Evidence for widely-separated binary asteroids recorded by craters on Mars
Dmitrii E. Vavilov, Benoit Carry, Anthony Lagain, Anthony Guimpier, Susan J. Conway, Hadrien Devillepoix, Sylvain Bouley

To cite this version:

HAL Id: insu-03682333
https://insu.hal.science/insu-03682333
Submitted on 9 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Graphical Abstract

Evidence for widely-separated binary asteroids recorded by craters on Mars

Dmitrii E. Vavilov, Benoit Carry, Anthony Lagain, Anthony Guimpier, Susan Conway, Hadrien Devillepoix, Sylvain Bouley
Highlights

Evidence for widely-separated binary asteroids recorded by craters on Mars
Dmitrii E. Vavilov, Benoit Carry, Anthony Lagain, Anthony Guimpier, Susan Conway, Hadrien Devillepoix, Sylvain Bouley

- First database of Martian binary craters with 150 entries compiled from a survey over 87% of the surface.
- Comparison between properties of the binary craters and the population of binary asteroid systems.
- Mismatch between observed and simulated properties of binary craters on Mars.
- Unobserved population of binary asteroids suspected with large separation, near-similar size, and non-zero obliquity.
Evidence for widely-separated binary asteroids recorded by craters on Mars

Dmitrii E. Vavilova,b,*, Benoit Carrya, Anthony Lagainc, Anthony Guimpierd, Susan Conwayd, Hadrien Devillepoixe and Sylvain Bouleye

aUniversité Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
bInstitute of Applied Astronomy, Russian Academy of Sciences, St. Petersburg, Russia
cSpace Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
dLaboratoire de Planétologie et Géodynamique, UMR6112 CNRS, Université de Nantes, France
eGEOPS – Géosciences Paris Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Asteroids, dynamics
Mars
Mars, surface
Cratering

\textbf{ABSTRACT}

Over the last decades, a significant number of small asteroids (diameter <10 km) having a satellite in orbit around them have been discovered. This population of binary asteroids has very specific properties (secondary-to-primary diameter ratio of about 0.3, semi-major axis to primary diameter ratio around 2 and an obliquity of the system close to either 0° or 180°) pointing at formation by YORP-induced spin-up and rotational fission. When impacting the surface of terrestrial bodies, those exotic objects lead to the formation of binary craters, exhibiting various morphologies depending on the configuration of the system at the moment of the impact. Planetary surfaces constitute therefore the best (if not the only one) record of binary asteroid population through time. In contrast to the Moon or Mercury, a large fraction of impact craters on Mars exhibits thick ejecta layers due to the presence of volatile material at the moment of the impact (e.g., water ice). The martian surface represents thus the ideal case to survey for the existence of binary craters, as the ejecta morphology can attest of a synchronous impact. From a survey of 87\% of Mars surface, we identify 150 binary craters (0.5\% of the total), likely formed by the impact of binary asteroids. The properties of these craters contrast with those of the population of binary asteroids: size ratio close to unity, large separation, and isotropic orientation on the surface. We run numerical simulations of impacts to test whether tidal effects on the impact trajectory can explain these discrepancies. Our results suggest that a population of similarly-sized and well-separated binary asteroids with non-zero obliquity remains to be observed.

1. Introduction

Planetary surfaces not protected by dense atmospheres and without extensive geologic activity are covered by impact craters. Among these, about 3\%–4\% have been estimated to be binary craters (Melosh et al. 1996), thought to form by the simultaneous impacts of the two components of binary asteroids. These have been found on almost every terrestrial surface in the inner Solar System including the Moon (Oberbeck 1973; Wren and Fevig 2020), Mars (Melosh et al. 1996; Miljković et al. 2013; Lagain et al. 2017, 2020), Venus (Cook et al. 2003), Ceres and Vesta (Fevig and Wren 2019), and one binary crater has even been reported on Tethys, a moon of Saturn (Chapman 2007).

On Earth, the high erosion rate removes morphological evidence preventing confirmation of a synchronous impact origin from a binary asteroid using the same technique as on extraterrestrial worlds. However, the similarity of radiometric ages associated with each crater of a potential binary constitutes the most convincing approach to confirm such origin. Among the 200 impact craters confirmed on Earth (Schmieder and Kring 2020), 12 (i.e., 6 binaries) craters have been suggested to have formed from a binary asteroid impact: Clearwater West and East, Kamensk - Gusev, Ries - Steinheim, Serra da Cangalha - Raichão, Lockne - Målingen and Suvasesi North and South (see Schmieder et al. 2014, for a recent review). However, several of them are associated with ambiguous ages (Jourdan et al. 2012) and no binary craters have been confirmed on Earth (Schmieder and Kring 2020). Nevertheless, the Kamensk (25 km) – Gusev (3 km) and Lockne (7.5 km) - Målingen (700 m) crater pairs appear as very likely binaries owing to the correspondence between their respective revised radiometric age and superposition relationship for the former and high-resolution biostratigraphic dating for the latter (Schmieder and Kring 2020; Ormô et al. 2014). Although the population of most-likely binary craters on Earth is limited to two crater pairs only, it can be estimated that only about 1\% of terrestrial impact craters might be formed by synchronous impact events.

The origin of these binary craters was originally debated as the existence of binary asteroids itself was disputed for decades (Weidenschilling et al. 1989). The discovery of Dactyl in orbit around (243) Ida by NASA Galileo (Chapman et al. 1995), followed by numerous discoveries of binary asteroids from the ground (by lightcurves, direct imaging, and radar, e.g., Pravec et al. 1997; Merline et al. 1999; Margot et al. 2002), revealed that asteroids do have satellites (Merline et al. 2002). It is now accepted that these binary craters result from the impact by binary asteroids (Miljković et al. 2013). It was originally thought that binary asteroids formed...
Binary asteroids and doublet craters

50 during close encounters with planet (Bottke and Melosh 1996).
51 This has, however, been challenged by observations of bi-
52 nary asteroids in the asteroid belt (see Margot et al. 2015,
53 for a review) and numerical simulations of close encounters
54 (e.g., even the deep encounter of Apophis with the Earth in
55 2029 will not change its shape, see Yu et al. 2014).

56 From a photometric survey of near-Earth asteroids (NEAs),
57 Pravec et al. (2006) derived a fraction of asteroids with satel-
58 lites of 15 ± 4%, for diameters larger than 300 m. The largest
59 of these binary asteroids, discovered by either lightcurves
60 or radar echoes, is (939) Isaberga with a diameter of 13 km
61 (Carré et al. 2015). This population of small binary asteroids
62 has very specific properties: secondary-to-primary diameter
63 ratio of 0.22-0.37 (25% and 75% quantiles), semi-major axis
64 to primary diameter ratio of 1.7–2.8, obliquity close to ei-
65 ther 0° or 180°, primary rotation close to spin barrier (2.5 h,
66 e.g. Pravec and Harris 2007; Pravec et al. 2012; Harris et al.
67 2017). All these parameters, together with the large frac-
68 tion of binary asteroids among asteroid pairs (Pravec et al.
69 2010), are evidence for a formation by YORP-induced spin
70 up and rotational fission (Walsh et al. 2008; Walsh and Jacobson 2015). In recent years, another population of widely-
71 separated binary asteroids has been announced from the ob-
72 servations of lightcurves presenting two distinct frequencies
73 (Warner 2016; Warner and Stephens 2019). The properties
74 (orientation, diameter ratio, separation) of these candidate
75 binary systems are, however, largely unknown, as no mu-
76 tual eclipses have ever been observed (Warner et al. 2018).

