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ABSTRACT

Context. Helioseismology and asteroseismology allow us to probe the differential rotation deep within low-mass stars. In the solar
convective envelope, the rotation varies with latitude with an equator rotating faster than the pole, which results in a shear applied on
the radiative zone below. However, a polar acceleration of the convective envelope can be obtained through 3D numerical simulations
in other low-mass stars and the dynamical interaction of the surface convective envelope with the radiative core needs to be investigated
in the general case.
Aims. In the context of secular evolution, we aim to describe the dynamics of the radiative core of low-mass stars to get a deeper
understanding of the internal transport of angular momentum in such stars, which results in a solid rotation in the Sun from 0.7R� to
0.2R� and a weak radial core-envelope differential rotation in solar-type stars. This study requires at least a 2D description to capture
the latitudinal variations of the differential rotation.
Methods. We build 2D numerical models of a radiative core on the top of which we impose a latitudinal shear so as to reproduce a con-
ical or cylindrical differential rotation in a convective envelope. We perform a systematic study over the Rossby number Ro = ∆Ω/2Ω0
measuring the latitudinal differential rotation at the radiative–convective interface. We provide a 2D description of the differential rota-
tion and the associated meridional circulation in the incompressible and stably stratified cases using the Boussinesq approximation.
Results. The imposed shear generates a geostrophic flow implying a cylindrical differential rotation in the case of an isotropic vis-
cosity. When compared to the baroclinic flow that arises from the stable stratification, we find that the geostrophic flow is dominant
when the Rossby number is high enough (Ro ≥ 1) with a cylindrical rotation profile. For low Rossby numbers (Ro < 1), the baro-
clinic solution dominates with a quasi-shellular rotation profile. Using scaling laws from 3D simulations, we show that slow rotators
(Ω0 < 30Ω�) are expected to have a cylindrical rotation profile. Fast rotators (Ω0 > 30Ω�) may have a shellular profile at the beginning
of the main sequence in stellar radiative zones.
Conclusions. This study enables us to predict different types of differential rotation and emphasizes the need for a new generation of
2D rotating stellar models developed in synergy with 3D numerical simulations. The shear induced by a surface convective zone has
a strong impact on the dynamics of the underlying radiative zone in low-mass stars. However, it cannot produce a flat internal rotation
profile in a solar configuration calling for additional processes for the transport of angular momentum in both radial and latitudinal
directions.
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1. Introduction

Rotation is a key physical mechanism regarding the dynami-
cal, chemical, and magnetic evolution of stars (Maeder 2009;
Charbonneau 2010; Brun et al. 2015). Within the context of secu-
lar evolution, rotating radiative zones are particularly interesting
since they impose the transport timescales of angular momentum
and chemicals.

Indeed, differential rotation induces meridional circulation
and potential shear instabilities that transport chemical elements
and angular momentum (Zahn 1992; Maeder & Zahn 1998;
Mathis & Zahn 2004; Rieutord 2006b) and impact the rotation
profiles and chemical abundances.

In this context, helio- and asteroseismology have been revo-
lutionary, probing for the first time the internal dynamical state
of stars. In the Sun, this reveals a uniform rotation profile in
the radiative core (see, e.g., the review by Thompson et al.
2003) at least until 0.2R� (Couvidat et al. 2003; García et al.
2007); the estimate of differential rotation is more difficult for
deep regions such as near the center of the Sun because of the

lack of identification of individual g-modes (Appourchaux et al.
2010). In the convective envelope, the differential rotation is
found to be conical with a prograde equatorial acceleration and
the azimuthal velocity decreasing monotonically towards higher
latitude. A strong radial differential rotation is observed at the
bottom of the convective zone forming a thin shear zone called
the tachocline (Spiegel & Zahn 1992). This calls for strong trans-
port processes operating at the radiative–convective interface
that must be investigated in order to understand the interactions
between these two regions (e.g., Garaud 2002a; Brun & Zahn
2006; Brun et al. 2011; Strugarek et al. 2011; Varela et al. 2016).

The internal differential rotation of several other types of
stars has been revealed by asteroseismology. Indeed, the core-
to-surface rotation ratio of numerous low-mass, main-sequence,
subgiant, and red giant stars (Beck et al. 2012; Deheuvels et al.
2012, 2014, 2016; Benomar et al. 2015) provides new constraints
for stellar modeling. Moreover, a surface differential rotation is
always observed in the convective envelope of low-mass stars
(Barnes et al. 2005; Reinhold et al. 2013) and it has been
confirmed by numerical simulations (Brun et al. 2015).
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In this context, 3D numerical simulations have been per-
formed to better understand the magnetic activity of solar-like
stars (Brun & Toomre 2002; Brun et al. 2004, 2011; Brown et al.
2008; Matt et al. 2011; Augustson et al. 2012) and determine
what influences the sign of the latitudinal differential rotation in
such stars (Gastine et al. 2014; Brun et al. 2017). These stud-
ies, devoted to short timescales, show that solar parameters can
produce anti-solar rotation profiles (slow equator and fast pole;
e.g., Käpylä et al. 2014). To be precise, depending on the con-
vective “fluid” Rossby number Ro f = v/2Ω0R, where v is the
velocity, R is the stellar radius, and Ω0 is the stellar rotation
rate, three rotational states have been identified in the convective
envelope of low-mass stars: the anti-solar differential rotation
for Ro f > 1, the solar-like profile when the convective Rossby
number is between 0.3 and 0.9, and the “Jupiter-like” profile
(cylindrical banded profile with alterning fast and slow jets) for
Ro f < 0.3 (Brun et al. 2017). In the solar case, the isorotational
contours within the convective zone have also been fitted with
characteristics of the thermal wind equation showing a strong
correlation between the entropy and the angular velocity (Balbus
2009; Balbus et al. 2009, 2012; Balbus & Latter 2010; Brun et al.
2011). They show a very good agreement with helioseismology
data. However, these works emphasize their difficulty in repro-
ducing the solar tachocline, where the thermal wind balance
breaks, and the underlying flows in the radiative zone.

