiance provide sufficient statistics to allow for the C Auger peak
in the spectra to be unequivocally identified for the first time. In Figure 2a, a bump at ∼250 eV, marked by the
vertical dotted line, is seen in the postflare spectrum (thick blue line). The flux enhancement at∼250 eV is nine
standard deviations above the baseline flux level, so it is highly unlikely to result from stochastic variability.
The carbon Auger peak is also apparent in the modeled peak and postpeak spectra (Figure 2a, thin blue and
red lines). During the postflare periapsis pass, the carbon Auger peak is observed consistently for over 4 min.
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The C Auger peak can also be clearly and repeatedly identified in six out of seven other flare events
encountered by MAVEN.

The modeled and measured electron spectra agree to within 30% for energies below 60 eV and from 200
to 550 eV for the prepeak and postpeak periapses (Figure 2b). Photoelectron fluxes at energies greater than
∼10 eV are roughly linearly proportional to ionizing photon fluxes (e.g., Xu & Liemohn, 2015; Xu, Liemohn,
Bougher, & Mitchell, 2015; Xu, Liemohn, et al., 2016). Consequently, the modeled solar irradiance spectra are
accurate for the ∼17- to 60- and 1- to 6-nm wavelength ranges (the ionization potential of CO2 subtracted
from the photon energies), to within ∼30%. The larger discrepancy between modeled and observed electron
fluxes between 60 and 200 eV is due to the uncertainty of the photoionization cross sections and/or the solar
spectrum. Figure 2c shows the electron flux ratios of the postpeak flare and prepeak flare periods from the
SWEA data (thick) and the STET model (thin). The flux ratio agrees well below 100 eV, which suggests that the
spectral irradiance model accurately predicts the solar irradiance enhancement from 11 to 60 nm between
the prepeak and postpeak periods. On the other hand, photoelectron fluxes are enhanced by up to a factor
of 8 between 60 and 500 eV from the prepeak flare period to the postpeak flare period, corresponding to
the large enhancement in EUV and X-ray photons due to the flare. For the peak flare period, the photoelec-
tron flux enhancement is a factor of ∼20 for the 200–500 eV energy range, which is consistent with a similar
enhancement in the 1- to 2-nm solar photon flux (Figure 1a).

3. Observations and Modeling of Plasma Densities

A consequence of enhanced EUV and X-ray fluxes due to a flare event is a higher ion production rate, resulting
in increased thermal plasma densities. With the STET model, we can calculate the ionization rate of CO2 (the
main source for CO+

2 and O+
2 ) from photoionization (dashed) and EII (solid) for the three periods, as shown in

Figure 3a. Again, for the preflare and peak flare modeling, the neutral densities are taken from the preflare
measurement while the postpeak flare case is using measurements from one orbit later. The photoionization
production peak (dashed lines) is located at ∼125 km for the prepeak flare and peak flare periods and shifted
to∼135 km for the postpeak flare period, as the first two periods have the same neutral and Te inputs, whereas
the neutral atmosphere is expanded during the postpeak flare period. The EII production rate peaks near 120,
110, and 105 km during the prepeak flare, postpeak flare, and peak flare periods, respectively, corresponding
with the hardness of the soft X-ray spectrum. The EII production rate exceeds the photoionization produc-
tion rate below 115–120 km, even exceeding the maximum photoionization rate at the flare peak across all
altitudes. Assuming a static neutral atmosphere, the total production rate is enhanced by 40% (a factor of
1.4) above 130 km and increases rapidly up to 1,500% (a factor of 16) below 130 km from the prepeak flare
period to the peak flare period (red –+– in Figure 3b). For the postpeak flare period, the enhancement of the
total production rate (blue –+– in Figure 3b) as a function of altitude is influenced by the neutral atmosphere
expansion, in addition to the enhanced ionizing solar flux, and reaches 200% (a factor of 3) below 200 km. In
particular, the enhancement for the postpeak flare period is much smaller below 105 km than for the peak
flare period, mostly because the neutral atmosphere is expanded so that X-ray photons deposit energy at a
higher altitude. For the same reason, the ionization rate enhancement is greater at higher altitudes for the
postpeak period than the peak flare period.

CO+
2 and O+

2 densities can be calculated by assuming photochemical equilibrium (PCE; i.e., the production
rate is equal to the loss rate, and transport is negligible), which is a good approximation below 180–200 km
(e.g., Fox & Dalgarno, 1979). The primary reactions for the production and loss of CO+

2 and O+
2 at Mars are listed

below, following Fox and Dalgarno (1979).