77 By contrast, the population of 100+ km asteroids with small
78 satellites detected by direct imaging (which incidence is es-
79 timated to a few percents only, Margot et al. 2015) has very
80 different properties. These latter satellites are thought to
81 form through collisions (Dürda et al. 2004).

82 From 3-D numerical modeling of the impacts by binary
83 asteroids, Miljković et al. (2013) showed that only a frac-
84 tion of impacts by binary asteroids leads to the formation
85 of binary craters on Mars. Depending on the size ratio of
86 the components of the binary asteroids, and their physical
87 separation at the time of impact, those objects create sin-
88 gle craters in about 50% of the cases, otherwise leaving ei-
89 ther doublet, peanut-shaped, tear-drop or elongated craters.

90 These findings conciliate the apparent discrepancy between
91 the fraction of binary asteroids (15%) and the reported 3–4%92
93 of binary craters (Miljković et al. 2013).

94 Considering the distribution of diameter ratio, semi-major
95 axis to diameter ratio, and obliquity of the population of
96 known binary asteroids (Harris et al. 2017), it is striking that
97 most martian binary craters listed in Miljković et al. (2013,
98 Table 2) display a diameter ratio close to one, a large sepa-
99 ration, and may even be oriented along the North-South di-
100 rection.

101 This raises the question of the origin of these binary craters.
102 The discovery of satellites around small asteroids is achieved
103 with radar echoes (among near-Earth asteroids only, Benner
104 et al. 2015) or lightcurves (Margot et al. 2015). The latter are
105 biased toward systems with either 0° or 180° obliquity and
106 favor diameter ratio close to unity. Most detected systems
107 have indeed a low obliquity (due to an anisotropic spin dis-
108 tribution clustering toward ecliptic poles, Pravec et al. 2006).

109 The vast majority of these systems, however, clusters around
110 a secondary-to-primary diameter ratio of 0.3, revealing a clear
111 preference for this diameter ratio end-state for a formation
112 by rotational fission (Walsh et al. 2008; Walsh and Jacobson
113 2015), with only a few exceptions (e.g., Benner et al. 2003).

114 Similar-sized binaries are less common (diameter ratio above 0.5 represent 11% of current census only) and
115 can present non-zero obliquities (e.g., (809) Lundia (1089)
116 Tama, see Hanuš et al. 2013; Bartczak et al. 2017), albeit the
117 statistics on pole coordinates is severely limited.

118 Planetary surfaces constitutes thus the best (if not the only)
119 record of binary asteroid population through time. The
120 recognition of separated doublet craters is more difficult with-
121 out a clear continuous ejecta layer, which provides better evi-
122 dence of a synchronous impact through the morphology. In
123 contrast to the Moon or Mercury, a large fraction of impact
124 craters on Mars exhibits thick and continuous ejecta blank-
125 kets emplaced in a pyroclastic flow-like regime (e.g., Ko-
126 matsu et al. 2007), as opposed to secondary materials ejected
127 along a ballistic trajectory that form rayed and discontinuous
128 ejecta blankets (e.g., Oberbeck 1975), due to the presence of
129 volatile material at the moment of the impact (e.g., water
130 ice). This facilitates the recognition of synchronous impact
131 events (Lagain et al. 2017), making the surface of Mars an
132 ideal case to survey for the existence of binary craters.

133 We study in the present article the characteristics of bi-
134 nary craters on Mars and compare them with numerical sim-
135 ulations of impacts. We describe in Section 2 our survey of
136 binary craters on the surface of Mars and present the result-
137 ing catalogue in Section 3. We then describe in Section 4
138 numerical simulations to build the statistic of the orientation
139 of binary craters based on the population of known binary
140 asteroids. We finally compare the properties of the binary
141 craters with the simulated geometries of impact and discuss
142 implications in Section 5.

2. A survey of binary craters

143 We search the surface of Mars for impact craters exhibit-
144 ing morphological evidences of multiple synchronous im-
145 pacts. For this, we use the crater catalogue of Robbins and
146 Hynek (2012a), revised by Lagain et al. (2021), in which
147 the location, size, and morphology of impact craters larger
148 than 1 km are compiled. Entries flagged as secondary craters
149 (craters formed in the fallback collisions of ejecta from pri-
150 mary craters) are discarded. We also discard degraded struc-
151 tures as they did not retain morphological characteristics,
152 such as their ejecta blankets, that might help in the identi-
153 fication of a binary crater. To limit the size of the sample in-
154 vestigated and ascertain in the binary origin of the impacts,
155 we limit our focus on craters larger than 4 km in diameter
156 and located between ± 50° of latitude, i.e., 31,778 entries
157 (Figure 1).

158 We use the day-time Thermal Emission Imagery Sys-
159 tem (THEMIS) mosaic v12 (Edwards et al. 2011), offering
a global resolution of 100 m/px, and a semi-controlled CTX global mosaic, (6 m/px, Dickson et al. 2018). We conduct the survey to identify binary craters using Cesium Viewer\(^1\), a Web platform adapted for the classification of geological features (Lagain et al. 2021). Craters determined not to likely be binaries are denoted by the small blue circles in Figure 1.

The diameter of each binary crater identified in our survey is then measured using the CraterTools module (Kneissl et al. 2011) available for ESRI ArcGIS as well as the distance between the centroid of both craters within a binary crater. Those properties allow to classify candidate binary craters following Miljković et al. (2013) classification based on their diameter ratio and separation:

- Doublet: this class is the only one where the ejecta blanket morphology allows the recognition of a potential doublet impact crater. The two components are sufficiently separated to preclude any contact between their rims. A bead (an excess of ejecta material) perpendicular to the axis defined by the two crater centroids is clearly visible between the respective ejecta blankets of the two components (Figure 2.a).

- Peanut: the two components of the potential binary are approximately of the same size and sufficiently separated to identify two distinct impact structures (with-out any evidence of a stratigraphic relationship) but still exhibit a contact (called a septum) between their rims (Figure 2.b),

- Overlapping: a minor impact crater is close but separated from the main binary component and does not exhibit a circular morphology, suggesting an overlap of material ejected from the main crater onto the minor crater following the impact event, when ejecta blankets are emplaced (Figure 2.c).

- Tear: a minor impact structure is adjacent (without any clear stratigraphic relationship) to the associated main crater (Figure 2.d),

- Elliptical: the impact crater is elliptical and the main direction of its ejecta blanket is perpendicular to the major axis of the crater cavity (Figure 2.e),

- Circular: Some impact parameters (small separation of both impactors and/or small diameter ratio) do not theoretically allow the formation of a binary crater (Miljković et al. 2013). We, however, mark as potential binary craters 25 circular craters based on the presence of a septum located on the central peak, or a partially circular structure on the rim (Figure 2.f). We anticipate a low confidence level in the binary craters identification falling into this category. We thus discard them from the analysis (but report them in the database).

