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A B S T R A C T

Recent technological developments have resulted in two techniques for estimating surface velocity with
higher resolution than can be achieved from presently available nadir altimeter data: (1) Geostrophically
computed estimates from high-resolution sea surface height (SSH) measured interferometrically by the wide-
swath altimeter on the Surface Water and Ocean Topography (SWOT) Mission with a planned launch in 2021;
and (2) Measurements of ocean surface velocity from a Doppler scatterometer mission that is in the early
planning stages, referred to here as a Winds and Currents Mission (WaCM). In this study, we conduct an
analysis of the effects of uncorrelated measurement errors and sampling errors on the errors of the measured
and derived variables of interest (SSH and geostrophically computed velocity and vorticity for SWOT, and
surface velocity and vorticity for WaCM). Our analysis includes derivations of analytical expressions for the
variances and wavenumber spectra of the errors of the derived variables, which will be useful to other studies
based on simulated SWOT and WaCM estimates of velocity and vorticity. We also discuss limitations of the
geostrophic approximation that must be used for SWOT estimates of velocity.

The errors of SWOT and WaCM estimates of velocity and vorticity at the full resolutions of the measured
variables are too large for the unsmoothed estimates to be scientifically useful. It will be necessary to smooth
the data to reduce the noise variance. We assess the resolution capabilities of smoothed estimates of velocity
and vorticity from simulated noisy SWOT and WaCM data based on a high-resolution model of the California
Current System (CCS). By our suggested minimum threshold signal-to-noise (S/N) variance ratio of 10 (a
standard deviation ratio of 3.16), we conclude that the wavelength resolution capabilities of maps of velocity
and vorticity constructed from WaCM data with a swath width of 1200 km are, respectively, about 60 km and
90 km in 4-day averages. For context, the radii of resolvable features are about four times smaller than these
mesoscale wavelength resolutions. If the swath width can be increased to 1800 km, the wavelength resolution
capabilities of 4-day average maps of surface velocity and vorticity would improve to about 45 km and 70 km,
respectively. Reducing the standard deviation of the uncorrelated measurement errors from the baseline value
of 𝜎spd = 0.50 m s−1 to a value of 0.25 m s−1 would further improve these resolution capabilities to about
20 km and 45 km.

SWOT data will allow mapping of the SSH field with far greater accuracy and space–time resolution than
are presently achieved by merging the data from multiple nadir altimeter missions. However, because of its
much narrower 120-km measurement swath compared with WaCM and the nature of the space–time evolution
of the sampling pattern during each 21-day repeat of the SWOT orbit, maps of geostrophically computed
velocity and vorticity averaged over the 14-day period that is required for SWOT to observe the full CCS
model domain are contaminated by sampling errors that are too large for the estimates to be useful for any
amount of smoothing considered here. Reducing the SSH measurement errors would do little to improve SWOT
maps of velocity and vorticity. SWOT estimates of these variables are likely to be useful only within individual
measurement swaths or with the help of dynamic interpolation from a data assimilation model. By our criterion,
in-swath SWOT estimates of velocity and vorticity have wavelength resolution capabilities of about 30 km and
55 km, respectively.
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In comparison, in-swath estimates of velocity and vorticity from WaCM data with 𝜎spd = 0.50 m s−1 have a
wavelength resolution capability of about 130 km for both variables. Reducing the WaCM measurement errors
to 𝜎spd = 0.25 m s−1 would improve the resolution capabilities to about 50 km and 75 km for velocity and
vorticity, respectively. These resolutions are somewhat coarser than the in-swath estimates from SWOT data,
but the swath width is more than an order of magnitude wider for WaCM. Instantaneous maps of velocity and
vorticity constructed in-swath from WaCM data will therefore be much less prone to edge effect problems in
the spatially smoothed fields.

Depending on the precise value of the threshold adopted for the minimum S/N ratio and on the details
of the filter used to smooth the SWOT and WaCM data, the resolution capabilities summarized above may
be somewhat pessimistic. On the other hand, aspects of measurement errors and sampling errors that have
not been accounted for in this study will worsen the resolution capabilities presented here. Another caveat
to keep in mind is that the resolution capabilities deduced here from simulations of the CCS region during
summertime may differ somewhat at other times of year and in other geographical regions where the signal
variances and wavenumber spectra of the variables of interest differ from the CCS model used in this study.
Our analysis nonetheless provides useful guidelines for the resolutions that can be expected from SWOT and
WaCM.

1. Introduction

Presently available global sea-surface height (SSH) fields
constructed from satellite altimeter data by Collecte Localis Satellites
(CLS) and archived by Archivage, Validation, Interprétation des don-
nées des Satellite Océanographiques (AVISO) are able to resolve time
scales of about a month and wavelength scales of about 200 km,
corresponding to feature radius scales of about 50 km (see Appendix
A.3 of Chelton et al., 2011). The 25+ year CLS/AVISO record of SSH
fields (Pujol et al., 2016) has been extremely useful for studies of
mesoscale eddies, large-scale ocean circulation variability and sea level
rise (e.g., Fu et al., 2010; Lee et al., 2010; Willis et al., 2010; Chelton
et al., 2011). Notwithstanding the many successful applications of this
dataset, it is clear from high-resolution numerical simulations and
satellite infrared and visible observations of sea surface temperature
(SST) and ocean color that energetic variability exists on smaller scales
than can be resolved by the CLS/AVISO SSH fields. Of particular
interest are wavelength scales smaller than ∼50 km (radius scales less
than ∼10 km), which is a commonly used definition for submesoscale
variability. Numerical models have shown that submesoscale variability
is important to the physics and biology of the ocean (e.g., Capet et al.,
2008; Klein and Lapeyre, 2009; Lévy et al., 2001). There is thus a strong
interest in high-resolution satellite observations of surface velocity and
its associated vorticity to complement the modeling. The objective of
this study is to investigate the prospects for future high-resolution
satellite measurements of small-scale velocity and vorticity variability.

In addition to the interest in submesoscale variability, much remains
to be learned about mesoscale ocean dynamics. Velocity and vorticity
can be estimated geostrophically from the CLS/AVISO SSH fields, but
with a very coarse spatial resolution imposed by the ∼200 km wave-
length resolution limitation of the SSH fields. The improved resolutions
that are anticipated from the two satellite technologies considered in
this study are likely to advance understanding of mesoscale variability
in a manner similar to the advances achieved from the CLS/AVISO
multi-altimeter merged SSH dataset compared with the single-altimeter
observations obtained from TOPEX/Poseidon (see, for example, Fig. 1
of Chelton et al., 2011).

Our particular interest here in satellite estimation of surface velocity
and vorticity is motivated in part by their effect on local wind-driven
vertical velocities (Ekman pumping). It is well known that surface cur-
rents contribute to Ekman pumping in mesoscale eddies through their
effects on the relative wind and hence the surface stress. The surface
velocity within a rotating eddy generates a curl of the surface stress
with sign opposite that of the vorticity of the eddy, thus attenuating
the eddy and generating an Ekman pumping velocity that is often
larger on mesoscales and smaller scales than that from the curl of
the large-scale background wind stress field (e.g., Dewar and Flierl,
1987; Martin and Richards, 2001; McGillicuddy et al., 2007; Gaube
et al., 2015). Mesoscale eddies also generate Ekman pumping to an

even greater degree through their effects on the gradient of the total
vorticity (planetary plus relative vorticity) that generates horizontal
divergences of Ekman transport and hence vertical velocities (Stern,
1965; Mahadevan et al., 2008; McGillicuddy et al., 2008; Gaube et al.,
2015). This vorticity-gradient-induced Ekman pumping is sometimes
referred to as nonlinear Ekman pumping. The two effects of surface
currents on Ekman pumping increase rapidly with decreasing scale
and increasing Rossby number (see Fig. 7 of Gaube et al., 2015). A
small-scale cutoff for this increase presumably exists, but both effects
are likely important into at least the upper range of submesoscale
variability.

Determination of Ekman pumping on mesoscale and smaller scales
thus depends critically on accurate knowledge of the surface ocean
velocity at these scales. Recent technology developments have resulted
in two techniques for estimating ocean surface velocity that promise
higher resolution than is presently achieved from the CLS/AVISO SSH
fields. One of these is the Surface Water and Ocean Topography (SWOT)
Mission (Fu and Ferrari, 2008; Durand et al., 2010) that is slated
for launch in 2021. SWOT will measure SSH altimetrically by radar
interferometry (Fu and Rodriguez, 2004) with a footprint size of about
1 km. Surface velocity can then be estimated geostrophically. The
other technology for estimating ocean surface velocity is based on the
Doppler shift of radar returns from the moving sea surface (Chapron
et al., 2005; Rodríguez et al., 2018; Rodríguez, 2018). An important
distinction of Doppler radar systems is that they provide direct mea-
surements of ocean surface velocity, rather than the indirect estimates
computed geostrophically from measurements of SSH as in the case of
SWOT.

Satellite-based Doppler radar systems for measuring surface ocean
currents are in the early stages of development, both in Europe and in
the U.S. The European Doppler scatterometer mission concept summa-
rized by Chapron et al. (2005) has evolved to a proposed Doppler radar
system called the Sea surface KInematics Multiscale (SKIM) mission
(Ardhuin et al., 2018) that has been designed to measure surface
currents, ice drift and ocean waves across a swath width of 320 km. A
primary goal of SKIM is to measure the wave spectrum. The incidence
angles of the SKIM radar measurements have therefore been chosen to
be 6◦ and 12◦ in order to maximize the sensitivity to surface wave tilt
while minimizing the sensitivity to winds. The SKIM radar thus cannot
measure surface vector winds.

The Doppler radar in the mission under development in the U.S. will
have a much wider measurement swath than SKIM (at least 1200 km,
and possibly as much as 1800 km) and will measure radar backscatter
at much higher incidence angles that will provide collocated mea-
surements of surface currents and vector winds, but not the wave
spectrum. Wind speed and direction are inferred from the roughness
of the sea surface by conventional scatterometry (see, for example,
Sec. 2 of Chelton and Freilich, 2005, for a summary of the QuikSCAT
scatterometer). An aircraft version called DopplerScatt has been built
by the National Aeronautics and Space Administration Jet Propulsion
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Fig. 1. Snapshots for a region off the central California coast from ROMS models of the California Current System (CCS) with grid resolutions of 4, 1.5 and 0.5 km (left to right):
Row (a) Sea surface height; Row (b) Sea surface temperature; and Row (c) Normalized vorticity 𝜁∕𝑓 , where 𝑓 is the local Coriolis parameter at each grid point.

Laboratory (NASA/JPL) and has been flown in several field campaigns
(Rodríguez et al., 2018) as a proof of concept for a future satellite
Doppler scatterometer mission that we refer to in this study as a
Winds and Currents Mission (WaCM). In the recent decadal survey
of recommended Earth-observing satellite missions by the National
Academies of Sciences, Engineering, and Medicine (NASEM, 2018),
WaCM is one of seven recommended NASA Earth System Explorer
missions. The baseline performance of WaCM that is assumed in this
study (see Section 4.2) is supported by the actual performance of the
airborne DopplerScatt instrument (Rodríguez et al., 2018).

The collocated WaCM measurements of surface currents and vector
winds are expected to have footprint sizes of about 5 km. For the
wind measurements, this is much smaller than the footprint sizes of
about 25 km for the QuikSCAT and ASCAT scatterometers. The smaller
footprint size for WaCM will be achieved with a larger antenna size and
the use of a Ka-band radar (35.8 GHz), rather than the Ku-band radar
(13.4 GHz) used for QuikSCAT or the C-band radar (5.3 GHz) used for
ASCAT. This study considers only the surface ocean velocity estimates.
Our baseline simulations of WaCM measurements of surface currents

assume a swath width of 1200 km. Recent engineering studies suggest
that it may be possible to broaden the swath width to 1800 km, which
would greatly improve the sampling. The benefits of the wider swath
width are investigated as part of this study.

The viability of SWOT and WaCM estimates of surface velocity for
investigation of small-scale variability clearly depends on the signal-
to-noise ratios of the measurements (SSH for the case of SWOT and
surface velocity for the case of WaCM). For SWOT, the utility of the
data also depends on the validity of the geostrophic approximation.
The objectives of this study are to investigate these issues and assess
the resolution capabilities for mapping of the surface velocity and
vorticity fields for both SWOT and WaCM. The approach is based on
simulated SWOT and WaCM sampling of, respectively, the SSH and
surface velocity fields from 30 days of twice-daily snapshots from a
high-resolution model of the California Current System (CCS).

