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Abstract A large collaborative program has studied the coupled air-ice-ocean-wave processes occurring
in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic
during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of
the analyses have focused on using and improving forecast models. Summarizing and synthesizing the
results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The
dramatic increase in open water extent and duration in the autumn means that large surface waves and
significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable
process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with
associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on
the winter ice cover, which in turn affects the melt season the following year.

1. Introduction

The western Arctic has undergone significant changes in recent decades. Perennial ice cover has been dra-
matically reduced, and the seasonal ice zone has expanded. This has been widely reported in the literature
(e.g., Jeffries et al., 2013; Serreze et al., 2016), with many investigations on the consequences of the chan-
ging Arctic climate and inter-annual feedbacks (Maslanik et al., 2007). The Sea State and Boundary Layer
Physics of the Emerging Arctic Program sponsored by the Office of Naval Research was designed to exam-
ine the specific role of surface waves and winds in the new Arctic, with a focus on the autumn refreezing
period. Preliminary results from this program have been reported in Thomson et al. (2017) and Lee and
Thomson (2017). Here we link together a series of papers in a special issue detailing many key results from
the program.
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1.1. Program Objectives

The original objectives of the Arctic Sea State program were described in a science plan (Thomson et al.,
2013), as:

1. Understanding the changing surface wave and wind climate in the western Arctic,
2. Improving numerical and theoretical models of wave-ice interactions,
3. Quantifying the fluxes of heat and momentum at the air-ice-ocean interface, and
4. Applying the results in coupled forecast models.

Central to the program was a field campaign in the autumn of 2015 aboard the R/V Sikuliaq. The data col-
lection was designed to address the objectives above, with a particular focus on data for validation and cali-
bration of process representation in models. These models can then be used both for analysis and
forecasting, as well for reanalysis (hindcast) of the changes occurring in recent decades. The data are also
critical for validating new remote sensing techniques which can then provide extensive coverage of waves,
ice or ocean parameters.

1.2. Climatology and Context

There is a clear trend of increasing surface wave activity in the western Arctic (Francis et al., 2011; Liu et al.,
2016; Stopa et al., 2016; Thomson et al., 2016; Wang et al., 2015). As shown in Figure 1, the increases are
both in terms of wave height and wave period. An increase in the wind forcing, however, has not been
observed. The signals are consistent with the simple explanation of increasing fetch, because more open
water means more room for waves to grow (Smith & Thomson, 2016; Thomson & Rogers, 2014). Recently,
some investigations have even considered the nearly unlimited fetches that would occur in an ice-free
Arctic (Li, 2016).

Coincident with the increasing wave activity from the presence of more open water is an increase in ocean
heating from solar radiation (Perovich et al., 2007). This is particularly important during years of early seasonal
ice melt, as that may delay refreezing in the fall (Stroeve et al., 2016). Stammerjohn et al. (2012) have shown
that the delay of autumn refreezing throughout the domain is both a cause and an effect of this increased
ocean heating. The increased heating has led to the seasonal formation of a “Near-Surface Temperature
Maximum” (NSTM, Jackson et al., 2010) in the upper ocean, which accumulates heat throughout the open-
water season. This ocean heat is either lost (via mixing and venting to the atmosphere) or trapped (via stra-
tification) when refreezing occurs in the autumn. The timing of the seasonal refreezing is now delayed a full
month later in the autumn, compared with previous decades (Thomson et al., 2016). As the timing of ice

refreezing continues to shift, so does the probability of wave activity, given
the higher chance of strong winds in autumn (Pingree-Shippee et al., 2016)
that coincide with open water.

2. Methods
2.1. In Situ Observations (R/V Sikuliaq Cruise)

The field campaign was a 42 day research cruise on the R/V Sikuliaq, from
late September to early November 2015. Figure 2 shows the track of the
ship, as well as the ice and wave conditions at end of the campaign.
Supporting information S1 is a movie version of this figure, showing the
ship position and conditions throughout the entire cruise. This includes
buoy deployments and a count of satellite images acquired.

