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Abstract :   
 
We present a combined study of the geomorphology, sedimentology, and physical oceanography of the 
Mozambique Channel to evaluate the role of bottom currents in shaping the Mozambican continental 
margin and adjacent Durban basin. Analysis of 2D multichannel seismic reflection profiles and 
bathymetric features revealed major contourite deposits with erosive (abraded surfaces, contourite 
channels, moats, furrows and scours), depositional (plastered and elongated-mounded drifts, 
sedimentary waves), and mixed (terraces) features, which were then used to construct a morpho-
sedimentary map of the study area. Hydrographic data and hydrodynamic modelling provide new 
insights into the distribution of water masses, bottom current circulation and associated processes (e.g., 
eddies, internal waves, etc.) occurring along the Mozambican slope, base-of-slope and basin floor. 
Results from this work represent a novel deep-sea sedimentation model for the Mozambican continental 
margin and adjacent Durban basin. This model shows 1) how bottom circulation of water masses and 
associated sedimentary processes shape the continental margin, 2) how interface positions of water-
masses with contrasting densities (i.e., internal waves) sculpt terraces along the slope at a regional 
scale, and 3) how morphologic obstacles (seamounts, Mozambique Ridge, etc.) play an essential role in 
local water mass behaviours and dynamics. Further analysis of similar areas can expand understanding 
of the global role of bottom currents in deep-sea sedimentation. 
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► Combined study of the geomorphology, sedimentology, and physical oceanography of the 
Mozambique Channel. ► Bottom circulation of water masses and associated sedimentary processes 
shape the continental margin. ► Interface positions of water-masses with contrasting densities (i.e., 
internal waves) sculpt terraces along the slope at a regional scale. ► Morphologic obstacles play an 
essential role in local water mass behaviours and dynamics. 
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Abstract 13 

We present a combined study of the geomorphology, sedimentology, and physical oceanography of 14 
the Mozambique Channel to evaluate the role of bottom currents in shaping the Mozambican continental 15 
margin and adjacent Durban basin. Analysis of 2D multichannel seismic reflection profiles and bathymetric 16 
features revealed major contourite deposits with erosive (abraded surfaces, contourite channels, moats, 17 
furrows and scours), depositional (plastered and elongated-mounded drifts, sedimentary waves), and mixed 18 
(terraces) features, which were then used to construct a morpho-sedimentary map of the study area. 19 
Hydrographic data and hydrodynamic modelling provide new insights into the distribution of water masses, 20 
bottom current circulation and associated processes (e.g., eddies, internal waves, etc.) occurring along the 21 
Mozambican slope, base-of-slope and basin floor. Results from this work represent a novel deep-sea 22 
sedimentation model for the Mozambican continental margin and adjacent Durban basin. This model shows 1) 23 
how bottom circulation of water masses and associated sedimentary processes shape the continental margin, 24 
2) how interface positions of water-masses with contrasting densities (i.e., internal waves) sculpt terraces 25 
along the slope at a regional scale, and 3) how morphologic obstacles (seamounts, Mozambique Ridge, etc.) 26 
play an essential role in local water mass behaviours and dynamics. Further analysis of similar areas can 27 

expand understanding of the global role of bottom currents in deep-sea sedimentation. 28 

Keywords: Contourites; Bottom currents; Sedimentary processes; Water mass interfaces; Continental margin; 29 
Mozambique Channel  30 
 31 
1. Introduction 32 

Contour-following currents generated by thermohaline circulation are common processes that affect 33 

continental margins and abyssal plains of the world’s oceans (e.g., Stow, 1994; Faugères et al., 1999; Stow et 34 

al., 2002, 2009; Rebesco and Camerlenghi, 2008; Rebesco et al., 2014). Deposits generated by along-slope 35 

currents are known as ‘contourites’ or ‘contourite drifts’ (see McCave and Tucholke, 1986; Rebesco and Stow, 36 
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2001). ‘Erosional features’ (e.g., abraded surfaces, contourite channels, contourite moats) are locally 37 

developed in association with contourite drifts in areas traversed by higher velocity current cores (e.g., García 38 

et al., 2009; Cattaneo et al., 2017). In some settings, ‘mixed features’ develop due to long-term depositional 39 

and erosional phases that form contourite terraces (e.g., Viana et al., 2007; Hernández-Molina et al., 2009, 40 

2017a). Other settings host interactions between along-slope (contourites) and across-slope gravity-driven 41 

processes (turbidity currents and mass transport deposits). These processes may form ‘hybrid features’ (e.g., 42 

Creaser et al., 2017; Hernández-Molina et al., 2017b; Sansom, 2018). The range of depositional, erosional and 43 

mixed (erosional-depositional) features associated with a particular water mass can be interpreted as a 44 

‘Contourite Depositional System’ (CDS). Continental margins host a number of CDSs associate to a water mass 45 

within a given depth range.  46 

Recent studies have demonstrated the effectiveness of combining oceanographic analysis and 47 

geomorphologic approaches in interpreting CDSs (e.g., western South Atlantic margin: Preu et al., 2013; 48 

Hernández-Molina et al., 2016a; Gulf of Cadiz: Hernández-Molina et al., 2016b; Mediterranean Sea: Cattaneo 49 

et al., 2017). However, CDSs can become difficult to decipher (e.g., Hernández-Molina et al., 2006a) in the case 50 

of interactions of several different water masses, intermittent oceanographic processes (e.g., eddies, internal 51 

waves), and / or complex physiography. These special cases remain less understood due to lack of direct 52 

observations (Rebesco et al., 2014). 53 

Since initial publication of studies on current-controlled sedimentation along the southern 54 

Mozambique basin (e.g., Kolla et al., 1980; 6, Fig. 1A), the southwestern region of the Indian Ocean and its 55 

CDSs have enjoyed growing scientific interest (Fig. 1A). To date, deposits directly linked to bottom current 56 

action have been described from at least eight different locations (Fig. 1A). The largest features are associated 57 

with water masses formed from Antarctic and sub-Antarctic sources. These include features along the north-58 

eastern Agulhas Ridge and Cape Rise seamounts (Gruetzner and Uenzelmann-Neben, 2015; 1, Fig. 1A), 59 

contourite drifts of the Transkei, which include the Oribi drift, M-drift (Niemi et al., 2000; 3, Fig. 1A), and 60 

Agulhas drift (Schlüter and Uenzelmann-Neben, 2008; 3, Fig. 1A), features along the southern Mozambique 61 

Ridge (Uenzelmann-Neben et al., 2011; 7, Fig. 1A), features along the Agulhas Plateau and Passage 62 

(Uenzelmann-Neben, 2001; Uenzelmann-Neben and Huhn, 2009; 2 and 8, Fig. 1A), and features along the 63 

continental margin of Mozambique off the Limpopo River (Preu et al., 2011; 5, Fig. 1A). In summary, these 64 
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studies link the development of contourite features to particular water masses and water depth ranges. 65 

Despite the strong influence that circulation exerts on sedimentary processes (e.g., Wiles et al., 2014, 2017; 66 

Breitzke et al., 2017), long stretches of the East African continental margin have not been interpreted in terms 67 

of their depositional processes. This paper presents novel analysis of water mass influence on seafloor 68 

morphology to interpret CDSs along the East African continental margin between the latitudes of 15° S and 30° 69 

S (hereafter the Mozambique Channel). The primary aims of this work are 1) to identify the main regional 70 

sedimentary features related to bottom current action, 2) to generate a regional morpho-sedimentary map of 71 

the Mozambique Channel and 3) to interpret the interplay between sedimentary and oceanographic 72 

processes. 73 

2. Regional setting 74 

2.1. Geologic setting 75 

The Mozambique Channel is located in the southwest Indian Ocean between the East African 76 

continental margin of Mozambique and Madagascar (Fig. 1A). It developed during the break-up of East 77 

Gondwana (i.e., Madagascar, India, Antarctica, and Australia) and West Gondwana (i.e., Africa and South 78 

America) (McElhinny, 1970; McKenzie and Sclater, 1971). Rifting began in the Early-Middle Jurassic (183 - 177 79 

Ma; Eagles and König, 2008) with the opening of the northern Mozambique basin (159 Ma to 124 Ma; Jokat et 80 

al., 2003; König and Jokat, 2010; Leinweber and Jokat, 2012; Leinweber et al., 2013) and persisted to the Early 81 

Cretaceous opening of the southern Mozambique Basin (124 Ma to 84 Ma; Gradstein et al., 2012) and the 82 

Natal Valley (135 Ma to 115 / 90 Ma; Goodlad et al., 1982; Watkeys and Sokoutis, 1998). Currently, the 83 

Mozambique Channel consists of three major basins: the northern Mozambique basin, the southern 84 

Mozambique basin, and the Durban basin (Fig. 1B). The northern Mozambique basin is bounded by the East 85 

African continental margin of Mozambique to the west and by the Davie Fracture Zone (DFZ) to the east. The 86 

DFZ developed during southerly movement of East Gondwana (including Madagascar) (Coffin and Rabinowitz, 87 

1987, 1992) and was later reactivated by extensional deformation (e.g., Lacerda Graben) since the late 88 

Miocene (Mougenot et al., 1986). A group of isolated carbonate platforms (e.g., Bassas Da India) formed in the 89 

middle of the northern Mozambique basin from the Paleocene to early Miocene (Courgeon et al., 2016). Late 90 

Miocene-early Pliocene cessation of carbonate deposition and initiation of graben formation along the DFZ 91 
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appears to be coeval and spatially linked with the development and propagation of the East African Rift System 92 

(Franke et al., 2015). The southern Mozambique basin is bounded to the west by the Mozambique Ridge 93 

(MozR), which occurs about 100 km off the coast, and to the east by the Madagascar Ridge (MdgR) (Fig. 1B). 94 

Both ridges are interpreted to represent a large igneous province of oceanic origin (Sinha et al., 1981; Fischer 95 

et al., 2017) forming between 140 and 122 Ma for the Mozambique Ridge (König and Jokat, 2010). Finally, the 96 

Durban basin represents the eastern termination of a major east-west trending fault system, the Agulhas-97 

Falkland Fracture Zone (Broad et al., 2006). 98 

Open marine sedimentation began in the Early Cretaceous for the northern and southern 99 

Mozambique basins and in the Late Cretaceous for the Durban basin (Davison and Steel, 2017). Over the past 100 