\(^1\)http://134.158.75.177/viewer/Apps/PlanetaryCesiumViewer/index.html
Binary asteroids and doublet craters

Figure 2: Example of impact craters classified as (a) doublet, (b) peanut, (c) overlapping, (d) tear, (e) elliptical and (f) circular seen with the CTX global mosaic (6 m/px, Dickson et al. 2018) and the THEMIS Day-IR mosaic v12 (100 m/px, Edwards et al. 2011). Craters presented on panels (a) and (b) present a septum (linear shared feature, respectively on the ejecta blanket and within the cavity), attesting of an impact from a binary asteroid. Craters on panels (d) and (c) present one and two minor impact structures adjacent to the main impact crater, respectively. Panel (e) presents an elliptical impact crater without any visible forbidden zone. Panel (f) presents a circular morphology with a minor impact structure on the south flank of the crater. The small separation between both structures makes this crater classified as circular following Miljković et al. (2013).

Figure 3: Example of impact craters formed in low-angle impact geometries seen with the THEMIS Day-IR mosaic v12 (100 m/px, Edwards et al. 2011): (a) This impact structure is similar to the one presenting in Figure 2.e, except that the forbidden zone at the North of the crater suggests that the small structure visible at the South of the main impact cavity originates from a grazing impact, (b) two distinct impact structures generated by ricocheting projectile, (c) highly elliptical impact crater formed under grazing regime (impact angle ≤5°).
Besides the circular morphology the case of elliptical 3-D hydrocode simulations and hypervelocity experiments demonstrated that they can be formed by both binary asteroid impacts or single asteroids under low-angle impact conditions (Elbeshayen et al. 2013; Gault and Wedekind 1978). While craters formed by a single asteroid impacting the surface with an angle of 20° will exhibit an elliptic geometry, lower impact angles might lead to the partial or the total decapitation of the projectile (depending in the impact angle and cohesion of both the target and the projectile) and form successive impact craters in the direction of the impact, exhibiting limited eccentricity (Figure 3, Elbeshayen et al. 2013). In such grazing impacts, a forbidden zone (i.e., an area lacking ejecta) at the back of the impact constitutes one of the most convincing morphological evidence to distinguish between low-angle single asteroid and binary asteroid impact.

3. Properties of binary craters on Mars

Out of the 31,778 craters we inspected, we identify 28 doublet, 44 peanut, 17 overlapping, 23 tear, and 13 elliptical craters (Figure 1). We note that 25 further potential candidates have been identified and are classified as circular according to Miljković et al.’s scheme. This brings the total number of binary crater candidates to 150 (300 individual) corresponding to 0.5% of the total surveyed population (see Appendix A for the complete list of craters with their characteristics). Although the results of numerical simulations by Miljković et al. (2013) predict a theoretical impossibility to identify binaries from circular craters, morphometric measurements (crater diameter ratio and separation) of these 25 craters fit with this class characteristics defined by Miljković et al. (2013). This conflict can be explained by a misclassification of the morphometric measurements for circular binaries in our survey, a variability of morphologies depending on the impact conditions (impactor size, impact angle and velocity, cratering efficiency...) not identified by the numerical simulations, an approximation of the resulting morphology due to the simulation resolution, or a combination of these factors. We also note that the classification proposed by Miljković et al. (2013) we use in this study is based on discrete parameters thresholds defining each category. In the reality, a variability of such limits due to impact parameters mentioned above might exist, thus nuancing the resulting crater morphologies and classification.

The degradation state of impact features investigated here leads to an unclear binary asteroid impact origin for a non-negligible number of cases. Thus, the completeness of the binary asteroids record on the surface of Mars cannot be assured in this work, whatever the morphological class considered. In this regard, our attempt to determine the proportion of binary systems in the asteroid population based on impact craters can only provide a lower limit.

We also estimate the projectiles diameter that formed each crater identified in our survey using the scaling laws described in Collins et al. (2005):

\[D_i = 1.161 \left(\frac{\rho_i}{\rho_f} \right)^{\frac{1}{3}} L^{0.78} v_i^{0.44} g^{-0.22} \sin^3(\theta) \]

where \(D_i \) is the diameter of the transient crater, \(\rho_i \) and \(\rho_f \) are respectively the density of the impactor (taken as 1.9 g/cm\(^3\)) and the density of asteroid Itohka, typical for small asteroids, Fujiwara et al. 2006; Carry 2012) and the target (3.0 g/cm\(^3\)), L is the impactor size, \(v_i \) is the impact velocity at the surface, g the Martian gravitational acceleration, and \(\theta \) the impact angle (45°). The diameter of the transient crater is then used to estimate the diameter of the final crater (\(D_f \)), and by inversion, the impactor diameter related to each crater of the survey:

\[D_f = \begin{cases} 1.17 \frac{D_i^{1.13}}{D_c^{0.13}}, & \text{if } D_i < D_c; \\ 1.25 D_i, & \text{if } D_i > D_c. \end{cases} \]

where \(D_c \) is the transition diameter between simple and complex craters, estimated to 6 km (Robbins and Hynek 2012).

The impact craters we measured here (\(D_m \)) range between 1.5 km < \(D_m \) < 40.5 km. Calculations suggest they were produced by binary asteroids ranging between 70 m and 3.8 km.

The population of craters we identify strongly contrasts with the population of known binary asteroids in both separation\(^2\) and diameter ratio (Figure 4). This is partly due to the biases affecting the detection of binaries among both asteroids and craters. Compact asteroid systems are more easy to detect, while close-in craters are not. Nearly-similar sized component are, however, easier to detect in both populations. This nevertheless suggests that widely separated binary asteroids exist, even if little have ever been detected with a separation above four primary diameters. Indeed, Melosh and Stansberry (1991) studied the impact of contact-binary asteroids with planetary surfaces and found that the physical separation was not significantly affected by tidal forces.

We illustrate the geometry of the 112 doublet, peanut, overlapping, and tear-drop craters in Figure 5 (circular and elliptical classes orientation lead, by definition, to a higher uncertainty in the orientation measurement). As suspected from the craters listed in Miljković et al. (2013, Table 2), the orientation of the craters appears isotropic, without a preferential direction. This is quite surprising considering the anisotropic distribution of orientation of known binary asteroids (Pravec et al. 2006) and we focus on this aspect in the following section.

4. Orientation of binary asteroid impacts

Melosh and Stansberry (1991) studied the impact of contact-binary asteroids with planetary surface but did not discuss

\(^2\)The physical separation of the two components of the binary system is the same as the crater separation, as computed by Melosh and Stansberry (1991).
the orientation of impacts (with respect to the equator of Mars). We estimate in the present section the distribution of the orientation of binary craters as expected from the current census of binary asteroids.

4.1. Geometry of encounter

We first study the geometry of impact of binary asteroids on a Mars without accounting for its gravitational attraction.