The cruise used a dynamic approach, in which a rolling 3 day plan was con-
stantly updated based on the wind and wave forecast. The primary sam-
pling modules were:

1. Wave experiments, in which arrays of up to 17 wave sensing buoys
were deployed for hours to days.

2. Ice stations, in which ice floes were surveyed above and below using
autonomous systems, and physical samples were collected. Ice Mass
Balance (IMB) buoys were also deployed and left for the winter.
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Figure 1. Trends in the wave heights, wave periods, and wind speeds over
the Beaufort and Chukchi seas in autumn. Updated from (Thomson et al.,
2016) with values for 2015, 2016, and 2017. Values are the shape and scale
parameter of Weibull distributions fit to hindcast waves across the months of
September, October, and November.
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3. Flux stations, in which surface fluxes of heat and momentum were measured from the bow of the ship
while holding a heading into the wind.

4. Ship surveys, in which an Underway Conductivity-Temperature-Depth (UCTD) was regularly deployed
along a track. The ship surveys also include marine X-band radar wave-current-ice observations, visual
ice observations, EM ice thickness measurements, ice camera recordings, continuous meteorological
and flux observations, infrared radiometry, and radiosonde balloon launches.

Generally, the wave experiments took precedent whenever there was a favorable forecast for waves, and the
other modules fit in around these events. Table 1 in Cheng et al. (2017) summarizes the conditions for each
wave experiment. The ice stations were selected to span a range of ice types, including multiyear floes. The
flux stations were designed to capture both on-ice and off-ice winds over both open water and new ice. The
underway surveys provide unique autumn measurements of air-ice-ocean structure and interactions in thin
ice and the nearby open water. These include a “race track” pattern repeated at the shelf break for several
days near the end of the cruise. The UCTDs connect the shallow waters of the Chukchi Sea with the deep
basin of the Beaufort Sea.

Figure 2. Map of cruise track and buoy deployments, overlaid on the ice andwave conditions at the end of the experiment.
This is the final frame of a movie, which is included as supporting information S1, showing the progression of the entire
research cruise.

Table 1
Wave-Ice Interaction Schemes in WAVEWATCH III

Scheme Mechanism

IC0 Partial blocking, scaled by ice concentration; high concentration treated as land
IS1 Simple conservative diffusive scattering term
IS2 Floe-size dependent conservative scattering, combined with ice break-up,

and anelastic and/or inelastic dissipation due to ice flexure
IC1 Simple dissipation, uniform in frequency
IC2 Basal friction, laminar and/or turbulent
IC3 Ice as viscoelastic layer (Wang & Shen, 2010), frequency-dependent
IC4 Assorted parametric and empirical formulae, most being frequency-dependent
IC5 Ice as viscoelastic layer (extended from Fox and Squire, 1994), frequency-dependent

10.1002/2018JC013766Journal of Geophysical Research: Oceans
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2.2. Remote Sensing

Remote sensing was essential for the dynamic approach to the cruise
plan. The Sikuliaq received several satellite images daily, mostly from
RadarSat2 and TerraSAR-X. These were used to understand the ship’s
location relative to the sea ice, which often had a complex spatial dis-
tribution of multiple ice types and concentrations. In some cases, the
images were annotated by analysts from the National Ice Center;
these annotations included probable ice types and predictions of
edge changes.

Figure 3 shows an example RadarSat2 image with the ship’s position
on 4 October 2017. Supporting information S2 is a movie of the ice
drift at this location, as observed with the ship’s radar through a day
of working near the ice edge. The ship’s radar provided much higher
resolution in space and time than the approximately twice daily satel-
lite images. Lund et al. (2018) apply the ship’s radar data to deter-
mine ice drift velocity, which can be highly variable. The ship’s radar
data are also suitable for determining currents and waves (Lund
et al., 2015, 2017).