In this work, we aim to understand the impact of the shear of
the convective envelope on the underlying radiative core on sec-
ular timescales along stellar evolution. Unfortunately, global 3D
numerical simulations focus on the dynamical timescales and are
not able to explore intensively the entire H-R diagram for now.
To this end, considerable efforts have been made to solve the
rotational dynamics of stellar radiative zones in 1D stellar evolu-
tion models (e.g., Talon et al. 1997; Maeder & Meynet 2000;
Palacios et al. 2003; Talon & Charbonnel 2005; Eggenberger
et al. 2005; Decressin et al. 2009; Marques et al. 2013; Mathis
et al. 2013). When ignoring internal gravity waves and mag-
netic fields and using the formalism by Zahn (1992), Maeder &
Zahn (1998), and Mathis & Zahn (2004) that assumes a shellular
differential rotation enforced by a strong horizontal turbulence,
1D stellar evolution models fail to reproduce the rotation profile
of the solar radiative core and the core-envelope rotation con-
trasts revealed by asteroseismology. Moreover, rotating flows are
intrinsically bidimensional. In this case, the differential rotation
can be radial and latitudinal and a more general 2D approach is
needed. In this context, the recent improved angular momentum
evolution models (Gallet & Bouvier 2013, 2015; Amard et al.
2016), which follow the rotational evolution of low-mass stars in
clusters, highlight the need for fast rotating models, and there-
fore 2D models, for example during the early evolution phases
(Hypolite & Rieutord 2014).

Indeed, in the case of fast rotation, Rieutord (2006b),
Espinosa Lara & Rieutord (2013), Rieutord & Beth (2014), and
Hypolite & Rieutord (2014) show that the baroclinic flow that
pervades rotating radiative envelopes exhibits a meridional cir-
culation and associated differential rotation that require a 2D
description. The models they develop are intermediate-mass
main-sequence stars models (a radiative envelope lying upon a
convective core); what is now needed are low-mass star mod-
els with the convective envelope on top of the radiative core.
Regarding the solar case, Friedlander (1976) studied the spin-
down of a radiative zone due to applied surface stresses using
the Boussinesq approximation. Garaud (2002b) describes the
meridional flows in a radiative zone submitted to an imposed
solar-like latitudinal shear, based on observations, to reproduce

the presence of the convective zone at its top using the anelas-
tic approximation. However, these works are limited to the solar
case and a general study of the dynamics of a radiative zone
lying below a convection zone with solar or anti-solar stress is
an interesting and necessary complement to the existing models.

For these reasons, we propose a new 2D study of the dynam-
ics of the radiative zone of low-mass stars. As a first step, with no
magnetic field, convective motions, or internal gravity waves, a
2D description is enough to capture the essentials of the physics
of a rotating radiative zone submitted to a shear at its upper
boundary. We construct a latitudinal shear boundary condition
based on the results from an inverted rotation profile within the
solar convective envelope and from numerical simulations of
low-mass stars’ convective envelopes. The shear is quantified by
the Rossby number Ro = ∆Ω/2Ω0, which is the normalized lati-
tudinal differential rotation at the convective–radiative interface
relative to the stellar rotation rate. We produce solar and anti-
solar configurations and solve for the flow of an incompressible
fluid and then for a stably stratified fluid using the Boussinesq
approximation. In Sect. 2, we give a complete description of
the incompressible model and the hydrodynamical equations we
solve when imposing a latitudinal shear. We introduce the rel-
evant physical parameters of the problem. An analytical study
unravels the dynamics of the bulk of the radiative core. We
describe the properties of the flow and compare the analytical
solutions to numerical simulation solutions. In Sects. 3 and 4,
we study the stratified case using the Boussinesq approximation.
Using 1D models of solar-like stars to compute the baroclinic
torque amplitude (proportional to the Brunt–Väisälä frequency),
we provide the 2D differential rotation and meridional circula-
tion varying systematically the Rossby number. We also compute
the core-to-surface rotation ratio as a function of the Rossby
number. In Sect. 5, we summarize our main results, namely we
describe the Rossby parameter regime where the geostrophic
solution arising from the shear dominates the dynamics (Ro ≥ 1)
or the baroclinic flow dominates the dynamics (Ro < 1). Using
scaling laws derived from 3D numerical simulations, we are
able to scale the Rossby number and predict the rotational state
of a low-mass star’s radiative core induced by hydrodynamical
processes as a function of its age and angular velocity.

2. The flow driven by an imposed differential
rotation

2.1. Equations of motion

We consider an incompressible viscous fluid enclosed within
a sphere. The system is rotating at a constant rate Ω0 aligned
with the z-axis (Ω0 = Ω0ez) and the sphere is assumed, as a
first step, not to suffer any deformation due to rotation. The
hydrostatic deformation of the sphere is neglected. Therefore,
we focus on the effects of the Coriolis acceleration. Solutions
are axisymmetric and symmetric with respect to the equator as
no mechanism acting in this setting (gravity and rotation) can
separate the velocity field from these symmetries. The dynamics
of such a fluid are governed by the momentum equation

ρ0[∂tu + (u · ∇)u + 2Ω0 ∧ u −Ω2
0ses] = −∇P + ρ0g + µ∆u,

(1)

which we write in a frame rotating at angular velocity Ω0. In
this equation we recognize the Coriolis acceleration 2Ω0 ∧ u and
the centrifugal acceleration −Ω2

0ses, where es is the radial unit
vector associated with the radial cylindrical coordinate s, P is
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the pressure, g the gravity, and µ the dynamical viscosity. Mass
conservation implies

∇ · u = 0 (2)

for an incompressible fluid of constant density ρ0.

We then gather the centrifugal acceleration, the pres-
sure, and the gravitational potential Φ into a single scalar
Π = P

ρ0
+ Φ − 1

2 s2Ω2
0 so that the momentum equation becomes

∂tu + (u · ∇)u + 2Ω0 ∧ u = −∇Π + ν∆u, (3)

where ν =
µ
ρ0

is the kinematic viscosity.