We consider all the asteroids with a Minimal Orbital Intersection Distance (MOID, Marsden 1993) with the orbit of Mars smaller than 0.05 au (i.e., Mars-crossing and near-Earth asteroids only). That is we consider only asteroids that have a reasonable possibility of colliding with Mars. We retrieve the orbits of Mars and the asteroids from JPL3.

We assume that a collision takes place at the MOID point: the location in space where the orbits of the asteroid and Mars are the closest to each other. We compute the MOID points using the method of Baluyev and Kholshevnikov (2005).

We define the orientation θ of the double impact (resulting for the impact of the two components of the binary asteroids) on Mars surface as the angle between Mars’ equator and the line connecting the center of the two craters. For that, we use the IAU definition of the north pole orientation of Mars, $\text{RA,Dec} = (317.3^\circ, +54.4^\circ)$, from Archinal et al. (2018).

We assume here that the mutual orbit of each binary asteroid system is circular, and coplanar with its heliocentric orbit (i.e., their obliquity is null). This choice is imposed by the anisotropic distribution of spins among the population of known binary asteroids (clustering around 0 and 180° obliquity, see Pravec et al. 2012) and it is expected for a formation via YORP spin-up and rotational fission (Walsh et al. 2008; Pravec et al. 2010).

We compute the orientation angle θ as follows. We place Mars and the binary asteroid at their MOID point, and compute their relative velocity:

$$\mathbf{v} = \mathbf{v}_b - \mathbf{v}_d$$

where \mathbf{v}_b is the Keplerian velocity of the center mass of the binary, and \mathbf{v}_d the Keplerian velocity of Mars (the relative velocity are typically within 5 to 15 km/s). We construct the target plane as the plane perpendicular to the relative velocity, \mathbf{v}, containing the center of Mars (Kizner 1961). We project the positions of the two components of the system on the target plane. The angle θ is the angle between the line connecting the projection of the two components and

3Mars: \url{http://ssd.jpl.nasa.gov/txt/p_elem_t2.txt}
Asteroids: \url{http://ssd.jpl.nasa.gov/sbdb_query.cgi}
the projection of the equator of Mars on the target plane. To account for the unknown orbital phase of the binary systems at the epoch of impact, we sample their mutual orbit by 360 positions, and compute θ for each.

We present in Figure 6 the probability density function (PDF) of the orientation angle θ for the current obliquity of Mars. The spin-axis of Mars has, however, wandered in the past (with excursions of 60°, see Laskar et al. 2004). Variations in the spin axis imply a changing obliquity which smoothens the peak of the distributions. The oldest binary craters in our survey is about 3 Gyr old. The analysis of elliptical craters distribution from Holo et al. (2018) suggests that Mars’ mean obliquity was likely between 10° and 30° over the last 3.5 Gyr, and the fraction of time spent at obliquities $>40^\circ$ was likely below 20%. We thus need to account for this spin evolution to quantify the potential smoothing of the orientation angle distribution of binary craters.

The obliquity of Mars is unpredictable over long time intervals, as it is chaotic (Laskar et al. 2004). From multiple simulations of the spin orientation history of Mars, Laskar et al. (2004) showed that its obliquity follows a Gaussian distribution with an average of about 37°, and a standard deviation of 13° (the latter increases the longer the time period considered, see their Table 5). This range of obliquity is broader than estimated by Holo et al. (2018). We choose it as a conservative baseline: the broader obliquity distribution will indeed smooth the predicted distribution of crater orientation more than a narrow distribution. Assuming the properties of the population of binary asteroids did not evolve over time (YORP-induced formation produces zero obliquity systems, Walsh et al. 2008), we build the PDF of the orientation angle θ over 3 Gys by summing the distributions obtained for different values of the obliquity, weighted by the aforementioned Gaussian distribution of obliquity.

We report this PDF of orientation in Figure 6. The predicted distribution of orientations presents a broad plateau along the East-West direction. For each North-South binary crater on Mars, there should be three more along the East-West direction if binary systems have zero obliquity. This is clearly at odd with our census of craters (Figure 5). Because we chose the broader distribution of obliquity, these results are robust and would be more pronounced if the excursion of Mars obliquity had been more limited (e.g., Holo et al. 2018).

Finally, True Polar Wander episodes on Mars, i.e. the crust motion with respect to the spin axis induced by a mass redistribution, might have influenced the binary craters orientation over time. However, mass redistributions on the surface of Mars induced by volcanic activity did not occur during the Amazonian (over the last 3 Gyr, which correspond to the oldest binary crater identified here) but most likely during the Hesperian (Kite et al. 2009; Bouley et al. 2016). It is therefore unlikely that such mechanism contributed to a significant attenuation, or more generally, to the modification of the asteroidal record on Mars.

4.2. Tides-induced change of geometry

The computation presented above neglects the differential gravitational attraction of the target on the components of the binary systems. This is due to the lack of constraints on the exact geometry of impacts, mainly the impact parameter, p (the distance between the barycenter of the planet and the asteroid velocity vector) and the impact angle (the angle between the surface and the asteroid velocity vector). However, we now explore this using a Monte-Carlo approach to gauge any potential influence.

We study in this section the change of orientation θ due to the target gravity, focusing on Mars. This is an extension of the work by Melosh and Stansberry (1991) who noted that the separation was only marginally affected.

We consider the following three-body problem (Figure 7). The center of the coordinate system coincides with the barycenter of Mars, which is assumed to be a sphere with a radius of 3389 km (Archinal et al. 2018). We integrate the motion of the binary asteroid from a distance of 0.1 au to its impact on Mars. The center mass of the binary asteroid is originally set at $(0.1, 0, p)$ au, where p is the impact parameter. The direction of the initial velocity \mathbf{V} is parallel to the x-axis. We use three typical values of the relative velocity ($5, 10, 15$ km/s, Table 1) between the impactor and Mars, derived from the simulations in Subsection 4.1. We do not consider larger velocities since the effect decreases with increasing relative
velocity.

We explore a wide range of parameters for the impact of binary systems (Table 1):

- M_1, the mass of the primary component, taken from 10^9 kg to 10^{16} kg. The lower bound corresponds to a diameter of 100 m, leading to a crater of about 1 km, the typical size for completeness in crater catalogues (Robbins and Hynek 2012a,b). The upper bound encompasses the largest known small binary, (939) Isosbega (Carry et al. 2015).

- $y = M_2 / M_1$, the mass ratio between the components, sampled from equal masses ($y = 1$) to satellites about five times smaller than the main component ($y = 0.01$).

- T, the period of the mutual orbit of the binary, sampling the typical period of 24^{+24}_{-12} h (Harris et al. 2017), and a long period of 10 days for well-separated binaries, such as the widely separated population (Warner et al. 2018).

- p, the impact parameter describing the distance between the velocity vector of the binary and the center of Mars, in units of Mars radius (R_{target}).

- i, the inclination between the orbital plane of the binary and its velocity \mathbf{V}, sampling coplanar, perpendicular, and oblique impacts.