Our focus is on the limitations imposed by the baseline science
requirements for the cross-swath averages of the standard deviations
of uncorrelated instrumental measurement errors. In reality, the instru-
mental errors for both SWOT and WaCM vary across the measurement
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Fig. 2. A representative summertime snapshot of sea surface temperature (SST) from the ROMS model of the CCS on 5 June (left panel) in latitude–longitude coordinates at the
full 0.5 km × 0.5 km grid resolution of the model. The model was forced by the seasonal cycle wind stress derived from QuikSCAT scatterometer data, which is shown for the
month of June in the right panel. The box in each panel delineates the truncation of the full model domain to mitigate edge effects in the analyses of spatially smoothed fields
considered in this study.

swaths (see Fig. F.1 in Appendix F for the case of SWOT), with smallest
errors near the centers of the swaths and increasing errors toward
both edges of the swaths. The measurement errors also depend on
the significant wave height (see again Fig. F.1 in Appendix F for the
case of SWOT). The significant wave height (SWH) dependence and
cross-track variations of the instrumental errors are not considered in
the simulations presented in this study. Rather, we consider the cross-
swath average instrumental measurement errors for the conditions of
2-m significant wave height that are specified for the baseline design
requirements of the measurement errors.

We note that the error characteristics of SWOT data could have
been simulated more accurately and completely for this investigation
by using the simulator software available from the SWOT Project
Office (Gaultier et al., 2017; see also Qiu et al., 2016; Gaultier et al.,
2016). Simulator software is not yet available for WaCM. Moreover,
the dependencies of WaCM measurement errors on swath location
and SWH have not yet been fully quantified, although it is known
that WaCM measurement errors will increase toward the edges of the
measurement swaths in a manner similar to the cross-track variations
of SWOT measurement errors (Rodríguez, 2018). For consistency in our
treatments of SWOT and WaCM measurement errors, we have therefore
chosen to use our simpler simulations of SWOT measurement errors to
be consistent with our simulations of WaCM measurement errors.

Measurements from both SWOT and WaCM are also subject to
larger-scale errors from geophysical corrections for a variety of envi-
ronmental effects. While important, these larger-scale errors are not ad-
dressed in the analysis presented here as they are generally secondary
to the effects of uncorrelated instrumental errors for the purposes
of estimating surface velocity and vorticity on the mesoscales and
submesoscales that are of primary interest in this study.

We are also not able to address the importance of internal gravity
waves, which are underrepresented in the CCS model used to sim-
ulate SWOT and WaCM data in this study (see Sections 2 and 3).
This internal wave variability is one of several ageostrophic processes
that affect the accuracy of SWOT estimates of surface velocity and
vorticity. The contributions of ageostrophic processes to contamination
of geostrophically computed surface velocity and vorticity from SWOT
measurements of SSH cannot be fully assessed from the CCS model
used in this study since it was forced with seasonally varying winds,

heat fluxes and freshwater fluxes and lacks tidal forcing. This issue is
addressed to a limited degree in Section 3 and Appendix F (see Figs. 10,
11 and F.4) from a pair of simulations of the Gulf Stream region off the
southeastern seaboard of the U.S.

It is noteworthy that the seasonally forced CCS model that is used
in this study may also misrepresent larger-scale geostrophic processes.
Mesoscale and submesoscale variability might be stronger with more
realistic wind forcing that includes synoptic atmospheric variability.
The analysis presented here is based on model simulations for a 30-
day period in early summertime. Since weather systems over the CCS
are usually not very energetic at this time of year, inclusion of synoptic
atmospheric forcing may have only modest effects on the model simu-
lation for the geographical location and time of year considered here.
This potential limitation of the model should nonetheless be kept in
mind in the interpretation of the results presented in this study.

Because of the various aspects of measurement errors summarized
above that are not taken into consideration in this study, the conclu-
sions about the effects of measurement errors presented here are likely
somewhat optimistic assessments of the resolution capabilities of SWOT
and WaCM. On the other hand, if the uncorrelated instrumental errors
can be reduced from the baseline science requirement values used in
our simulations, the effects of instrumental errors in the simulations
presented here may prove to be somewhat pessimistic assessments
of the resolution capabilities for the baseline consideration of 2-m
significant wave height.

In addition to the effects of internal gravity waves and other small-
scale ageostrophic processes, the ability to map the space–time evo-
lution of the surface velocity field depends on the swath width over
which the measurements are made. For SWOT, the swath width will be
120 km with a nadir gap of 20 km. For the analysis in Section 8, we
have assumed that velocity estimates will be obtained by WaCM across
a swath width of 1200 km with a nadir gap of 100 km. The sampling
coverage in each satellite overpass of a given region will thus be more
than an order of magnitude better for WaCM than for SWOT. The SWOT
orbit will have an exact repeat period of 21 days. For the simulations
in this study, we have assumed that WaCM will have the same 4-day
repeat orbit as QuikSCAT. The net effect of the different swath widths
and orbit repeat periods for SWOT and WaCM is that a given location
within the CCS region considered here is sampled on average about
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Fig. 3. Snapshots from the ROMS model for the same time as the SST map in Fig. 2
at the full 0.5 km × 0.5 km grid resolution of the model: Column (a) the speed of the
total surface velocity; and Column (b) the normalized vorticity 𝜁∕𝑓 computed from the
total surface velocity, where 𝑓 is the local Coriolis parameter at each grid point. The
maps in the top panels are for the truncated domain delineated by the boxes in Fig. 2
in the model 𝑥, 𝑦 coordinate system that is rotated by a polar angle of 24◦ relative
to latitude–longitude coordinates. The bottom panels are enlargements of the Central
California Current System (CCCS) region delineated by a box in each of the top panels.

once a day by WaCM with a 1200-km swath width and about once
a week by SWOT (see Section 7). Extending the WaCM swath width
to 1800 km with the same nadir gap of 100 km would increase the
sampling to an average of more than 1.5 samples per day over the
CCS model domain. Our analysis includes an assessment of the impact
of this improved sampling on the resolution capability of space–time
smoothed velocity and vorticity fields constructed from WaCM data.

The resolution limitations of maps of geostrophically computed
surface velocity and vorticity constructed from simulated SWOT data
have previously been considered by Fu and Ubelmann (2014), Qiu
et al. (2016) and Gaultier et al. (2016). In this study, we extend
these previous investigations of the resolution capabilities of simulated
SWOT data and compare the results with the resolution capabilities of
maps of velocity and vorticity constructed from simulated WaCM data.
Our approach is more systematic than has been used in past studies.
In particular, we propose a specific criterion for defining resolution
capability and we partition the mapping errors between instrumen-
tal measurement errors and sampling errors. By sampling errors, we
mean the errors in mapped fields of surface velocity and vorticity that
are imposed by the limited swath widths of the SWOT and WaCM
measurements and by the discrete and irregular temporal sampling of
the rapidly evolving submesoscale features in the velocity and vor-
ticity fields at a given location. The ability to distinguish between

Fig. 4. (a) The scale dependencies of the 80th, 90th, 95th and 99th percentile points of
the distributions of absolute values of the normalized vorticity 𝜁∕𝑓 as functions of half-
power filter cutoff wavelength; the dashed line corresponds to the root-mean squared
value of 𝜁∕𝑓 . (b) The scale dependencies of selected percentage points symmetric about
the median (i.e., the 50th percentile point) in the distributions of 𝜁∕𝑓 as functions of
half-power filter cutoff wavelength; the dashed line corresponds to the mean value
of 𝜁∕𝑓 , which is indistinguishable from zero. For both panels, 𝜁 was computed from
error-free model fields of total surface velocity for the complete CCS model domain at
the full 0.5 km × 0.5 km grid resolution of the model after 2-dimensional isotropic
smoothing with the half-power filter cutoff wavelengths indicated along the abscissa.

measurement and sampling errors in maps constructed from simulated
satellite data provides insight into the relative benefits of reducing the
measurement noise versus improving the sampling, either by increasing
the measurement swath widths or by combining the measurements
from multiple satellites.

This paper is organized as follows. The CCS model from which sim-
ulated SWOT and WaCM data are derived is summarized in Section 2.
The limitations of the geostrophic approximation that must be used
for SWOT estimates of surface velocity and vorticity are discussed in
Section 3. The uncorrelated measurement errors for SWOT and WaCM
and their effects on the errors of the derived quantities (geostrophically
computed velocity and vorticity for SWOT and vorticity for WaCM)
are examined in detail in Section 4, including determination of the
wavenumber spectral characteristics of the errors.

The strategy adopted in this study to assess the resolution capabil-
ities for estimates of surface velocity and vorticity from noisy SWOT
and WaCM data is presented in Section 5. The procedure is first applied
in Section 6 to instantaneous maps of the velocity and vorticity fields
constructed from SWOT and WaCM data for the idealized case of mea-
surement errors alone without consideration of sampling errors from
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Fig. 5. The same as Fig. 3, except snapshots from the ROMS model for: Column (a) SSH; Column (b) the magnitude of geostrophically computed velocity; and Column (c)
normalized geostrophically computed vorticity 𝜁𝑔∕𝑓 .

the limited swath widths of the SWOT and WaCM measurements. This
analysis of the effects of measurement errors alone can be interpreted
as the best possible resolution capabilities within a single measurement
swath.

For mapping of the velocity and vorticity fields over regions larger
than the width of an individual measurement swath, sampling errors
can be as important as, or even more important than, measurement
errors to the overall accuracies of the mapped variables. The space–time
sampling characteristics of SWOT and WaCM data are summarized in
Section 7. The combined effects of measurement and sampling errors
on the resolution capabilities of maps of surface ocean velocity and
vorticity estimated from space–time smoothed SWOT and WaCM data
are then investigated in Sections 8–10.

The conclusion of Section 8 is that the resolutions of maps of
geostrophically computed velocity and vorticity constructed from
SWOT data are limited almost totally by sampling errors. Improving
the SWOT measurement accuracy would therefore have very little effect
on the resolution capabilities of the variables considered in this study.
The resolutions of maps of velocity and vorticity constructed from
WaCM data are primarily limited by measurement errors but sampling
errors are not negligible. The benefits of increasing the WaCM swath
width (thus reducing the sampling errors) and reducing the WaCM

measurement noise are investigated separately and in combination in
Section 10.

Supporting technical details for the calculations in Sections 4, 6 and
8–10 are provided in a series of nine appendices.

The error analysis in Section 4 merits special mention since the
results will be useful to other studies. Analytical expressions for the
variances of the errors of SWOT estimates of velocity and vorticity
computed geostrophically from SSH are derived in Appendix G.1 in
terms of the variance 𝜎2ℎ of the uncorrelated errors of pre-processed
SWOT estimates of SSH. By ‘‘pre-processed’’, we mean the satellite data
that will be distributed to general users after smoothing of the raw data
onboard the satellite, possibly with additional ground-based smoothing
to achieve a specified footprint size. The numerical results presented in
this study are based on the SSH error standard deviation of 𝜎ℎ = 2.74 cm
that is derived in Appendix F for the case of pre-processed data with a
footprint size of 1 km. It would be straightforward to obtain numerical
results from the analytical expressions for any specified value of 𝜎ℎ.

An analytical expression for the variance of errors of WaCM esti-
mates of vorticity is similarly derived in Appendix G.2 in terms of the
variances 𝜎2𝑢 and 𝜎2𝑣 of the uncorrelated errors of WaCM estimates of
each orthogonal velocity component 𝑢 and 𝑣. The result is therefore
valid for any application of WaCM data, given specifications of the
velocity component error variances. The analysis in this study assumes
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Fig. 6. Column (a) Maps of the ageostrophic velocity vectors defined to be the vector differences of the total surface velocity minus the geostrophically computed velocity with
the magnitudes of the differences shown in color. Note that the left half of the color bar is not used in this figure. Column (b) The large-scale ageostrophic velocity defined to
be the vector differences and their magnitudes in (a) smoothed isotropically with a half-power filter cutoff wavelength of 150 km, referred to here as the Ekman ageostrophic
velocity field. Column (c) The magnitudes of the non-Ekman ageostrophic velocity vectors defined to be the total ageostrophic velocities in Column (a) minus the large-scale
ageostrophic velocities in Column (b). The bottom panels are enlargements of the CCCS region delineated by a box in each of the top panels. The vectors in Columns (a) and (b)
were subsampled on a 15 km × 15 km grid in the top panels and a 7.5 km × 7.5 km grid in the bottom panels.

an equal error standard deviation of 𝜎𝑢,𝑣 = 0.354 m s−1 for each
velocity component. If the errors of the two velocity components are
uncorrelated with each other, this corresponds to current speed errors
with a standard deviation of 𝜎spd = 0.50 m s−1, which is the present
baseline design for WaCM.

Our analysis includes determinations of the wavenumber spectral
characteristics of errors of velocity and vorticity computed geostroph-
ically from pre-processed SWOT measurements of SSH, as well as the
wavenumber spectral characteristics of velocity components and vor-
ticity estimated from pre-processed WaCM data. Analytical expressions
for these wavenumber spectra of the errors are derived for SWOT and
WaCM in Appendices I.1 and I.3, respectively. Analytical expressions
are also derived in Appendices I.2 and I.4 for the wavenumber spectra
of the errors of all of the variables of interest after 2-dimensional
smoothing is applied in simulated ground-based post-processing. As
with the equations for the error variances discussed above, the equa-
tions derived in Appendix I for the error spectra are all expressed in
terms of the measurement error variances 𝜎2ℎ for SWOT and 𝜎2𝑢 and
𝜎2𝑣 for WaCM. The results are therefore valid for any specification of

the uncorrelated errors of SWOT and WaCM measurements of SSH and
surface velocity.