2.2. Boundary conditions

Since we wish to describe a radiative core, the bounding sphere
materializes the interface with an outer convective envelope. To
make this interface simple, we assume that the convective enve-
lope imposes its azimuthal velocity at the top of the radiative
region. We neglect any other motion and any mass exchange.
Hence at r = R (R is the radius of the radiative–convective
interface) we impose

u = R sin θΩcz(r = R, θ)eϕ, (4)

with

Ωcz(r = R, θ) = Ω0 + ∆Ω sin2 θ, (5)

which is the simplest expression we can take inspired by numer-
ical simulations (e.g., Matt et al. 2011; Käpylä et al. 2014).
Differential rotation is then called “solar-like” when ∆Ω > 0,
that is, when the equatorial regions rotate faster than the pole,
and “anti-solar” otherwise when ∆Ω < 0.

In the frame corotating with the pole of the model, the
boundary condition reads

vϕ(r = R, θ) = R sin3 θ ∆Ω. (6)

For the sake of simplicity, we also assume the meridional
components of the velocity field at the upper boundary layer to
be zero in the rotating frame, namely

vr(r = R, θ) = vθ(r = R, θ) = 0. (7)

We note that these boundary conditions imply that viscous
stresses are applied on top of the radiative core, which is dif-
ferent from the boundary conditions chosen by Garaud (2002b),
who assumed that the continuity of the viscous stresses affect-
ing the meridional circulation imposes stress-free-like boundary
conditions at the interface. Besides, Brun & Zahn (2006) con-
sidered impenetrable walls at the bottom of the convective
envelope (ur = 0) and stress-free conditions on the latitudinal
and azimuthal components of the velocity field.

Here, we choose to impose the velocity as if the convection
zone behaved as a solid that can absorb any stress. This is cer-
tainly exaggerated and this excludes any mass exchange between
the layers. Nevertheless, if we consider that the turbulent con-
vection zone is endowed with a turbulent viscosity, much larger
than that of the radiative zone, the shear stress of the radiative
zone is likely to be unimportant to modify the flow in the con-
vective zone. Thus imposing the velocity is likely to be more
appropriate than imposing the stress. Our boundary conditions
are simple and finally just assume that the flow in the radiative
zone does not feed back onto the convection zone mean flows.

2.3. Scaled equations

We make the equations adimensional choosing

– R as a length scale;

– V = R|∆Ω| as a velocity scale;

– and (2Ω0)−1 as the timescale.

This adimensionalization yields
∂τu + Ro (u · ∇)u + ez ∧ u = −∇p + E∆u,

∇ · u = 0,
(8)

where u, τ, and p are respectively the dimensionless velocity,
time, and reduced pressure. We introduced the two numbers

Ro =
∆Ω

2Ω0
, and E =

ν

2Ω0R2 , (9)

namely the Rossby number Ro and the Ekman number E.
We evaluate the order of magnitude of these numbers with

the Sun. We take R ∼ 0.7R� and a rotation rate at the solar
tachocline corresponding to a rotation period of 27 days (Brun
et al. 2004). From Espinosa Lara & Rieutord (2013), we esti-
mate the kinematic viscosity as either ν ∼ 102 m2 s−1 or ν ∼
104 m2 s−1 if some turbulence occurs (e.g., Zahn 1992). The
resulting Ekman numbers are E ∼ 10−10 and E ∼ 10−8 respec-
tively.

As far as the Rossby number is concerned, a typical value
for the Sun is ∼0.1 (e.g., Gastine et al. 2014). As a further sim-
plification, we shall set this number to zero so as to deal with
linear equations focusing mainly on the case of rapid rotation.
This assumption is valid as long as the Coriolis term is domi-
nant compared to the nonlinear advection term, which reads as
the condition uϕ � Ro−1. This condition is satisfied as shown in
the next section as long as the Rossby number is less than one.

Taking the curl of the momentum equation, we get a simple
vorticity equation for the steady state,

∇ ∧ (ez ∧ u − E∆u) = 0 . (10)

It is completed by the mass conservation equation

∇ · u = 0, (11)

and the boundary condition

u = b sin3 θeϕ at r = 1, (12)

where the parameter b = ±1 captures the sign of ∆Ω.

2.4. Analytical solution

The inviscid (E = 0) case of this setting is the geostrophic
balance

ez ∧ u = −∇p, (13)

which has for solution an azimuthal geostrophic flow whose
amplitude only depends on the radial cylindrical coordinate s,
namely

ū = F(s)eϕ, (14)
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as a consequence of the Taylor–Proudman theorem. The sum
of the inviscid solution and its boundary layer correction
ū + ũ has to match the boundary conditions (12) and solves
Eqs. (10) and (11) when E , 0. In this particular case, no bound-
ary layer correction is necessary on the azimuthal flow and we
readily write

F(s) = bs3, (15)

which satisfies the geostrophic balance (13) and boundary con-
dition (12). The meridional circulation arises from the conserva-
tion of angular momentum expressed by the ϕ-component of the
momentum equation. In cylindrical coordinates it reads

us = E
(
∆ −

1
s2

)
uϕ, (16)

and leads to the following expression of the meridional flow

umerid = 8bE(ses − 2zez), (17)

where mass conservation has been used.
The meridional stream function defined as

umerid = ∇ × [ψ(r, θ)eϕ] and leading to

ur =
1

r sin θ
∂θ(sin θψ) and uθ = −

1
r
∂r(rψ), (18)

reads

ψ = −8bEsz. (19)

We note that the foregoing meridional circulation does not meet
the imposed boundary conditions at r = 1 for the radial and lat-
itudinal velocities. Indeed, ur(1) , 0. This implies the existence
of a thin Ekman layer that absorbs this mass flux and generates an
O(
√

E) − ũθ correction to the interior ūθ of (17). The numerical
solutions of the next section validate the foregoing predictions
on the flow.