In addition to the satellite and shipboard systems, two manned air-
craft and three unmanned aerial systems (UAS) provided additional

data collection and situational awareness. The aircraft from the Naval Research Laboratory (NRL) carried
LIDAR and L- and P-band SAR, in addition to visual cameras. The aircraft from NASA carried the UVASAR
L-band fully polarimetric SAR only (data available at https://www.asf.alaska.edu/). The UAS carried
visual cameras.

In addition to real-time planning, the remote sensing data have also been used for quantitative studies. For
example, wind and wave parameters can now be readily derived from SAR data in the open water (Gebhardt
et al., 2017; Gemmrich et al., 2016), and wave heights and full spectra can now be retrieved in ice-covered
regions (Ardhuin et al., 2015, 2017; Gebhardt et al., 2016). That method of wave spectra retrieval in ice-
covered water was adapted by (Stopa et al., 2018) to handle a mixture of wave and ice features, and to
estimate the azimuthal cut off that is needed to correct for the blurring of wave patterns near the ice edge.
This produced the first map of wave heights extending over 400 km into the ice. The spatial evolution of the
wave field in off-ice wind conditions is analyzed by (Gemmrich et al., 2018). Other remote sensing data
include ice classification from fully polarized SAR data (Shen et al., 2018), and wave and ice floemapping from
airborne LIDAR data (Sutherland & Gascard, 2016).

2.3. Modeling

Much of the early effort in the Arctic Sea State program went toward including wave-ice interactions in the
operational wave forecast model WAVEWATCH III. Some of the new features were first described in Rogers
and Orzech (2013). These have since been refined and tuned, using the data collected during the Sikuliaq
cruise (Rogers et al., 2016) and previous data sets (e.g., Ardhuin et al., 2016). Prior to these efforts, the only
ice scheme available in WAVEWATCH III was to treat as land any regions with ice concentrations exceeding
a fixed threshold (Tolman, 2003), usually at 75%. This early approach did not provide any wave information
in the ice, and had a detrimental effect in open water with a tendency to underestimate wave heights
(e.g., Doble & Bidlot, 2013). The challenge in implementing more physical wave-ice interactions has been
the large range in mechanisms and theoretical models proposed for these interactions (see Squire et al.,
1995; and Squire, 2007 for reviews), and the large range of ice types and associated processes. Both wave
scattering (conservative) and wave dissipation (non-conservative) actions must be at least considered,
although one or the other may dominate in a given set of conditions. Furthermore, each of these processes
may be parameterized in various ways: e.g., wave scattering as “diffusion” in Zhao and Shen (2016), or using a
scattering matrix which is integrated implicitly (Ardhuin & Magne, 2007; The WAVEWATCH III ® Development
Group, 2016).

New models have been developed as part of this program (e.g., Montiel et al., 2016), and thus there is an
expanding set of schemes to implement and test in WAVEWATCH III. These are noted by “ICn” for

Figure 3. Example RADARSAT-2 image with ship location (green symbol). The
orange line is the boundary of the US Exclusive Economic Zone (200 nm from
the coast). RADARSAT-2 data and products from MacDonald, Dettwiler, and
Associates Ltd., All Rights Reserved.
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dissipation terms and “ISn” for scattering terms. Recent developements
are documented in the WAVEWATCH III manual (The WAVEWATCH III ®

Development Group, 2016) and in Collins and Rogers (2017) for IC4,
including a calibration study for the Sikuliaq cruise. Additional efforts
include Boutin et al. (2018) and Ardhuin et al. (2018) with effects on
ice break-up on IC2 and IS2, and implementation of the “extended
Fox and Squire” model (Mosig et al., 2015) in WAVEWATCH III as IC5.
The various schemes are summarized in Table 1. Collins et al. (2017a)
explore the changes in the wave dispersion relation from various
physical models, and Mosig et al. (2015) compare several viscoelastic
models. Li et al. (2015a) explore the sensitivities of a particular viscoe-
lastic model.