Throughout this study, the surface vorticity fields are computed
from the components of the total velocity fields from simulated WaCM
data and from the components of surface velocity fields computed
geostrophically from simulated SWOT measurements of SSH. We are
also interested in the surface ocean velocity fields themselves, which
are characterized here by the magnitude of the total or geostrophically
computed vector surface velocity field, rather than by the vector com-
ponent fields. For the 4-day and 14-day time averages considered in
Sections 8–10, the analysis is based on the magnitudes of the vector
averaged velocity fields. While it would be straightforward to consider
each velocity component separately constructed from instantaneous
maps and time averages of simulated SWOT measurements of SSH
and WaCM measurements of surface velocity, the results are more
difficult to interpret than the scalar velocity magnitude field because
of the highly anisotropic and geographically inhomogeneous nature of
the velocity field in the CCS region. Because the velocity errors are
random in each component, direction errors will generally decrease
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as the signal-to-noise ratio of satellite estimates of velocity magnitude
increases.

2. The CCS model

A detailed description and validation of the CCS model used in this
study can be found in Molemaker et al. (2015). Since the model rep-
resentation of submesoscale variability is an important consideration
for simulating SWOT and WaCM data in this investigation, a summary
of the model is provided here. The computational code was ROMS,
the Regional Oceanic Modeling System (Shchepetkin and McWilliams,
2005, 2009), which solves the hydrostatic primitive equations for the
velocity, potential temperature, and salinity with a seawater equation
of state. To simulate local flows in a realistic large-scale environment,
the model was configured for the CCS utilizing open boundary condi-
tions and a sequence of three nested subdomains (Marchesiello et al.,
2003; Penven et al., 2006).

Because the primary target is submesoscale currents with horizontal
scales of <10 km near the eastern topographic slope, an aggressive
approach to nesting was taken with successively finer resolution in
a sequence of steps where each ‘‘child’’ grid utilizes ‘‘parent’’ grid
data at the open boundaries of the regional domains (Mason et al.,
2010). The procedure consists of off-line, one-way nesting from larger
to finer scales without feedback from the child grid solution onto the
parent grid. It is implicitly assumed that a numerical ‘‘zoom’’ around a
specific phenomenon is valid when it has an essentially local dynamical
behavior, albeit with important influences from its environment of
basin and regional circulation.

Bottom topography was defined from the SRTM30-plus bathymetry
dataset based on the 1-minute Smith and Sandwell (1997) global
dataset but using higher resolution data where available. A Gaussian
smoothing kernel with a width of 4 times the topographic grid spacing
was applied to avoid aliasing wherever the topographic data are avail-
able at higher resolution than the computational grid. The maximum
depth for all grids was set to 6000 m, which is not a serious distortion
for the U.S. west coast region. Models formulated with a terrain-
following coordinate such as ROMS have computational restrictions
with regard to the steepness and roughness of the topography (Beck-
mann and Haidvogel, 1993). Where the steepness of the topography
exceeded these criteria, additional local smoothing was applied. The
above procedure results in topography that is increasingly well resolved
in the nested grids with successively higher resolution but may differ
significantly from the original data in the coarser grids. Following
Mason et al. (2010), the topography near the boundaries of the nested
domains is matched with the parent topography.

The largest-scale simulation used in this study covers the full Pacific
basin (see Fig. 1 of Molemaker et al., 2015). This grid, as well as
the nested grids described below, is orthogonal based on an oblique
Mercator projection and designed to have nearly uniform spacing in
both horizontal dimensions. For the Pacific basin, the grid spacing
varies from 12.5 km at the central latitude of the grid to 8.5 km at
the north and south extremes of the grid near 40◦S and 55◦N; this is
comparable to what is used in global mesoscale eddy-resolving models.

The simulation was forced at the surface by the QuikSCAT-based
mean-monthly Scatterometer Climatology of Ocean Winds (SCOW;
Risien and Chelton, 2008), and monthly heat and freshwater fluxes
from the Comprehensive Ocean–Atmosphere Data Set (COADS; Da Silva
et al., 1994), using a weak feedback from SST (Barnier et al., 1995).
The open boundary information and initial state were taken from the
Simple Ocean Data Assimilation monthly climatology (SODA; Carton
and Giese, 2008). The model SST fields have both gyre-scale contrasts
and mesoscale eddy fluctuations visible in regions of high SST gradients
(see Figs. 1 and 2 in Molemaker et al., 2015; see also Figs. 1 and 2).
It should be noted that inertial motions are poorly represented in our
model because of the lack of high-frequency atmospheric forcing.

The Pacific basin model was spun-up from interpolated SODA data
for 2 years, by which time an approximate statistical equilibrium was

reached for kinetic energy. The model was then run for an additional
10 years. The mean-monthly climatology over this 10 years was used
to force the first nested grid along the U.S. west coast (see Fig. 2 of
Molemaker et al., 2015) at its open boundaries. The climatological
monthly boundary information from SODA forced the outermost Pacific
basin model with a seasonal cycle. Mesoscale eddy activity was passed
through boundary conditions to the first nested grid with an update
time scale of five days. The successive nested models were boundary
forced at increasingly shorter time scales, with boundary updates every
12 h for the CCS nested model analyzed in this study (see below).
This was verified by comparing maps of surface eddy kinetic energy
with altimetry-derived eddy kinetic energy. With open boundary con-
ditions in nested grids, it is important to avoid computational artifacts
associated with boundary-trapped features (e.g., rim currents) and
noisy fields. In the ROMS-to-ROMS nesting interface, these artifacts are
largely avoided, even for realistic flows with high mesoscale activity
(Mason et al., 2010).

The three nested grids along the U.S. west coast are rotated by a
polar angle of 24◦ so that the 𝑥 and 𝑦 axes are aligned approximately
cross-shore and alongshore, respectively. As with the grid for the full
Pacific basin, each of the three nested grids is discretely orthogonal,
and they vary even less in their spacing over their relatively smaller
domains. The first nested subdomain has a grid spacing that varies from
4 km to 3.97 km. The grids for the two smaller domains have average
horizontal spacings of 1.5 km, and 0.5 km, respectively. The successive
levels of grid refinement spontaneously exhibit an increasing amount
of submesoscale variability (c.f., Capet et al., 2008).

The importance of the grid resolution for model representation of
the submesoscale variability in the inner nested grid is readily apparent
from Fig. 1. Submesoscale variability in the SST and vorticity fields
is visibly much more energetic with a grid spacing of 0.5 km, even
compared with a grid spacing of 1.5 km. The choice of model grid
resolution is clearly an important consideration in the assessment of the
resolution capabilities of SWOT and WaCM estimates of surface velocity
and vorticity. This issue is discussed further in Section 11.

In all of the grids, there were 40 stretched vertical levels with a
resolution of a few meters near the surface. The time step was 1600 s
for the full Pacific basin model with ∼10 km grid spacing and decreased
to 600 s, 240 s and 90 s for the nested models with successively smaller
grid spacings of 4 km, 1.5 km and 0.5 km, respectively. Dissipation was
imposed in the model by a hyper viscous term, which is a by-product
of the 3rd-order upwind advection. The effective hyper viscosity scales
with the local velocity and the grid scale. The stepping procedure also
includes a damping term that is much smaller than the hyper viscous
term.

An important point for this study is that the high dissipation in the
model significantly attenuates internal gravity waves compared with
observations. While the internal gravity wave energy increases with
the increased resolution of each nested grid, it is much weaker than
in the real ocean, even at the highest grid resolution. In addition to the
high dissipation, the lack of high-frequency atmospheric forcing and the
absence of ocean tidal forcing contribute to the weak internal gravity
wave energy in the CCS model used in this study. The effects of higher
internal gravity wave energy are briefly considered in Section 3 from a
pair of models of the Gulf Stream region off the southeastern seaboard
of the U.S., one with weak internal waves like the CCS model used here
and the other with energetic internal waves forced by high-frequency
winds and tides (see Figs. 10 and 11).

For the investigation of the resolution capabilities of SWOT and
WaCM in this study, we consider only the inner nested model, which
extends from Point Conception in the south to approximately the
Oregon/California border in the north. There are 1200 × 1800 grid
points. With the 0.5-km grid spacing of this inner nested model, this
corresponds to 600 km in the cross-shore dimension by 900 km in
the alongshore dimension. For the analysis in this study, we consider
only the 30-day period from day 141 to day 171, which corresponds
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Fig. 7. Maps showing the scale dependence of the magnitudes of the non-Ekman ageostrophic velocities on the 0.5 km × 0.5 km model grid for the CCCS region after 2-dimensional
isotropic smoothing with half-power filter cutoff wavelengths of 10, 20, 30, 40, 60 and 80 km. Note the different color bars for the upper and lower rows of panels and that the
left half of the color bars are not used in either set of panels.

to the early summertime period from 21 May through 20 June when
submesoscale variability is fully developed. The climatological average
wind stress field for the month of June is shown in the right panel of
Fig. 2. For this study, the model output was subsampled at intervals
of 0.5 days. It will be seen from Fig. 24 below that this sample
interval is too coarse to fully resolve the rapidly evolving submesoscale
variability. Since the time interval between successive measurements
by both SWOT and WaCM is longer than this (see Section 7), the rapid
evolution of submesoscale variability is even less well resolved in the
satellite data.

A representative map of the model SST field on 5 June is shown
in the left panel of Fig. 2 for the full domain of the 0.5-km inner
nested model in latitude–longitude coordinates. The map reveals a
rich distribution of scales of variability. The cold water near the coast
is associated with wind-driven upwelling forced by the summertime
equatorward winds. The meandering ribbon of upwelled cold water
that separates from the coast at the northern corner of the model
domain is the core of the equatorward flowing California Current.
Submesoscale features are evident along SST fronts throughout the
model domain.

The speed and vorticity of the surface currents associated with the
SST field in Fig. 2 are shown in the rotated model grid coordinates in
Fig. 3. The relative vorticity 𝜁 = 𝜕𝑣∕𝜕𝑥 − 𝜕𝑢∕𝜕𝑦 (referred to hereafter
as just the vorticity) was computed from the cross-shore (𝑢, positive
onshore) and alongshore (𝑣, positive poleward) velocity components

using centered differences on the 0.5 km × 0.5 km model grid. Except
in the alongshore wavenumber spectra in Figs. 13–15, the vorticity is
normalized throughout this study by the local Coriolis parameter 𝑓 at
each grid point. A mesoscale anticyclonic eddy can be seen in the north-
west corner of the Central California Current System (CCCS) region in
the bottom panels of Fig. 3. An additional mesoscale anticyclone and a
mesoscale cyclone can be seen in the northwest corner of the full CCS
model domain in the top panels. Most of the rest of the model domain
is dominated by submesoscale variability, the most energetic of which
is associated with the core of the meandering equatorward-flowing
California Current that separates from the coast near Cape Blanco, just
to the north of the model domain. Energetic submesoscale features are
also associated with two offshore jets, one near the center of the model
domain and the other near the southern boundary of the model.

The highly energetic vorticity field at submesoscales in Fig. 3b can
be quantified by characterizing the scale dependence of the distribu-
tion of the magnitude of the normalized vorticity 𝜁∕𝑓 , which can be
interpreted as a Rossby number. The scale dependence of |𝜁 |∕𝑓 was
determined by isotropic smoothing of the map in the top panel of
Fig. 3b using a Parzen smoother (see Appendix A) with successively
longer half-power filter cutoff wavelengths ranging from 0 to 150 km.
To reduce edge effects in the smoothed fields along the northern,
southern and offshore boundaries of the model domain, the analysis
throughout the remainder of this study was restricted to the region
delineated by the black lines in both panels of Fig. 2.
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Fig. 8. The scale dependencies of the 80th, 90th, 95th and 99th percentile points of
the distributions of the magnitudes of the non-Ekman ageostrophic velocities on the
full 0.5 km × 0.5 km model grid for the full CCS model domain after 2-dimensional
isotropic smoothing with the half-power filter cutoff wavelengths indicated along the
abscissa. The dashed line corresponds to the root-mean squared (RMS) value of the
non-Ekman ageostrophic velocities.

The distributions of |𝜁 |∕𝑓 from the smoothed fields of normalized
vorticity are shown in Fig. 4a as a function of the half-power filter
cutoff wavelength of the smoothing. The four solid lines correspond
to the 80th, 90th, 95th and 99th-percentile points of the cumulative
probability distribution of |𝜁 |∕𝑓 . The root mean squared (RMS) value of
|𝜁 |∕𝑓 is about 0.5 in the unsmoothed field and decreases to about 0.1 at
large scales (see the dashed line in Fig. 4a) and coincides approximately
with the 80th percentile point of the distribution at all scales. It would
correspond to the 68th-percentile if the distribution were Gaussian.
The distribution of Rossby numbers |𝜁 |∕𝑓 in the unsmoothed fields is
thus long-tailed toward large magnitudes with values exceeding 0.85 at
about 5% of the grid points and exceeding 1.7 at about 1% of the grid
points. The high values of |𝜁 |∕𝑓 are concentrated geographically in the
regions of strongest ocean velocity (see Fig. 3). Much of the small-scale
variability in these regions is thus highly nonlinear and ageostrophic.
The long-tailed nature of the distributions of |𝜁 |∕𝑓 decreases rapidly
with increasing scale. All of the percentile points and the RMS decrease
very slowly for filter cutoff wavelengths longer than about 100 km.