2.5. Numerical solutions

To prepare for the study of a more complex situation (the stably
stratified case), we now solve Eqs. (10) and (11) with a spec-
tral numerical method (Rieutord 1987). Briefly, we expand the
velocity fields on the vectorial spherical harmonics, and dis-
cretize the radial functions on the Gauss–Lobatto grid associated
with Chebyshev polynomials. A more detailed description of the
method is given in Appendix A.

Solving numerically Eqs. (10) and (11) lead to velocity fields
that can be described by a differential rotation ∆Ω = uϕ/s and the
stream function ψ of the meridional flow. As we can see in Fig. 1,
the differential rotation is cylindrical as the Taylor–Proudman
theorem predicts. The meridional circulation has a unique cell in
each hemisphere whose circulation sign depends also on the sign
of ∆Ω. Namely, the circulation is clockwise when ∆Ω < 0 and
counter clockwise when ∆Ω > 0.

We study the dependence of the velocity field amplitude with
the Ekman number and summarize the obtained results in Fig. 2.
The amplitude of the azimuthal velocity does not depend on the
Ekman number value as expected. The amplitude of the merid-
ional circulation does depend on the Ekman number value and is
proportional to E as also expected.

Inside the Ekman boundary layer that develops at the outer
boundary near r = 1 −

√
E

2 , one can notice the boundary layer

Fig. 1. Differential rotation δΩ and meridional circulation stream func-
tion ψ (red: direct sense, blue: clockwise sense) shown in the meridional
plane for E = 10−6 and b = {1,−1} (top and bottom respectively). The
stellar rotation axis is vertical.

Fig. 2. Logarithm of the absolute value of the radial (orange lines) and
latitudinal (green lines) components of the velocity field as a function
of E at r = {0.5, 0.75, 1−

√
E

2 }, θ = π/2 and for b = +1. Scaling laws are
{ur, uθ} ∝ Ed, where the index d is indicated for each case on the legend
panel.

corrections. The radial component is O(E), while the latitudinal
one is closer to O(

√
E).

In Fig. 3, we show the velocity components in the radial
(orange), the latitudinal (green), and the azimuthal (purple)
directions obtained numerically (solid lines). We overplot the
analytical expressions that we derived in the last section with
squares. The numerical and analytical solutions are in perfect
agreement except near the outer boundary where boundary layer
corrections apply.

3. The stably stratified case

We now move to the stably stratified case. For that we insert into
the fluid cold sources (following Rieutord 2006b, hereafter R06)
that set a stable density stratification and trigger a baroclinic
flow. We wish to determine the parameter regime where the
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Fig. 3. Comparison of the analytical expressions of the velocity com-
ponents derived in the last section (squares) and the numerical results
(solid lines) as a function of the radius at the colatitude θ = 0.5 for
E = 10−6 and b = +1 in the radial (orange), latitudinal (green), and
azimuthal (purple) directions.

baroclinic differential rotation and the foregoing viscosity-driven
differential rotation respectively dominate.

3.1. The flow equations

To keep the model simple, we use the Boussinesq approxima-
tion. Thus density fluctuations only appear in the buoyancy term
here driven by the effective gravity (i.e., the combined effect of
centrifugal and gravitational accelerations).

Thus, we introduce heat sinks δQ that will perturb the previ-
ous flow V0 = b|∆Ω|Rs3eϕ. The heat equation for a steady-state
solution thus reads

u · ∇δT = κ∆δT + δQ, (20)

where δT is the temperature perturbation generated by the heat
sinks and κ is the heat diffusivity of the fluid. In this equation
u = V0 +δuwhere δu is the velocity perturbation arising from the
introduction of the heat sinks. We note that δu is not necessarily
small compared to V0. However, we shall neglect the advec-
tion heat term u · ∇δT altogether on the ground that we expect
that δT be axisymmetric and u be dominated by its azimuthal
component. We already know that the meridional circulation is
O(E) smaller than the azimuthal flow in the unstratified case.
The baroclinic solutions derived by Rieutord (2006b) share the
same property, so we can confidently expect that this nonlinear
term is small (see below for the discussion). We are thus led to
a simple equation for the steady temperature field introduced by
the heat sinks, namely

κ∆δT + δQ = 0, (21)

which is solved by δT (r), where we assume that the heat sinks
δQ have a spherically symmetric distribution. Let us now move
to the equations for the velocity field. Mass conservation still
demands

∇ · u = 0, (22)

because of the use of the Boussinesq approximation. The
momentum equation now reads

ρ(u · ∇u + 2Ω0 ∧ u) = −∇P + ρgeff + µ∆u, (23)

which is written in a frame rotating at angular velocity Ω0, that
is, the angular velocity of the pole. We have now included the
associated centrifugal acceleration into the effective gravity geff .

The density is perturbed by the temperature variations so that

ρ = ρ0 + δρ. (24)

Here ρ0 is constant and associated with the reference temper-
ature T0. So we also use the simple equation of state (usually
associated with the Boussinesq approximation)

δρ

ρ0
= −α(T − T0) = −αδT, (25)

where α is the dilation coefficient at constant pressure.
As the Boussinesq approximation commands it, we neglect

δρ everywhere except in the buoyancy term. Thus, we rewrite
Eq. (23) as

ρ0[(u · ∇)u + 2Ω0 ∧ u] = −∇Π + δρgeff + µ∆u, (26)

where Π is a reduced pressure that now includes the barotropic
term ρ0geff . Finally, Eq. (26) is rewritten

(u · ∇)u + 2Ω0 ∧ u = −∇Π/ρ0 − αδTgeff + ν∆u. (27)

This equation can be further simplified by remarking that δT ≡
δT (r) and that geff = g0(r) + Ω2

0ses. The spherically symmetric
part of the buoyancy force can be incorporated into the reduced
pressure, so that only the centrifugal force term needs to be kept.
Finally, taking the curl of this equation we eliminate the reduced
pressure gradient and obtain

∇∧ [(u ·∇)u+ 2Ω0 ∧ u− ν∆u] = −αΩ2
0δT

′(r)r sin θ cos θeϕ, (28)

where the prime indicates a radial derivative. In this equation the
new driving by the baroclinic torque appears explicitly.