3. Results
3.1. Atmospheric Forcing

Much of the autumn ice advance is driven by the atmospheric forcing.
Figure 4 shows the conditions throughout the cruise, as measured by
instruments on the ship. The air was cold enough for freezing condi-
tions throughout almost the entire cruise, but it is the full surface
energy budget that controls freezing, not just sensible heat flux. The

most significant influence on air temperature is the wind direction; much colder temperatures are asso-
ciated with off-ice winds. Under such conditions, the lower atmosphere is cooler over the ice, producing
cold-air advection by the off-ice winds over the nearby open water. The very cold, dry air can cause rapid
cooling and freezing at the ocean surface (Persson et al., 2018). By contrast, on-ice winds can carry relative

warm air from over the ocean. In either case, the gradients between
these air masses can form strong low-level jets along the ice edge
(Guest et al., 2018).

On-ice winds can drive significant upper ocean mixing that may
delay freezing or even cause a temporary reversal of the autumn
ice advance. Smith et al. (2018) explore one such mixing event
(Wave Experiment 3, 10–13 October 2015) in great detail. Figure 5
shows example images of the surface, along with the surface forcing
and fluxes. The upper image is at the beginning of the event, when
frazil ice is forming, and the lower image is at the end, when the fra-
zil ice has become pancakes and upper ocean heat released due to
mixing is melting the pancakes.

While Figure 4 shows a strong correlation between wind speed and
wave height (as expected), the details are obscured since the ship posi-
tion varied between being in the ice, at the ice edge, or in open water
during different events. Wind stress is essential both for wave growth
and for momentum transfer into the ocean, and the relation of wind
speed to wind stress in this environment is often sensitive to the com-
bined ice and wave conditions. For practical purposes, this is parame-
terized with a drag coefficient. Determination of the drag coefficient
at the air-sea-ice boundary is critical to accurate atmospheric forcing
(Martin et al., 2016) and to wave modeling (Tolman & Chalikov, 1996).

3.2. Waves

Waves were observed using freely drifting buoys during seven wave
experiments (see Table 1 in Cheng et al., 2017). Waves were also
observed along the ship track using a LIDAR range finder mounted at
the bow, for which the measurements have been Doppler corrected

Figure 4. Time series of basic parameters along the cruise track: (a) air and
ocean temperatures, (b) wind speeds, and (c) wave heights. The green circles
in (b) indicate the off-ice wind conditions. Red circles and blue circles in (a) refer
to air and sea temperatures, respectively.

Figure 5. Example surface conditions and associated parameters during Wave
Experiment 3 (10–12 October 2015).
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according to Collins et al. (2017b), and the ship’s radar. The maximum
waves observed were almost 5 m significant wave height on 12
October 2017, in the middle of Wave Experiment 3 (see Figure 4).
This is the upper end of the climatology determined by Thomson
et al. (2016) for the previous two decades. Figure 6 compares the distri-
bution of wave heights from in situ wave observations during all wave
experiments to the climatology distributions. Figure 7 shows a similar
distribution of wave observations using the TerraSAR-X satellite system.
The observations have peaks well above the climatology, because the
adaptive sampling was targeting events with large waves. The in situ
distribution (Figure 6), in particular, has a local minimum between 1
and 2 m wave heights, which is likely related to having very few sam-
ples out in open water absent a big wave event. (Wave heights of
1–2 m are now typical in the open water areas of the western Arctic.)
Although these distributions reveal some sampling biases, it was not
the intent to observe the climatology; the intent was to observe pro-
cesses, especially those that are tied to wave-ice interactions with an
increasing sea state climatology.