We assume that the binary orbit is circular at the start of the integration. We sample the respective positions of the components on their mutual orbit by 360 initial positions. We propagate the positions of the two components using the 15th order numerical integrator by Everhart (1985) until the components collide with Mars at t_{imp}. If both components collide with Mars, we compute the angle θ_p between the line connecting the location of the components and the equator.

To estimate the change of orientation $\delta \theta$, we estimate θ, the orientation of the binary crater for each simulation, without the perturbation induced by Mars. The unperturbed coordinates of the components at time t_{imp} are determined from their orbital period T and their Keplerian relative velocity (\mathbf{V}). We project their positions on the target plane (perpendicular to the relative velocity, hence the yz-plane), and compute the angle between the line connecting the projections, and the equator.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values of the different parameters used in the numerical integrations (see text).</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>M_1</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>i</td>
</tr>
</tbody>
</table>

Hence, each combination of simulation parameters in Table 1 is sampled 720 times: 360 perturbed angles ($\{\theta_p\}_{i=1}^{360}$) from the numerical propagation and 360 unperturbed angles ($\{\theta_{\text{imp}}\}_{i=1}^{360}$), resulting in 1,944,000 outcomes. From these, we remove those for which the impacts are located too far from each other to be recognized as doublet craters. We set a threshold distance of 100 km. Similarly, we remove impacts too close to each other, leading to circular craters. Following the work of Miličević et al. (2013), we set a threshold distance of three times the diameter4 of the primary component.

We compute the change of orientation $\delta \theta$ as

$$\delta \theta = \min_{k=0, \ldots, 359} \max_{i=1, \ldots, 360} |\theta_{p,i} - \theta_{i+k}| \quad (4)$$

where $[i+k] = \text{mod}(i+k, 360)$, and only using i indices not rejected based on the aforementioned distance thresholds. We thus search for the maximal change of orientation, but removing aliases in which the two components impact Mars with the same orientation as another k sampling of their mutual orbit. We find the k from Equation 4 and compute the difference of angles $\delta \theta$.

The distribution of the change of orientation $\delta \theta$ is presented in Figure 8. The distribution is strongly peaked around 0°, with a standard deviation of only 0.72°. These simulations imply that the orientation of binary crater is not significantly affected by the tidal forces, similarly to their separation (Melosh and Stansberry 1991). This confirms the discrepancy between the anisotropy observed among binary asteroids and the isotropic distribution of orientation of binary craters.

5. Discussion

The numerical simulations indicate that the separation and orientation of the impacts by binary asteroids are not significantly affected by Mars (Section 4 and Melosh and Stansberry 1991). There are hence binary asteroids whose

4estimated from its mass as $d = \sqrt{3M_1/(4\pi\rho)}$, where the density ρ is set to 1.9 g/cm3 (like Itokawa, Fujiwara et al. 2006).
Binary asteroids and doublet craters

Figure 9: Probability of detecting mutual events of binary asteroids as a function of their inclination and separation. The blue isoline refers to 20% probability level.

separation is larger than those currently observed: indeed, the separation at impact is only a fraction of the semi-major axis (because separation is just a projection). The distribution of separation here is only a lower limit to the distribution of semi-major axes. Furthermore, in the range of diameter (0.2–4 km), diameter ratio (0.4–1.0), and separation (3–14 diameters) observed here, the binary asteroids do not appear to present coplanar orbits with their heliocentric orbits (as opposed to the distribution of most known binary asteroids, see Pravec et al. 2006). We perform a Kolmogorov-Smirnov test on the two distributions of observed craters and expected impact orientations from the known population of binary asteroids (Figure 6). We can reject with a 95% confidence that the two distributions are similar.

While drawing a distribution of mutual orbit parameters (inclination, longitude of the ascending node, pericenter, eccentricity and semi-major axis) that would reproduce the observed distribution of binary crater orientations is appealing, we restrain from doing so. This exercise is an ill-posed problem, and many 5-D distributions may match the 1-D distribution of crater orientation. We thus cannot predict a unique distribution of orbital parameters of binary asteroids, but can assert that it must not be comprised solely of objects whose mutual orbit is coplanar with their heliocentric orbit.

The question is therefore why such type of binary systems have not been detected yet. All the systems are too small (below 3.8 km, see Section 3) for having been directly imaged. Ground-based telescopes equipped with adaptive-optics (AO) require a bright source to close the AO loop (e.g., Merline et al. 1999; Marchis et al. 2006; Margot and Brown 2003; Carry et al. 2011; Pajuelo et al. 2018; Marsset et al. 2020), and the Hubble Space Telescope targeted the largest main-belt asteroids only (e.g., Storrs et al. 1999, 2005; Thomas et al. 1997, 2005).

While stellar occultations can detect satellites through secondary events (Timerson et al. 2013; Berthier et al. 2014), observations are challenging for small targets as the duration of the blink-out event is directly related to the diameter of the asteroid. Furthermore, with current prediction capabilities, the uncertainty on the location of the narrow occultation path on Earth is much larger than the shadow path itself, making the observation of such event very difficult (Vokrouhlický et al. 2007; Delbo et al. 2020). As a result, 90% of the recorded occultations available at the Planetary Data System (Dezalay et al. 2017) were obtained for asteroids larger than 45 km, and the smallest for a 4 km asteroid: (1685) Toro.

Most binary asteroids were discovered by optical light curves, especially in the asteroid belt (see Johnston 2018). The observability of mutual eclipses and occultations is, however, strongly dependent on the system parameters, and in particular its orientation. The more separated and inclined the binary, the more difficult it will be to detect it by optical lightcurves. We present in Figure 9 the computed probability of distinguishing a binary asteroid from a single one as a function of the separation between the components and the inclination of their mutual orbit. This is simulated for a binary asteroid on a heliocentric circular 2.2 au orbit, inclined by 4° on the ecliptic plane. The probabilities are averaged obtained by sampling diameter ratio (from 0.3 to 1), density (1000 to 3000 kg.m$^{-3}$), longitude of ascending node of binary orbit (0–360°), and the initial position of the satellite (0–360°). It was assumed that the object is observed over 8 consecutive nights during 6 hours each, as an illustration of a dedicated search program for asteroid satellites. System separated by more than 4–6 primary diameter and inclined by more than 5–10° will probably be categorized as a single asteroid because no mutual event will be recorded (see the discussion by Warner et al. 2018).

Radar observations contributed to more than half of the discoveries of binary systems among near-Earth asteroids (see Johnston 2018). These observations are not biased toward low-inclination binary systems, and could easily detect wide and inclined systems (Brozović et al. 2011; Shepard et al. 2006; Ostro et al. 2005). However, the steep decrease of the echo power as function of the distance to the power of -4 precludes radar observation of small main-belt asteroids (only some of the largest were targeted, e.g., Shepard et al. 2018; Ostro et al. 2010). Furthermore, the population of NEAs is the result of a strong selection effect: most NEAs originate from the inner main-belt through the Yarkovsky effect (Vokrouhlický et al. 2015). As a result, the population of NEAs is comprised of asteroids presenting an excess of large-obliquity, retrograde rotators (La Spina et al. 2004). Most NEAs are thus oriented in a configuration favorable to YORP spin-up and formation of satellites by rotational fission (Walsh et al. 2008) even before their injection into the near-Earth space. These YORP-formed binary systems should hence dominate the sample of NEAs with satellites (15%, Pravec et al. 2006).