We may now introduce the Brunt–Väisälä frequency, which
quantifies the stratification of the fluid, namely

N2(r) = αδT ′g(r), (29)

where g(r) = rgs for a constant density fluid and with gs the
gravity at the surface of the sphere. Equation (28) now reads

∇ ∧ [(u ·∇)u + 2Ω0 ∧ u − ν∆u] = −N2(r)
Ω2

0r
g(r)

sin θ cos θeϕ. (30)

3.2. Scaled equations

For the unstratified case, we now rescale the equations using
|∆Ω|R as the velocity scale and R as the length scale. We thus
find
∇ ∧ [Ro (u · ∇)u + ez ∧ u − E∆u] = −εn2(r) sin θ cos θeϕ,

∇ · u = 0,
(31)

where we introduced the scaled Brunt–Väisälä frequency

n2(r) =
N2(r)

2Ω0|∆Ω|
=

N2(r)
4Ω2

0

Ro−1, (32)
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Fig. 4. Top: Brunt–Väisälä frequencyas a function of the radius, in the radiative core of low-mass stars during the main sequence (Xc = 0.5) for
stellar masses in the range [0.4 − 1.4]M� from MESA models. Bottom: amplitude of the right-hand side of Eq. (34) (to be multiplied by Ro−1) as a
function of the radius.

and the relative amplitude of the centrifugal force, namely

ε =
Ω2

0R
gs

. (33)

In the Sun, ε� ∼ 10−5. If, as in Sect. 2, we consider only the limit
of small Rossby numbers, we can linearize system (31) and solve


∇ ∧ (ez ∧ u − E∆u) = −εn2(r) sin θ cos θeϕ,

∇ · u = 0,
(34)

completed with boundary conditions (7) and (12). Hence, we
assume Ro � 1, but also εn2 <

∼ 1, which is actually possible (see
below).

At this stage we may remark that unlike in the case treated
in Rieutord (2006b), the heat equation has disappeared and the
Prandtl number does not appear in the problem. The reason is
that we neglected at the outset the heat advection by meridional
currents. As shown in Rieutord (2006b), this is strictly valid in
the limit of the vanishing λ-parameter

λ = P
N2

4Ω2
0

,

where P = ν/κ is the Prandtl number defined as the ratio of
the kinematic viscosity to the thermal diffusivity. In the Sun,
λ� ∼ 10−2. Moreover, λ � 1 is obtained for stars rotating suf-
ficiently rapidly. However, if the star is a slow rotator, steady
state flows are not relevant since we know that initial conditions
then also control the actual flow, because baroclinic modes are
damped on the Eddington–Sweet time, which tends to infinity
as rotation vanishes (e.g., Busse 1981; Rieutord 2006a). This
setting generates a thermal wind solution arising from the baro-
clinic torque and the geostrophic solution generated by the shear
imposed by the boundary conditions described in the previous
section. It allows us to evaluate their competition.

3.3. Stars matching the model

The foregoing model is rather simple but uses a number of
hypothesis. We now need to identify stars that match these
conditions.

The right-hand side amplitude of Eq. (34) can be written

εn2(r) =
1
Ro

R3N2(r)
4GM

, (35)

where M is the stellar mass and G is the gravitational constant.
We compute main-sequence Modules for Experiments in Stellar
Astrophysics (MESA) models (Paxton et al. 2011) with a metal-
licity of Z = 0.02 and the mixing-length parameter αMLT = 2
(the default value used by MESA) when the central hydrogen
fraction reaches 0.5 for masses in the range [0.4–1.4]M�, consti-
tuting F, G, K, and M stars. As shown in Fig. 4, the amplitude of
the term R3N2/4GM on the right-hand side of Eq. (34) is always
less than unity. With small Rossby numbers, the term εn2(r) can
be of order unity, which means that the baroclinic flow has an
amplitude of the same order of magnitude as the geostrophic one
driven by the shear. For young stars, such as ZAMS stars, the
amplitude of the term R3N2/4GM is of the same order of mag-
nitude leading to the same competition between the baroclinic
and the geostrophic flows. The dynamics set by the shear may be
highly modified by the baroclinicity. For these reason, we need to
resort to numerical solutions to determine which flow dominates,
and the corresponding parameter regime. We also determine the
features of the dynamics in each identified regime.

4. Numerical solutions

4.1. Differential rotation and meridional circulation

Using the spectral numerical method described in Appendix A,
we numerically solve Eq. (34). We use the 1M� MESA model as
an input for the right-hand side of the vorticity equation and we
vary the Rossby number systematically.

We show in Fig. 5, the differential rotation and the associ-
ated meridional circulation for Rossby numbers between 10−3

and 10. When Ro ≤ 10−2 (i.e., for weak imposed differential
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Fig. 5. Differential rotation δΩ and meridional circulation stream function ψ (red : direct sense, blue: clockwise sense) shown in the meridional
plane for E = 2 × 10−6 and Ro = {10, 1, 10−1, 10−2, 10−3} (top to bottom). The two left columns are for b = +1 and the two on the right for b = −1.
The stellar rotation axis is vertical.

rotation), the dynamics is typical of the flow that arises when
a baroclinic torque is applied as described by R06. The thermal
wind balance breaks the Taylor–Proudman one. The differential
rotation is roughly shellular and the number of cells of the merid-
ional circulation is equal to the number of inflection points of
the Brunt–Väisälä frequencyprofile plus one, here two. These
patterns are aligned with the cylindrical z-direction because of
rotation.

Differences with Fig. 4 of R06 come from the upper bound-
ary conditions we set. As shown by Eq. (7), we impose a
surface shear on the azimuthal velocity coupled with no penetra-
tive boundary conditions on the meridional components of the
velocity field, while R06 imposes regular stress-free conditions.