30 Ma, the areas of interest have experienced significant periods of middle Oligocene, middle Miocene, and 101 

late Pliocene hinterland uplift (Castelino et al., 2015). Periods of uplift are associated with increase in sediment 102 

transport to the adjacent basins along the southwestern Indian Ocean (Walford et al., 2005; Wiles et al., 2014; 103 

Castelino et al., 2015; Hicks and Green, 2016). Sediment delivery to the Mozambique Channel is complex and 104 

related to global eustatic changes and hinterland tectonics (Walford et al., 2005; Castelino et al., 2015; Hicks 105 

and Green, 2016; Wiles et al., 2017). Sediments are primarily sourced from the adjacent Zambezi river 106 

(present-day catchment of 1.39∙10
6
 km

2
), Limpopo river (present-day catchment of 4.15∙10

5
 km

2
), and Tugela 107 

river (present-day catchment of 2.91∙10
4
 km

2
) (Fig. 1A). These control the general sediment type and flux 108 

delivered to the Mozambique Channel over time. 109 

2.2. Oceanographic framework 110 

The south Indian Ocean hosts a variety of water masses characterized by different hydrographic 111 

properties as summarized in Table I. At present, oceanic circulation along the Mozambique Channel consists 112 

primarily of the southward flowing Mozambique current and the northward flowing Mozambique 113 

undercurrent (De Ruijter et al., 2002). The Mozambique current is part of the Agulhas current system 114 

(Lutjeharms, 2006) and is characterized by anticyclonic eddies with diameters of ~300 km (Fig. 2). Four to six 115 

anticyclonic eddies per year occur in the Channel, and propagate southwards at ~3 - 6 km/day (de Ruijter et 116 

al., 2002; Schouten et al., 2003; Halo et al., 2014). The Mozambique current carries Tropical Surface Water, 117 

Subtropical Surface Water (TSW and STSW, < 200 m water depth, wd), the South Indian Central Water (SICW, 118 
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between 200 and 600 m wd) (De Ruijter et al., 2002), and the northwest Indian-origin Red Sea Water (RSW, 119 

900 - 1200 m wd) (Donohue et al., 2000; Beal et al., 2000; Swart et al., 2010). The Mozambique and Agulhas 120 

undercurrents flow northward along the Mozambican continental slope (Fig. 2) carrying Antarctic Intermediate 121 

Water (AAIW, 800 - 1500 m wd) after its westward flow over the Madagascar ridge (Fine, 1993) and the North 122 

Atlantic Deep Water (NADW, 2200 - 3500 m wd), which flows into the Natal Valley (Toole and Warren, 1993) 123 

towards the southern Mozambique basin, south of the Mozambique Ridge. A portion of the NADW flows into 124 

the southern Mozambique basin across deep corridors within the Mozambique Ridge (Wiles et al., 2014). The 125 

upper volume of the NADW crosses a sill in the northern Mozambique basin to enter the Somali Basin, while 126 

the remaining NADW flows along the eastern boundary of the northern Mozambique basin with a southerly 127 

returning current (van Aken et al., 2004; Ullgren et al., 2012). The Antarctic Bottom Water (AABW) circulates 128 

below 4000 m wd (Fig. 2). It flows northward as a western boundary current along the southern Mozambique 129 

basin (Tucholke and Embley, 1984; Read and Pollard, 1999). Because the basin is closed in the north, the 130 

AABW is deflected to form a southerly flowing boundary current along the east flank of the southern 131 

Mozambique basin (Kolla et al., 1980). 132 

3. Data and methods 133 

This study utilizes bathymetry, multichannel 2D seismic reflection profiles, hydrographic data, and 134 

hydrodynamic modelling. A slope gradient map was generated using GEBCO 2014 (Weatherall et al., 2015). 135 

The bathymetric base map included data from previous works of Wiles et al. (2014, 2017) and Breitzke et al. 136 

(2017), which were used to generate the morpho-sedimentary map. 137 

Profiles interpreted derive from a regional 2D multichannel seismic reflection (MCSs) dataset (Fig. 1) 138 

acquired for the Mozambique basin during 2013 / 2014 geophysical cruises by WesternGeco. This primary 139 

dataset represents a regional grid of linear, 36179 km MCSs spaced at approximately 10 to 70 km intervals. 140 

Profiles were migrated in time. A second dataset was acquired for the Durban basin in 2013 - 2014 by CGG. 141 

The secondary dataset consists of widely spaced arrays spanning 6920 km and including 17 strike lines and 25 142 

dip lines. The data were processed with Kirchhoff pre-stack time migration. Major morpho-sedimentary 143 

features were identified and mapped using bathymetry and seismic profiles.  144 
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Oceanographic analysis was performed using hydrographic data from the World Ocean Database 2013 145 

(WOD13; https://www.nodc.noaa.gov/OC5/WOD13/) and a Regional Oceanic Modelling System (ROMS, 146 

version CROCO: https://www.croco-ocean.org/).  147 

Hydrographic data from WOD13 was used to create combined hydrographic and seismic cross sections. 148 

Due to the lack of hydrographic sections, we constructed cross-slope sections by combining all available 149 

conductivity, temperature, salinity, and depth (CTD) stations and then projecting water sample stations onto 150 

the seismic cross-section at distances of up to 50 km. The cross-sections were created using Ocean Data View 151 

(Schlitzer, 2013). CTD data were also used for generating potential temperature-salinity diagrams in order to 152 

identify water masses present along the Mozambique Channel.  153 

The Regional Oceanic Modelling System (ROMS, CROCO version), a three dimensional ocean model 154 

described by Shchepetkin and McWilliams (2005), was used to simulate the bottom currents in the 155 

Mozambique Channel. ROMS is a primitive equation model that can estimate basin-scale, regional and coastal 156 

oceanic processes at high resolution (Shchepetkin and McWilliams, 2005). ROMS uses a topography following 157 

vertical grid allowing explicit resolution of interactions between bottom topography and ocean dynamics. The 158 

model used the GEBCO 2014 (Weatherall et al., 2015) bathymetric base map smoothed for numeric 159 

constraints. The model simulation ran for 21 years (from 1993 to 2014). The model surface conditions are 160 

derived from the ERA Interim atmospheric reanalysis (Dee et al., 2011) using a bulk formulation (Fairall et al., 161 

1996). The lateral boundary conditions are drawn from a global ocean reanalysis GLORYS (Ferry et al., 2012). 162 

To reach a high resolution 1/36° (~3 km) in the Mozambique Channel, three levels of embedded grids are 163 

used, based on the AGRIF two-way nesting method (Debreu et al., 2012). Since the mean kinematic bottom-164 

shear-stress induced by tides affects only the shelf (i.e., Bight of Sofala; Chevane et al., 2016), barotropic tides 165 

were not introduced in the model for this simulation.  166 

Three cross-slope hydrographic sections based on CTD stations from northern, central, and southern 167 

sector water columns were used to interpret relations between water mass stratification and sedimentary 168 

features along the continental margin. Combining these sections with potential salinity-temperature-oxygen 169 

diagrams from the same dataset allowed us to identify the main water masses in each physiographic domain. 170 

This approach also revealed lateral variation in water mass dynamics along the Mozambique Channel. Accurate 171 
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identification of water masses and their spatial correlation with seafloor morphology can elucidate longer-172 

term oceanographic and sedimentary processes (Hernández-Molina et al., 2016a). Calculated as the oscillation  173 

frequency  of  a  parcel displaced  vertically  in  a  statically  stable  environment, the buoyancy or Brunt-Väisälä 174 

frequency (N) provides information on water column stratification  (Da  Silva  et  al.,  2009). It is calculated 175 

from hydrographic data (World Ocean Database 2013) as: 176 

� = ��
	


	

�  (1) 177 

where g is the gravitational acceleration, ρ is the density, and 
�

�� is the vertical density gradient. 178 

This analytical approach identified numerous bottom current-controlled depositional and erosional 179 

features. We use the term ‘contourites’ for sediments deposited or substantially reworked by the persistent 180 

action of bottom currents (Faugères and Stow, 2008). This term includes a large variety of sediments affected 181 

by different types of currents (Rebesco et al., 2014). Thick, extensive sedimentary accumulations are defined 182 

as ‘contourite drifts’ or ‘drifts’. Interpretation of features followed criteria for drift morphology and internal 183 

configuration detailed in McCave and Tucholke (1986), Faugères et al. (1999), Rebesco and Stow (2001), 184 

Rebesco (2005), and Rebesco et al. (2014).  185 

4. Results 186 

4.1. Physiography of the study area 187 

The Mozambique Channel includes three major physiographic provinces, as defined by IHO and IOC 188 

(1983): the continental shelf, the continental slope and the abyssal plain (Fig. 3). All three margin provinces 189 

were interpreted from southern, central, and northern sectors of the study area. These represent the Tugela, 190 

Limpopo, and Zambezi Rivers discharge areas, respectively (Fig. 1A).  191 

The continental shelf exhibits an average gradient of 0.4°. It is particularly narrow (∼2 - 15 km in 192 

width) compared to the global average of ∼50 km (Shepard, 1963), except in the regions in front of the Tugela, 193 

Limpopo and Zambezi rivers (i.e., 51 km, 80 km and 130 km respectively) (Fig. 3). The continental slope is 194 

bordered to the west by the shelf-break, which is around 50 - 120 m water depths (set at ∼200 m wd in this 195 

study). In the study area, the continental slope exhibits a relatively gentle gradient (1.1° on average) relative to 196 
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the global average slope (3°, Kennett, 1982). The slope divides into upper, middle, and lower subdomains. Each 197 

subdomain was defined to highlight zones of abrupt changes in seabed gradient (Fig. 3 and Table II); the 198 

upper, middle and lower slope, respectively, have an average gradient of: 1.6°, 1.1° and 0.9°, and occur 199 

between isobaths of: 200 to 1000 m, 1000 to 1600 m, and 1600 to 2400 m. The morphological seafloor 200 

changes that determine the upper, middle and lower slope subdomains roughly coincide with the distribution 201 

of large-scale flatter areas or terraces. These terraces have been described and locally characterized by Martin 202 

(1981) in the central sector: the Inharrime terrace (< 800 m wd) and the Central terrace (∼1400 - 2000 m wd), 203 

which are separated by the SW-NE rough topography of the Almirante Leite Bank. Furthermore, a broad (∼90 204 

km) gently seaward dipping (0.3°) terrace occurs around 21° S (1300 - 1600 m wd) that has been described by 205 