From a close inspection of the vorticity maps in Fig. 3b, it can be
seen that small-scale features with positive vorticity are more intense
than their counterparts with negative vorticity. This is most easily seen
from the enlargement in the bottom panel of Fig. 3b. This asymmetry
of the vorticity distribution is quantified as a function of scale in
Fig. 4b. At the full resolution of the model grid, the vorticity is skewed
toward positive values. This skewness decreases with increasing scale,
becoming very small for half-power filter cutoff wavelengths longer
than about 50 km. The average values of 𝜁∕𝑓 are very close to zero
at all scales (see the dashed line in Fig. 4b).

3. Limitations of geostrophically computed velocity

The high incidence of large Rossby numbers |𝜁 |∕𝑓 at small scales
in Fig. 4a is indicative of limitations of the validity of the geostrophic
approximation. This is investigated in this section from comparisons
of the surface currents and vorticity from the total velocity field (as in
Fig. 3) with the surface currents and vorticity computed geostrophically
from the model SSH fields.1 The derivatives for the geostrophically
computed velocity components 𝑢𝑔 = −𝑔𝑓−1𝜕ℎ∕𝜕𝑦 and 𝑣𝑔 = 𝑔𝑓−1𝜕ℎ∕𝜕𝑥

1 For estimation of surface velocity from SWOT data, it is important to
distinguish the velocity computed from SSH data by the geostrophic equations
from the truly geostrophic velocity that is valid only for small Rossby number.
To clarify this subtle but pedagogically important point, we use the somewhat
cumbersome terminology ‘‘geostrophically computed velocity’’ rather than
‘‘geostrophic velocity’’.

were approximated using centered differences of sea surface height ℎ
on the 0.5 km × 0.5 km model grid. The geostrophically computed
vorticity 𝜁𝑔 = 𝜕𝑣𝑔∕𝜕𝑥 − 𝜕𝑢𝑔∕𝜕𝑦 was then approximated using centered
differences of the geostrophically computed velocity components. Maps
of SSH, the magnitudes of geostrophically computed surface velocity
and normalized geostrophically computed vorticity are shown in Fig. 5.

To the untrained eye, the existence of energetic submesoscale vari-
ability is not easily discerned in the SSH map in Fig. 5a. The prepon-
derance of highly energetic submesoscale variability evident in the map
of normalized geostrophically computed vorticity in Fig. 5c attests to
the extreme spatial high-pass filtering effects of double differentiation
of the SSH fields. Irrespective of the validity of the geostrophic approx-
imation, the ability to estimate vorticity from SWOT measurements of
SSH clearly depends critically on the magnitudes of small-scale errors
in the SSH measurements. This is investigated in Section 6 from con-
sideration of uncorrelated measurement errors alone. The added effects
of sampling errors from the limited swath width and discrete overpass
times of the SWOT satellite on maps of the spatially and temporally
evolving velocity and vorticity fields computed geostrophically from
space–time smoothed simulated SWOT data are considered in Section 8.
In this section, we consider only error-free SSH fields and their spatial
derivatives.

Qualitatively, the geostrophically computed surface current speed
and the normalized geostrophically computed vorticity in Figs. 5b and
c look very similar to the surface current speed and normalized vorticity
in Figs. 3a and b that were computed from the total velocity. The vector
differences between the total and geostrophically computed surface
velocity (referred to hereafter as the ageostrophic velocity2), are shown
in Fig. 6. From the unsmoothed velocity differences in Fig. 6a it can be
seen that the ageostrophic velocity field on large scales is dominated by
the expected wind-driven surface Ekman velocity associated with the
climatological wind stress used to force the model. The ageostrophic
velocity field smoothed using a Parzen smoother with a half-power
filter cutoff wavelength of 150 km is shown in Fig. 6b. These large-scale
ageostrophic velocity vectors are predominantly aligned approximately
52◦ to the right of the equatorward alongshore direction, which is at
least qualitatively consistent with expectations from the equatorward
alongshore winds during the early summertime period considered in
this study (see the right panel of Fig. 2). The magnitudes of these
large-scale ageostrophic currents are typically about 0.1 m s−1. For
the purposes of the analysis in this section, we will define the 150-km
smoothed ageostrophic velocity field in Fig. 6b to be the wind-driven
Ekman velocity.

The small-scale features in the ageostrophic velocity field in Fig. 6a
that are superimposed on the large-scale wind-driven Ekman velocity
field in Fig. 6b coincide with the regions of energetic submesoscale
variability noted above from Figs. 3 and 5. This becomes apparent after
subtracting the 150-km smoothed ageostrophic velocity field in Fig. 6b
from the unsmoothed ageostrophic velocity field in Fig. 6a. The mag-
nitudes of the resulting ‘‘non-Ekman ageostrophic velocities’’ (Fig. 6c)
often exceed 0.05 m s−1 and differences in excess of 0.15 m s−1 are
common in regions of the CCS with energetic submesoscale variability.

The scale dependence of the non-Ekman ageostrophic velocities is
shown in Fig. 7 for the CCCS region after isotropic smoothing using
a Parzen smoother with selected half-power filter cutoff wavelengths
ranging from 10 to 80 km. The non-Ekman ageostrophic features dimin-
ish in magnitude rather slowly with increasing scale because of the tight

2 The attribution ‘‘ageostrophic velocity’’ is not strictly correct. Some
of the apparent velocity structures computed geostrophically from SSH are
not representative of actual features in the velocity field. For example, the
geostrophically computed velocity field associated with a long-crested internal
gravity wave consists of opposing parallel velocity jets that straddle the wave
crests and troughs. This is a glaring misrepresentation of the surface manifes-
tation of internal wave velocities. This contamination of SWOT estimates of
the surface velocity field is discussed in more detail at the end of this section.
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clustering of small-scale features. The residual non-Ekman ageostrophic
velocities exceed 0.1 m s−1 in many small-scale features, even after
smoothing with a half-power filter cutoff wavelength of 40 km. Several
patches of non-Ekman ageostrophic velocities of 0.03 m s−1 still exist
with the maximum smoothing of 80 km shown in the bottom right
panel of Fig. 7. Bearing in mind the gradual rolloff of the filter transfer
function of the Parzen smoother (see Appendix A), the magnitudes
of the band-pass filtered non-Ekman ageostrophic velocities in Fig. 7
must be considered lower-bound estimates of the true values. The
imperfections of the band-pass filtering become progressively more of
an issue as the filter cutoff wavelength approaches the 150 km filter
cutoff used to define the Ekman ageostrophic velocity in Fig. 6b from
which the smoothed non-Ekman ageostrophic velocity magnitudes in
Fig. 7 were derived by band-pass filtering.

The statistics of the scale dependence of the magnitudes of the
non-Ekman ageostrophic velocities are summarized in Fig. 8 from the
80th, 90th, 95th and 99th-percentile points in the distributions of the
magnitudes of the non-Ekman ageostrophic velocities over the full
CCS model domain as functions of half-power filter cutoff wavelength.
On all scales, the RMS value corresponds very closely to the 80th-
percentile point in the distributions. The distributions of smoothed
residual non-Ekman velocities are thus long-tailed toward large mag-
nitudes, especially at small scales. In the unsmoothed fields, the RMS
value of the magnitudes of the non-Ekman ageostrophic velocities is
about 0.05 m s−1 and values in excess of 0.1 m s−1 occur at about
5% of the grid points over the full CCS model domain. It is evident
from Fig. 6c that high non-Ekman ageostrophic velocities are highly in-
homogeneous geographically, occurring over much higher percentages
of the grid points within the regions of most energetic submesoscale
variability.

As expected from the maps in Fig. 7, the distribution points of
the magnitudes of residual non-Ekman ageostrophic velocities decrease
rather slowly with increasing scale. Even after smoothing with a half-
power filter cutoff wavelength of 50 km, for example, values in excess
of 0.02 m s−1 and 0.05 m s−1 occur at, respectively, about 20% and 2%
of the grid points over the full CCS model domain and at much higher
percentages of the grid points within the localized regions of energetic
submesoscale variability.

The submesoscale features in the ageostrophic velocity field in
Figs. 6 and 7 are attributable mostly to contributions of cyclostrophic
motion to the total velocity field in the CCS model used for this
study. This can be shown by considering the force balance between
geostrophy and centripetal acceleration in the steady-state momentum
equation, referred to in meteorology as the gradient wind balance.
The cyclostrophic momentum balance for axially symmetric flow in
cylindrical coordinates is

− 𝑓𝑉 − 𝑉 2

𝑅
= − 1

𝜌
𝜕𝑃
𝜕𝑟

, (1)

where 𝑟 is radial distance, 𝑅 is the radius to the center of curvature,
𝜌 is the water density, 𝑃 is pressure, and 𝑉 is the angular velocity,
which is defined to be positive for counterclockwise rotation and neg-
ative for clockwise rotation. For the northern hemisphere considered
here, the angular velocity is thus positive in cyclones and negative in
anticyclones.

The momentum equation (1) can be rearranged into the form

𝑉𝑔 = 𝑉 + 𝑉 2

𝑓𝑅
, (2a)

where 𝑉𝑔 = (𝜌𝑓 )−1𝜕𝑃∕𝜕𝑟 is the geostrophically computed angular veloc-
ity. Since the second term on the right side of (2a) is always positive,
it is evident that 𝑉𝑔 > 𝑉 for any nonzero cyclostrophic velocity 𝑉 . The
angular velocity 𝑉𝑔 computed geostrophically is thus an overestimate of
the positive cyclostrophic velocity in cyclones and an underestimate of
the magnitude of the negative cyclostrophic velocity in anticyclones. As
a consequence, the vorticity computed geostrophically is overestimated
in cyclones and underestimated in anticyclones.

The positive bias of geostrophically computed vorticity can be
shown mathematically by rewriting (2a) as

𝑉𝑔 = (1 + 𝜖𝑅)𝑉 , (2b)

where

𝜖𝑅 = 𝑉
𝑓𝑅

(3)

is the Rossby number of the rotational flow. The average relative
vorticity within the circular area of the assumed axially symmetric flow
with radius 𝑅 can be obtained from Green’s Theorem, which gives

𝜁 =
∮𝐶

𝑣 ⋅ 𝑑𝑙

∫𝐴𝐶

𝑑𝐴
= 𝑉 2𝜋𝑅

𝜋𝑅2
= 2𝑉

𝑅
. (4)

It is thus apparent that (3) can be expressed alternatively as

𝜖𝑅 = 1
2

𝜁
𝑓
. (5)

Multiplication of (2b) by 2∕𝑅 and substitution of (4) for 2𝑉 ∕𝑅 gives

𝜁𝑔 = (1 + 𝜖𝑅) 𝜁 = 𝜁 + 1
2
𝜁2

𝑓
, (6)

where 𝜁𝑔 = 2𝑉𝑔∕𝑅 is the average vorticity computed geostrophically
within the circular area of axially symmetric flow with radius 𝑅. Since
the second term on the right side of (6) is positive, the geostrophically
computed vorticity 𝜁𝑔 is larger than the true vorticity 𝜁 , thus confirming
that the geostrophically computed vorticity overestimates the positive
vorticity in cyclones and underestimates the magnitude of negative
vorticity in anticyclones.

After division of both sides by 𝑓 , (6) can be rearranged into the
form

𝜁𝑔
𝑓

−
𝜁
𝑓

= 1
2

(

𝜁
𝑓

)2

, (7)

For cyclostrophic flow, the differences between the normalized
geostrophically computed vorticity 𝜁𝑔∕𝑓 and the normalized vorticity
𝜁∕𝑓 are thus related quadratically to the latter. The validity of the
cyclostrophic relation (7) is shown in the left panels of Fig. 9. The top
left panel is a map of (𝜁𝑔 − 𝜁 )∕𝑓 in the CCCS region computed from the
bottom panels of Figs. 5c and 3b after a small amount of smoothing
with a half-power filter cutoff wavelength of 20 km. The bottom left
panel shows binned averages of the normalized differences in the top
left panel as a function of the normalized vorticity 𝜁∕𝑓 . The curve in
the bottom left panel corresponds to the quadratic relation (7). The
quadratic fit is quite good. The discrepancies of the binned averages
from the theoretical quadratic relation (7) are presumably attributable
to deviations of the flow field from the axially symmetric flow assumed
in the derivation of (7).

It is noteworthy that the features in the top left panel of Fig. 9 that
are most compact and have the largest magnitudes are all positive. This
is also evident from the asymmetry of the distribution of adequately
sampled bins in the binned scatter plot in the bottom left panel of
Fig. 9. The most energetic ageostrophic features in the vorticity field
are thus cyclonic and the positive vorticities 𝜁 of these features are
overestimated by the geostrophically computed vorticities 𝜁𝑔 . The lack
of compact anticyclonic features is likely because small-scale anticy-
clones are susceptible to inertial instability (e.g., Rayleigh, 1916; Flierl,
1988; Kloosterziel and van Heijst, 1991; Kloosterziel et al., 2007). The
most intense small-scale features in the ageostrophic vorticity field are
therefore associated almost exclusively with submesoscale cyclones.