Hence, the binary craters we observe on Mars reveal a small population (0.5%) of widely separated (more than 10 primary diameters) and near-similar sized (median diameter ratio of 0.7) binary asteroids in the main belt with randomly
Binary asteroids and doublet craters

distributed mutual orbits. Taking into account the small incidence of this population and the limitations of the different observing methods used to detect binary asteroids, it is not surprising that none has been observed yet. Several mechanisms may be invoked to create such systems, and we describe them here below.

These binary asteroids could be remnants of a catastrophic collision between two asteroids called Escaping Ejecta Binaries (EEB) described by Durda et al. (2004). Predicted more than a decade ago, these EEBs have never been detected with maybe the sole exception of (317) Roxane (Drummond et al. 2021). Their size ratio is predicted to be bimodal, peaking at 0.05 and 0.55. While the former have satellites too small to be detected by our crater survey, the latter corresponds to the craters we observe. These EEBs should not present any preferred orientation during their formation. They also have significant eccentricity and Lidov-Kozai oscillations (Perets and Naoz 2009) will further randomize the inclination on short time scales (tens of years). This mechanism does not explain, however, the predominance of fast-rotating asteroids among the candidate widely-separated binaries (Polishook et al. 2011).

Alternatively, these binary asteroids could be the direct outcome of the fission triggered by YORP spin-up. While most systems simulated in numerical experiments mimic the observed population of small binary systems (Walsh et al. 2008), some low-mass ratio systems may be produced (Jacobson and Scheeres 2011). While most of them are unbound (becoming pairs of asteroids, Pravec et al. 2010), the YORP spin-up and fission may create a limited number of nearly equal-sized systems, more separated than the typical couple of primary diameter (Jacobson and Scheeres 2011). This mechanism would, however, preferentially create systems which mutual orbit is coplanar to their heliocentric orbit.

An alteration mechanism, put forward very early as potentially responsible for the formation of binary system (Botike and Melosh 1996), may also be at play: planetary encounters (Fang and Margot 2012). Planetary flybys may excite the mutual orbit of a system, inclining and expanding it. Several wide-binary candidates are, however, found in non-planet crossing populations (Jacobson et al. 2014), and this alteration mechanism cannot be the sole responsible.

Finally, these binary asteroid systems may result from a complex, yet natural for irregular-shaped bodies, chain of processes, including the binary Yarkovsky - O’Keefe - Radzievskii - Paddack (BYORP) effect (Jacobson et al. 2014). This latter hypothesis may explain the size ratio, wide separation, fast-spinning, and seemingly ubiquitous presence of wide binaries among different dynamical populations. It does not, however, explain the apparently random orientation of the orbits reported here.

6. Conclusion

We conducted a survey of binary craters on Mars surface located between -50 and +50 degrees of latitude. From 31,778 craters larger than 4 km in diameter we identified 150 binary craters plausibly produced by binary asteroids. These are typically similarly-sized impacts, widely separated, and randomly oriented on the surface of Mars.

From numerical simulations we computed the statistical properties of binary craters predicted from currently known properties of binary asteroids. We showed that gravitational perturbation from Mars does not considerably change the inclination of the binary mutual orbit before impact, adding to previous work showing that the separation is also not affected (Melosh and Stansberry 1991). Thus the results of our numerical simulations without gravitational influence can be compared to the observed properties of binary craters.

We found a striking discrepancy between the properties of observed binary craters and those predicted from the current census of binary asteroids: observed craters are randomly oriented and more widely separated, while most known satellites of asteroids have tightly clustered properties (close-in orbit, coplanar with the heliocentric orbit).

This implies that there is a population of similarly-sized and well-separated binary asteroids with non-zero obliquity of their mutual orbit with respect to their heliocentric orbits. They may correspond to the few wide binaries recently reported by, e.g., Warner (2016) and Warner and Stephens (2019). The limited observations of these objects may be explained by the very low probability of detecting these systems with current observing techniques Warner et al. (2018).

Acknowledgments

B. Carry acknowledges support by the French ANR, project T-ERC SolidRock (ANR-20-ERC8-0003). A. Lagain is funded by the Australian Research Council (DP170102972 and DP210100336).

A. Catalog of binary craters

We list here the properties of craters identified as resulting from the impact of binary asteroids. c1 and c2 are associated respectively with the parameters of the largest and smallest crater of the binary. X and Y are respectively the longitude and latitude of the considered crater, D, its diameter in kilometers, the distance is the separation in kilometers between the crater centroids of the binary crater and az, N is the orientation of the binary crater measured from the angle made by the line linking the centroid of both craters relative to North. The class corresponds to the morphological classification according to Miljković et al. (2013): 1 = circular, 2 = elliptical, 3 = tear, 4 = overlapping, 5 = peanuts and 6 = doublet (see main text for more details).
Binary asteroids and doublet craters

- **X_c1**
- **Y_c1**
- **D_c1**
- **X_c2**
- **Y_c2**
- **D_c2**
- **class**
- **distance**
- **az_N**