Wiles et al. (2017) (Fig. 3). In this study, the base-of-slope is set at 2400 m water depth (wd). In areas where 206 

the buried Beira High and the Mozambique Ridge abut the continental slope (i.e., 21° S to 29° S), a steep 207 

surface (2 - 10°) develops at the foot of the lower slope (from ∼2400 m wd) (Fig. 3). In this study, this feature 208 

belongs to the abyssal plain province.  209 

The abyssal plain of the southern sector (i.e., Natal Valley) lies between 2400 m (uppermost, 210 

narrowest part) and ∼3000 m wd (southward at ∼31° S). This feature is bounded to the east by the 211 

Mozambique Ridge, which rises to a depth of 1800 m (Fig. 3). The Mozambique Ridge deepens along E-W 212 

oriented pathways (at depths of ∼2000 - 3000 m wd) connecting the abyssal plain regions of the Natal Valley 213 

and the southern Mozambique basin. The abyssal plain depth of the Mozambique basin in the northern and 214 

central sector increases from ∼2400 m to ∼4000 m wd southward at ∼27° S. The large-scale morphology of 215 

the abyssal plain includes numerous seamounts (i.e., Bassas Da India and Boucart) (Fig. 3). 216 

4.2. Gravitational features 217 

The continental slope of the southern sector hosts numerous submarine canyons extending from the 218 

upper slope to the distal limit of the lower slope. Northward (and south of the Tugela canyon), submarine 219 

canyons only occur within the lower slope (Fig. 4). Tugela canyon obliquely crosscuts the continental slope and 220 

feeds the Tugela Cone, a deep-water fan complex (Fig. 4). The canyon reaches widths of up to 19 km and 221 

incision depths of up to 1000 m in the middle slope. The canyon lacks any form of connection with the modern 222 

fluvial system. A second, unnamed canyon originates at 1400 m wd north of the Tugela canyon. It widens and 223 
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deepens downslope to 2320 m wd with incision depths of up to 250 m around a prominent basement high, the 224 

Naudé Ridge (Dingle et al., 1987) (Figs. 4 and 5A). The continental slope of the central sector is dominated by 225 

along-slope sedimentary processes (Figs. 4 and 5B), except south of 27° S, where the upper slope is dissected 226 

by several submarine canyons of varying size (from 50 - 300 m wide and 10 - 40 m deep to 750 - 2000 m wide 227 

and > 400 m deep) (Fig. 4). Evidence of down-slope sedimentary processes is common along the slope of the 228 

northern sector. Large Mass Transport Deposits (MTDs) appear in the middle to lower slope, where huge 229 

deposits gather on the seafloor (Fig. 4) or appear as buried features in seismic profiles (Fig. 5C). This sector 230 

also hosts many submarine canyon systems (SCSs). Wiles et al. (2017) identified three different SCSs of this 231 

area. From north to south, these include the Angoche SCS, the Middle Zambezi SCS, and the Lower Zambezi 232 

SCS (Fig. 4). In the Angoche SCS, the margin consists of a series of canyons that extend across the shelf towards 233 

the lower slope and from the shelf to the middle slope (Fig. 4). These canyons reach widths of up to 4 km (Fig. 234 

5D). The Lower Zambezi SCS consists of canyons mostly initiating in the middle slope at around 1000 m wd. A 235 

few of these canyons appear at around 300 m wd. These canyons can reach 12 km in width (Fig. 5C). Along the 236 

abyssal plain, sedimentary lobes form at the distal limit of the lower slope of the Angoche SCS and the Lower 237 

Zambezi SCS (Figs. 4, 5C, and 5D). The Middle Zambezi SCS consists of canyons mostly initiating in the middle 238 

slope (Fig. 4). The present-day canyons lack any form of connection either with modern continental drainage 239 

channels or with incisional canyons on the shelf. These canyons reach widths of up to 7 km and incision depths 240 

of up to 200 m at around 2500 m wd. Along the abyssal plain, the Middle Zambezi SCS converges at about 19° 241 

S to join the Zambezi Valley. The combined feature then flows towards the south confined by the western 242 

flank of the Davie Fracture Zone (DFZ) until about 25° S where a large sedimentary lobe develops (Fig. 4).  243 

4.3. Contourite features 244 

Our analysis identified a wide range of contourite features, including depositional (drifts and 245 

sedimentary waves), erosional (abraded surfaces, moats, channels, scours, and furrows), and mixed 246 

(contourite terraces) features occurring from the shelf break to the abyssal plain (Fig. 4). Contourite drifts 247 

represent important along-slope accumulations of sediment that appear as continuous, layered seismic 248 

reflections with internal, regional-scale unconformities (Fig. 6). Erosional features are mainly characterized by 249 

truncated reflections underlying stratified and / or chaotic facies. These generally show relatively high 250 

amplitude reflections (HARs) relative to those representing associated drifts (Fig. 6). The mixed features 251 
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(contourite terraces) display similar seismic facies defined by continuous to discontinuous, subparallel, and 252 

occasionally truncated seismic reflections (Fig. 6). High amplitude reflections are generally found along these 253 

terraces with a number of 2D sedimentary waves (e.g., Flemming, 1978; Green, 2011).  254 

4.3.1. Depositional contourite features 255 

Drifts are the dominant depositional features observed. The largest of these features are ‘plastered 256 

drifts’ and ‘elongated-mounded drifts’. Large, plastered drifts of the Mozambique continental slope show a 257 

prominent along-slope trend (Fig. 4). Elongated-mounded drifts are dispersed throughout the continental 258 

slope and abyssal plain of Mozambique’s central sector (Fig. 4). In addition to large-scale plastered and 259 

elongated-mounded drifts, other minor depositional features include large ‘sedimentary waves’ previously 260 

described by Breitzke et al. (2017). These exhibit a wavy geometry (Fig. 5B) and occur throughout the abyssal 261 

plain, particularly south of the Bassas Da India seamounts in the centre of the Mozambique Channel (Fig. 4).  262 

The three plastered drifts recognized in this study were informally referred to as D1 to D3 based on 263 

their water depth range along the slope (D1 being the shallowest and D3 the deepest; Fig. 4). ‘Plastered drifts 264 

1 and 2’ (D1 and D2) are located between ∼300 and 600 m wd along the upper slope and between ∼900 and 265 

1300 m wd along the middle slope, respectively (Fig. 4). These show aggradational and progradational internal 266 

reflection configurations with thickness variations that indicate depocenters parallel to the slope (Figs. 5E, 6A, 267 

6B, and 6I). In the southern sector, the 10 - 40 km wide D1 developed between 30° S and the Tugela Cone (Fig. 268 

4). In the central sector, D1 spans about 20 km width and extends ∼56 km along the Inharrime Terrace (Fig. 4). 269 

In the northern sector, D1 is about 7 km wide and disappears near 18° S (Fig. 4). In the southern sector, the 15 270 

km wide D2 developed between 30° S and the Tugela Cone (Fig. 4). In the central sector, between 29° S and 271 

25° S, D2 spans about 10 km in width (Fig. 4), and extends ∼116 km near 27° S before it disappears in the 272 

vicinity of topographic highs associated with the Almirante Leite Bank (Fig. 4). North of the Almirante Leite 273 

Bank, D2 is about 6 - 30 km wide and disappears in the vicinity of the southeastern limb of the Beira High, near 274 

the northern sector (Fig. 4). The deeper ‘plastered drift 3’ (D3) occurs in the lower slope of the central sector 275 

(between ∼27° S and 29° S) at ∼1500 - 2200 m wd (Fig. 4). Between the Tugela Cone and the abraded surface, 276 

D3 extends to 88 km width (Fig. 4). In this area, D3 exhibits aggradational to progradational internal reflections 277 

with a more pronounced upslope progradational stacking pattern than those exhibited by drifts D1 and D2 278 
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(Fig. 6C). North of the abraded surface, D3 extends to a width of about 110 km along the Central Terrace (Fig. 279 

4) and exhibits predominantly progradational and seaward internal reflections (Fig. 6E).  280 

Apart of the aforementioned plastered drifts D1 to D3, the central sector hosts other ‘elongated-281 

mounded drifts’ (Fig. 4). Along the distal limit of the middle slope, elongated-mounded drifts occur east of the 282 

Almirante Leite Bank, near 24° S (Fig. 4), where they reach about 12 km in width (Fig. 6B). Along the lower 283 

slope, elongated-mounded drifts are widespread from 22° S to 26° S, ranging 1 - 20 km in width (Fig. 4). From 284 

the distal limit of the lower slope to about 3200 m wd, elongated-mounded drifts occur in association with 285 

steep surfaces of the Mozambique Ridge (29° S to 22° S) and the south-eastern limb of the Beira High (21° S). 286 

These drifts reach widths of about 6 - 60 km (Figs. 4, 5B, 6F, and 6G).  287 

‘Sedimentary waves’ occur along most of the basin floor of the central sector (Figs. 4, and 5B). At 288 

water depths of ∼3500 to 4500 m, sedimentary waves can reach 60 - 80 m in height and up to 5 km in length, 289 

with wavelengths around 2.5 - 3 km. These features generally orient in a NE-SW direction, but then shift to 290 

WSW-ENE and WNW-ESE orientations to the north (Fig. 4). For water depths between ∼3000 and 3400 m, 291 

sedimentary waves reach heights of 35 - 60 m, wavelengths around 1 - 2 km, and lengths of up to 10 km. These 292 

shallower features strike NW-SE, but shift into W-E and NE-SW orientations to the east (Fig. 4).   293 

4.3.2. Erosional contourite features 294 

Erosive contourite features occur locally along the Mozambican continental margin and basin floor. 295 

Erosional features include moats / contourite channels, abraded surfaces, and lineations (i.e., scours and 296 

furrows) (Fig. 4). ‘Abraded surfaces’ occur along the lower slope of the central sector (Figs. 4, 5B, 6B, 6G, and 297 

6H), and north of the Naudé Ridge (∼50 km wide, ∼100 km long, and deepening from ∼1900 to 2300 m wd) 298 

(Figs. 4, and 6D). They also appear as steep surfaces related to the Mozambique Ridge (29° S to 22° S) and the 299 

southeastern limb of the Beira High (21° S) at the base of the slope (Figs. 4, 5B, 6G, and 6H). ‘Moats’ are 300 

associated with elongated-mounded drifts and exhibit U-shaped cross sections (Figs. 4, 5B, 6B, 6F, and 6G). 301 

These features can span up to 3 km in width and incise to depths of up to 100 m. ‘Contourite channels’ develop 302 

in the vicinity of the large topographic highs of the Almirante Leite Bank and within the deeper corridor of the 303 