The relevance of cyclostrophic flow can be further investigated
from the ratios 𝜁𝑔∕𝜁 . For the axially symmetric flow assumed in the
derivation above, the ratio obtained from (6) is

𝜁𝑔
𝜁

= 1 + 1
2

𝜁
𝑓
. (8)
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Fig. 9. Maps of the differences (left) and ratios (right) of the normalized geostrophically computed vorticity 𝜁𝑔∕𝑓 in Fig. 5c and the normalized total vorticity 𝜁∕𝑓 in Fig. 3b
after smoothing with a half-power filter cutoff wavelength of 20 km. The bottom panels show binned averages of the gridded values in the maps in the top panels as functions of
𝜁∕𝑓 . The vertical bar on each binned average represents the ±1 standard deviation of the data values within the bin and the smooth lines correspond to the theoretical solutions
derived in the text for cyclostrophic motion.

The validity of this cyclostrophic relation is shown in the right panels of
Fig. 9. The top right panel is a map of 𝜁𝑔∕𝜁 in the CCCS region computed
from the bottom panels of Figs. 5c and 3b after a small amount of
smoothing with a half-power filter cutoff wavelength of 20 km. The
bottom right panel shows binned averages of the ratios in the top right
panel as a function of the normalized vorticity 𝜁∕𝑓 . Note again the
predominance of positive values of 𝜁 . The line in the bottom right panel
corresponds to the linear relation (8). The discrepancies of the binned
averages from the theoretical linear relation (8) are again presumably
attributable to deviations of the flow field from the axially symmetric
flow assumed in the derivation of (8). The differences are especially
evident in the regions of large-scale flow where |𝜁 |∕𝑓 is small.

The conclusion of the preceding analysis is that the errors from
the effects of cyclostrophic motion on surface velocities computed
geostrophically from SWOT data may often exceed 0.1 m s−1 in the
regions of high velocity where small-scale vorticity magnitudes are
strongest. These non-Ekman ageostrophic velocities can mostly be re-
duced to less than 0.05 m s−1 by smoothing with a half-power filter
cutoff wavelength of 50 km or more. The small-scale cyclostrophic
motions that are responsible for these residual errors in the geostrophic
approximation result in geostrophically computed velocities that over-
estimate the positive vorticity of cyclonic features and underestimate
the magnitudes of the negative vorticity of anticyclonic features. The
former occurs more commonly than the latter because of the tendency
for anticyclonic features to become unstable.

In addition to errors from the existence of small-scale cyclostrophic
motions, velocity estimates computed geostrophically from SWOT mea-
surements of SSH will be contaminated by the SSH signatures of
ageostrophic internal gravity waves. Hints of such features are evident

from close inspection of Fig. 5c in the form of subtle wavy striations
in the geostrophically computed vorticity. These are most clearly seen
in the central northern area of weak submesoscale variability in the
bottom panel. As discussed in Section 2, internal gravity waves are
underestimated in the CCS model used in this study. Artifacts from
internal waves are therefore likely to be worse in actual geostrophically
computed SWOT estimates of velocity than is suggested from Fig. 5c.

Present understanding of the sea-surface height signatures of the
oceanic internal gravity wave field is limited, and consequently the ex-
tent of this contamination of estimates of surface velocity and vorticity
computed geostrophically from SWOT data is not addressed systemati-
cally here. Its potential importance can be illustrated, however, through
comparison of the ageostrophic velocity fields from two high-resolution
ROMS simulations of the Gulf Stream region off the southeastern
seaboard of the U.S., both with a grid spacing of 0.75 km × 0.75 km.
Similar to the CCS model used in this study, one of the North Atlantic
simulations (referred to here as the LF simulation) was forced at low
frequencies with monthly smoothed winds and does not include ocean
tides (Gula et al., 2015). The other (referred to here as the HF simu-
lation) was forced at high frequencies with hourly winds and includes
boundary forcing by ten ocean tidal constituents. Although the region
of the North Atlantic model domain is very different dynamically from
the CCS region considered in this study, the availability of the HF and
LF simulations provides useful insight into the contamination of SWOT
data that can be expected from internal waves forced by high-frequency
winds and ocean tides.

Snapshots of the magnitudes of the total surface velocities, the
geostrophically computed surface velocities and their differences (the
‘‘ageostrophic velocities’’) over the full model domain are shown in
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Fig. 10. Snapshot maps of the magnitudes of the total velocity, the geostrophically computed velocity and the ageostrophic velocity (top to bottom) for the HF and LF simulations
(left and right columns, respectively) of a region of the North Atlantic Ocean off the southeastern seaboard of the U.S. The grid resolution was 0.75 km × 0.75 km in both
simulations. The HF simulation was forced with high-frequency (hourly) winds and tides. The LF simulation was forced with monthly winds and did not include tides. The ribbons
of high velocity in the western and northern regions of each map are the Gulf Stream as it flows northward off the Florida coast and then turns northeastward along the continental
slope to Cape Hatteras at the northern corner of the model domain. The 𝑥 and 𝑦 axis labels are longitude in degrees east and latitude in degrees north and the box in each panel
is the area over which the non-Ekman ageostrophic velocities were computed for Fig. 11. Note that the left half of the color bar is not used in the bottom panels.

Fig. 10. As in the CCS model used for this study (Figs. 3a and 5b),
the geostrophically computed velocity is qualitatively very similar to
the total surface velocity in each of the two North Atlantic simulations.
Moreover, the total and geostrophically computed velocity fields are
qualitatively similar between the two North Atlantic simulations. But
the ageostrophic velocity fields are dramatically different in the HF
and LF simulations. Features resembling the cyclostrophic motions
discussed above from the CCS model are evident in the ageostrophic

velocity field from the LF model, especially in the immediate vicinity
of the Gulf Stream. Such features are swamped in the HF model by
striated internal gravity wave structures. The geostrophically computed
velocities associated with these internal waves are a gross misrep-
resentation of the actual surface velocities associated with internal
waves. We nonetheless refer to these striated features as ‘‘ageostrophic
velocities’’ since they would be misinterpreted as velocity structures in
geostrophically computed SWOT estimates of the velocity field.
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Fig. 11. Maps showing the scale dependence of the magnitudes of smoothed non-Ekman ageostrophic velocities (defined as in Fig. 6c) from the subregions of the two North
Atlantic simulations indicated by the boxes in Fig. 10. The left and right columns correspond to the results for the HF and LF models, respectively, after 2-dimensional isotropic
smoothing with half-power filter cutoff wavelengths of 20, 40, 60 and 80 km (top to bottom). The 𝑥 and 𝑦 axis labels are distance in kilometers. Note that the left half of the
color bar is not used in this figure.

To assess the effects of internal gravity waves on SWOT estimates of
the surface velocity fields, the ‘‘non-Ekman ageostrophic velocity field’’
was computed from each North Atlantic simulation in the same manner
as in Fig. 6c, i.e., as the differences of each of the total ageostrophic

velocity fields from their respective 150-km smoothed ageostrophic
field (not shown here). The residual velocity fields were then smoothed
with various half-power filter cutoff wavelengths as in Fig. 7. The
magnitudes of the resulting smoothed non-Ekman ageostrophic velocity
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fields are shown in Fig. 11 for the region southeast of the Gulf Stream
indicated by the boxes in Fig. 10. Features suggestive of internal gravity
waves can be faintly seen in the LF simulation with 20-km smoothing
but are not readily apparent with higher smoothing. In contrast, in-
ternal waves are highly energetic in the HF simulation and decrease
in magnitude rather slowly with increased spatial smoothing. Fig. 11
suggests that significant contamination of the geostrophically computed
velocity field by the SSH signatures of internal waves persist in some
regions even after smoothing with a half-power filter cutoff wavelength
of 80 km.

In principle, the internal wave contamination that is evident in
Figs. 10 and 11 can be reduced by time averaging as in the simulations
of geostrophically computed SWOT estimates of space–time smoothed
velocity and vorticity in Section 8. In practice, the interleaved sampling
pattern during each repeat of the 21-day orbit of SWOT (see Figs. 21–
23) restricts the geographical distribution of locations with repeat
sampling, thus limiting the benefits of time averaging to mitigate con-
tamination by internal gravity waves. Qiu et al. (2018) note that it may
be possible to remove some of the internal wave contamination based
on model estimates of the stationary part of diurnal and semidiurnal
tidal signals. Contamination by nonstationary internal gravity waves is
much more problematic.

A thorough analysis of the effects of internal gravity waves on
interpretation of geostrophically computed SWOT estimates of space–
time smoothed velocity and vorticity is beyond the scope of this study.
For present purposes, the contrasting velocity fields from the two
North Atlantic simulations in Figs. 10 and 11 serve as a cautionary
warning that the assessments of the resolution capabilities for SWOT
estimates of velocity and vorticity in Sections 6, 8 and 9 may be
somewhat optimistic since our simulations are based on a CCS model
with unrealistically weak internal gravity waves. A rigorous analysis
of the effects of contamination of geostrophically computed velocity
estimates by internal gravity waves is needed to fully understand the
limitations of future use and interpretation of SWOT data.

It should be noted that other effects of synoptic-scale wind forcing
besides internal gravity waves may also not be adequately represented
in the CCS model used in this study since it was forced by seasonally
varying winds. High-frequency wind forcing can also affect mesoscale
and submesoscale variability. For this and other reasons, the resolution
capabilities of actual SWOT and WaCM data are likely to be somewhat
worse than the estimates presented here.

4. The error characteristics of measured and derived variables
from SWOT and WaCM data

For our investigation of the resolution capabilities of SWOT and
WaCM estimates of surface velocity and vorticity, the measurement
characteristics that are of interest are the footprint sizes of the data that
will be distributed to general users (referred to here as pre-processed
data), the standard deviations of the uncorrelated measurement errors
for the specified footprint size, and the space–time sampling patterns
that are imposed by the measurement swath width and the orbit
configuration for each instrument. The effects of footprint size and
uncorrelated measurement errors on SWOT and WaCM estimates of
velocity and vorticity are summarized in this section. Discussion of
the equally important consideration of sampling patterns on the ability
to map the velocity and vorticity fields (especially an issue for SWOT
because of its much narrower swath width) is deferred to Section 7.

4.1. SWOT errors

The measurement characteristics for the SWOT altimeter are docu-
mented in a suite of project reports published by the Jet Propulsion Lab-
oratory and available online at https://swot.jpl.nasa.gov/documents.
htm. The most germane of these reports are the Science Requirements
Document (Rodríguez and Callahan, 2016), the Onboard Processing

and Algorithm Theoretical Basis Document (Peral, 2016), and the
Mission Performance and Error Budget Document (Esteban Fernandez,
2017). While the versions of these documents that are listed in the
references may undergo revisions between now and the planned launch
date in 2021, no major changes are expected in the instrumental
measurement errors and orbit configuration that are crucial to the
simulations of SWOT data used in this study.

The baseline science requirements for SWOT are for SSH measure-
ments with a footprint size of 1 km on a 1 km × 1 km grid across the
measurement swath. SWOT will also include a nadir altimeter, but that
is not considered in this study because it has a very different footprint
size and measurement accuracy compared with the Ka-band Radar
Interferometer (KaRIn). KaRIn will measure SSH with unprecedented
resolution and spatial coverage across two parallel measurement swaths
with 50-km widths separated by a 20-km gap centered on the satellite
ground track (see Section 7).

In addition to uncorrelated errors from instrument noise, the KaRIn
estimates of SSH will be contaminated by spatially correlated (long-
wavelength) errors from orbit errors and various environmental effects,
including significant wave height (SWH) and the effects of dry gases,
water vapor and ionospheric free electrons on atmospheric refraction.
Of particular note, the validity of the so-called inverted barometer
correction of 1 cm hPa−1 for sea level pressure effects on SSH is
unknown on the small scales measurable by KaRIN. The uncertainties
of the sea level pressure fields from the atmospheric model that will be
used as a basis for the inverted barometer correction are also unknown
on these small scales.

Consideration of the complete error budget for SWOT is beyond the
scope of this study. Readers are referred to Rodríguez and Callahan
(2016) for a discussion of the present understanding of the various
aspects of SWOT measurement errors. Our focus is on SWOT estimates
of small-scale surface velocity and vorticity variability, both of which
are spatially high-pass filtered versions of the SSH field (see Fig. 5)
since they are computed from spatial derivatives of SSH. With the
possible exception of the inverted barometer correction mentioned
above, most of the spatially correlated errors have relatively large scale
and are thus expected to be of secondary importance. We therefore
consider only the effects of uncorrelated measurement errors in this
study.

