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Abstract Many aspects of the Sun-Mars interaction have been investigated during solar transient events
with measurements from multiple spacecrafts and also simulation efforts. Limited discussion has been paid
to magnetic topology response to disturbed upstream conditions. The implications of topology changes
include, but are not limited to, the pattern of energetic particle precipitation into the Martian atmosphere
and the impact on cold ion escape during solar transient events as low-energy ion escape is dependent on
magnetic topology. In this study, we investigate the magnetic topology response to the 2017 September
interplanetary coronal mass ejection (ICME) event with measurements collected by the Mars Atmospheric
and Volatile EvolutioN spacecraft. It is found that the interface between draped interplanetary magnetic
field and closed field lines was moved from 8001400 km in altitude during quiet conditions to 200-400 km
after ICME arrived at Mars and then relaxed back to high altitudes again after the event. To gain insight into
magnetic topology response on a global scale, we first validate magnetic topology from a time-dependent
simulation with a single-fluid multispecies magnetohydrodynamic (MHD) model by comparing magnetic
topology determined from Mars Atmospheric and Volatile EvolutioN data, which shows a good agreement.
Then we present MHD predictions of global magnetic topology changes during this ICME event. In addition
to a deeper interplanetary magnetic field penetration, MHD results suggest more open field lines in
response to the ICME event.

Plain Language Summary Animportant way for Mars to lose its atmosphere over time is through
solar wind striping away ions from Mars. The planet lacks of an intrinsic global magnetic field but possesses
localized crustal fields so that solar wind and the interplanetary magnetic field have direct access to the
Martian ionosphere. This effect is intensified when a coronal mass ejection is emitted from the Sun and
hits Mars. Charged particles subject to electromagnetic forces so that the magnetic topology, whether a
magnetic field line connects to Mars and/or solar wind, is an important aspect of the Sun-Mars interaction
and also closely related to energy and particle transport at Mars and low-energy ion escape. In this study,
we investigate how the Martian magnetic topology responds to the coronal mass ejection event occurred
in September 2017 with measurements from the Mars Atmosphere Volatile and Evolution spacecraft

and also simulation results from a magnetohydrodynamic model. It is found that during the event,
interplanetary magnetic field penetrates deeper into the atmosphere and also there are more magnetic
field lines connecting Mars and solar wind, which means ions subject to escape starting from lower
altitudes, where ion densities are higher.

1. Introduction

Mars possesses localized crustal magnetic fields (Acuiia et al., 1998, 1999; Connerney et al., 2005; Connerney,
Espley, Oliversen, et al., 2015) that, together with the ionosphere, present a complex obstacle to the solar wind.
The investigation of Mars’ response to major space weather events is an important aspect of understand-
ing general planetary solar wind interactions as well as constraining Martian atmosphere loss to space over
time. Previous studies have been dedicated to the effects of solar wind stream interaction regions (SIRs) and
interplanetary coronal mass ejections (ICMEs) using data from Phobos-2 (e.g., McKenna-Lawlor et al., 2005),
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Mars Global Surveyor (MGS; e.g., Crider et al., 2005; Vennerstrom, 2011), Mars Express (e.g., Dubinin et al., 2009;
Edberg et al., 2009, 2010; Morgan et al., 2014; Opgenoorth et al., 2013; Ramstad et al., 2017), and Mars Atmo-
spheric and Volatile EvolutioN (MAVEN; e.g., Jakosky, Grebowsky, et al., 2015). The reported influences include,
but are not limited to, enhanced magnetic field pileup around Mars, plasma boundaries being pushed to
lower altitude, and increases in ion escape rate. Meanwhile, simulation efforts have also been made in study-
ing global effects of solar transient events on the Martian plasma environment (e.g., Curry et al., 2015; Dong
etal., 2015; Fang et al.,, 2013; Jakosky, Grebowsky, et al., 2015; Luhmann et al., 2017; Ma et al., 2017; Romanelli
etal, 2018).