For Rossby numbers higher than the threshold Ro ≈ 1 (i.e.,
for strong imposed differential rotation), the differential rotation
profile tends to be cylindrical. The thermal wind from the baro-
clinic torque is weaker in comparison with the geostrophic flow
and the Taylor–Proudman balance is restored. The meridional
circulation is dominated by a single, global circulation pattern
in each hemisphere. For positive b (solar-like differential rota-
tion case), the meridional circulation is counter-clockwise and
the differential rotation shows an equatorial acceleration as the
imposed differential rotation at the boundary. For negative b, that
is, when the equator is slower than the pole, we observe the same
behavior but the direction of the meridional circulation is clock-
wise and the field of differential rotation is reversed with a polar
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Fig. 6. Logarithm of the core-to-surface rotation ratio vs. the logarithm
of the Rossby number for E = 2 × 10−6.

acceleration. At the surface, the fluid moves toward the equator,
which rotates slower than the pole.

With MESA models we explored the influence of the stel-
lar mass on the foregoing results, but remaining with the case of
solar-type stars. In all cases, the differential rotation and associ-
ated meridional circulation turn out to have the same properties
as previously described since the shape of the Brunt–Väisälä
frequencyprofile is the same for masses in [0.4–1.4]M�. The
amplitudes of the flows are slightly different but remain of the
same order of magnitude as in the solar case.

4.2. Core-to-surface rotation ratio

Asteroseismic analysis provides the core-to-surface rotation ratio
of numerous low-mass stars (Benomar et al. 2015). Being the
only internal rotation diagnosis as of today because of the low
angular resolution provided by asteroseismology, we therefore
compute this ratio as the latitudinal average of the angular veloc-
ity over a radius close to the center, namely rcore ∼ 0.15, and near
the surface, rsurf ∼ 1

〈δΩC〉θ

〈δΩS 〉θ
=

∫ π/2
0 δΩ(rcore, θ) sin θdθ∫ π/2
0 δΩ(rsurf , θ) sin θdθ

. (36)

We do not compute 〈δΩC〉θ at the center r = 0 since individual
g-modes are hardly identifiable in this region (García et al. 2007;
Appourchaux et al. 2010; García 2010). When plotting the dif-
ferential rotation in Fig. 5, we subtracted the rotation rate of the
pole at the surface to the rotation rate so that negative value of the
rotation rate means that the examined zone rotates retrogradely
in the reference frame rotating with the pole. The core-to-surface
rotation rate, computed in this framework, is shown in Fig. 6 as
a function of the Rossby number (∆Ω/2Ω0).

The surface shear drives completely the averaged surface
rotation rate, which has the sign of b and whose amplitude is
independent of the Rossby number. The averaged core rotation
rate is strongly impacted by the baroclinic torque amplitude,
which induces a slow shellular-like rotation when compared
to the outer latitudinally averaged rotation. Thus, the averaged
core rotation rate is negative in most cases and tends towards
zero when increasing Ro (i.e., decreasing the baroclinic torque
amplitude). In conclusion, the core-to-surface rotation ratio (in

absolute value) decreases as Ro increases. The only departure
from this behavior (the small bump for positive b and high Ro)
is due to a change of sign of the averaged core rotation rate,
which becomes positive for Rossby numbers higher than 5, that
is, when the geostrophic solution completely dominates. In the
retrograde case, the baroclinic flow has to have a higher ampli-
tude to overcome the (retrograde) shear-induced flow than in the
prograde case. The scaling law index is m = −1 when writing
|〈δΩC〉θ/〈δΩS 〉θ| ∝ Rom. At low Rossby numbers, when the baro-
clinic solution is dominant, the core-to-surface rotation ratio is
high, which means that the differential rotation between the core
and the surface is large in absolute value but, when considering
the pole rotation, the core is slower than the surface according
to our simulation. Conversely, for large Rossby numbers, the
geostrophic solution is dominant and the core-to-surface rotation
ratio is small, with a rapidly rotating core (respectively slowly)
when b = −1 (respectively b = +1), as illustrated in Fig. 5.

5. Discussion and conclusion

5.1. Rossby number and timescales

Regarding the 3D numerical simulation results for the differ-
entially rotating convective envelopes of solar-like stars, the
relative latitudinal shear has been scaled as
∆Ω

Ω0
∝ Ωm

0 , (37)

with m = −0.11 in the hydrodynamical case or m = −0.56
according to Magneto Hydro Dynamical numerical simulations
(Varela et al. 2016). This scaling law is closer to the scaling law
derived from the observations ∆Ω ∝ Ω0.15 (Barnes et al. 2005;
Reinhold et al. 2013) than the pure hydrodynamical one. The
relative shear, hence the Rossby number in our study, decreases
as the stellar rotation rate increases. For angular velocities
between 1 and 100 Ω�, which is the range of observed angular
velocities in solar-like stars reported in Gallet & Bouvier (2013,
2015), the corresponding Rossby number is between 7 × 10−2

and 5 × 10−3 using the MHD scaling law ∆Ω = 6.5 × 10−5Ωn
0

and n = 0.44 from Varela et al. (2016). For such values of the
Rossby number, our numerical results predict that the dynamics
are driven by the baroclinicity with a quasi-shellular differen-
tial rotation as illustrated in Fig. 5. Indeed, we recall that with
our setting, the baroclinic torque amplitude increases when the
Rossby number decreases.

However, our study compares the steady solution of the
baroclinic and the geostrophic flows. Meanwhile it is not cer-
tain whether these solutions reach their steady states during the
main-sequence lifetime (1010 yr for a solar-like star).

The characteristic timescale for the settling of the
geostrophic solution is the one of a spin-up

τSU =
P
√

E
, (38)

where P is the rotation period and E the Ekman number. In
the stellar case, the Ekman number is around 10−10 leading to
τSU = 105P. If P is of the order of tens of days, as is the Sun, the
transient solution does not last more than ∼104 yr, which is short
in comparison to the time a star spends on the main sequence.