The full suite of wave observations have been used to determine
attenuation of waves in pancake ice and then calibrate a viscoelastic
model (Cheng et al., 2017). This is the IC3 wave-ice scheme from
Table 1, and the results suggest that elasticity is of less importance

than the viscous damping. This is a consequence of pancake ice being much smaller than the wave-
length; scattering is not expected to be important in this regime. Stopa et al. (2018) have also deter-
mined attenuation further into the ice pack during Wave Experiment 3, using a larger domain thanks
to wave heights derived from Sentinel 1 SAR imagery. The associated processes appear very different
from what is found in pancake ice and is described by Boutin et al. (2018) and discussed by Ardhuin
et al. (2018). Montiel et al. (2018) further analyze wave attenuation and directional spreading during
the large wave event of Wave Experiment 3. A key finding is that waves may tend to attenuate linearly
for large amplitudes and exponentially for small amplitudes, mirroring the observations of Kohout et al.
(2014) in the Antarctic MIZ.

Meylan et al. (2018) analyzed the power law dependence of attenuation on frequency for both measure-
ments and models. The measurements showed universal power law dependence, being approximately four
for pancake/frazil ice and two for large floes. While the models for attenuation generally have free para-

meters, their dependence as a function of frequency is fixed.
Currently we do not know the mechanism for the energy loss. Meylan
et al. (2018) also show how we can connect the energy loss mechanism
to the power law dependence.

A consistent result from all of these approaches is that attenuation is
frequency dependent, with the strongest effects at the high frequen-
cies. This general effect has been observed in numerous prior experi-
ments (e.g., Collins et al., 2015; Wadhams et al., 1988). Data from the
Sea State project provide opportunities to further quantify the low-pass
filtering nature of different first-year ice types. Supporting information
S3 is a video of waves in pancake ice, in which the suppression of high
frequency waves is visually apparent.

One specific issue from previous studies has been the apparent “roll-
over” of attenuation at the very highest frequencies. The analyses of
Rogers et al. (2016) did not find a roll-over for the Wave Experiment 3
and those authors speculate that cases of roll-over reported in some
prior studies were spurious outcomes resulting from regeneration of
wave energy by wind. Likewise, Li et al. (2015b) suggested that the lin-
ear rather than exponential attenuation at large wave amplitude

Figure 6. Scaled histogram of observed in situ wave heights during the Sikuliaq
cruise (black dots), compared with Weibull distributions of the hindcast wave
heights throughout the domain for October of the years 2007 through 2014
(colored curves). Hindcast from Thomson et al. (2016).
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Figure 7. Histogram of wave heights observed remotely using the TerraSAR-X
satellite system during October 2015.
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reported for a case in Antarctic MIZ in Kohout et al. (2014) might also be partly due to this wind input. Most
recently, Li et al. (2017) confirmed that roll-over in the same Antarctic case likely is a result of wind input to the
highest frequencies. The wind input causes it to appear that less attenuation occurred, when comparing the
net difference between two measurements (i.e., two buoys). In reality, the attenuation continues to increase
with frequency. Though the above are specific case studies and results cannot be conclusively generalized to
all prior wave-in-ice studies, one conclusion is unambiguous: in cases where local wind is not small, wind
inputmust be included to obtain correct estimates of attenuation of wave energy by sea ice, and this is parti-
cularly crucial for estimates of the frequency-dependence of this dissipation.

Wadhams et al. (2018) use spectra of satellite SAR images to infer attenuation and invert for pancake ice
thickness. Sutherland et al. (2018) determine attenuation rates from the airborne LIDAR and examine the
importance of scattering, relative to dissipation. Collins et al. (2018) evaluate changes in the dispersion
relation and conclude that they are small and confined to the higher wave frequencies where the wave-
number tends to increase relative to open water. This suggests, as expected, that elasticity is not important
in the MIZ.

In addition to wave attenuation, wave growth is also studied with this data set. Following Gebhardt et al.
(2017), Gemmrich et al. (2018) use TerraSAR-X wave estimates to examine fetch-limited growth of waves

Figure 8. Ice type distribution along the ship track and sample photos of each type. The size of the circles in the distribution
represents the partial concentration of each type.
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during off-ice wind conditions. They find mostly conventional fetch laws, although they do find that wave
grow in partial ice cover according to a modified cumulative fetch. This is consistent with the very small wind
input rates determined by Zippel and Thomson (2016) in partial ice cover.