Mozambique Ridge (Fig. 4). ‘Lineations’ (i.e., scours and furrows) occur along the abyssal plain near 26° S (Fig. 304 

4). ‘Scours’ form between 3500 - 4500 m wd. often exhibiting a crescent-like shape (Breitzke et al. 2017), these 305 
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can reach 20 km in length, 3 - 7 km in width and incisional depths of up to 450 m. Several large ‘furrows’ (i.e., 306 

60 - 100 m deep, 2 - 3 km wide, and 8 - 15 km long) are located east of the giant erosional scours between 307 

3600 - 4300 m wd. Furrows generally assume a NW-SE or E-W orientation and a smooth V-shape morphology 308 

as described in Breitzke et al. (2017).  309 

4.3.3. Mixed features 310 

‘Contourite terraces’ represent mixed features that appear as sub-horizontal elements developed during long-311 

term depositional and erosional phases of the continental slope (Hernández-Molina et al., 2016a). These form 312 

erosive features in proximal domains and mostly depositional features in distal domains. Terraces are 313 

morphological features that extend to distinct depth intervals above large plastered drifts to produce long 314 

flatter areas with subtle (< 1°) seaward dips along the Mozambican margin (T1 to T4) (Figs. 5B, and 6). 315 

Terraces develop along the upper slope (T1 at ∼300 m wd) near the transition between upper and middle 316 

slopes (T2 at ∼800 m wd), near the transition between middle and lower slopes (T3 at ∼1500 m wd), and 317 

along the lower slope (T4 at ∼2200 m wd) (Figs. 4, and 5B).  318 

‘Terrace 1’ (T1) is associated with the upper surface and landward proximal domain of the D1 drift 319 

(Fig. 6A). In the southern sector, T1 develops between 30° S and the Tugela Cone to reach a width of ∼4 km. In 320 

the central sector, T1 reaches ∼4 - 5 km in width and extends ∼50 km along the Inharrime Terrace. In the 321 

northern sector, T1 reaches about ∼2.5 km in width and disappears near 18° S (Fig. 4). ‘Terrace 2’ (T2) is 322 

associated with the top surface and landward proximal domain of the D2 drift (Fig. 6A). In the southern sector, 323 

T2 forms between 30° S and the Tugela Cone to reach widths of ∼15 km. In the central sector between 29° and 324 

25° S, T2 spans less than 1 km in width. It extends up to ∼30 km near 27° S (Limpopo Cone) before it 325 

disappears in the vicinity of the topographic highs of the Almirante Leite Bank. North of the Almirante Leite 326 

Bank, T2 reaches widths of about ∼20 - 30 km and extends 80 km near the Beira High. T2 disappears in the 327 

vicinity of the large MTDs occurring in the northern sector (Fig. 4). ‘Terrace 3’ (T3) is associated with the top 328 

surface and landward proximal domain of the D3 drift (Figs. 6C, and 6E). In the central sector, T3 is about ∼4 - 329 

25 km wide, extending ∼60 km and disappearing in the vicinity of the topographic highs of the Almirante Leite 330 

Bank. North of the Almirante Leite Bank, T3 is about ∼4 km wide but poorly developed relative to T1 and T2. 331 

T3 disappears in the vicinity of the southeastern limb of the Beira High (21° S) (Fig. 4). ‘Terrace 4’ (T4) only 332 
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appears from 21° to 25° S where it spans about ∼60 km in width (Fig. 6H). Toward the northern sector, T4 is 333 

about ∼2 km wide and disappears in the vicinity of the southeastern limb of the Beira High (21° S) (Fig. 4). 334 

Unlike T1-T3, which exhibit mostly a depositional character in their distal domain (i.e., plastered drifts D1 to 335 

D3), T4 exhibits a steep surface with an erosive character along its seaward flank (Figs. 4, and 6H). 336 

4.4. Identification of water masses and associated oceanographic processes 337 

Temperature and salinity profiles indicate seven major water masses operating the Mozambique 338 

Channel of the southwest Indian Ocean (Fig. 7 and table I). These include three of Indian origin (TSW, Tropical 339 

Surface Water; STSW, Subtropical Surface Water; and SICW, South Indian Central Water), one of North Atlantic 340 

origin (NADW, North Atlantic Deep Water), one of Red Sea origin (RSW, Red Sea Water), and two of Antarctic 341 

origin (AAIW, Antarctic Intermediate Water; AABW, Antarctic Bottom Water). An eighth water mass lies below 342 

the TSW, the Tropical Thermocline Water, which differs from STSW (same temperature) according to the 343 

former’s much lower oxygen content (Lutjeharms, 2006) (Figs. 7D, and 7E). The TSW, STSW, Tropical 344 

Thermocline Water, and SICW make up the upper water column, while the AAIW and RSW constitute the 345 

intermediate water column, and the NADW and AABW form the base of the water column (Ullgren et al., 346 

2012). Select neutral density profiles in this region showed that γn
 = ∼26.4 kg/m

3
 for the Subtropical Surface 347 

Water (STSW) – South Indian Central Water (SICW) transition, γn
 = 27 kg/m

3
 for the SICW – Antarctic 348 

Intermediate Water (AAIW) transition, γn
 = 27.8 kg/m

3
 for the AAIW – North Atlantic Deep Water (NADW), and 349 

γn
 = 28.2 kg/m

3
 for the NADW – Antarctic Bottom Water (AABW) (Toole and Warren, 1993; Talley, 1996; 350 

Ullgren et al., 2012) (Fig. 7). Identification of present water masses and their correlation with seafloor 351 

morphology can help elucidate longer-term oceanographic and sedimentary processes. The present oceanic 352 

circulation offshore of Mozambique is relatively complex and composed of various water masses interacting at 353 

different depths. These are briefly described below. 354 

4.4.1. Identification of water masses along the Southern Sector 355 

 At shallow water depths (< 200 m), the Tropical Surface Water (TSW; above 24° C) covers the Sub-356 

Tropical Surface Water (STSW), which exhibits a maximum in salinity of 35.7 psu and temperature of around 357 

17° C (Fig. 7A). Both are saturated in dissolved oxygen (Fig. 7D). Tropical Thermocline Water can be 358 

distinguished from STSW (same temperature) by the former’s much lower dissolved oxygen concentrations (< 359 
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4 ml/l) (Fig. 7D). Directly below the STSW, within a neutral density range of 26.4 kg/m

3 
to 26.8 kg/m

3 
and a 360 

water depth range of about 200 - 600 m, temperature-salinity properties declined down to values of 8 - 14° C 361 

and 34.8 - 35.5 psu, respectively. These parameters are characteristic of the South Indian Central Water (SICW) 362 

(Fig. 7A). The relatively fresh Antarctic Intermediate Water (AAIW) and relatively saline Red Sea Water (RSW) 363 

with neutral densities ranging from 27.0 - 27.8 kg/m
3 

occupy intermediate depths below the thermocline (Fig. 364 

7A). The AAIW forms a salinity minimum of < 34.5 psu, while the RSW modifies this minimum by interleaving 365 

the water column with relatively saline layers (> 34.6 psu) (Fig. 7A). Further downslope, at neutral densities 366 

greater than 27.8 kg/m
3
, a cold (∼2° C) and high salinity (> 34.8 psu) bottom layer is interpreted as the North 367 

Atlantic Deep Water (NADW) (Fig. 7A). 368 

4.4.2. Identification of water masses along the Central Sector    369 

 Along this hydrographic section, the TSW, STSW, and Tropical Thermocline Water occupy the upper 370 

water column (< 200 m wd, γn < 25.8 kg/m
3
) (Figs. 7B, and 7E). The TSW forms surface water, which is 371 

warmer than 24° C. Directly beneath, the STSW exhibits a maximum in salinity of 35.8 psu at temperatures of 372 

around 17° C (Fig. 7B). TSW and STSW are saturated with dissolved oxygen while Tropical Thermocline Water, 373 

at the same depth as the STSW salinity maximum, exhibits lower dissolved oxygen concentrations (< 4 ml/l) 374 

(Fig. 7E). At water depths of 200 to 600 m, temperature-salinity properties (8 - 14° C and 34.8 to 35.5 psu, 375 

respectively) are characteristic of the SICW (26.4 kg/m
3 

to 26.8 kg/m
3
) (Fig. 7B). The AAIW appears at water 376 

depths of ∼800 m near the neutral density of the SICW-AAIW transition (27 kg/m
3
) (Fig. 7B). The AAIW layer at 377 

this section exhibits low salinities (∼34.5). AAIW combines high salinities (> 34.6 psu) and low dissolved 378 

oxygen (< 3.5 ml/l) layers of the RSW at water depths of 800 and 1500 m (Figs. 7B, and 7E). Below, as neutral 379 

densities surpass 27.8 kg/m
3
, the NADW (< 4° C, ∼34.8 psu) appears at around 2200 m wd (Fig. 7B). At water 380 

depths around 3500 - 4000 m, cold (∼1.5° C), low salinity (< 34.7 psu) bottom waters approach the neutral 381 

density of the NADW-AABW transition (28.2 kg/m
3
) (Fig. 7B). 382 

4.4.3. Identification of water masses along the Northern Sector    383 

 The hydrographic section located in the northern part of the margin intersects the 2000 m isobath. 384 

Dissolved oxygen data for this part of the basin was not available. The surface water column is characterized by 385 

warm temperatures (> 24° C) and high salinity (∼35.2 psu) of the TSW (Fig. 7C). Beneath this water mass lies 386 
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the STSW, which exhibits a maximum salinity of ∼35.5 psu and temperature of 15° C to give a neutral density 387 

of < 25.8 kg/m
3
 for its upper layers (< 200 m wd) (Fig. 7C). Below the STSW salinity maximum, temperature-388 

salinity properties increase to values characteristic of the SICW, which exhibits a neutral density range of 26.4 389 

kg/m
3 

to 26.8 kg/m
3 

in the 200 - 600 m depth range (Fig. 7C). The base of the SICW reaches a local salinity 390 

minimum and neutral density of 27 kg/m
3
,
 

which marks the transition to properties associated with 391 

intermediate water masses (Fig. 7C). The intermediate water masses exhibit a neutral density range of 27 392 

kg/m
3 

to 27.8 kg/m
3
 and flow at depths of 800 to 1500 m wd. The water masses are relatively salty and 393 

salinities greater than 34.9 psu in the middle of the density range indicate the presence of the RSW (Fig. 7C). 394 