In its low-resolution mode over the ocean, the raw radar measure-
ments by the KaRIn instrument will have a footprint size of about
100 m. To reduce the measurement errors, while at the same time re-
ducing the unnecessarily large data volume over the ocean, the present
official plan as summarized by Peral (2016) and Esteban Fernandez
(2017) is to smooth the raw measurements of SSH in an onboard
processor to achieve the SWOT science requirements for a footprint
size of 1 km for ocean observations.3 It is shown in Appendix B.1 that
this footprint size can be achieved by smoothing the raw measurements
using a 2-dimensional Parzen smoother with a half-power filter cutoff
wavelength of 2 km. It is further shown in Appendix B.1 that pre-
processed SWOT estimates of SSH obtained in this manner are spatially
uncorrelated on a 1 km × 1 km grid.

For the simulations of SWOT data in this study, a critically impor-
tant characteristic of the pre-processed SWOT estimates of SSH is the

3 The SWOT Algorithm Development Team has recently recommended
changing the onboard processing to a smaller footprint size of 0.5 km posted
on a 0.25 km × 0.25 km grid. This higher resolution increases the standard
deviation of the uncorrelated measurement errors in the onboard estimates of
SSH by a factor of two compared with a footprint size of 1 km. It will be
shown in Section 6 that even the science requirement of 1-km footprint size
used for the simulations in this study exceeds the signal resolution capability
by more than an order of magnitude for in-swath SWOT estimates of surface
velocity and vorticity computed geostrophically from SSH. The results of the
additional smoothing in ground-based post-processing that will be needed to
achieve an adequate signal-to-noise ratio would therefore be essentially the
same for either footprint size.
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standard deviation of the uncorrelated instrumental errors. As discussed
in detail in Appendix F, it is not possible to determine this unambigu-
ously from the SWOT documentation. In part, this is because the actual
science requirement is specified in terms of the wavenumber spectrum
of SSH after 2-dimensional smoothing in ground-based post-processing,
rather than in terms of the measurement accuracy itself in units of SSH
(see Appendix F). On the few occasions where a standard deviation
of the uncorrelated measurement errors is stated, inconsistent values
are given (see Appendix F), perhaps because the stated value is for an
evolving ‘‘present best estimate’’ of what will actually be achieved from
SWOT on-orbit, rather than for the baseline science requirement that is
considered in this study. The former is slightly better than the science
requirement and may continue to improve somewhat as the techniques
for processing the KaRIn data are refined between now and the launch
date.

The wavenumber spectral specification of the measurement errors in
the SWOT science requirements is ‘‘reverse engineered’’ in Appendix F
to determine the corresponding standard deviation of the uncorrelated
errors of the pre-processed SWOT estimates of SSH. The derived value
for the swath-averaged science requirement for conditions of 2-m SWH
and a footprint size of 1 km is shown to be 𝜎ℎ = 2.74 cm.

The smallest value cited in the SWOT documentation for the swath-
averaged standard deviation of uncorrelated errors is 𝜎ℎ = 2.4 cm for
2-m SWH, which is somewhat better than the value of 2.74 cm derived
in Appendix F. The dependencies of the present projected estimate of
SWOT measurement errors on swath location and SWH are shown in
Fig. F.1 in Appendix F. Our assumed swath-averaged error standard
deviation of 𝜎ℎ = 2.74 cm appears to be more representative of the
projected estimate for 4-m SWH.

The difference between 2.74 cm and 2.4 cm is a minor distinction
for this investigation. A more significant issue is that the analysis
presented in this study does not simulate the cross-track variation of
the SWOT measurement errors. As shown in Fig. F.1, the measurement
errors increases toward both edges of the measurement swath, result-
ing in cross-track variations that are much larger than the difference
between 2.74 cm and 2.4 cm. For 2-m SWH, for example, the estimates
of SSH errors in Fig. F.1 range from 1.9 cm at the center of the swath to
3.0 cm at the inner edge of the swath and more than 4 cm approaching
the outer edge of the swath. It will be seen in Sections 6, 8 and 9
that geostrophically computed SWOT estimates of velocity and vorticity
must be smoothed considerably to achieve adequate signal-to-noise
ratio. This smoothing leads to edge effects that would be exacerbated
by the larger measurement errors near the swath edges.

As noted in the introduction, the error analysis in this study could
have been carried out using the simulator software available from the
SWOT Project Office (Gaultier et al., 2017). Analogous simulator soft-
ware is not yet available for WaCM (Rodríguez, 2018). For consistency
in our analysis of the effects of SWOT and WaCM measurement errors,
we have therefore chosen to simulate the error standard deviation
for simulated SWOT data as spatially constant with a swath-averaged
value of 𝜎ℎ = 2.74 cm. Because our simulations do not account for
the higher measurement errors near the edges of the measurement
swaths, the analysis presented here likely underestimates the overall
effects of measurement errors on space–time smoothed fields of velocity
and vorticity constructed geostrophically from SWOT measurements of
SSH. The results presented in Sections 6, 8 and 9 should therefore
be considered optimistic assessments of the resolution capabilities of
actual SWOT data.

For SWOT, the velocity and vorticity fields that are the focus of
this investigation must be estimated geostrophically, which requires
differentiation of SSH for velocity and double differentiation of SSH for
vorticity. The spatial derivatives are estimated in this study by centered
differences of the discrete SSH values. The effects of the uncorrelated
errors of SWOT measurements of SSH on geostrophically computed
velocity and vorticity are derived in Appendix G.1 using propagation-
of-error analysis. The results are summarized in the first column of

Table 1
The standard deviations of errors of SWOT estimates of sea surface height ℎ,
the geostrophically computed cross-shore and alongshore velocity components 𝑢𝑔 =
−𝑔𝑓−1𝜕ℎ∕𝜕𝑦 and 𝑣𝑔 = 𝑔𝑓−1𝜕ℎ∕𝜕𝑥, the magnitude (𝑢2𝑔 + 𝑣2𝑔 )

1∕2 of the geostrophically
computed velocity and the geostrophically computed vorticity 𝜁𝑔 = 𝜕𝑣𝑔∕𝜕𝑥 − 𝜕𝑢𝑔∕𝜕𝑦
normalized by the Coriolis parameter 𝑓 . The calculations are all based on the value of
𝑓 = 8.75×10−5 s−1 at the central latitude 37◦N of the California Current model domain
shown in Fig. 2. The results for the pre-processed SWOT estimates of SSH with 1-km
footprint on a 1 km × 1 km grid and the science requirement of 𝜎ℎ = 2.74 cm for
the standard deviation of the uncorrelated errors of the SSH measurements are listed
in the first column. The reduction of error that can be achieved by smoothing with
half-power filter cutoff wavelengths of 𝜆𝑐 = 10 km and 50 km are listed in the second
and third columns. The error estimates in the first and second columns are derived
in Appendices G.1 and G.3 by propagation-of-error analysis. The error estimates in
the third column were obtained by integrating the analytical expressions for the error
spectra derived in Appendix I.2 with 𝜆𝑐 = 50 km.

Variable SWOT with SWOT with SWOT with
1-km footprint 5-km footprint 50-km smoothing

(10-km smoothing)

SSH 2.74 cm 0.55 cm 0.11 cm
𝑢𝑔 , 𝑣𝑔 2.17 m s−1 0.26 m s−1 0.013 m s−1
Speed 3.07 m s−1 0.37 m s−1 0.018 m s−1
𝜁𝑔∕𝑓 39.1 3.2 0.045

Table 1, which shows that the 𝜎ℎ = 2.74-cm standard deviation of
SSH measurement errors for a footprint size of 1 km results in a large
standard deviation of 2.17 m s−1 for the errors of SWOT estimates
of each geostrophically computed velocity component at the central
latitude 37◦N of the CCS model domain where the Coriolis parameter
is 𝑓 = 8.75 × 10−5 s−1. This error increases by about 11% at the 32.5◦N
southern corner of the CCS model domain where 𝑓 = 7.81 × 10−5 s−1

and decreases by about 11% at the 42◦N northern corner of the model
domain where 𝑓 = 9.73×10−5 s−1. The 𝜎ℎ = 2.74-cm SSH measurement
errors result in an extraordinarily large standard deviation of 39.1𝑓 for
the errors of geostrophically computed SWOT estimates of vorticity at
37◦N.

Because of these large errors, SWOT estimates of velocity and
vorticity computed geostrophically from the unsmoothed pre-processed
data are likely of little value for most oceanographic applications. The
errors listed in the first column of Table 1 are much larger than the
errors summarized for WaCM estimates of velocity and vorticity in
Section 4.2, but the footprint size of 5 km for pre-processed WaCM
estimates of surface velocity is a factor-of-5 coarser than the 1-km
footprint size for SWOT. The large errors of SWOT estimates of velocity
and vorticity obtained from the pre-processed SWOT data can be re-
duced by smoothing commensurately with the half-power filter cutoff
wavelength of 10-km that corresponds to the 5-km footprint size of
pre-processed WaCM estimates of surface velocity (see Appendix B.2).

The effects of smoothing the pre-processed SWOT estimates of SSH
isotropically with a half-power filter cutoff wavelength of 10 km in
ground-based post-processing, i.e., the same smoothing applied in pre-
processing of WaCM estimates of velocity, are derived in Appendix G.3
using propagation-of-error analysis. The results are summarized in
the second column of Table 1. The standard deviations of errors of
geostrophically computed SWOT estimates of velocity and vorticity are
reduced by factors of about 8 and 12, respectively. The resulting un-
certainties are comparable to the uncertainties of velocity and vorticity
derived below in Section 4.2 based on pre-processed WaCM data with
the same footprint size of 5 km (see Table 2).

Eqs. (G.2), (G.5), (G.8), (G.17a) and (G.20) in Appendices G.1
and G.3 from which the error estimates in the first two columns of
Table 1 were computed are all expressed in terms of the variance
𝜎2ℎ of the errors of the pre-processed SWOT estimates of SSH for a
footprint size of 1 km. It is therefore straightforward to recompute the
standard deviations of the errors of geostrophically computed velocity
components and vorticity based on any specified value of 𝜎2ℎ.
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Table 2
The standard deviations of errors of WaCM estimates the cross-shore and alongshore
velocity components 𝑢 and 𝑣, the velocity magnitude (𝑢2 + 𝑣2)1∕2 and the vorticity
𝜁 = 𝜕𝑣∕𝜕𝑥−𝜕𝑢∕𝜕𝑦 normalized by the Coriolis parameter 𝑓 at the central latitude 37◦N of
the California Current model domain shown in Fig. 2. The results for the pre-processed
WaCM estimates of the velocity components with 5-km footprint size on a 5 km × 5 km
grid and the baseline standard deviation of 𝜎spd = 0.50 m s−1 for uncorrelated speed
errors, which corresponds to 𝜎𝑢,𝑣 = 0.354 m s−1 for the uncorrelated measurement errors
of each orthogonal component of velocity, are listed in the first column. The results
for the same footprint size of 5 km oversampled on a 1 km × 1 km grid are listed
in the second column. The reduction of error that can be achieved by smoothing with
a half-power filter cutoff wavelength of 𝜆𝑐 = 50 km are listed in the third column.
The error estimates in the first and second columns are derived in Appendix G.2 by
propagation-of-error analysis. The error estimates in the third column were obtained
by integrating the analytical expressions for the error spectra derived in Appendix I.4
with 𝜆𝑐 = 50 km.

Variable WaCM with WaCM with WaCM with
5-km footprint 5-km footprint 50-km smoothing
and 5-km grid and 1-km grid and 1-km grid

𝑢, 𝑣 0.35 m s−1 0.35 m s−1 0.071 m s−1
Speed 0.50 m s−1 0.50 m s−1 0.10 m s−1
𝜁∕𝑓 0.81 2.4 0.12

4.2. WaCM errors

As WaCM is not yet a proposed NASA mission, there is no formal
documentation of the details of the Doppler measurements of surface
velocity. The technical aspects of WaCM are summarized by Rodríguez
(2018). A Doppler radar measures the radial component of velocity
parallel to the antenna pointing angle. Estimation of vector velocity
requires measurements from multiple look angles. This is achieved
using a spinning pencil-beam antenna that measures a given location
on the sea surface from several different look angles over a short period
of time as the satellite moves along its orbit.

Issues with the geometrical transformations of pooled measure-
ments of radial velocity from multiple look angles to estimate two
orthogonal components of velocity are not addressed in our simulations
of WaCM data. We have assumed that the two orthogonal velocity
components have already been estimated in onboard and ground-based
pre-processing of the measurements pooled over 5 km × 5 km areas and
that the uncorrelated errors of surface current speed in these pooled
estimates have a standard deviation of 𝜎spd = 0.50 m s−1 in the baseline
design for WaCM. In reality, the errors will differ for the two velocity
components (see Rodríguez, 2018). Because of limited azimuthal di-
versity of the Doppler measurements of radial velocity near the swath
edges, the errors of the cross-track velocity component increase toward
the inner edges of the two parallel measurement swaths. Likewise, the
errors of the along-track component increase toward the outer edges of
the measurement swaths.