Limited discussion in literature has been paid to magnetic topology, which is a key aspect of the Mars
response. The mapping of Martian magnetic topology under quiet solar wind conditions has been performed
with MGS (e.g., Brain et al., 2005, 2007; Mitchell et al., 2001; Shane et al., 2016; Xu et al., 2014), Mars Express
(e.g., Frahm et al., 2006, 2010; Liemohn, Frahm, et al., 2006; Liemohn, Ma, et al., 2006; Liemohn et al., 2007),
and MAVEN (e.g., Garnier et al., 2017; Steckiewicz et al., 2015, 2017; Weber et al., 2017; Xu, Mitchell, Liemohn,
et al,, 2016; Xu, Mitchell, Liemohn, et al., 2017; Xu, Mitchell, Luhmann, et al., 2017). For disturbed solar wind
conditions, Crider et al. (2005) showed that solar wind/magnethosheath electrons overwhelmed MGS obser-
vational altitudes (~ 400 km) during the Halloween interplanetary coronal mass ejection (ICME) event, in lieu
of ionospheric photoelectrons typically observed under quiet conditions. This observation suggests that the
photoelectron boundary (PEB; e.g., Garnier et al., 2017; Mitchell et al., 2001) was pushed below MGS altitudes
in response to ICME. However, Crider et al. (2005) only examined omni-directional electron fluxes so that there
exists an ambiguity of whether this IMF (interplanetary magnetic field) penetration is simply draping or due
to an increase of “open” Martian magnetic field topology.

Here we define an open field line as one end being embedded in the ionosphere below 160-200 km (or the
superthermal electron exobase; e.g., Xu, Liemohn, Bougher, et al., 2016; Xu, Mitchell, Liemohn, et al., 2017)
with the other end connecting to the solar wind. This definition differentiates whether a field line is connected
to the ionosphere below the exobase, which is important to characterize ion escape. Cold ion (with a few elec-
tronvolts energy) escape likely operates on different mechanisms for different magnetic topologies (e.g., Lillis
etal,, 2015). Closed field lines trap low-energy ions; open field lines allow polar wind-like ionospheric outflow,
mainly driven by ambipolar electric fields (e.g., Collinson et al., 2015); and draped field lines scrape away ions,
mainly accelerated by the J x B force and convection electric field (e.g., Fang et al.,, 2008; Halekas et al., 2017).
In addition, Luhmann et al. (2017) examined Mars’ response to ICMEs with simulations from a single-fluid
multispecies magnetohydrodynamic (MHD) model (Ma et al., 2002, 2004) and found that during ICMEs, there
are more open field lines from simulation results, possibly responsible for a factor of a few to 1-2 orders of
magnitude enhancement in ion escape rate. Therefore, the investigation of magnetic topology response is
important to characterize the impact of space weather events on cold ion escape.

With comprehensive plasma and field data collected by the MAVEN spacecraft (Jakosky, Lin, et al., 2015), we
characterize magnetic topology response to the 2017 September ICME event in a more accurate way by exam-
ining measurements from solar wind electron analyzer (SWEA; Mitchell et al., 2016) and magnetometer data
(Connerney, Espley, Lawton, et al., 2015). However, MAVEN only provides measurements along its orbit. MHD
modeling, though having its limitations in simulating some aspects of the Sun-Mars interaction, provides
insight to magnetic topology on a global scale. In this study, we first compare magnetic topology determined
from MAVEN data with that from a time-dependent simulation with the single-fluid multispecies MHD model
(Ma et al., 2018) to validate MHD results. Then we use the MHD model results to picture the global magnetic
topology response to this ICME event.

2. Methodology and Orbit Example

Superthermal electrons have been used as magnetic tracers to deduce magnetic topology at Mars based on
two basic principles: (1) a loss cone pitch angle distribution (a significant depletion/absorption of electrons in
more field-aligned directions compared to more perpendicular directions) implies the field line intersecting
the collisional atmosphere (e.g., Brain et al., 2007; Weber et al., 2017), and (2) the presence of ionospheric pho-
toelectrons indicates the footpoint(s) of a field line embedded in the dayside ionosphere (e.g., Xu, Mitchell,
Liemohn et al., 2017). For one single electron and magnetic field measurement, we can separate superther-
mal electrons with velocities pointing “toward” or “away from” Mars. Sequentially, for each direction, if a loss
cone and/or photoelectrons are detected, we can determine if the field line connects to the atmosphere once,
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Figure 1. Time series on 12 September 2017 of (a) magnetic field magnitude (blue) and (b) angles in the Mars-centered
solar orbital (MSO) coordinates measured by MAG, (c) pitch angle distribution (PAD) of 111-140 eV electrons normalized
by the median electron flux and (d) electron energy spectra (in differential energy flux: eV sr=! cm=2 s~1 eV~T)
measured by SWEA, (e) pitch angle-resolved shape parameters, (f) flux ratio of “away” and “toward” electrons for
100-300 eV, and (g) spacecraft altitude colored by magnetic topologies. The MSO coordinates are defined as X points
from the center of Mars to the Sun, Y is opposite to the orbital motion of Mars, and Z completes the right-hand rule,
perpendicular to the Mars’ orbital plane. In Figure 1a, the modeled magnetic field magnitude in dashed red is from
Morschhauser et al. (2014). In Figure 1b, the phi angle is the azimuthal angle in MSO, pointing from X axis to Y axis, and
the theta angle is the elevation angle relative to the X-Y plane but shifted by 180°. MAG = magnetometer; SWEA = solar
wind electron analyzer.