Below the RSW, salinities decrease (< 34.7 psu) to another local minimum around 1500 m wd and 27.6 kg/m
3
 395 

density indicating a deeper AAIW core (Fig. 7C). For deeper water approaching 27.8 kg/m
3
 neutral density, 396 

salinities increase to about 34.8 psu at temperatures of around 2° C. These parameters indicate the presence 397 

of the NADW in contact with the seafloor at around 2200 m wd (Fig. 7C). 398 

4.4.4. Associated interface processes 399 

 Near-bottom layers for the water masses described above indicate that TSW, STSW and SICW traverse 400 

the continental shelf and upper slope of the Mozambican margin while the AAIW and RSW traverse the middle 401 

and lower slopes, and the NADW and AABW occupy the Mozambican base-of-slope and deep basins (Figs. 2, 402 

and 8). Interfaces between the TSW + STSW / SICW and SICW / AAIW (and RSW) thus interact with the 403 

Mozambican slope (Fig. 8), whereas interfaces between AAIW (and RSW) / NADW and NADW / AABW affect 404 

the Mozambican base-of-slope and basin floor. The interfaces (pycnoclines) between the TSW + STSW / SICW 405 

and SICW / AAIW are characterized by sharp density gradients while the interface between AAIW / NADW is 406 

characterized by a diffuse density gradient with a gradual transition from one water mass to the other (Fig. 407 

9C). High values of buoyancy (Brunt-Väisälä) frequency (> 2 cycl/h) is observed at around 800 m wd and above 408 

~300 m wd (Fig. 9A), matching the TSW + STSW / SICW and SICW / AAIW interfaces. Above ~300 m wd, the 409 

buoyancy (Brunt-Väisälä) frequency reaches maximum values around 50 - 100 m wd (> 6 cycl/h) (Fig. 9B). 410 

Internal waves (solitons) were observed propagating from the shelf of the Bight of Sofala into the Indian Ocean 411 

(20° S to 21° S; Figs. 10D, and 10E). Figs. 10 (A, B, and C) also illustrates internal wave propagation towards the 412 

coast in the Bay of Maputo. 413 
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4.5. Circulation model results 414 

Bottom current simulations carried out with the Regional Oceanic Modelling System (ROMS) indicated 415 

that currents often flow parallel to the isobaths but exhibit some degree of variation in direction and velocities 416 

depending on location (Fig. 11). Along the upper slope, the simulated bottom currents show southward 417 

movement with mean velocities of > 12.5 cm/s
 
(Figs. 11A, and 11B). The upper slope along the Inharrime 418 

Terrace and Limpopo Cone experienced W-NW transport near the shelf break (200 m wd) with inversions 419 

towards the W-SW, especially along the distal limit of the upper slope (∼1000 m wd) (Fig. 11C). Flow directions 420 

corresponded to a local cyclonic eddy previously described by Lamont et al. (2010). Along the middle slope, 421 

simulated bottom currents showed greater variability in current direction. Current direction was less 422 

rectilinear and flowed northward with at relatively low current velocities (< 12.5 cm/s). By contrast, current 423 

direction indicated southward transport deflected E-SE associated with the highest estimated current 424 

velocities (> 12.5 cm/s) (Figs. 11A, 11C, and 11D). Higher current speeds correspond to periods of southward 425 

moving anticyclonic eddies as documented by Schouten et al. (2003). Slope morphology constrains current 426 

direction near the Almirante Leite Bank. Steeper slope flanks in this area intensify circulation (> 25 cm/s) (Fig. 427 

11C). Along the lower slope, simulated currents showed predominantly northward transport with mean 428 

velocities reaching > 25 cm/s
 
(Fig. 11). Faster currents occur along steep surfaces around 1800 m (Fig. 11B), 429 

2500 m (Fig. 11A) and 3000 m wd (Figs. 11D, and 11E) with mean velocities of ∼12.5 cm/s
 
but locally reaching 430 

as much 25 cm/s. Along the abyssal plain, simulated bottom currents intensify along the Mozambique Ridge 431 

with mean velocities oscillating between 12.5 - 25 cm/s
 
(Fig. 11D) and around Mt. Boucart, especially along its 432 

western flank, where mean velocities can exceed 25 cm/s
 
(Fig. 11B). Current directions indicate predominantly 433 

northward transport along the western side of the margin and eastward deflection in the middle of the abyssal 434 

plain (Figs. 11A, and 11E).  435 

5. Discussion 436 

The morpho-sedimentary map and oceanographic features described above enable interpretation of 437 

sedimentary processes operating within the Mozambique Channel. Interpretation indeed suggests that bottom 438 

currents adequately explain the formation and variability of observed contourite features (depositional, 439 
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erosive and mixed). Matching contourite types with the relevant bottom water masses allows us to propose a 440 

depositional model for the Mozambique Channel.  441 

5.1. Water-mass interfaces sculpt contourite terraces  442 

Contourite terraces 1 and 2 represent regional scale features formed along the Mozambique Channel 443 

while contourite terraces T3 and T4 show much more variation in their spatial distribution (Fig. 4). The terraces 444 

occur in water depths of ~300 m for T1, ~800 m for T2, ~1500 m for T3 and ~2200 m for T4. Hydrographic 445 

Sections A and B (Fig. 8) cover T1, T2, T3 and T4. These show that terraces occur close to the present water 446 

depth range of various water mass interfaces. For example, terrace T1 with Tropical + Subtropical Surface 447 

Water (TSW + STSW) / South Indian Central Water (SICW) interface, terrace T2 with SICW / Antarctic 448 

Intermediate Water (AAIW) interface, and terraces T3 and T4 with AAIW / North Atlantic Deep Water (NADW) 449 

interface. The interfaces (pycnoclines) for T1 and T2 represent sharp and well-defined density gradients (Fig. 450 

9C). A 700 m thick transition zone marks the interface for T3 and T4 between AAIW (800 - 1500 m wd) and 451 

NADW (2200 - 3500 m wd). The transition zone is marked by a diffuse density gradient with a gradual 452 

transition from one water mass to the other (Fig. 9C). These interfaces can be affected by different 453 

oceanographic processes, which are described below. 454 

5.1.1. The effect of internal tides 455 

According to both in situ measurements (tidal gauges) and numerical models, the most important 456 

harmonic affecting the Mozambique Channel is semi-diurnal (M2 tidal constituent; 12.42 h) tides (sea-level 457 

amplitudes up to 2 m) (Chevane et al., 2016). Manders et al. (2004) demonstrated that the barotropic tidal 458 

current (with the dominant M2 component) velocity oscillates within ± 2 - 5 cm/s in north-south direction. The 459 

east-west oriented tidal current oscillates within ± 1 cm/s and is thus negligible, except along the shelf (30 - 70 460 

cm/s; Chevane et al., 2016). Interaction between the barotropic tidal current with the bottom topography, in 461 

regions where it changes more or less abruptly, as ridges, banks, slopes, shelf breaks, etc., may often result in 462 

the generation of large internal waves of tidal period, known as internal (baroclinic) tides (Shanmugam, 2013; 463 

Hernández-Molina et al., 2016b). According to Manders et al. (2004), internal semi-diurnal tidal current 464 

oscillates within ± 3 - 4 cm/s, with peaks exceeded 12 cm/s (~250 m wd). Internal waves of tidal period (M2) 465 

are also a major driving force for vertical displacements of the isopycnals (Maas et al., 2018). Isopycnal 466 
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displacement (~100 m) produced by internal waves propagation can be observed directly from Envisat 467 

advanced synthetic aperture radar (ASAR) images (Fig. 10). It shows clear evidence of internal waves travelling 468 

oceanward away from the shelf break (Figs. 10E, and 10D) and toward the continental shelf (Figs. 10A, 10B, 469 

and 10C). In Fig. 9, higher buoyancy (Brunt-Väisälä) frequency is observed on the proximal and / or nearly flat 470 

sector of terrace T1. It coincides with the water depth range of the interface between TSW + STSW / SICW 471 

(∼200 m wd). DaSilva et al. (2009) observed internal waves travelling at 1.4 m/s with wavelengths of 0.5 km 472 

along the pycnocline near the surface (∼60 - 100 m). It leads to oscillation around 10 cycl/h which is consistent 473 

with values observed along T1 at ~100 m wd (Fig. 9B). For T2, high values of buoyancy (Brunt-Väisälä) 474 

frequency along the water depth range of the interface between SICW / AAIW (∼800 m wd) (Fig. 9A) indicate a 475 

stably-stratified boundary layer, allowing for internal waves to propagate (Maas et al., 2018). Lastly, Maas et 476 

al. (2018) indicated that the fluctuation of the isopycnal (displacements of 80 m) at 1500 wd was in general 477 

dominated by the internal tides, as reported for internal waves above. This fact point to a probable 478 

propagation of internal waves in the water depth range of T3. However, the study of Maas et al. (2018) is 479 

located along the narrowest part of the Mozambique Channel (17° S) while T3 occurs at around 22° S (Fig. 4). 480 

This assumption remains nevertheless to be confirmed by further studies. Hence, we suggest that internal 481 

waves of tidal period may act as the primary mechanism in the erosion or non-deposition of contourite 482 

terraces T1, T2 and T3 as have been proposed along the south Atlantic continental slopes (e.g., Hernández-483 

Molina et al., 2009; Preu et al., 2013). These can mobilize and re-suspend bottom sediments (e.g., Cacchione et 484 

al., 2002; McCave, 2009; Pomar et al., 2012; Shanmugam, 2013).  485 

5.1.2. The effect of eddies 486 

Mesoscale eddies (either cyclonic or anticyclonic) can be considered as a further mechanism (e.g., 487 

García et al., 2015). Such eddies are well described along the Mozambique Channel (de Ruijter et al., 2002). 488 

These eddies have a large barotropic component, affecting the whole water column with current velocities 489 

~50 - 25 cm/s at ~200 - 300 m wd, respectively (Ternon et al., 2014). Current velocities are, however, greatly 490 

weakened near the bottom (~10 cm/s at depths > 2000 m) (Schouten et al., 2003). Consequently, these 491 

eddies were able to induce erosion or non-deposition along the contourite terraces. This finding is consistent 492 

with the area of erosion or non-deposition of T1 along the Inharrime Terrace (Martin, 1981) (Fig. 4) maintained 493 

by strong bottom currents due to eddies (Lamont et al., 2010; Preu et al., 2011). As a final remark, internal 494 
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waves are also likely to be amplified by interaction with mesoscale eddies (Magalhaes et al., 2014; Xie et al., 495 