3.3. Sea Ice

Hourly ice observations from the bridge of the ship, using the ASSIST protocols, show a wide variety of ice
types and concentrations. Figure 8 shows the distribution of three dominant ice types along the cruise track.

Figure 9. Example of multiyear ice (MYI) sampled on 6 October 2015 using (a, b) UAVASAR, (c) marine radar, and (d) physical sampling.

Figure 10. Sea surface temperature anomaly (colors, derived from SST data available at https://mur.jpl.nasa.gov) and ice
cover (grayscale, derived from AMSR2, data available at https://seaice.uni-bremen.de/start/data-archive) in the western
Arctic at the start of Sikuliaq research cruise (magenta is track line).
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Two types are particularly common: pancake ice and nilas ice (the
latter is shown as “Other” in Figure 8). These form in wavy and calm
conditions, respectively. As discussed in Thomson et al. (2017), the
observation of extensive pancake ice in the western Arctic is quite
novel, and it is clearly an effect of the increasing wave climate. These
ASSIST observations are complemented by a data set of shipboard
images; examples are Figure 8.

Roach et al. (2018) examine the lateral growth and welding of pancakes
using in situ data, and find both processes are negatively correlated
with significant wave height. The tensile stress arising from the wave
field exerts a strong control on pancake size. They also evaluate lateral
growth and welding predicted by parametrization schemes, which can
be used to inform development of state-of-the-art sea ice models. Lund
et al. (2018) quantify the ice drift motions, in particular the relation to
the wind and the advection by ocean currents. Several studies look at
the ice thickness evolution. As mentioned above, Wadhams et al.
(2018) do this from satellite data. There is also a thermodynamic esti-
mate, based on the difference between the skin temperature and the
sub-surface temperature. In addition, observations of sea ice deforma-
tion features were made at six locations using an autonomous under-
water vehicle, and a suite of buoys were deployed on the ice to track
ice development as the fall progressed.

The program also observed multiyear floes, including the study by Tian et al. (2018) which uses isotopes to
understand the relative importance of snowmelt and seawater, especially in melt ponds. An example of mul-
tiyear ice is shown in Figure 9.

3.4. Ocean

The western Arctic Ocean in autumn has absorbed a significant amount of heat in the precedingmonths. This
signal however, can be very spatially heterogeneous. In 2015, a remnant tongue of ice persisted in the
Beaufort Sea throughout much of the summer, and this created a region of cooler sea surface temperature
in the autumn (Figure 10). This preconditioning likely influenced the progression to refreezing. Following
along the ship track, significant variations in ocean heat content were observed. Smith et al. (2018) study
the strong on-ice wind event of Wave Experiment 3 (10–13 October 2015) and show that release of stored
ocean heat is sufficient to cause a temporary reversal of the autumn ice advance. Later in the cruise, the
ocean heat content was particularly varied near the shelf-break, where the advancing ice edge appeared
to loiter, analogous to loitering of the retreating ice edge in the spring (Steele & Ermold, 2015). This loitering
was only disturbed by very strong cooling coincident with off-ice winds Persson et al. (2018).

4. Discussion
4.1. Forecast Challenges

Forecasting was crucial to the research cruise, because the timing and location of the wave experiments were
planned in near real-time. The forecasts available on the ship were a combination of operational products
and custom products developed as part of the larger research program. At the time of the Sikuliaq cruise,
most models used only one-way coupling (or no coupling). For wave forecasting, this meant that the sea
ice model was simply an input to the wave model, and the waves could not feedback to the ice. In many
cases, the sensitivity to the quality (or lack) of the ice input was severe.