twice, or not at all, corresponding to open, closed, and draped fields, respectively. In addition, on the night-
side, superthermal electron voids have been observed (e.g., Mitchell et al., 2001; Steckiewicz et al., 2017),
resulting from a lack of solar photoionization sourcing within the optical shadow and continuous loss to the
atmosphere mainly via electron-neutral inelastic collision. A more detailed methodology using pitch angle
distributions to determine magnetic topology can be found in section 2 of Brain et al. (2007). The usage of
photoelectrons inferring topology is described in detail in section 3 of Xu, Mitchell, Liemohn et al. (2017). In
this study, we determine the magnetic topology with a combination of the two techniques.

Figure 1 shows MAVEN measurements and derived quantities on 12 September 2017. Figure 1e presents the
pitch angle-resolved shape parameters (Xu, Mitchell, Liemohn, et al., 2017). A canonical photoelectron spec-
trum has sharp features (e.g., Liemohn et al., 2003; Peterson et al., 2016; Xu, Liemohn, Peterson, et al., 2015),
such as (1) a cluster of peaks from 22 to 27 eV from 30.4 nm He Il solar line ionizing CO, and O; (2) a sharp
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flux drop from 60 to 70 eV (termed “the photoelectron knee”), corresponding to a sharp decrease of solar irra-
diance at wavelengths shorter than 17 nm. As described in section 4 of Xu, Mitchell, Liemohn, et al. (2017),
a shape parameter is the difference of the derivative electron flux of a measured electron spectrum and of
a canonical ionospheric photoelectron spectrum. The smaller a shape parameter is, the more likely it is to
be photoelectrons. Following Xu, Mitchell, Liemohn, et al. (2017), we define shape parameter < 1 as photo-
electrons and shape parameter > 1 as solar wind electrons (or nonphotoelectrons). Toward and “away” refer
to electrons with velocities pointing toward or away from Mars in this study. In particular, for positive mag-
netic elevation angles (relative to the horizontal plane), toward and away indicate pitch angles 135°-180°
and 0°-45°, respectively; for negative elevation angles, toward and away indicate pitch angles 0°-45° and
135°-180°, respectively.

Sequentially, closed field lines can be defined as photoelectrons observed traveling in both directions or
shape parameters for both toward and away directions below 1, for example, near periapsis below 200 km
(22:50-23:00 UT), shown as red in Figure 1g correspondingly. Open is defined as photoelectrons traveling
away from Mars and solar wind electrons traveling toward Mars or away shape parameter < 1 and toward
shape parameter > 1, for example, 22:45-22:50 UT, colored as green in Figure 1g.