2015). Beal et al. (2006) also suggested eddy-induced generation of internal waves along the upper boundary 496 

of the NADW (∼2200 m wd) in the water depth range of T4 (e.g., Clément et al., 2017).  497 

5.1.3. The effect of along-slope bottom currents 498 

Another possible mechanism controlling sediment dynamics originates from the along-slope bottom 499 

currents. Fig. 11 shows clear evidence for high current velocities influencing T3 and T4 (> 25 cm/s). For T3, 500 

Beal (2009) reported northward flow velocities of 25 cm/s with peak speed over 95 cm/s at ∼1400 m wd 501 

within the Agulhas undercurrent (1000 - 2900 m wd). Ridderinkhof and de Ruijter (2003) interpreted 502 

northward flow velocities of 4.5 cm/s with peak speed around 40 cm/s at 1500 - 2400 m wd within the 503 

Mozambique undercurrent. However, it should be noted that geostrophic flows have periods of intense, 504 

reduce or even revert circulation modulated by periodic or a-periodic processes (eddies, deep water tidal 505 

currents, etc.). Additionally, internal waves may be generated when the along-slope bottom currents flow over 506 

rough topography (Liang and Thurnherr 2012).  507 

5.2. Along-slope bottom current circulation governs the formation of plastered drifts 508 

Large-scale plastered drifts (D1 and D2) occur on a regional scale along the Mozambican margin while 509 

plastered drift D3 occurs on a more local scale (Fig. 4). These occur in basinward areas and in distal areas of 510 

contourite terraces T1, T2 and T3, respectively (Figs. 6A, 6C, and 6E). Plastered drift water depths range from 511 

∼300 to 600 m for D1, ∼900 to 1300 m for D2 and ∼1600 to ∼2200 m for D3. Their distribution determines 512 

morphological seafloor changes that roughly coincide with the major physiographic provinces (D1, upper 513 

slope; D2, middle slope; and D3, lower slope; Figs. 5, and 6). Thus, these have significant effect in the shaping 514 

of the continental margin (e.g., Mosher et al., 2017). Hydrographic sections indicate that D1 and D2 match the 515 

near-bottom layer distribution of water masses bounded by the most pronounced density contrasts 516 

(pycnoclines) (Fig. 9). We therefore interpret large plastered drifts D1 and D2 along the Mozambican slope as 517 

influenced by the SICW (200 - 600 m wd) and AAIW (800 - 1500 m wd), respectively (Figs. 8A, and 8B). In 518 

contrast, plastered drift D3 occurs in the transition zone between AAIW (800 - 1500 m wd) and NADW (2200 - 519 

3500 m wd). Along-slope bottom currents move relatively slowly in the water depth range occupied by the 520 

plastered drifts (~5 - 10 cm/s) (Fig. 11). These currents exhibit generally southward direction over D1 (Fig. 521 
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11A), and northward direction over D2 and D3 (Figs. 11B, and 11D). This hypothesis is further confirmed by 522 

other studies: Martin (1981) demonstrated that rapid sediment accumulation of D1 along the Inharrime 523 

Terrace occurs under weak southward flow conditions; and Beal (2009) reported weak northward flow 524 

velocities of 10 cm/s at 1100 m wd in the water depth range of D2.  525 

These morpho-sedimentary and hydrographic coincidences lead us to propose that the regional 526 

physiographic configuration of the Mozambican margin is most likely related to along-slope bottom currents. 527 

Seismic profiles indicate that the present-day physiographic configuration and the sub-bottom architecture of 528 

the plastered drifts have a stable behaviour on geological timescales, as reported by Dingle et al. (1978) and 529 

Preu et al. (2011) for D1 along the Inharrime Terrace. It allows us to suggest a long-term, stable behaviour of 530 

the water masses (e.g., Rebesco et al., 2014; Ercilla et al., 2016). Thus, the observed variability of geostrophic 531 

flows in the region (eddies, deep water tidal currents, etc.) appears to have no significant effect in the long-532 

term shaping of the continental margin. Although their apparent not significant effect may simply reflect poor 533 

interpretation because their importance cannot be resolved in our seismic profiles. This point was mentioned 534 

in the study of Ercilla et al. (2016). Lastly, the actual oceanographic model and all observed variability (eddies, 535 

deep water tidal currents, etc.) might differ over the geological time span of plastered drifts formation. This 536 

scenario might explain the present-day unusual location of D3 in the water depth range of the transition zone 537 

between two water masses (AAIW and NADW). 538 

5.3. Influence of bottom topography on bottom current processes 539 

The AAIW and NADW encounter obstacles such as seamounts (i.e., Almirante Leite Bank, Naudé 540 

Ridge), the Beira High and the Mozambique Ridge. These obstacles produce streamline distortions, creating 541 

current cores that can winnow, distribute, erode, and rework near-surface sediment (e.g., Kennett, 1982; 542 

Faugères et al., 1999; García et al., 2009). The AAIW and NADW usually have main current cores that run 543 

northward, parallel to isobaths along the walls of the obstacles (e.g., Dingle et al., 1987) (Fig. 11). The velocity 544 

of these cores manifests in erosive features (moats, contourite channels, abraded surfaces, and lineations; 545 

scours and furrows) (Fig. 4). Moats are associated with elongated-mounded drifts at the foot of high walls, as 546 

well as the abraded surfaces along their walls (e.g., Kennett, 1982; Hernández-Molina et al., 2006b) (Figs. 4, 5, 547 

and 6). These features suggest helicoidal flows around the cores of the current, referred to as ‘horizontal 548 
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eddies’ (Rebesco et al., 2014). It result from Coriolis effect directing the cores of the current against the 549 

adjacent slope eroding the left side of the moat and depositing sediment on the right side where the current 550 

velocity is lower (e.g., Llave et al., 2001; Faugères and Mulder, 2011). The currents then form the abraded 551 

surfaces north of the Naudé Ridge (Fig. 6D) and along the steep lower-slopes of the Mozambique margin (Figs. 552 

5B, 6G, and 6H). They also influence contourite channels and moats along the Almirante Leite Bank (Fig. 4), on 553 

the Mozambican lower-slope (Figs. 5B, and 6B), at the foot of the Mozambique Ridge (Figs. 5B, 6F, and 6G), 554 

and eastern-limb of the Beira High (Fig. 6G), and across deep, E-W corridors within the Mozambique Ridge 555 

(Fig. 4; described in Wiles et al., 2014). Finally, they form elongated-mounded drifts immediately seaward of 556 

moats (Figs. 5B, 6B, 6F, and 6G). As shown in Fig. 11, bands of high bottom current velocities (> 25 cm/s) 557 

correspond either to the presence of moats / contourite channels or abraded surfaces, while elongated-558 

mounded drifts experience the lowest bottom current velocities (< 12.5 cm/s). Both are associated with 559 

northward flowing water masses of the AAIW and NADW within the Mozambique and Agulhas undercurrents. 560 

However, Fig. 11C shows the complexity of AAIW circulation, a large part of which is diverted southward. 561 

Observations of Dingle et al. (1978) and Martin (1981) support the interpretation given here by emphasizing 562 

that the deepest moats lie along upstream (NE) flanks of topographic highs centered on the Almirante Leite 563 

Bank between ∼900 and 1300 m wd. This suggests southward flow of the AAIW following the model of 564 

Faugères et al. (1999), Llave et al. (2001), and Hernández-Molina et al. (2006b). Re-circulation of the AAIW may 565 

be due to the occurrence of passing moving anticyclonic eddies that also carry the RSW southward at a depth 566 

of ∼900 - 1200 m (Gründlingh, 1985; Ridderinkhof and de Ruijter, 2003). Beal (2009) also defined the core of 567 

the Agulhas undercurrent at 1000 - 2900 m wd, where it carries both AAIW and NADW northward. For the 568 

northern part of the Mozambique Channel near 17° S, Ridderinkhof and de Ruijter (2003) interpreted the core 569 

of the Mozambique undercurrent at 1500 - 2400 m wd and suggested entrainment of the AAIW southward 570 

where it exits the local undercurrent.  571 

Sedimentary waves at water depths of 2500 to 3500 m along the abyssal plain are linked to the 572 

presence of the NADW, which would be locally guided by seafloor irregularities and incisions created by the 573 

Zambezi Valley and seamounts (i.e., Bassas Da India, Mt. Boucart) (Figs. 4, and 11). Breitzke et al. (2017) 574 

demonstrated that these sedimentary waves are draped with sediments, indicating that present-day velocities 575 

cannot erode sediments along this part of the abyssal plain. At water depths greater than ∼3500 m, Breitzke et 576 
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al. (2017) described bedforms as consisting mainly of large sedimentary waves, giant erosional scours, and 577 

furrows. These occur in the transition zone (~500 m) between the NADW (< 3500 m) and the AABW (> 4000 578 

m) and within the AABW. Crests tend to be aligned oblique to the current direction in the case of sedimentary 579 

waves associated with geostrophic bottom currents (Fox et al., 1968; Manley and Flood, 1993). Simulation 580 

results (Fig. 11E) demonstrate that bottom currents direction is consistent with the oblique alignments of the 581 

sediment wave crests (Fig. 4). Here, the shallow bathymetry (< 4000 m wd) of the northern part of the margin 582 

topographically blocks the AABW to the north and deflects it eastward. Thus, we can infer that these features 583 

likely result from the geostrophic flows (~12.5 cm/s), being aided by internal waves in the transition zone of 584 

NADW and AABW (3500 - 4000 m wd) (Kolla et al., 1980). Furrows, observed to run oblique relative to the 585 

main bottom currents, and scours point toward the northward flowing AABW (Figs. 4, and 11E). Furthermore, 586 

high northward flow velocities (> 25 cm/s) at the foot of the Mozambique Ridge (along 37° E, Fig. 11E) suggest 587 

the role of ‘horizontal eddies’ in generating these features (e.g., Hernández-Molina et al., 2014).  588 

5.4. A model for deep-sea sedimentation in the Mozambique Channel 589 

We present a new model for deep-sea sedimentation within the Mozambique Channel (Fig. 12). 590 

Sediments from the continent are mainly transported by the Zambezi, Limpopo, and Tugela rivers. When these 591 

rivers reach coastal areas, the Mozambique Current and Agulhas Current quickly disperse the suspended 592 

sediment over large areas along the continental shelf and upper slope. The Mozambique Undercurrent and 593 