It is shown in Appendix B.2 that an effective footprint size of
5 km can be achieved by smoothing high-resolution data using a
2-dimensional Parzen smoother with a half-power filter cutoff wave-
length of 10 km. The estimates of surface velocity that we refer to
here as pre-processed WaCM data were therefore simulated from the
CCS model output based on isotropic 2-dimensional smoothing of noisy
velocity components on the full 0.5 km × 0.5 km resolution of the
model grid with a half-power filter cutoff wavelength of 10 km.

Since velocity will be estimated directly by WaCM, the only derived
quantity is the vorticity, which is computed from spatial derivatives
of the velocity components. We assume throughout this study that
the speed measurement uncertainties are equally partitioned between
orthogonal velocity components and that the errors of each velocity
component are uncorrelated with each other. The baseline standard
deviation of 𝜎spd = 0.50 m s−1 for the speed measurement errors
therefore corresponds to a standard deviation of 𝜎𝑢,𝑣 = 0.354 m s−1

for the uncorrelated errors of pre-processed WaCM estimates for each
orthogonal velocity component 𝑢 and 𝑣.

For a footprint size of 5 km, pre-processed WaCM estimates of
surface velocity are spatially uncorrelated on a 5 km × 5 km grid
(see Appendix B.2). The effects of the uncorrelated velocity component
errors on WaCM estimates of vorticity computed on a 5 km × 5 km grid
are derived in Appendix G.2 using propagation-of-error analysis. The
results are summarized in the first column of Table 2, which shows that
the standard deviation of 𝜎𝑢,𝑣 = 0.354 m s−1 for the velocity component
errors results in a standard deviation of 0.807𝑓 for the errors of WaCM
estimates of vorticity at the central latitude 37◦N of the CCS model
domain.

It is advantageous to oversample the WaCM estimates of surface
velocity on a 1 km × 1 km grid in order to retain more of the
high-wavenumber variability of the vorticity signal in the centered
differences used here to estimate the derivatives in the definition of
vorticity (see Appendix H). For the simulations in this study, over-
sampling the WaCM data on a 1 km × 1 km grid has the additional
practical advantage of giving a spatial gridding that is equivalent to the
1 km × 1 km gridding assumed here for the pre-processed SWOT data.
The footprint size from the filtering in the pre-processing of WaCM data
is still 5 km. The standard deviation of the errors of WaCM estimates
of each velocity component is therefore still 𝜎𝑢,𝑣 = 0.354 m s−1, but
the velocity component errors on a 1 km × 1 km grid are spatially
correlated.

The effects of correlation of the measurement errors on the vorticity
estimated from WaCM data on a 1 km × 1 km grid are incorporated
in the propagation-of-error analysis in Appendix G.2. The results are
summarized in the second column of Table 2. The oversampling in-
creases the standard deviation of the vorticity errors by about a factor
of 3 to a value of about 2.4𝑓 at 37◦N. While this increase of the
errors is undesirable, the standard deviation of the vorticity signal
also increases in the centered difference estimates of the derivatives
on the oversampled grid. It is shown in Appendix H that this retains
more of the short-wavelength vorticity variability where much of the
signal variance lies (see Figs. 3b and 4). The net effect of oversampling
the WaCM data on a 1 km × 1 km grid is to improve the signal-to-
noise ratio, even though the noise standard deviation is higher on the
1 km × 1 km grid.

The standard deviation of the errors of WaCM estimates of velocity
with 5-km footprint (i.e., with smoothing with a half-power filter cutoff
wavelength of 10 km) in the first two columns of Table 2 is somewhat
larger than the standard deviation of geostrophically computed SWOT
estimates of velocity with 10-km smoothing listed in the second column
of Table 1. On the other hand, the errors of WaCM estimates of
vorticity on a 1 km × 1 km grid are somewhat smaller than the errors
of geostrophically computed SWOT estimates of vorticity with 10-km
smoothing to achieve a footprint size of 5 km (compare the bottom
elements in the second columns of Tables 1 and 2). The apparent con-
tradiction of higher velocity errors but lower vorticity errors for WaCM
is attributable to the different wavenumber spectral characteristics of
the errors of SWOT and WaCM estimates of the velocity components
and vorticity (see Section 4.4) that arise from the different orders of
differentiation required to obtain the estimates.

Eqs. (G.10), (G.12) and (G.15) in Appendix G.2 from which the error
estimates in the first two columns of Table 2 were computed are all
expressed in terms of the variances 𝜎2𝑢 and 𝜎2𝑣 of the errors of the pre-
processed WaCM estimates of the velocity components. It is therefore
straightforward to recompute the standard deviations of the vorticity
errors based on any specified values of 𝜎2𝑢 and 𝜎2𝑣 .

4.3. Error reductions from smoothing in ground-based post-processing

The errors of SWOT and WaCM estimates of velocity and vorticity
listed in the first two columns of Tables 1 and 2 are too large for
the data to be useful for most applications, even with the 10-km
smoothing to achieve a footprint size of 5 km. SWOT and WaCM data
will have to be further smoothed in ground-based post-processing to
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reduce the effects of measurement errors. The reductions of the errors
of the measured and derived variables that are achieved with this
additional smoothing could be derived analytically, albeit tediously, by
the propagation-of-error analysis procedure used in Appendix G.3 for
the case of smoothing of the SWOT data with a half-power filter cutoff
wavelength of 10 km. For SWOT, this would require determination of
the autocorrelations of smoothed SSH errors at the three spatial lags
of 2𝛥𝑥, 2

√

2𝛥𝑥 and 4𝛥𝑥 that appear in Eqs. (G.17a) and (G.21) in
Appendix G for each choice of half-power filter cutoff wavelength 𝜆𝑐 .
A similar propagation-of-error analysis could be carried out for WaCM
estimates of smoothed velocity and vorticity.

The variances of the residual errors after isotropic 2-dimensional
smoothing with a given 𝜆𝑐 are much more easily determined for each
variable of interest from the analytical expressions for the wavenumber
spectra of the measured and derived variables that are derived for
SWOT and WaCM in Appendices I.2 and I.4, respectively.

The procedure for determining the standard deviation of residual
errors from the wavenumber spectrum after smoothing in ground-
based post-processing is based on Parseval’s Theorem, which relates the
variance of a variable to the integral of the power spectral density of
the variable. For finite record length, this integral becomes the discrete
sum (D.1) in Appendix D. The residual error variance after isotropic
2-dimensional smoothing was obtained by integrating the analytical
expression for the wavenumber spectra of the residual errors for half-
power filter cutoff wavelengths 𝜆𝑐 ranging from 10 km to 150 km.
Examples of these wavenumber spectra are presented and discussed
below in Section 4.4 for 𝜆𝑐 = 20 km, 50 km and 80 km. The standard
deviation of the residual errors is the square root of the residual error
variance computed from the integrated spectrum for each choice of 𝜆𝑐 .

The residual error standard deviations obtained in this manner are
shown in Fig. 12 for SSH from SWOT (panel a) and for velocity and
vorticity (panels b and c, respectively) estimated from both SWOT and
WaCM data on 1 km × 1 km grids. These estimates assume complete
instantaneous sampling of the full CCS model domain, i.e., without the
sampling errors discussed in Sections 7–10. The errors initially drop
very quickly with increased smoothing and then more gradually as the
smoothing is further increased. In the case of SSH, the residual errors in
Fig. 12a decrease as 𝜆−1𝑐 . The velocity errors in Fig. 12b decrease as 𝜆−2𝑐
and 𝜆−1𝑐 for SWOT and WaCM, respectively. The corresponding vorticity
errors in Fig. 12c decrease as 𝜆−3𝑐 and 𝜆−2𝑐 . The more rapid decreases
for SWOT than for WaCM are because of attenuation of the variance of
the geostrophically computed velocity component errors from the band-
pass filtering operation of the response function for centered difference
estimates of the geostrophic derivatives (see Appendices H and I and
the discussion in Section 4.4 of the wavenumber spectral characteristics
of the residual errors of the smoothed variables).

To provide some quantitative numbers for the error reductions
achieved with isotropic 2-dimensional smoothing in ground-based post-
processing, the values of the standard deviations for the case of a filter
cutoff wavelength of 𝜆𝑐 = 50 km are listed for SWOT and WaCM in
the third columns of Tables 1 and 2, respectively. The errors of SWOT
estimates of SSH and geostrophically computed velocity components
and vorticity are reduced by factors of 25, 167 and 875, respectively,
compared with estimates from the pre-processed SWOT data. Compared
with the 10-km smoothing applied to SWOT data in Section 4.1 to
match the 5-km footprint size of WaCM data (see the second column
of Table 1), the errors of geostrophically computed SWOT estimates
of velocity and vorticity with 50-km smoothing are further reduced
by factors of 21 and 81, respectively. The errors of WaCM estimates
of velocity components and vorticity on a 1 km × 1 km grid with
5-km footprint, the baseline speed noise of 𝜎spd = 0.50 m s−1 and
50-km smoothing are reduced by more modest factors of 5 and 20,
respectively, compared with the 10-km smoothing in the pre-processing
(see the second and third columns of Table 2).

4.4. Wavenumber spectral characteristics of the errors

Alongshore wavenumber spectra of the signals and errors in sim-
ulated SWOT and WaCM estimates of the velocity components and
vorticity from the CCS model provide insight into the significant chal-
lenges in mapping small-scale variability from the satellite data. In the
case of SWOT, velocity and vorticity are computed geostrophically and
the alongshore wavenumber spectra of SSH signal and errors are also
considered. The error spectra provide wavenumber decompositions of
the error standard deviations presented in Sections 4.1–4.3. As noted
previously, we consider only the effects of uncorrelated measurement
errors in this study since they are the primary limitation for SWOT and
WaCM estimates of velocity and vorticity. The error spectra presented
below assume a standard deviation of 𝜎ℎ = 2.74 cm for the errors of pre-
processed SWOT estimates of SSH and a standard deviation of 𝜎𝑢,𝑣 =
0.354 m s−1 for the errors of pre-processed WaCM estimates of each
velocity component. The latter corresponds to a standard deviation of
𝜎spd = 0.50 m s−1 for speed errors equally partitioned between the two
veloctiy components.

A minor caveat to the general applicability of the analytical equa-
tions in Appendix I for the theoretical wavenumber spectra of the errors
of velocity components and vorticity computed geostrophically from
SSH is that they are based on a specified constant value of the Coriolis
parameter 𝑓 . For the calculations in this section, we have used the value
of 𝑓 at the central latitude 37◦N of the CCS model domain. At the
northern extent of the model domain, the Coriolis parameter is 11%
larger than its value at 37◦N; at the southern extent, it is 11% smaller.

The use of a constant value of 𝑓 in the analytical expressions for
the geostrophically computed velocity and vorticity error variances is
a minor issue in this study. This is confirmed in Figs. 13a, b and 14 from
the very close agreement between the spectra of the errors computed
theoretically based on the analytical expressions in Appendix I with
constant 𝑓 (the green lines in each panel of the above-noted figures)
and the spectra determined empirically from errors of velocity compo-
nents and vorticity computed geostrophically from maps of simulated
SWOT SSH measurement errors using the local value of 𝑓 at each grid
point (the blue lines in each panel of the figures).

Before presenting the alongshore wavenumber spectra of the vari-
ables of interest, we pause to point out one other very minor issue in
the error spectra presented for both SWOT and WaCM in Figs. 13–
15. The 2-dimensional smoothing applied in simulated ground-based
post-processing of the SWOT and WaCM error fields from which the
error spectra were computed empirically (the blue lines in Figs. 13–15)
was applied truly isotropically using a 2-dimensional Parzen weighting
function (see Appendix A) that depends only on the radial distance
of each data point from the estimation location. It is shown in Ap-
pendix C that essentially equivalent isotropic 2-dimensional smoothing
can be achieved through sequential 1-dimensional smoothing using the
Parzen filter in each of two orthogonal dimensions. The advantage
of sequential 1-dimensional smoothing is that it facilitates the deriva-
tions in Appendix I of the analytical expressions for the wavenumber
spectral characteristics of residual errors in smoothed fields that are
shown by the green lines in Figs. 13–15. The essential equivalence of
true isotropic 2-dimensional smoothing and sequential 1-dimensional
smoothing can be inferred from these figures by the very close agree-
ment between the theoretical spectra computed from the analytical
expressions in Appendix I and the spectra computed empirically from
the simulated error fields.