One caveat of this two-stream shape parameter method is that, for cases with shape parameters > 1 in both
directions, it can be either draped field lines or open field lines. For an open field connecting to the nightside
atmosphere, both incoming solar wind electrons and backscattered electrons will result in a shape param-
eter > 1, which is the same in terms of shape parameter alone for draped field lines. Another complication
occurs during disturbed solar wind conditions when the incoming solar wind electron flux is so high that
the backscattered electron flux skews/masks photoelectron spectral features. Both scenarios can be compen-
sated by taking into account the electron flux ratio of away and toward directions, as shown in Figure 1f.
When a field line intersects the collisional atmosphere, the incident electrons (in the toward direction) are
mostly absorbed by the atmosphere and therefore the outward electrons (in the away direction) consist
of backscattered electrons within loss cone pitch angles. As shown in Collinson et al. (2016), the backscat-
tered electron flux is typically 10%-30% of incident electron flux estimated from both SWEA measurements
and simulation results with the Superthermal Electron Transport model (Xu & Liemohn, 2015; Xu, Liemohn,
Bougher, et al.,, 2015). In other words, when a loss cone is present, the electron flux ratio of away and toward
directions is around 10-30%. Because the loss cone width is variable and not known a priori and also dayside
photoelectron fluxes (in the away direction) might raise the ratio, we set an electron-flux-ratio threshold of
0.8 for 100-300 eV electrons for whether a loss cone is detected. In other words, for cases with shape param-
eters > 1 in both directions, if the away-to-toward flux ratio is less than (greater than) 0.8, it is defined as
open (draped). For example, at 23:12-23:16 UT, the toward electrons are undoubtedly solar wind electrons
with shape parameters > 1, the away shape parameter is slightly above 1 because photoelectron spectra are
skewed by high backscattered solar wind electron flux. Meanwhile, loss cones are present in Figure 1cand also
the flux ratio is around 0.5 in Figure 1f. This period is identified as open because of this additional criterion,
correspondingly colored in green in Figure 1g.

3. Magnetic Topology Response to ICME

With shape parameters to pick out photoelectrons and flux ratios to identify loss cones, magnetic topology
can be determined throughout the event. Figure 2 shows the orbit geometry and magnetic topology from
7 September to 17 September 2017, corresponding to orbit numbers 5698-5751. For this event, the ICME
shock arrival occurred at 13 September 2017/02:52 (orbit 5731) and solar wind dynamic pressure enhance-
ment due to ICME lasted for approximately 2 days, roughly ending on orbit 5742 (Lee et al., 2018). In addition,
a SIR encounter happened around orbit 5720 (periapsis at 2017-09-11/02:34) and is discussed in more details
in Lee et al. (2018). During these ten days, MAVEN was mostly collecting data near the terminator plane
(Figures 2b-2d) and the periapsis is over the northern high latitudes (Figure 2a). This orbit geometry is
convenient to study magnetic topology: inbound segments over the weak crustal field regions and out-
bound segments over the north pole. In other words, the magnetic topology is less affected by local crustal
fields, unlike the highly longitudinal-dependent southern strong crustal field regions. It is worth noting that
localized crustal magnetic anomalies have been found to possess a global influence even in the northern
hemisphere (e.g., Brain et al,, 2006; Fang et al., 2017, 2018; Xu, Mitchell, Liemohn, et al., 2017).
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Figure 2. (a) Mars Atmospheric and Volatile EvolutioN orbit tracks, colored by magnetic topologies, from 7 September
to 17 September 2017 (orbits 5698-5751), only altitude below 600 km shown. Orbit numbers are shown in magenta.
Diamond symbols mark the periapsis location of each orbit. The contours are radial magnetic fields at 400 km based on
the crustal field model from Morschhauser et al. (2014). Orbit geometry in Mars-centered solar orbital (b) X-Y, (c) X-Z,
and (d) Y-Z plane for the same time period. The dotted lines are empirical bow shock (outer lines) and magnetic pileup
boundary (inner lines) locations based on parameters from Trotignon et al. (2006). (€) Magnetic topology from 7
September to 17 September 2017, with the X axis being the orbit fraction (0-0.5 for inbound and 0.5-1 for outbound)
and the Y axis being the orbit number shift by 0.5. For example, periapsis of 5731 is decomposed into X = 0.5 and

Y = 5730.5. Blanks in magnetic topology are caused by insufficient PA coverages. The two vertical dashed lines mark
200 km in altitude. ICME = interplanetary coronal mass ejection; SIR = stream interaction region.

A convenient way to exhibit topology changes throughout the event is displayed in Figure 2e, where magnetic
topologies along the low-altitude part of the orbits are stacked up. Solar wind conditions were considered to
be quiet prior to the SIR encounter where the draped IMF extends down to ~600 km inbound and ~1,000 km
outbound. The solar wind dynamic pressure was low at this time (<1 nPa), effectively even lower near the
terminator, so that over the northern hemisphere, the interface between draped IMF and closed field lines is
located at relatively high altitudes to account for the pressure balance. Four days (7 September to 10 Septem-
ber, orbits 5698-5719) of magnetic topology under quiet conditions, spanning over longitudes 0°-360°, are
displayed to set a baseline regardless of crustal field patches over the north.