Agulhas Undercurrent subsequently transport and deposit the sediment along the middle-lower slopes, base-594 

of-slope, seamount flanks, and abyssal plain. The TSW + STSW (+ Tropical Thermocline Water) / SICW, SICW / 595 

AAIW (+ RSW), AAIW (+ RSW) / NADW, and NADW / AABW interfaces along the Mozambican margin form 596 

superimposed nepheloid layers by settling processes (McCave, 1986; Preu et al., 2013). For example, fine-597 

grained sediments arriving as turbidity currents from the continent are remobilized by the NADW / AABW 598 

interface and subsequently concentrated into a dense nepheloid layer between 3500 and 4500 m wd (Kolla et 599 

al., 1980). These layers represent a major regional / basin scale transport mechanism for fine-grained 600 

sediments at different water depths. They deposit sediments laterally and basinward with a dominant along-601 

slope component. Material in the Mozambique Channel can thus experience significant transport over long 602 

distances prior to deposition. Turbulent processes generated at the interfaces (e.g., internal waves) interacting 603 

with the continental slope / shelf may induce bottom current erosion, re-suspension, and redistribution of 604 
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sediment (e.g., Dickson and McCave, 1986; Cacchione et al., 2002; Pomar et al., 2012; Shanmugam, 2013, 605 

2014). These mechanisms change slope morphology by steepening upslope and developing a terrace-like 606 

feature along the water mass interface (Hernández-Molina et al., 2009; Preu et al., 2013). This sweep and 607 

winnow of the seafloor may also supply the nepheloid layers with sediment at the seaward limit of the terrace 608 

(Dickson and McCave, 1986; Puig et al., 2004; Wislon et al., 2015). Kolla et al. (1980) suggested that 609 

sedimentary waves on the Mozambican abyssal plain can result from very deep internal waves (e.g., van Haren 610 

and Gostiaux, 2011) focused on the nepheloid layer at the NADW / AABW interface between 3500 and 4500 m 611 

wd. Deposition occurs mainly in areas experiencing relatively low current velocities where settling of 612 

suspended particles can form contourite drifts (Miramontes et al., 2016; Cattaneo et al., 2017). Large-scale 613 

velocity variation in current pathways may reflect strong rotational current velocities (>70 cm/s) due to 614 

southward moving anticyclonic eddies (Ridderinkhof and de Ruijter, 2003) interacting with the Mozambican 615 

margin morphology (Dingle et al., 1987). Contourite drifts can also form from local reworking of the seafloor 616 

by bottom currents (e.g., ‘horizontal eddies’). In this case, topography influences the velocity of the impinging 617 

water-mass and sediments deposit near the eroded source area (Rebesco and Camerlenghi, 2008). Coriolis 618 

forcing of northward currents towards the Mozambican margin (e.g., Faugères and Mulder, 2011) can amplify 619 

this effect. In the depositional model for the Mozambique Channel described here, most present-day 620 

sedimentary processes and their morpho-sedimentary products result from bottom current processes. 621 

Observations from similar European and South American margins (Hernández-Molina et al., 2011, 2016a; 622 

Ercilla et al., 2016; Preu et al., 2013) support this interpretation.  623 

Based on our results, two important aspects should be considered for improving this sedimentary 624 

model in the future. First, we show a dominance of across-slope gravity-driven processes operating along the 625 

northern sector of the Mozambican margin (Fig. 4). Slope and shelf areas associated with the northern sector 626 

experienced high rates of sediment than those located in the central and southern sectors (e.g., estimated 627 

present annual sedimentary input: 100∙10
6
 t from the Zambezi River; 4.8∙10

6
 t from the Limpopo River, 628 

Milliman, 1981). In the northern sector, high rates of sediment delivery beginning in the Pliocene and 629 

continuing up to present (Dingle et al., 1983; Walford et al., 2005; Franke et al., 2015) may have conditioned 630 

large MTDs and maintained turbidity currents through time. In the central and southern sectors, limited 631 

sediment supply between the Pliocene and present (Green et al., 2008; Green, 2011; Said et al., 2015; Hicks 632 
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and Green, 2016) led to a predominance of along-slope (contourite) processes. The northern sector, however 633 

reveals a combination of along-slope (i.e., T1 and D1) and across-slope (i.e., MTDs, turbidity currents) 634 

processes that may be related to sea-level fluctuations during glacial and inter-glacial periods (Wiles et al., 635 

2017). During interglacial periods, sediments in front of the Zambezi River (‘inner mud belt’) are transported 636 

northward along the ‘inner’ shelf. Much of these sediments transfer through upper slope canyons of the 637 

Angoche SCS, few of these sediments are transported southward along the ‘outer’ shelf (‘outer mud belt’) 638 

toward the Middle and Lower Zambezi SCSs (Schulz et al., 2011; Wiles et al., 2017) (Fig. 4). This flux can be 639 

expected to have resulted in greater downslope transport (i.e., MTDs and turbidity currents) in front of the 640 

Angoche SCS than in front of the Middle and Lower Zambezi SCSs as it reached the shelf edge (Wiles et al., 641 

2017) and may inhibit along-slope processes and their sedimentary features. Furthermore, shelf morphology 642 

(depth of the shelf-break, width of the shelf, etc.) during interglacial periods (such as in present-day, Wiles et 643 

al., 2017) is suitable for internal waves to propagate along the shelf edge, especially in front of the Middle and 644 

Lower Zambezi SCSs (DaSilva et al., 2009). Internal waves contributed to erosion, re-suspension, and 645 

redistribution of sediments along the upper slope, forming contourite terrace T1 and plastered drift D1 (e.g., 646 

Preu et al., 2013). During glacial periods, greater sediments supply and variation of the shelf morphology in 647 

front of the Middle and Lower Zambezi SCSs probably facilitate downslope sediment transport (Wiles et al., 648 

2017) along the continental slope as well as preclude generation of internal waves. Further research can 649 

confirm or refute this hypothesis.  650 

Second, a particular deep plastered drift (D3) occurs over a specific water depth range in the 651 

transition zone between two water masses (AAIW and NADW) while upper plastered drifts (D2 and D3) match 652 

water depth ranges of water masses (SICW and AAIW) between density interfaces (pycnoclines) (e.g., Preu et 653 

al., 2013; Rebesco et al., 2014). However, the interpretation of D3 being generated in the transition zone 654 

between two water masses is questionable and it could be related to vertical movement of interfaces. The 655 

plastered drift formation is the result of processes acting on longer geological times. During the Quaternary, 656 

the Atlantic and Southwest Indian water-mass circulation and spatial fluctuations in water-mass interfaces may 657 

have been controlled by the Agulhas leakage (Hall et al., 2017) with less leakage during full glacial times than 658 

interglacial times (Peeters et al., 2004; Caley et al., 2012; Petrick et al., 2015). Variations of the Agulhas leakage 659 

have led to a weakening of the NADW flow during glacial stages, allowing the deep Antarctic water masses 660 
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(CDW and AABW) to extend farther north than it does today (Bickert and Wefer, 1996; Pena and Goldstein, 661 

2014). During cold (glacial) periods under this scenario, the oceanographic setting would differ from the 662 

present one and may have potentially provoked vertical and lateral variations of the interfaces and the 663 

associated oceanographic processes (e.g., internal waves), displacing drift D3 under the influence of deep 664 

Antarctic water masses. This interpretation is supported by Breitzke et al. (2017) suggesting that sedimentary 665 

waves under the water depth range of the NADW along the abyssal plain (Fig. 4) are draped with sediments. 666 

Thus, sedimentary waves might be related to strong bottom currents during cold periods, potentially under 667 

the AABW flow. While the discussion given above is somewhat speculative, and open a discussion proposed by 668 

Preu et al. (2013) in Argentine / Uruguay and Hernández-Molina et al. (2017b) in the Pacific margin of the 669 

Antarctic Peninsula about if some deep water features in the ocean are functional or relict.  Are observed drifts 670 

and contourite terraces identify in deep-environments (lower slope and basin floor) relate to the same water 671 

masses structure than observed today? The conditions and timing of their formation, remain still unresolved 672 

but future research should address these questions. 673 

6. Conclusion 674 

This work interpreted a number of large contourite deposits along the Mozambique Channel and their 675 

associated bottom currents and oceanographic processes. The oceanographic processes described act in 676 

combination to determine the bottom current's local direction and velocity. Although many of these processes 677 

and their effects on deep-water sedimentation are not fully understood, local or regional interaction of these 678 

processes with the seafloor influences morphology and sediment distribution along the Mozambican 679 

continental margin and adjacent Durban basin.  This study came to fourth major conclusions: 680 

a) The first and most important finding is that internal waves originate from instabilities in the 681 

transition zone (interfaces / pycnoclines) between two water masses, caused by eddies, tidal and 682 

geostrophic currents being aided by topography. It provides the most plausible mechanism for 683 

sculpting contourite terraces (T1 to T4 in this study), facilitating erosion, re-suspension and 684 

redistribution of sediments (e.g., nepheloid layers).  685 

b) Second, weak along-slope bottom currents on the plastered drifts (D1 to D3) rarely exceed 12.5 686 

cm/s and thus promote the settling of suspended particles. Growth of plastered drifts D1 and D2 687 
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is facilitated by weak along-slope bottom currents of two major water-masses circulating in the 688 

Mozambique Channel (i.e., SICW and AAIW) or a counteraction of such currents with periodic or 689 

a-periodic processes (e.g., eddies, deep water tidal currents), reducing current velocities.  690 

c) Third, the strengthening of along-slope bottom currents (e.g., Coriolis Effect, eddies, deep water 691 

tidal currents), being aided by seafloor irregularities would result in ‘horizontal eddies’. Hence, 692 

these currents lead to erosion inside the moat and deposition on the elongated-mounded drift. 693 

Our study show that these drifts can develop inside the transition zone. Nevertheless, the finding 694 

in our study and limitations in the hydrodynamic modelling (e.g., secondary processes) point out 695 

a need for further studies, not only based on numerical simulations but also by field 696 

measurements (i.e., sedimentary cores and mooring scheme) to better quantify the impact of 697 

instabilities on contouritic depositional systems.  698 

d) The fourth finding is that the specific plastered drift D3 in our study area occurs in the transition 699 

zone between two water masses (AAIW and NADW), and forms on a much smaller lateral scale. 700 

This marks a major difference between the plastered drift investigated here and the existing 701 

paradigm that plastered drifts are often formed below water mass interfaces (such as D1 and D2). 702 