The baroclinic modes dampen on the Eddington–Sweet
timescale, namely on

τES = τKH
N2

4Ω2
0

, (39)
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Fig. 7. Schematical trends of angular velocity Ω?/Ω� of the envelope of
fast (blue line), median (green line), and slow (red line) solar-type rota-
tors as a function of age from Gallet & Bouvier (2013). The open circle
is the angular velocity of the present Sun. Using the scaling law from
Varela et al. (2016), the red area delimits where the dynamics should
be driven by the baroclinicity leading to a shellular rotation. The yellow
area shows where our modeling allows us to expect a cylindrical differ-
ential rotation in the radiative core of solar-like stars if taking only into
account rotation and induced large-scale flows.

where τKH = R2/κ ≈ 108 yr in the solar case, is the ther-
mal Kelvin–Helmholtz timescale. When the stellar rotation rate
increases, the Eddington–Sweet timescale gets shorter and tends
to the Kelvin–Helmholtz timescale. This is often the case on the
pre-main sequence.

Hence, in rapid or young rotators, the baroclinic steady state
is likely to be reached. For slower (older) rotators like the present
Sun, the ratio N2

4Ω2
0

is around 104 leading to τES ∼ 1012 yr. Since it
is very large, it means that there are likely residuals of the baro-
clinic modes (initial conditions). Therefore, for solar-like stars,
the geostrophic solution is most certainly steady, while it is not
clear for the baroclinic one depending on the stellar rotation rate
and thus the age.

We compute the Eddington–Sweet timescale as a function
of the angular velocity and find that the limit for the steady
state to be reached on a solar main-sequence lifetime is Ω0 ∼

30Ω�. Stars rotating faster than Ω0 ∼ 30Ω� can thus reach a
steady baroclinic state and have baroclinic dynamics within their
radiative zone. For stars rotating slower than Ω0 ∼ 30Ω�, the
dynamics are not determined directly because the baroclinic flow
is unsteady and depends on initial conditions.

If we consider that the geostrophic flow is steady and that
the baroclinic flow amplitude superposes on it according to the
following transient time evolution

Ro−1
(

1 − e−τ/τES

1 − e−1

)
, (40)

its amplitude becomes comparable to that of the geostrophic flow
at

τ = −τES ln [1 − Ro(1 − e−1)], (41)

which is within the range of Ω0 ∈ [Ω�, 102Ω�], always longer
than or comparable to the main-sequence lifetime because of the
amplitude of the Rossby number. Therefore, the dynamics of the
radiative core of solar-type stars rotating slower than Ω0 ∼ 30Ω�
may be dominated by the shear with a cylindrical differential

rotation imposed by the geostrophic balance according to the
initial conditions. These would be the differential rotation pro-
files at the end of the pre-main sequence when the gravitational
contraction ends. Hypolite & Rieutord (2014) have shown that it
would be also cylindrical.

We summarize these results in Fig. 7, where we use the
results from Gallet & Bouvier (2013). We plot the schematical
rotational evolution of the envelope of solar-like stars Gallet et
Bouvier obtained in a rapid, median, and slow rotating case.
We delimit the region where we can expect the steady baro-
clinic solution to drive a shellular differential rotation in red,
and the region where the differential rotation may be cylindri-
cal due to the imposed shear (yellow region). The steady state
analysis is clearly limited for this study even though we make
such an approximation in order to keep the equations linear since
the nonlinear term is also proportional to Ro. A time evolution
analysis of the baroclinic torque over initial conditions of the
geostrophic flow would insure this prediction.

If we use the scaling law derived from the observations by
Barnes et al. (2005) and Reinhold et al. (2013), we obtain high
Rossby numbers in such a way that, comparing only the steady
state amplitudes, the baroclinic torque would be very small and
the cylindrical rotation profile induced by the shear would be
dominant for all rotation rates. Also, on the main-sequence,
solar-type stars, age is correlated to the rotation rate through a
gyrochronological law (Skumanich 1972; Kawaler 1988; Réville
et al. 2015; van Saders et al. 2016) since stars undergo a spin-
down through stellar wind. Indeed, the wind is responsible for a
mass and angular momentum loss expected to generate a spin-
down geostrophic solution in the bulk of the star (Rieutord &
Beth 2014) on a timescale similar to the spin-up case given by
Eq. (38), that is, a short timescale regarding the duration of the
main sequence. Therefore, a complete study would require us to
also consider the spin-down flow from Rieutord & Beth (2014)
in competition with the baroclinic flow and the flow driven by
the imposed convective differential rotation.

Our simple model predicts that the Sun’s radiative core
should have a cylindrical differential rotation with an angu-
lar velocity gradient that is rather mild and similar to the one
deduced from asteroseismic observations of solar-like (M ∈

[1, 1.6]M�) main-sequence stars (Benomar et al. 2015). How-
ever, the cylindrical differential rotation is in contradiction with
the observed solid-body rotation of the present solar radia-
tive zone (at least for r ≥ 0.2R�). Other processes possibly
therefore come into play, such as internal gravity waves (Zahn
et al. 1997), hydrodynamic shear-induced anisotropic turbulence
(Zahn 1992), or magnetic fields (Mestel & Weiss 1987; Gough
& McIntyre 1998).

5.2. Conclusion

In order to study the dynamics induced by the shear that a sur-
face convective envelope imposes on an internal radiative core
in main-sequence low-mass stars, we built a simplified model
of a central radiative zone on the top of which we impose a
latitudinal shear boundary condition. We considered a simple
latitudinal shear at the surface of the model inspired by heliosis-
mology inversion profiles and global numerical simulations of
the convective envelope of differentially rotating low-mass stars.
This allowed us to quantify the impact of the shear between the
pole and the equator of the convective–radiative interface on the
steady flow within the radiative core.

Analytically, we find that the imposed shear drives a O(1)
geostrophic solution in addition to the thermal wind rising from
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the stable stratification. The baroclinic flow is characterized by a
quasi-shellular differential rotation with multiple cells of merid-
ional circulation, while the geostrophic flow tends to sustain
a cylindrical differential rotation. When the geostrophic solu-
tion induced by the shear is dominant (high Rossby number
regime Ro = ∆Ω/2Ω0 > 1), there is a unique cell in each hemi-
sphere, which is quite similar to the previous results obtained
by Friedlander (1976) and Garaud (2002b) in the solar case.
The high Rossby number case must be interpreted very carefully
since it is formally out of the linear regime. Indeed, for Ro > 1,
the nonlinear advection term may be important and we did not
include it in this work.