<table>
<thead>
<tr>
<th>X_c1</th>
<th>Y_c1</th>
<th>D_c1</th>
<th>X_c2</th>
<th>Y_c2</th>
<th>D_c2</th>
<th>class</th>
<th>distance</th>
<th>az_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>-123.8</td>
<td>33.311</td>
<td>4.1918</td>
<td>-123.83</td>
<td>33.326</td>
<td>2.9913</td>
<td>2</td>
<td>2.0942</td>
<td>294.77</td>
</tr>
<tr>
<td>-78.191</td>
<td>33.555</td>
<td>10.052</td>
<td>-78.116</td>
<td>33.752</td>
<td>6</td>
<td>12.233</td>
<td>17.429</td>
<td></td>
</tr>
<tr>
<td>-30.375</td>
<td>41.993</td>
<td>40.482</td>
<td>-31.204</td>
<td>42.657</td>
<td>21.973</td>
<td>53.484</td>
<td>317.32</td>
<td></td>
</tr>
<tr>
<td>-5.3415</td>
<td>42.882</td>
<td>17.289</td>
<td>-5.2973</td>
<td>42.733</td>
<td>4.6634</td>
<td>1</td>
<td>9.0476</td>
<td>167.76</td>
</tr>
<tr>
<td>-33.242</td>
<td>48.11</td>
<td>7.9615</td>
<td>-33.37</td>
<td>48.081</td>
<td>7.0542</td>
<td>5</td>
<td>5.337</td>
<td>251.16</td>
</tr>
<tr>
<td>-59.951</td>
<td>44.947</td>
<td>6.8672</td>
<td>-59.981</td>
<td>44.939</td>
<td>4.8479</td>
<td>1</td>
<td>1.3198</td>
<td>249.66</td>
</tr>
<tr>
<td>-55.648</td>
<td>46.815</td>
<td>5.6635</td>
<td>-55.621</td>
<td>46.853</td>
<td>4.3812</td>
<td>2</td>
<td>2.4996</td>
<td>25.765</td>
</tr>
<tr>
<td>-0.73242</td>
<td>38.909</td>
<td>5.3808</td>
<td>-0.72929</td>
<td>38.952</td>
<td>2.4483</td>
<td>3</td>
<td>2.535</td>
<td>3.2494</td>
</tr>
<tr>
<td>-56.066</td>
<td>32.12</td>
<td>5.0533</td>
<td>-56.07</td>
<td>32.245</td>
<td>4.3757</td>
<td>6</td>
<td>7.3692</td>
<td>359.67</td>
</tr>
<tr>
<td>-50.834</td>
<td>42.081</td>
<td>5.1301</td>
<td>-50.937</td>
<td>42.01</td>
<td>4.1281</td>
<td>6</td>
<td>6.1768</td>
<td>227.07</td>
</tr>
<tr>
<td>-5.3415</td>
<td>42.882</td>
<td>17.289</td>
<td>-5.2973</td>
<td>42.733</td>
<td>4.6634</td>
<td>1</td>
<td>9.0476</td>
<td>167.76</td>
</tr>
<tr>
<td>-56.606</td>
<td>32.12</td>
<td>5.0533</td>
<td>-56.607</td>
<td>32.245</td>
<td>4.3757</td>
<td>6</td>
<td>7.3692</td>
<td>359.67</td>
</tr>
<tr>
<td>-5.3415</td>
<td>42.882</td>
<td>17.289</td>
<td>-5.2973</td>
<td>42.733</td>
<td>4.6634</td>
<td>1</td>
<td>9.0476</td>
<td>167.76</td>
</tr>
<tr>
<td>-56.606</td>
<td>32.12</td>
<td>5.0533</td>
<td>-56.607</td>
<td>32.245</td>
<td>4.3757</td>
<td>6</td>
<td>7.3692</td>
<td>359.67</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2 – continued from previous page

<table>
<thead>
<tr>
<th>X_{c1}</th>
<th>Y_{c1}</th>
<th>D_{c1}</th>
<th>X_{c2}</th>
<th>Y_{c2}</th>
<th>D_{c2}</th>
<th>class</th>
<th>distance</th>
<th>az_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>-77.28</td>
<td>2.1644</td>
<td>3.1423</td>
<td>-75.245</td>
<td>2.1664</td>
<td>3.0027</td>
<td>6</td>
<td>5.2371</td>
<td>280.32</td>
</tr>
<tr>
<td>-65.988</td>
<td>11.524</td>
<td>3.6872</td>
<td>-65.253</td>
<td>11.526</td>
<td>3.6894</td>
<td>5</td>
<td>4.1301</td>
<td>42.831</td>
</tr>
<tr>
<td>-54.239</td>
<td>8.7853</td>
<td>2.9761</td>
<td>-54.059</td>
<td>8.7874</td>
<td>2.9784</td>
<td>6</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>-42.393</td>
<td>7.0804</td>
<td>2.6753</td>
<td>-42.112</td>
<td>7.0825</td>
<td>2.6777</td>
<td>5</td>
<td>6.7692</td>
<td>170.61</td>
</tr>
<tr>
<td>-30.567</td>
<td>5.3754</td>
<td>2.4745</td>
<td>-30.303</td>
<td>5.3784</td>
<td>2.4767</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
<tr>
<td>-18.742</td>
<td>3.6704</td>
<td>2.2735</td>
<td>-18.449</td>
<td>3.6735</td>
<td>2.2757</td>
<td>5</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>-6.9514</td>
<td>2.9654</td>
<td>2.0725</td>
<td>-6.6582</td>
<td>2.9684</td>
<td>2.0747</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
<tr>
<td>0.0012</td>
<td>2.2604</td>
<td>1.8714</td>
<td>0.0012</td>
<td>2.2604</td>
<td>1.8714</td>
<td>5</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>8.8512</td>
<td>1.5564</td>
<td>1.6625</td>
<td>8.5582</td>
<td>1.5594</td>
<td>1.6647</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
<tr>
<td>17.051</td>
<td>0.8514</td>
<td>1.4735</td>
<td>16.758</td>
<td>0.8544</td>
<td>1.4757</td>
<td>5</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>25.251</td>
<td>0.1564</td>
<td>1.2745</td>
<td>24.958</td>
<td>0.1594</td>
<td>1.2767</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
<tr>
<td>33.451</td>
<td>-0.4514</td>
<td>0.9755</td>
<td>33.158</td>
<td>-0.4544</td>
<td>0.9777</td>
<td>5</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>41.651</td>
<td>-0.7514</td>
<td>0.6765</td>
<td>41.358</td>
<td>-0.7544</td>
<td>0.6787</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
<tr>
<td>49.851</td>
<td>-1.0514</td>
<td>0.3775</td>
<td>49.558</td>
<td>-1.0544</td>
<td>0.3797</td>
<td>5</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>58.051</td>
<td>-1.3514</td>
<td>0.0785</td>
<td>57.758</td>
<td>-1.3544</td>
<td>0.0807</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
<tr>
<td>66.251</td>
<td>-1.6514</td>
<td>-0.3795</td>
<td>65.958</td>
<td>-1.6544</td>
<td>-0.3817</td>
<td>5</td>
<td>5.6792</td>
<td>318.64</td>
</tr>
<tr>
<td>74.451</td>
<td>-1.9514</td>
<td>-0.6725</td>
<td>74.158</td>
<td>-1.9544</td>
<td>-0.6747</td>
<td>6</td>
<td>3.8234</td>
<td>170.61</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2 – continued from previous page