When solar wind is disturbed, draped fields are pushed to lower altitudes, in particular for orbit 5720 and orbits
5731-5742. On orbit 5720 (during the SIR encounter), IMF penetration was lowered to ~300 km outbound
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Figure 3. The comparison of magnetic topology determined from Mars Atmospheric and Volatile EvolutioN data (thick
lines) and from MHD simulations (thin lines). Magnetic topology from MHD is shifted 75 km upward in altitude. The
three panels correspond to the orbit segment near periapsis (a) before the shock arrival (orbit 5370), (b) right after the
shock arrival (orbit 5371), and (c) one orbit after the shock arrival (orbit 5372). These dashed lines mark altitudes of 200,
275, 400, 475, 600, and 675 km. MHD = magnetohydrodynamic.

while this altitude is uncertain for inbound due to insufficient pitch angle coverage near periapsis. Imme-
diately after the shock arrival (orbit 5731), the periapsis passage experienced the deepest IMF penetration,
with closed field lines extending only up to 200 km in both the inbound and outbound directions. In addi-
tion, the spacecraft was passing near the terminator where field lines are more likely to be horizontal to the
surface. In such a case, the superthermal electron exobase can reach altitudes up to 200 km, comparing to
a nominal exobase altitude of ~160 km for vertical magnetic fields, as shown in Figure 12a of Xu, Mitchell,
Liemohn, et al. (2017). In other words, for magnetic elevation angle less than 5°-10°, the field lines can be
open or deeply draped below 200 km even though our technique, based on electron data and only valid
above the exobase, determines it to be closed. Therefore, readers should be aware of the large uncertainty to
the magnetic topology in this study below 200 km near the terminator.

Despite caveats, Figure 2e clearly manifests the magnetic topology response to disturbed solar wind: IMF that
drapes at high altitudes (>600-1,000 km) during quiet time (orbits 5698-5719) penetrates to low altitudes (as
low as ~ 200 km) during SIR (orbits 5720) and ICMEs passages (orbits 5731-5742) due to increased upstream
dynamic pressure and/or larger IMF strength and relaxes to higher altitudes afterward (orbits 5720-5730 and
5742-5751).

4. Data-Model Comparison of Magnetic Topology

Due to measurement constraints based on MAVEN’s single-point observations and limited time in the north-
ern hemisphere during a given orbit, it is challenging to globally contextualize the magnetic topology
response to solar events. To gain some insight into magnetic topology response to the ICME event on
a global scale, we examine results from a time-dependent simulation for this event with the single-fluid
multispecies MHD model. As MAVEN was mostly sampling within the bow shock and does not provide
direct upstream measurements, the solar wind input for this simulation is derived from sheath measure-
ments and filled with linear interpolation between inbound and outbound sheath estimates for inside the
magnetic pileup boundary. Details of the model and simulation setup can be found in Ma et al. (2018).
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Figure 4. The comparison of global magnetic topology from the time-dependent MHD simulation (a and b) before the
shock arrival (orbit 5370) at 12 September 2017/22:40 and (c and d) after the shock arrival (orbit 5371) at 13 September
2017/03:05. Figures 4a and 4c are viewed from the north, and Figures 4b and 4d are viewed from the south. The field
lines are traced over a spherical surface at 350-km altitude with a 15° x 15° longitude-latitude grid. The blue/green/
orange colors indicate draped/open/closed field lines, respectively. The gray color indicates the magnetic field strength
at 110-km altitude (including both crustal and induced field components).

We first compare magnetic topology determined from the MAVEN data with that from MHD to validate MHD
results and then present MHD predictions of global and temporal magnetic topology response. The field lines
are traced within the MHD simulation results on a 5-min cadence along the MAVEN trajectory.