R1: CO2 + h𝜈 → CO+
2 + e

R2: CO+
2 + O → CO + O+

2 ; k2 = 1.64×10−10

R3: CO+
2 + O → CO2 + O+; k3 = 9.6×10−11

R4: O+ + CO2 → O+
2 + CO; k4 = 1.1×10−9

R5: CO+
2 + e → CO + O; k5 = 4.2 ×10−7 (300/Te)0.75

R6: O+
2 + e → O + O; k6 = 2.4 ×10−7 (300/Te)0.7

The production rate of CO+
2 (R1) is calculated by the STET model, by summing CO2 photoionization and EII, and

the rest of the reaction rates are taken from Schunk and Nagy (2009). For R5 and R6, the thermal electron den-
sity is substituted with the O+

2 density, as O+
2 is the dominant ion species below 200 km. R4 is a fast reaction, so

that we take the production of O+
2 being controlled by R2 and R3. A similar approach was adopted in previous
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Figure 3. (a) The ion production rate of CO+
2 from photoionization (dashed) and EII (solid) for the three periods. (b) The

total production rates (photoionization + EII) of the peak flare and postpeak flare periods are divided by that of the
prepeak flare period, colored in blue and red, respectively. (c) Profiles of CO+

2 (thin solid lines) and O+
2 (thick solid lines)

densities for the three periods, highlighted in different colors. Thermal electron densities from LPW (multiplied by a
factor of 1.4) and CO+

2 densities from NGIMS (multiplied by a factor of 4) are plotted over as –+– and –∗–, respectively,
for inbound and outbound of the prepeak flare (black) and postpeak flare (blue) orbits. (d) The density ratio of CO+

2
(–+–) and O+

2 (thick solid lines) for the peak flare and postpeak flare periods divided by that of the prepeak flare period,
colored in blue and red, respectively. The vertical dotted lines in (b) and (d) mark values of 1 and 1.5. LPW = Langmuir
Probe and Wave; NGIMS = Neutral Gas and Ion Mass Spectrometer; EII = electron impact ionization.

studies (e.g., Fillingim et al., 2010; Xu, Mitchell, et al., 2016). With this formalism, we obtain the following:

n(CO+
2 ) =

P(CO+
2 )

(k2 + k3)n(O) + k5n(O+
2 )

(1)

n(O+
2 ) =

√
(k2 + k3)n(CO+

2 )n(O)∕k6 (2)

We iterate the CO+
2 and O+

2 densities with equations (1) and (2) until they converge to within 1% (𝛿n∕n). The
calculated CO+

2 and O+
2 densities are shown in Figure 3c, together with the shifted LPW thermal electron den-

sity (comparing with the dominating ion species O+
2 ) and NGIMS CO+

2 density. The prepeak and postpeak
LPW electron densities, both multiplied by the same factor of 1.4, are in good agreement with the modeled
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O+
2 densities, showing that the model has a similar postpeak density enhancement (relative to the preflare

period) to the observed one. This can be attributed to several factors: a modeled solar irradiance that is too
high, uncertainties in the LPW measurements, uncertainties in the neutral densities measured by NGIMS, and
uncertainties in the cross sections and reaction rates. In addition, the assumption of PCE might be less valid
as MAVEN observations were made at high SZAs so that transport might be important below 180 km. Tak-
ing into account all of these uncertainties and assumptions, this 40% discrepancy between the modeled O+

2

density and the LPW electron density is reasonable.

NGIMS only measures ion profiles during alternating orbits. For the postpeak flare period, the CO+
2 density

is directly taken from NGIMS measurements. For the prepeak flare period, we use NGIMS measurements of
CO+

2 densities two orbits prior to the prepeak flare orbit, assuming the ionosphere is stable before the flare
event. After multiplying by a factor of 4, the CO+

2 densities measured by NGIMS have similar profiles as the
modeled CO+

2 densities and exhibit a similar enhancement due to the flare. On the one hand, it indicates that
the modeled CO+

2 density is roughly 4 times of what NGIMS measured. The measured LPW e− density is ∼2
times of the NGIMS measured O+

2 density, which might imply a factor of ∼2 absolute calibration to the NGIMS
ion density. If this correction is applied to the NGIMS data, the discrepancy between the modeled and NGIMS
CO+

2 densities would be within a factor of∼2, which might be because of the oversimplified assumption of PCE
and/or other uncertainties in, such as, modeled solar irradiance. On the other hand, despite discrepancies in
the absolute values, the modeled ion densities have similar altitude profiles and similar density enhancements
as the observed densities. This comparison demonstrates the validity of our approach at characterizing the
relative ionospheric enhancements due to the flare event.