Since the baroclinic torque amplitude is proportional to the
inverse of the Rossby number, we evaluate its value according to
the scaling laws found in 3D numerical simulations by Varela
et al. (2016) to determine if the spin-up flow from the shear
overtakes the baroclinic flow. The Rossby number is found to
decrease as the global stellar rotation rate increases. For such
values of Rossby numbers (Ro ∼ 10−2), the baroclinic flow is
expected to be dominant for stars rotating faster than 30Ω�. For
stars rotating more slowly, the baroclinic flow is probably still
transient and less important in amplitude than the geostrophic
flow. Therefore, we expect these stars to have a cylindrical differ-
ential rotation. Scaling laws for Rossby numbers directly derived
from observations (Reinhold et al. 2013) suggest that the cylin-
drical differential rotation profile is dominant for all rotators.
Regarding our 2D models with parameters closest to the Sun,
we do not reproduce the flat rotation profile observed both in
radius and latitude in the solar radiative zone. As in previous
results obtained in 1D, this strengthens the need to take into
account an efficient process responsible for extra transport of
angular momentum. Such a process could be internal gravity
waves (Talon & Charbonnel 2005), magnetic fields (Mathis &
Zahn 2005; Strugarek et al. 2011; Acevedo-Arreguin et al. 2013),
and the anisotropic turbulent transport (Mathis et al. 2017). The
effects of these processes will be studied in forthcoming works.

In addition, the difference in the sign of the differential rota-
tion between Rieutord (2006b) models and the compressible
Evolution STellaire en Rotation (ESTER) main-sequence models
(Espinosa Lara & Rieutord 2013) also suggests that the com-
pressibility may play an important role and that the Boussinesq
approximation is just a first step before using a more detailed
modeling such as one using the anelastic approximation. The
general method presented here will be also applied to other types
of stars such as intermediate-mass and massive stars with a dif-
ferentially rotating convective core and F-type stars with both a
differentially rotating convective core and envelope.
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Appendix A: Spectral expansion
of hydrodynamical equations

The radial grid points, corresponding to the expansion onto a
Gauss–Lobatto grid derived with Chebyshev polynomials, are
defined as

r j =
1
2

(
1 − cos

(
jπ

Nr − 1

))
,

0 ≤ j ≤ Nr − 1,
r j ∈ [0; 1].

(A.1)

The colatitude dependence of the solution is described with the
vectorial spherical harmonics (Rm

l ,S
m
l ,T

m
l ) (e.g. Rieutord 1987).

We represent the velocity field as follows

u =

+∞∑
l=0

+l∑
m=−l

{ul
m(r)Rm

l (θ, ϕ)

+vl
m(r)Sm

l (θ, ϕ) + wl
m(r)Tm

l (θ, ϕ)}, (A.2)

where

Rm
l = Ym

l (θ, ϕ)er, Sm
l = ∇HYm

l , Tm
l = ∇H ∧ Rm

l . (A.3)

In this formula, Ym
l are the normalized spherical harmonics (e.g.

Cohen-Tannoudji et al. 1997), er is the unit radial vector, and
the horizontal gradient operator ∇H = ∂θeθ + 1

sin θ∂ϕeϕ is defined
on the unit sphere. The axisymmetry of the solutions imposes
m = 0 (∂ϕ = 0). For this reason we will not write the index m in
the following.

A.1. Hydrodynamical equations

The continuity Eq. (22) reads on this expansion

vl =
1

l(l + 1)
1
r
∂

∂r
(r2ul). (A.4)

The vorticity Eq. (34) projected onto the Rl function is written

Al
l−1rl−1 ∂

∂r

(
ul−1

rl−2

)
+ Al

l+1r−l−2 ∂

∂r

(
rl+3ul+1

)
+ E∆lw

l = 0, (A.5)

and onto the Tl direction

Bl
l−1rl−1 ∂

∂r

(
wl

rl−1

)
+ Bl

l+1r−l−2 ∂

∂r

(
rl+2wl+1

)
−E∆l∆l(rul) =

√
16π

5
εn2(r)δl2, (A.6)

where δi j is the Kronecker symbol and ∆l = 1
r
∂2

∂r2 r − l(l+1)
r2 . The

projection onto the Sl function is redundant with the first one and
the component of the velocity field vl is computed with the con-
tinuity equation projection, Eq. (A.4). The coupling coefficients
read

Al
l+1 =

1
(l + 1)

1
√

(2l + 1)(2l + 3)
,

Al
l−1 =

1
l

1
√

(2l − 1)(2l + 1)
,

Bl
l+1 =

l(l + 1)(l + 2)
√

(2l + 1)(2l + 3)
,

Bl
l−1 =

l(l2 − 1)
√

(2l − 1)(2l + 1)
.

(A.7)

A.2. Boundary conditions at the upper boundary

The azimuthal velocity written on the (Rl,Sl,Tl) basis reads

uϕ(r, θ) = −

+∞∑
l=1

wl(r)∂θYl(θ). (A.8)

Because the model is symmetric with respect to the equator,
the azimuthal velocity has the property to be fully described by
odd l. Using only the two first harmonics l = 1 and l = 3, the
azimuthal velocity reads

uϕ(r, θ) = wl=1(r) sin θ

√
3

4π

−wl=3(r)
(
4 sin θ + 5 sin3 θ

) √
7

4π
3
2
. (A.9)

In order to set the shear described by expression (6), we then set
at the surface

wl=1(r = 1) = −b
4
5

√
4π
3
, (A.10)

and

wl=3(r = 1) = −
b
5

2
3

√
4π
7
. (A.11)

All other l-components of the azimuthal velocity are zero at
the upper boundary. Components with even l numbers (ul, vl)
are also zero because we set to zero the meridional velocity
components at r = 1.
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