<table>
<thead>
<tr>
<th>X_c1</th>
<th>Y_c1</th>
<th>D_c1</th>
<th>X_c2</th>
<th>Y_c2</th>
<th>D_c2</th>
<th>class</th>
<th>distance</th>
<th>az_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.27</td>
<td>-22.338</td>
<td>8.5262</td>
<td>67.219</td>
<td>-22.326</td>
<td>7.6396</td>
<td>2</td>
<td>2.898</td>
<td>284.74</td>
</tr>
<tr>
<td>89.267</td>
<td>16.009</td>
<td>6.9462</td>
<td>89.266</td>
<td>-15.977</td>
<td>5.6337</td>
<td>1</td>
<td>1.8905</td>
<td>357.6</td>
</tr>
<tr>
<td>84.1</td>
<td>19.914</td>
<td>7.0308</td>
<td>84.078</td>
<td>-19.853</td>
<td>5.8956</td>
<td>5</td>
<td>3.835</td>
<td>341.44</td>
</tr>
<tr>
<td>53.066</td>
<td>-2.38</td>
<td>6.7764</td>
<td>53.009</td>
<td>-2.3403</td>
<td>5.6617</td>
<td>5</td>
<td>4.1198</td>
<td>304.81</td>
</tr>
<tr>
<td>80.78</td>
<td>-2.7819</td>
<td>5.9231</td>
<td>80.721</td>
<td>-2.8369</td>
<td>5.7075</td>
<td>5</td>
<td>4.7508</td>
<td>226.82</td>
</tr>
<tr>
<td>75.262</td>
<td>-7.5109</td>
<td>3.9622</td>
<td>75.261</td>
<td>-7.5419</td>
<td>3.7361</td>
<td>2</td>
<td>1.8333</td>
<td>181.84</td>
</tr>
<tr>
<td>110.28</td>
<td>-16.476</td>
<td>11.305</td>
<td>110.31</td>
<td>-16.614</td>
<td>5.0191</td>
<td>4</td>
<td>8.2729</td>
<td>168.76</td>
</tr>
<tr>
<td>124.65</td>
<td>-24.626</td>
<td>10.004</td>
<td>124.5</td>
<td>-24.684</td>
<td>8.1785</td>
<td>5</td>
<td>8.8319</td>
<td>247.01</td>
</tr>
<tr>
<td>124.22</td>
<td>-3.702</td>
<td>7.9665</td>
<td>124.31</td>
<td>-3.6882</td>
<td>4.5907</td>
<td>4</td>
<td>5.8354</td>
<td>81.948</td>
</tr>
<tr>
<td>106.63</td>
<td>-22.88</td>
<td>11.345</td>
<td>106.83</td>
<td>-22.813</td>
<td>7.4278</td>
<td>6</td>
<td>11.641</td>
<td>70.201</td>
</tr>
<tr>
<td>126.17</td>
<td>-24.587</td>
<td>6.3882</td>
<td>126.26</td>
<td>-24.624</td>
<td>5.5724</td>
<td>5</td>
<td>5.3788</td>
<td>114.1</td>
</tr>
<tr>
<td>122.59</td>
<td>-15.589</td>
<td>5.8083</td>
<td>122.5</td>
<td>-15.67</td>
<td>2.099</td>
<td>1</td>
<td>2.7277</td>
<td>298.29</td>
</tr>
<tr>
<td>129.14</td>
<td>-23.935</td>
<td>5.7217</td>
<td>129.18</td>
<td>-23.964</td>
<td>3.5083</td>
<td>3</td>
<td>2.7115</td>
<td>129.73</td>
</tr>
<tr>
<td>96.46</td>
<td>-10.296</td>
<td>5.0406</td>
<td>96.57</td>
<td>-10.312</td>
<td>5.016</td>
<td>6</td>
<td>6.4532</td>
<td>98.004</td>
</tr>
<tr>
<td>91.46</td>
<td>-7.5541</td>
<td>4.7793</td>
<td>91.449</td>
<td>-7.5015</td>
<td>4.2022</td>
<td>5</td>
<td>3.1785</td>
<td>348.49</td>
</tr>
<tr>
<td>101.89</td>
<td>-1.791</td>
<td>3.7315</td>
<td>101.18</td>
<td>-1.7705</td>
<td>2.0447</td>
<td>4</td>
<td>2.0664</td>
<td>205.96</td>
</tr>
<tr>
<td>117.33</td>
<td>-10.417</td>
<td>3.9567</td>
<td>117.35</td>
<td>-10.387</td>
<td>1.8778</td>
<td>3</td>
<td>1.9042</td>
<td>22.668</td>
</tr>
<tr>
<td>140.34</td>
<td>-19.204</td>
<td>7.5959</td>
<td>140.33</td>
<td>-19.248</td>
<td>4.1792</td>
<td>3</td>
<td>2.6526</td>
<td>193.11</td>
</tr>
<tr>
<td>-138.63</td>
<td>-44.502</td>
<td>5.297</td>
<td>-138.6</td>
<td>-44.451</td>
<td>2.1303</td>
<td>4</td>
<td>3.3464</td>
<td>24.251</td>
</tr>
<tr>
<td>-160.59</td>
<td>-33.487</td>
<td>4.1318</td>
<td>-160.61</td>
<td>-33.434</td>
<td>4.0483</td>
<td>5</td>
<td>3.0354</td>
<td>341.3</td>
</tr>
<tr>
<td>-60.236</td>
<td>-35.458</td>
<td>7.3062</td>
<td>-60.185</td>
<td>-35.371</td>
<td>3.9719</td>
<td>4</td>
<td>5.7302</td>
<td>25.762</td>
</tr>
<tr>
<td>-78.247</td>
<td>-30.773</td>
<td>4.4607</td>
<td>-78.213</td>
<td>-30.812</td>
<td>3.907</td>
<td>5</td>
<td>2.8815</td>
<td>143.01</td>
</tr>
<tr>
<td>-61.873</td>
<td>-36.826</td>
<td>3.6149</td>
<td>-61.894</td>
<td>-36.806</td>
<td>1.8435</td>
<td>3</td>
<td>1.5226</td>
<td>320.59</td>
</tr>
<tr>
<td>-29.097</td>
<td>-33.182</td>
<td>6.6764</td>
<td>-29.138</td>
<td>-33.171</td>
<td>2.8483</td>
<td>3</td>
<td>2.1392</td>
<td>287.39</td>
</tr>
<tr>
<td>-13.241</td>
<td>-33.276</td>
<td>5.1755</td>
<td>-13.277</td>
<td>-33.287</td>
<td>2.061</td>
<td>1</td>
<td>1.8605</td>
<td>249.03</td>
</tr>
<tr>
<td>29.46</td>
<td>-33.244</td>
<td>4.8951</td>
<td>29.401</td>
<td>-33.182</td>
<td>4.5251</td>
<td>6</td>
<td>4.6863</td>
<td>321.8</td>
</tr>
<tr>
<td>117.93</td>
<td>-35.603</td>
<td>9.0908</td>
<td>117.75</td>
<td>-35.604</td>
<td>7.8785</td>
<td>6</td>
<td>8.4094</td>
<td>269.87</td>
</tr>
<tr>
<td>131.15</td>
<td>-32.633</td>
<td>12.358</td>
<td>131.1</td>
<td>-32.724</td>
<td>8.2709</td>
<td>2</td>
<td>5.8806</td>
<td>203.78</td>
</tr>
<tr>
<td>151.42</td>
<td>-47.372</td>
<td>9.5064</td>
<td>151.57</td>
<td>-47.446</td>
<td>8.8219</td>
<td>5</td>
<td>7.2029</td>
<td>127.43</td>
</tr>
<tr>
<td>140.2</td>
<td>-30.383</td>
<td>6.8368</td>
<td>140.21</td>
<td>-30.434</td>
<td>3.7132</td>
<td>3</td>
<td>3.0587</td>
<td>171.84</td>
</tr>
<tr>
<td>140.48</td>
<td>-36.126</td>
<td>6.6605</td>
<td>140.42</td>
<td>-36.104</td>
<td>4.0193</td>
<td>3</td>
<td>3.2834</td>
<td>292.85</td>
</tr>
<tr>
<td>147.99</td>
<td>-35.906</td>
<td>3.6504</td>
<td>148.01</td>
<td>-35.92</td>
<td>2.9758</td>
<td>1</td>
<td>1.0732</td>
<td>136.03</td>
</tr>
</tbody>
</table>
References

Binary asteroids and doublet craters