Figure 3 shows the comparison of magnetic topology from MAVEN and MHD for low-altitude segments of
orbits right before the shock (5730), immediately after the ICME shock (5731), and one orbit after (5732). For
orbit 5730 (Figure 3a), magnetic topology from MHD agrees well with that from MAVEN below 600 km inbound
and 800 km outbound, despite the more structured data. The discrepancy from 22:30-22:40 UT is mainly
because there is a rotation in measured magnetic fields (see Figure 1b), probably due to an IMF rotation, that
is not captured in the MHD input. For the orbit after the shock (5731, Figure 3b), magnetic topology from both
data and model shows that IMF penetrates down to 400 km inbound and 600-700 km outbound, and closed
field lines extend only up to 200-300 km with open field lines in between. Some draped IMF penetrates even
down to 200 km according to MAVEN data. For orbit 5732 (Figure 3c), both MAVEN and MHD results show
that IMF penetrates down to 300-400 km due to continuing enhanced dynamic pressure from the ICME. The
main discrepancy is that MHD mostly predicts open field lines for this periapsis passage, while MAVEN data
suggest mostly closed. Notice that below 200 km, topology determined from electron data has an uncer-
tainty due to a raised electron exobase. Overall, considering that the MHD inputs are mostly derived quantities
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and might miss some fast changes in real upstream drivers, magnetic topology from MHD is in a reasonable
good agreement with data.

Now that we have established that MHD provides good magnetic topology predictions by comparing with
MAVEN data, especially for the orbits before and after the shock arrival, we can compare the magnetic topol-
ogy from MHD for these two orbits to examine the global response to the ICME event, as shown in Figure 4.
Before the shock arrival (Figure 4a), the northern hemisphere is covered by closed, open, and some draped
fields at 350 km. In the southern hemisphere (Figure 4b), closed field lines dominate at 350 km because of
strong crustal fields. In contrast, after the shock arrival, more IMF penetration to 350 km and more open fields
are seen over the north hemisphere (Figure 4c) and the southern hemisphere is populated with more open
field lines (Figure 4d). Though partly attributed to different crustal field orientations before/after the shock,
more open field lines during an ICME encounter are consistent with the findings of Luhmann et al. (2017),
caused by a combination of magnetic reconnection between IMF and crustal fields (e.g., Harada et al., 2018)
and also open field lines being pushed to low altitudes due to high dynamic pressure. Note that the main
topology change in response to the ICME from MHD results is more open field lines, in contrast to more IMF
penetration from MAVEN data. It is probably because MAVEN's periapsis segments were limited to the dusk
terminator over the northern high latitudes so that MAVEN topology results might not be representative for
a global picture.

5. Discussion and Conclusions

In this study, we determine magnetic topology before/during/after the 2017 September ICME encounter with
MAVEN superthermal electron and magnetic field data. The magnetic topology response to the ICME event is
clearly shown: the interface between draped IMF and closed field lines is seen to move roughly from 834+203
(standard deviation) km to 300 km inbound and from 1390+490 km to 200-400 km outbound after the ICME
arrived at Mars and then relaxed back to high altitudes after the event.

Magnetic topology is closely related to cold ion escape; different mechanisms operate on different topologies
for these low-energy ions. Closed field lines trap cold ions; open field lines intersect the ionosphere below the
exobase, where ion densities are high and allow ion escape along the field lines; draped field lines carry away
ions at altitudes above the ion exobase. During the ICME and also the SIR encounter, IMF penetrates deeper
into the Martian atmosphere due to enhanced dynamic pressure while closed field lines are compressed to
lower altitudes, which could indicate that ions are subject to escape through open field lines and draped IMF
starting from lower altitudes, where ion densities are higher.

However, the MAVEN observations analyzed here have periapsis limited to northern latitudes and the dusk
terminator due to its orbit geometry. The magnetic topology response on a global scale is determined by
examining a time-dependent MHD simulation for this event. We first compare the topology from MHD with
MAVEN observations, which shows a good agreement and validates the topology results from MHD. As sug-
gested by the limited MAVEN perspective, the comparison of global magnetic topology from MHD at 350 km
before and after the shock arrival shows more IMF penetration over the northern high latitudes, consistent
with MAVEN data. Additionally, at 350 km, more open field lines are seen all over the planet due to a combi-
nation of different crustal field orientations and possibly higher reconnection rate between IMF and crustal
fields. This exercise not only demonstrates that the MHD model is an excellent tool to simulate magnetic topol-
ogy at Mars, even during disturbed conditions, but also provides a more comprehensive picture of how the
topology responds on a global scale to this ICME event.
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