In a hindcast analysis, such as the wave height time series in Figure 11, the wave model can be tuned and
the ice input selected to achieve good agreement with in situ wave observations. A priori, however, it can
be very difficult to know which ice parameterization to choose and which ice input to use. This is further
complicated by the discrepancies between ice models and ice observations (see supporting information
Figures S6 and S7 of Cheng et al., 2017). Clearly, the new parameterizations (ICn) are superior to the original
one (IC0), but there are still significant differences among the parameterizations (see Figure 11). In particular,

Figure 11. Wave height time series during Wave Experiment 3. Black dots are
observations from the NIWA buoy. Colored dots are from a WAVEWATCH III
hindcast using the original ice parameterization (green) and newly implemented
ice parameterizations (red, blue).
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the different parameterizations can have very different performance in replicating the spectral filtering that is
often observed in ice, in which high-frequency components are attenuated and low-frequency components
propagate unaltered. Further complicating thematter is that model results fromWAVEWATCH III are sensitive
to all source terms, not just ice, and these other source terms, in particular wind input and nonlinear
interactions, may also change in the presence of ice. These source terms have been tuned in open water
conditions only. Inter-dependence of these source terms has been indicated in Cheng et al. (2017). This
effect is obscured when examining wave heights alone, but can be crucial to questions of mixing (Smith
et al., 2018).

4.2. Feedbacks and Future Climate Scenarios

The challenge in creating models capable of forecast and climate predictions is in the highly coupled nature
of the air-sea-ice-wave processes (e.g., Khon et al., 2014). Although this program has produced many
improvements in fundamental understanding of the coupled processes and the model representation
thereof, there is still a strong need to develop better model coupling. The need is urgent, given the scenarios
for extreme change in the Arctic. Figure 12 compares historical ice cover with the CIOM A1B scenario

Figure 12. Mean Arctic ice cover in the late 20th century (left columns) and predicted for the late 21st century (right columns) for the months of August, September,
and October.
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predictions for the end of this century (Long & Perrie, 2013, 2015, 2017). The ice-free August is remarkable,
but the October ice cover is more so because it implicates all of the processes explored in this program.

For example, pancake formation, or almost any ice type, is not included in ice models. This would almost
surely involve coupling to a wave model. There is recent progress in representing the wave-forced breakup
of ice into specific Floe Size Distributions (FSD; Montiel & Squire, 2017), that has yet to be included in any
wave-ice model. A complementary avenue for progress in this area is in laboratory experiments, where inter-
acting processes may be isolated. For example, details of the wave interactions with individual ice floes is
more readily apparent (Bennetts et al., 2015).

Similarly, the details of wave and wind coupling in the presence of ice are not fully understood. Although
wind input is reduced in ice (Zippel & Thomson, 2016), there may still be sufficient wind input to offset some
of the attenuation (Li et al., 2015b, 2017).

The recent trend of decreasing ice cover in the fall in the Chukchi/Beaufort region exposes the relatively
warm ocean surface to the atmosphere, causing deeper and more unstable atmospheric boundary layers,
which results in higher winds, wind stress and turbulent heat fluxes at the surface. Also the presence of ice
edges and marginal ice zones (which only existed to the south in previous decades) creates horizontal tem-
perature gradients that can create low level wind jets, several of which were experienced during the cruise
(Guest et al., 2018; Persson et al., 2018). More open water will likely result in generation of previously-rare
mesoscale cyclones, including Polar Lows (Inoue et al., 2010), and also may result in changes to synoptic-scale
cyclone storm tracks, bringing more storms into the region (Wang et al., 2017). These phenomena indicate
the importance of considering atmospheric feedbacks in understanding air-ice-ocean interaction and wave
generation in the Arctic.

5. Conclusions

The Arctic Sea State program has quantified the trend of increasing waves in the western Arctic and the impli-
cations for air-ice-ocean processes. In 2013 when the science plan of the Sea State program was written, it
was only a conjecture that waves were becoming a significant player of the emerging Arctic in autumn freez-
ing. Climatology suggested a big signal, but the detailed processes were not known. In 2015, the field cam-
paign documented the extent of sea state influences on the Arctic in autumn. The most notable signal is the
new prevalence of pancake ice near the ice edge, which is a direct consequence of increasing wave activity. In
this sense, the Arctic may be transitioning to a state more similar to the Antarctic, where waves and pancake
ice are ubiquitous.