Below the MAVEN periapsis, the M2 (or O+
2 density) peak, is located at 125 km for the prepeak and peak flare

periods and 135 km for the postpeak flare period. For CO+
2 , the density peaks around 140–145 km for all

three periods, different from that of O+
2 . As k5n(O+

2 ) is small compared to (k2 + k3)n(O) (equation (1)), the main
source for O+

2 is roughly equal to P(CO+
2 ), and thus, the O+

2 density peaks approximately where P(CO+
2 ) peaks

(equation (2)). In contrast, the main loss of CO+
2 depends on the O density, which falls off exponentially with

increasing altitude, and therefore, the CO+
2 density peaks at a different altitude. Below the main peak, the

O+
2 density has another small peak at 110 km for the postpeak flare period, corresponding to the EII peak in

Figure 3a. Even though the peak flare period has a maximum EII production rate at 105 km, this is more than
offset by higher loss rates for CO+

2 (because of a higher O density) and O+
2 (because of a five times smaller

electron temperature) at this altitude.

Figure 3d displays the density ratios of the peak and postpeak flare periods to the prepeak flare period. The
prepeak and peak flare periods have the same input neutral density and electron temperature profiles for
the STET model so that the modeled density enhancement is entirely due to increases in solar photon fluxes.
The density enhancements for O+

2 and CO+
2 , respectively, are approximately 15% and 35% above the M2 peak,

becoming larger with decreasing altitude, up to 300% and ∼1,500%. The density enhancement for CO+
2 is

roughly the square of that for O+
2 , because the former is proportional to the total production rate and the

latter to the square root of the total production rate.

For the postpeak flare period, ion densities are also influenced by the neutral density and electron temperature
profiles. The O+

2 density increases approximately as the square root of the ion production rate, up to ∼40%
above 140 km and from 105- to 110-km altitude. In contrast, the CO+

2 density increases by ∼40% above 155
km, because of increased production (a factor of 2–3 from the blue line in Figure 3b), which is partially offset
by an increased loss due to a higher O density (a factor of 1.5–2 from the magenta line in Figure 1d). Below
140 km, the CO+

2 density during the postpeak flare period is actually lower, than during the prepeak flare
period. This is because the ratio of the total production rates during the postpeak and prepeak flare periods
is mostly less than 2 (blue –+– in Figure 3b) , while the O density is twice as high (the magenta dotted line in
Figure 1d), resulting in a decreased CO+

2 density (Figures 3c and 3d) because of reactions R2 and R3.

Our modeled O+
2 density profile for the postflare period shows a clear shoulder due to the M1 peak, like some

of the flare impacted electron density profiles obtained from MGS radio occultations (e.g., Fallows, Withers,
& Gonzalez, 2015), while the prepeak and peak flare O+

2 density profiles lack a clear lower peak or a local
minimum that would separate the M1 and M2 layers. This confirms that the separation of the M1 and M2
peaks depends on the solar spectral distribution and neutral density profiles.
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4. Conclusions

In this study, we investigate the low-altitude ionospheric response to the largest solar flare encountered by
MAVEN to date by simulating photoelectron spectra and ion production rates and densities for the prepeak,
peak, and postpeak flare periods with the STET model. The modeled photoelectron spectra agree well with
observed spectra during the prepeak and postpeak flare periods. This agreement validates both the modeled
solar EUV and soft X-ray irradiance and the STET model results above the MAVEN periapsis and gives credence
to the model results below periapsis. In addition, we report the first clear identification of the carbon Auger
peak in the Martian ionosphere.

Ion production rates from photoionization and EII are obtained from STET model. By applying photochemical
equilibrium, ion densities can be calculated. The background profiles for the STET model are intentionally kept
the same for the prepeak and peak flare periods so that responses to solar spectral variations can be isolated.
The total production rate is found to increase by ∼40% for the M2 layer but up to 200% (a factor of 3) for the
M1 layer. As the soft X-ray spectra become harder, the production peak for EII moves from 120 to 105 km in
altitude. Correspondingly, the O+

2 and CO+
2 densities increase, respectively, by approximately 15% and 35%

above the M2 peak and by factors of up to 300% and ∼1,500% for the M1 layer (∼100-km altitude).

For the postpeak flare period, variations in neutral and electron temperatures due to the flare are taken into
account. The production rate is enhanced by 40% to 200% above the M2 peak and ∼150% near the M1 peak
because of a combination of increased EUV fluxes and neutral atmosphere expansion. The M2 peak is also
shifted from 125 to 135 km in altitude from the prepeak to the postpeak flare period because of a higher CO2

density. The O+
2 density enhancement is mostly less than 50%. The loss of CO+

2 depends sensitively on the O
density, which is also increased because of the flare, so that the CO+

2 density increases by less than 50% above
140-km altitude and decreases at lower altitudes.

Despite discrepancies in the absolute values, the modeled ion densities have similar altitude profiles and sim-
ilar density enhancements to the observed densities, again validating our model results above the MAVEN
periapsis. Below the MAVEN periapsis, the neutral density and electron temperature profiles that are used
as inputs to the STET model in this study are adopted from M-GITM results, so we do not expect the calcu-
lated production rate and ion density profiles to perfectly match observations. The primary emphasis is on
the relative changes from the quiet solar conditions to the flaring conditions.
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