A possible explanation for that could be related to the fact that, through geological times, vertical 703 

movements of water masses and associated interfaces occurred, as reported in the south Atlantic 704 

by Preu et al. (2013), where the AABW was thicker, more vigorous and its top quite shallower 705 

during glacial stages compared with interglacial stages, as the present one. This hypothesis 706 

highlight new and important considerations: are all present morphologies in deep marine 707 

environment functional? Can some depositional and erosional features, especially in the deepest 708 

oceans, be relicts, being active under different oceanographic processes than the present ones?   709 
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FIGURE CAPTIONS 1198 

Fig. 1. Location of study area and data collection sites. (A) Bathymetric map (ETOPO1 1 arc-minute global relief model; 1199 

Amante and Eakins, 2009) of the southwest Indian Ocean indicating catchment areas of the Zambezi, Limpopo, and Tugela 1200 

rivers basins. Yellow dots indicate examples with large contourite deposits in present-day (or recent) ocean basins and in 1201 
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the ancient sedimentary record generated by bottom currents. 1: Gruetzner and Uenzelmann-Neben, 2015; 2: 1202 

Uenzelmann-Neben, 2001; 3: Schlüter and Uenzelmann-Neben, 2008; Niemi et al., 2000; 4: Flemming, 1978; 5: Preu et al., 1203 

2011; 6: Breitzke et al., 2017; Kolla et al., 1980; 7: Uenzelmann-Neben et al., 2011; 8: Uenzelmann-Neben and Huhn, 2009; 1204 

(B) Bathymetric map (ETOPO1 1 arc-minute global relief model; Amante and Eakins, 2009) of the Mozambique Channel 1205 

indicating position of the dataset interpreted and the main bathymetric features. The study area covered by high-1206 

resolution multibeam data was interpreted based on Breitzke et al. (2017) and Wiles et al. (2017). Yellow dots show the 1207 

location of the IODP Expedition 361 and DSDP Leg 25. Abbreviations: MozR = Mozambique Ridge; MdgR = Madagascar 1208 

Ridge; and FZ = Fracture Zone. 1209 

Fig. 2. Bathymetric map (ETOPO1 1 arc-minute global relief model; Amante and Eakins, 2009) of the Mozambique Channel 1210 

indicating schematic position of present-day water masses.  1211 

Fig. 3. Slope gradient map for surfaces dipping ≥ 2° along the Mozambican continental margin. Bathymetric map includes 1212 

the main physiographic domains (continental shelf; upper, middle, and lower continental slopes; and abyssal plain) and 1213 

morphological features superimposed (ETOPO1 1 arc-minute global relief model; Amante and Eakins, 2009). The white line 1214 

indicates the location of the buried Beira High. Abbreviations: ALB = Almirante Leite Bank; CT = Central Terrace; IT = 1215 

Inharrime Terrace; LC = Limpopo Cone; MozR = Mozambique Ridge; NR = Naudé Ridge; and TC = Tugela Cone. (A) to (F) 1216 

Bathymetric profiles showing seafloor morphology for the three different sectors: (A) and (B) are the northern sector, (C) 1217 

and (D) the central sector, and (E) and (F) the southern sector.  1218 

Fig. 4. Morpho-sedimentary map of the Mozambique Channel. This map illustrates the complex morphology of the 1219 

Mozambique Channel as well as the interplay between down- and along-slope processes. Contourite depositional, 1220 

erosional, and mixed erosive-depositional features are indicated. Lineations based on Breitzke et al. (2017) and submarine 1221 

canyons based on Wiles et al. (2017). Abbreviations: DFZ = Davie Fracture Zone and SCS = Submarine Canyon Systems. 1222 

Fig. 5. Examples of four multichannel seismic reflection profiles of the Mozambican continental margin from south (A) to 1223 

north (D), showing the major morpho-sedimentary features. Horizontal scale is the same for all the profiles. (E) Inlay 1224 

illustrating the D1 drift and the T1 terrace, as well as high amplitude reflection patterns (HARs) of contourite terrace T1. 1225 

Location in Figs. 1 and 4 (section (A) courtesy of CGG Multi-client and New Ventures and sections (B, C), and (D) courtesy of 1226 

INP and WesternGeco Multiclient).  1227 

Fig. 6. Examples of depositional, erosional, and mixed contourite features from multichannel seismic reflection profiles. 1228 

Details of contourite terraces T1 and T2 in (A), T3 in (C), (D), and (E), and T4 in (G) and (H). Examples of plastered drift D1 1229 

are illustrated in (A), D2 in (A), (B), and (E), and D3 in (C) and (E). Moats and elongated-mounded drifts are shown in (B), (F), 1230 
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and (G). Abraded surfaces and steep surfaces are illustrated in (B), (D), (G), and (H). (I) Inlay illustrating the sedimentary 1231 

stacking pattern of plastered drift D2. Locations in Fig. 4 for (A-H), in Fig. 11 for (A, B, E, F, G) and (H). Abbreviation: HARs = 1232 

High Amplitude Reflections. Profiles (A, B, F, G) and (H) courtesy of INP and WesternGeco Multiclient. Profiles (C-E) 1233 

courtesy of CGG Multi-client and New Ventures. 1234 

Fig. 7. (A-C) Temperature (°C) vs. salinity (psu) diagrams for southern, central, and northern sectors respectively. (D-E) 1235 

Panel plots with neutral densities (kg/m
3
) vs. oxygen content (ml/l) along the Mozambican continental margin for data 1236 

collected from hydrographic sections of the southern (D) and central (E) sectors. Deep water mass circulation denoted as: 1237 

AABW = Antarctic Bottom Water; NADW = North Atlantic Deep Water; AAIW = Antarctic Intermediate Water; RSW = Red 1238 

Sea Water; SICW = South Indian Central Water; TSW-STSW = Tropical Surface Water – Subtropical Surface Water. 1239 

Fig. 8. Seismic and hydrographic vertical sections for the Mozambican continental margin. The water column colour ranges 1240 

indicate salinity (psu), temperature (°C) and oxygen content (ml/l). These profiles are located in Fig. 1. Water mass 1241 

interpretations and major contourite features are indicated on the sections. Profile (A) courtesy of TOTAL and partners and 1242 

Profiles (B, C) courtesy of INP and WesternGeco Multiclient.  1243 

Fig. 9. (A) Seismic and hydrographic vertical section for the Mozambican continental margin. Water column colour range 1244 

indicates the buoyancy (Brunt-Väisälä) frequency (cycl/h). This profile is denoted as Fig. 6A located in Fig. 4. (B) Inlay 1245 

illustrating the buoyancy (Brunt-Väisälä) frequency (cycl/h) along contourite terrace T1. Seismic line courtesy of INP and 1246 

WesternGeco Multiclient. (C) Panel plots with Depth from pressure (m) vs. neutral densities (kg/m
3
) and buoyancy (Brunt-1247 

Väisälä) frequency (cycl/h) at station 17802 (WOD13) located in Fig. 1. The yellow stripes indicate areas potentially 1248 

correlated with internal wave generation at interfaces between Subtropical Surface Water (STSW) and South Indian Central 1249 

Water (SICW), and between SICW and Antarctic Intermediate Water (AAIW).  1250 

Fig. 10. Select examples of internal waves (solitons) propagating along the Mozambique Channel. Images (A-C) are located 1251 

along the Bay of Maputo (from Jackson, 2004) and (D-E) are along the Bight of Sofala (from Magalhaes et al., 2014). 1252 

Abbreviations: NMB = Northern Mozambique Basin; SMB = Southern Mozambique Basin; NV = Natal Valley; MozR = 1253 

Mozambique Ridge; IWs = Internal waves. 1254 

Fig. 11. Results from the Regional Oceanic Modelling System (ROMS) showing mean bottom current velocities along the 1255 

seafloor of five different sectors indicated in Fig. 4.  1256 

Fig. 12. (A) 3D sketch summarizing the conceptual model of the effect of bottom current processes on deep-water 1257 

sedimentation along the Mozambique Channel. Simplified morpho-sedimentary and hydrographic features are shown. (B) 1258 

Schematic model for the Mozambique Channel explaining water mass interface processes.  1259 
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TABLE CAPTIONS 1260 

Table I. Neutral densities used to characterize water masses interacting with bathymetric features of the Mozambique 1261 

Channel based on the work of Kolla et al. (1980); Fine (1993); Toole and Warren (1993); Talley (1996); Orsia et al. (1999); 1262 

Schott et al. (2001); DiMarco et al. (2002); Lutjeharms (2006); Ullgren et al. (2012) 1263 

Water mass  Water depth 

(m)  

γγγγηηηη    (kg/m
3
)  

TSW&STSW  0 - 200  23 - 25.8  

SICW  200 - 800  26.4 - 26.8  

AAIW  800 - 1500  27 - 27.8  

RSW  900 - 1200  ∼27.4  

NADW  2200 - 3500  > 27.8  

AABW  > 4000  > 28.2  

 1264 

Table II. Morphological characteristics (shape, gradient and width) for the continental slope subdomains (upper, middle 1265 

and lower slopes) of the southern, central and northern sectors within the study area. Letters (A-F) correspond to 1266 

bathymetric profiles shown in Fig. 3.  1267 

Continental slope 

Upper Slope Middle Slope Lower Slope 

Sectors Sectors Sectors 

Southern Central Northern Southern Central Northern Southern Central Northern 

Shape 

Concave 

(F) / 

convex 

(E) 

Convex 

(C,D) 

Convex 

(B) / 

concave 

(A) 

Concave 

(F) / 

convex 

(E) 

Convex 

(C, D) 

Concave 

(A, B) 

Concave 

(E, F) 

Convex 

(C, D) 

Concave 

(A, B) 

Gradient* 

(degrees) 

7.2° / 

1.5° 
1° 

2.6° / 

3.7° 
4.7° / 1.4° 0.9° 1.4° 1.3° 1.1° 0.8° 

Width* 

(km) 
∼4 / ∼56 

∼20 to 

45 

∼25 / 

∼10 
∼6 / ∼82 

∼10 to 

90 

∼15 to 

50 
∼10 

∼10 to 

70 

∼70 to 

170 

*Represents average data 

 1268 
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Highlights: 

• Combined study of the geomorphology, sedimentology, and physical oceanography of the Mozambique 

Channel.  
• Bottom circulation of water masses and associated sedimentary processes shape the continental margin.  
• Interface positions of water-masses with contrasting densities (i.e., internal waves) sculpt terraces along 

the slope at a regional scale. 

• Morphologic obstacles play an essential role in local water mass behaviours and dynamics. 
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