Autumn refreezing in the western Arctic can now be summarized as a complex process controlled by:

1. ocean preconditioning by air-sea heat fluxes,
2. wave-ice feedbacks (e.g., pancake formation, attenuation),
3. ocean cooling during off-ice winds,
4. ocean mixing during on-ice winds, and
5. ice edge reversals during events.

These results and the products of this program are being used to improve forecast and climate models. In
addition to the challenge of two-way coupling in these models, the event-driven nature of the key processes
may be difficult for model tuning (though the ample parameters measured or derived should allow model
improvements through process validation techniques). This new data set is a leap forward in autumn
Arctic observations, in which one particularly large wave event was extensively measured. Of course, if events
drive the system, observations of numerous events will be required to make meaningful progress in model
development. Still, we expect this data set to be used extensively for future studies, such as examining details
of air-ice-ocean momentum transports and air-ice-ocean interactions during off-ice wind events, which were
more common than on-ice events.

The papers contained within this special issue are the first round of analyses from the field data and model
developments. As always, there is more work to be done. The data archive is available for continued analysis
andmodel testing by an expanding set of researchers. Although key processes have been identified and quan-
tified, much remains to be understood about the temporal and spatial scales over which these processes occur.
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The complexity and variability of the upper ocean structure stands out within the data set as a remaining
challenge. Significant efforts have been ongoing for decades to understand the inflow of Pacific Summer
Water (PSW) over the Chukchi slope, the circulation of the Beaufort Gyre, and the eddies that are generated
near the boundaries. Even with this context and climatology, however, it was not possible to make skillful
predictions of underway CTD observations during the Arctic Sea State campaign. The strength of both the
near surface temperature maximum (NSTM) and the PSW were highly variable along the ship track. It is clear
that the progression of the seasonal ice cover has a strong influence on this upper ocean variability, but the
atmospheric and advective signals driving the sea ice itself also show considerable variability. Therefore, to
understand the drivers of this tightly coupled air-sea-ice system, not only do the simultaneous air-sea-ice
interactions need to be considered, but also the far field and preconditioning factors need to be addressed
as well. A new program, the Stratified Ocean Dynamics in the Arctic (www.apl.uw.edu/soda) aims to under-
stand this variability with an observational campaign over the 2018–2019 annual cycle.

The complexity of the sea ice remains another challenge. As demonstrated by the extensive visual observa-
tions following the ASPECT protocols, sea ice is not easily characterized by a few scalar parameters (though
that is what coupled models would most easily use). This challenge is extreme during refreezing, when chan-
ging surface fluxes cause rapid evolution of the new sea ice (e.g., Persson et al., 2018). Models such as CICE
and in situ observations must converge on a set of metrics that are most relevant to the coupled dynamics
and that capture the variability. Another new program, the Sea Ice Dynamics Experiment (SIDEX) will make
progress on this topic with a 2020 campaign.

Finally, though the new wave-ice schemes in models like WAVEWATCH3 are impressive in their ability to
reproduce observations in a hindcast, there is still a fundamental question as the mechanism(s) by which
waves lose energy as they propagate through sea ice. The new data set is by far the most extensive observa-
tion of waves in sea ice collected to date, yet the measurements are mostly the net effect of the wave-ice
interactions, and limited to the region less than 100 km from the open ocean. Direct measurements of colli-
sions, flexure, and turbulence within pancake ice are the next horizon for measurements of wave-ice pro-
cesses. To follow the evolution of these processes from the ice edge to the interior pack ice requires larger
spatial monitoring. More ambitious still, the message from the Arctic Sea State program is clear: these specific
interactions exist within a fully coupled air-ocean-ice system, and such measurements would be incomplete
without characterizing the whole system simultaneously.
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