4.4.1. Error spectra from pre-processed SWOT data
The alongshore wavenumber spectra of error-free SSH from the CCS

model and uncorrelated SSH measurement errors from unsmoothed
simulated pre-processed SWOT estimates of SSH are shown in the top
panel of Fig. 13a. The spectrum of uncorrelated SSH measurement
errors computed empirically from the simulated SWOT data is shown
by the blue line. The theoretical spectrum of SSH measurement errors
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Fig. 12. The standard deviations of residual errors as functions of half-power filter cutoff wavelength with 2-dimensional isotropic Parzen smoothing for footprint sizes of 1 km and
5 km for SWOT and WaCM, respectively: (a) SWOT estimates of SSH; (b) Geostrophically computed SWOT estimates of each of the components of velocity (thin lines, which are
indistinguishable for the two components), and WaCM estimates of each component of the total velocity (thick lines, which are again indistinguishable for the two components);
and (c) geostrophically computed SWOT estimates of vorticity (thin line) and WaCM estimates of the total vorticity (thick lines), normalized by the Coriolis parameter 𝑓 at the
central latitude 37◦N of the CCS model domain. The thick solid lines in (b) and (c) are for WaCM with the baseline speed noise of 𝜎spd = 0.50 m s−1 and the thick dashed lines
are for the smaller speed noise of 𝜎spd = 0.25 m s−1 considered in Section 10. The residual standard deviations in these figures were computed from the error variances determined
for SWOT and WaCM, respectively, by integrating the analytical formulas in Appendix I.3 and I.4 for each filter cutoff wavelength 𝜆𝑐 . The power-law dependencies on 𝜆𝑐 that are
labeled on each curve were determined from log–log versions of each panel (not shown here).

given by the analytical expression (I.2) derived in Appendix I.1 is
shown by the green line, which agrees very well with the empirical
error spectrum. These error spectra intersect the SSH signal spectrum at
a wavenumber of about 0.022 cycle per km (cpkm), which corresponds
to a wavelength of about 45 km. The relevance of this intersection
of the signal and noise spectra to the resolution capability of SWOT
estimates of SSH is discussed later in the context of the interpretation
of Fig. 13b.

The alongshore wavenumber spectra of signals and errors for SWOT
estimates of cross-shore and alongshore velocity components 𝑢𝑔 and 𝑣𝑔
computed geostrophically from centered difference estimates of deriva-
tives of simulated pre-processed SWOT estimates of SSH are shown in,
respectively, the second and third panels of Fig. 13a. The error spectra
computed empirically from the simulated SWOT data based on the local
value of the Coriolis parameter 𝑓 at each grid point are again shown
by blue lines in these panels. The analytical expressions (I.5) and (I.10)
derived in Appendix I.1 for the error spectra are shown by the green
lines, which again agree very well with the empirical error spectra. A
notable feature of the 𝑣𝑔 spectra is that the spectral power of 𝑣𝑔 errors
exceeds the spectral power of the 𝑣𝑔 signal at all wavenumbers. The 𝑣𝑔
signal is thus undetectable from unsmoothed pre-processed SWOT data.
In the case of the 𝑢𝑔 spectra, the signal power exceeds the error power
for wavenumbers below about 0.02 cpkm but this signal variance will
be masked in maps of 𝑢𝑔 by the order-of-magnitude higher power of
the errors at higher wavenumbers.

The dramatic differences between the wavenumber characteristics
of the alongshore wavenumber spectra of the errors of 𝑢𝑔 and 𝑣𝑔 merit
some discussion. The spectrum is ‘‘white’’ (constant with alongshore
wavenumber) for 𝑣𝑔 errors but ‘‘blue’’ (dominated by high alongshore
wavenumber variability) for 𝑢𝑔 errors. The spatial high-pass filtering of
𝑢𝑔 errors implied by this blueness occurs because the white noise SSH is
differentiated in the alongshore dimension, i.e., in the same dimension
as the wavenumber spectrum. (The dropoff of spectral power at the
highest wavenumbers arises because of the response function for the
centered difference approximation of the geostrophic derivatives; see
Fig. H.1 in Appendix H.)

The 𝑣𝑔 errors are similarly spatially high-pass filtered, but from
differentiation of SSH in the cross-shore dimension. This cross-shore
high-pass filtering would be evident in the cross-shore wavenumber
spectrum of 𝑣𝑔 , but is not manifest in its alongshore wavenumber
spectrum because the centered difference estimates of the derivative
of SSH in the geostrophic equation for 𝑣𝑔 are perpendicular to the
alongshore dimension. It is shown in Appendix I, however, that the

blueness of the cross-shore spectrum of 𝑣𝑔 nonetheless has a large effect
on the spectra of error fields smoothed 2-dimensionally in ground-based
post-processing. (The cross-shore spectrum of 𝑢𝑔 is white for the same
reason that the alongshore spectrum of 𝑣𝑔 is white, namely that the
alongshore centered difference estimates of the derivative of SSH in
the geostrophic equation for 𝑢𝑔 are perpendicular to the cross-shore
dimension.)

The alongshore wavenumber spectra of signal and errors for SWOT
estimates of vorticity 𝜁𝑔 computed geostrophically from second deriva-
tives of simulated pre-processed SWOT estimates of SSH are shown
in the bottom panel of Fig. 13a. The spectrum of 𝜁𝑔 errors computed
empirically from the simulated SWOT data (the blue line) again agrees
very well with the theoretical spectrum of 𝜁𝑔 errors (the green line)
computed by the analytical expression (I.24) in Appendix I based on
the constant value of 𝑓 = 8.75 × 10−5 s−1 at the central latitude 37◦N
of the CCS model domain. In this case, the error spectra are nearly
three orders of magnitude more energetic than the 𝜁𝑔 signal spectrum
at all wavenumbers. The vorticity signal estimated from unsmoothed
pre-processed SWOT data is thus completely swamped by the errors at
all wavenumbers.

For comparison with the wavenumber spectra of errors of estimates
of velocity components and vorticity computed from pre-processed
WaCM data that are discussed below, the alongshore wavenumber
spectra of signals and errors for SWOT estimates of SSH, 𝑢𝑔 , 𝑣𝑔 and
𝜁𝑔 are shown in Fig. 13b for isotropic 2-dimensional smoothing with
a half-power filter cutoff wavelength of 𝜆𝑐 = 10 km in simulated
ground-based post-processing of the pre-processed SWOT data. This
10-km smoothing is the same as the smoothing applied in this study
to simulate the 5-km footprint size in pre-processing of WaCM data
(see Appendix B.2). The error spectra computed empirically from the
smoothed SWOT data (the blue line in each panel) again agree very well
with the theoretical spectra (the green lines) that were computed by the
analytical expressions (I.29), (I.31), (I.33) and (I.35) in Appendix I.2
for isotropic 2-dimensional smoothing with a filter cutoff wavelength
𝜆𝑐 = 10 km.

Since the wavenumber spectra of error-free SSH, 𝑢𝑔 , 𝑣𝑔 and 𝜁𝑔
signals are red, nearby values of each of these variables are correlated.
The power of the signal spectra after 2-dimensional smoothing is
therefore attenuated only at wavenumbers higher than 𝜆−1𝑐 . (The small
attenuation at wavenumbers smaller than 𝜆−1𝑐 is from imperfections of
the filter transfer function of the Parzen smoother used here to smooth
the 2-dimensional fields of interest.) The spectral power of the errors
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Fig. 13. Alongshore wavenumber power spectral densities of simulated satellite estimates of the signals and errors for: Column (a) SWOT estimates of (top-to-bottom) SSH and
geostrophically computed cross-shore and alongshore velocity and vorticity obtained from simulated pre-processed SWOT data; Column (b) the same as Column (a), except after
isotropic smoothing using a Parzen smoother with the same half-power filter cutoff wavelength of 10 km used in the pre-processing of WaCM data; and Column (c) WaCM estimates
of (top-to-bottom) cross-shore velocity, alongshore velocity and vorticity obtained from simulated pre-processed WaCM data. The red lines are the signal spectra computed from
the model after applying the pre-filtering for SWOT (columns a and b, with additional 10-km smoothing in the latter) and WaCM (column c). The blue lines are the spectra
computed empirically from the simulated error fields, which were computed geostrophically based on the local value of the Coriolis parameter 𝑓 at each grid point in the case
of SWOT. The green lines are the theoretical spectra of errors derived in Appendix I, which are based on the constant value of 𝑓 at the central latitude 37◦N of the CCS model
domain in the case of SWOT. All of the spectra were smoothed by ensemble averaging over the individual spectra computed from alongshore grid lines that extend the full length
of the model domain with a cross-shore spacing of 5 km. For reference, selected power-law rolloff dependencies on alongshore wavenumber 𝑙 are labeled in the top panels of
Columns a and b. Note that the rolloff of 𝑙−7∕2 is not significantly different from the rolloff of 𝑙−11∕3 that was deduced from along-track altimeter data by Le Traon et al. (2008)
and is consistent with the 𝑙−5∕3 spectral rolloff of velocity in surface quasigeostrophic (SQG) theory (Held et al., 1995). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

of SWOT estimates of these variables is also attenuated at wavenum-
bers higher than 𝜆−1𝑐 . Because the errors are spatially uncorrelated
in the cross-shore direction, 2-dimensional smoothing also attenuates
the power of the along-track wavenumber spectra of the errors by an
additional factor of 2𝛥𝑥∕𝜆𝑐 at all wavenumbers. This is discussed in
detail in Appendix E [see Eq. (E.11)] and Appendix I. For the grid
spacing of 𝛥𝑥 = 1 km and filter cutoff wavelength of 𝜆𝑐 = 10 km,

this multiplicative factor is approximately 2𝛥𝑥∕𝜆𝑐 = 0.2. Note that the
vorticity errors with 10-km smoothing in the bottom panel of Fig. 13b
are still more than an order of magnitude larger than the signal at all
wavenumbers.

Because of the overall reduction of the spectral power of the
measurement errors at all wavenumbers when applying isotropic 2-
dimensional smoothing, the intersection of the smoothed signal and
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Fig. 14. Alongshore wavenumber power spectral densities of simulated satellite estimates of the signals and errors after 2-dimensional isotropic smoothing of the pre-processed
SWOT data with half-power filter cutoff wavelengths of 20, 50 and 80 km (left, middle and right columns, respectively) for: Row (a) SSH; Row (b) geostrophically computed
cross-shore velocity; Row (c) geostrophically computed alongshore velocity; and Row (d) geostrophically computed vorticity. The solid red lines are the signal spectra from the
model after isotropic smoothing. The blue lines are the spectra computed empirically from the smoothed error fields constructed based on the local Coriolis parameter 𝑓 at each
grid point. The green lines are the theoretical spectra of smoothed SWOT error fields derived in Appendix I.2 based on the constant value of 𝑓 at the central latitude 37◦N of the
CCS model domain. For reference, the dashed red and green lines are the signal spectra and theoretical error spectra in Fig. 13a based on the pre-processed SWOT data without
additional smoothing in simulated ground-based post-processing. All of the spectra were smoothed by ensemble averaging as in Fig. 13. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

error spectra shifts to higher wavenumbers (shorter wavelengths) with
increased smoothing. Recall from Fig. 13a that the unsmoothed SSH
signal and error spectra intersect at a wavelength of about 45 km. For
the smoothing with the 10-km half-power filter cutoff wavelength used
for Fig. 13b, the SSH signal and error spectra intersect at a wavenumber
of about 0.03 cpkm, which corresponds to a wavelength of about
33 km.

The intersection of the SSH signal and noise spectra at a wavelength
of 33 km in Fig. 13b is surprising in view of the fact that the sci-
ence requirement for SWOT measurement accuracy was chosen with
the intent that the 68th-percentile of the global average SSH signal
spectrum intersects the spectrum of uncorrelated measurement errors

at a wavelength of 15 km after isotropic 2-dimensional smoothing
with a half-power filter cutoff wavelength of 15 km, which is only
slightly more than the 10-km smoothing shown in Fig. 13b. With 15-
km filtering, the signal spectrum from the CCS model used in this study
intersects the noise spectrum at a wavelength of 30 km (see Fig. F.3 in
Appendix F).

The longer 30-km wavelength of the intersection of the signal and
noise spectra found in this study compared with the 15-km wavelength
in the specification of the science requirement for the accuracy and
resolution of SWOT measurements of SSH occurs because the SSH
spectrum from the CCS model falls off as about 𝑙−7∕2 at alongshore
wavenumbers 𝑙 near 1/15 cpkm (see Figs. 13a and F.3), which is steeper
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Fig. 15. Alongshore wavenumber power spectral densities of simulated satellite estimates of the signals and errors after 2-dimensional isotropic smoothing of the pre-processed
WaCM data with half-power filter cutoff wavelengths of 20, 50 and 80 km (left, middle and right columns, respectively) for: Row (a) alongshore velocity; Row (b) cross-shore
velocity; and Row (c) vorticity. The solid red lines are the signal spectra from the model after smoothing. The blue lines are the spectra computed empirically from the simulated
error fields after smoothing and the green lines are the theoretical spectra of smoothed error fields derived in Appendix I.4 based on the constant value of 𝑓 at the central latitude
37◦N of the CCS model domain. For reference, the dashed red and green lines are the signal spectra and theoretical error spectra from Fig. 13c for the pre-processed WaCM
data without additional smoothing in simulated ground-based post-processing. All of the spectra were smoothed by ensemble averaging as in Fig. 13. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

than the approximate 𝑙−5∕2 rolloff of the assumed 68th-percentile of
the global-average SSH wavenumber spectrum upon which the SWOT
science requirements are based. The steeper rolloff of the spectrum
of SSH from the CCS model reflects both the specifics of the CCS
dynamical regime and the absence from the model of other possible
physical sources of SSH variance, including, for example, the SSH
signatures of internal waves that would flatten the spectral rolloff of
the SSH wavenumber spectrum at high wavenumbers.

The uncertainty of the rolloff of the SSH spectrum at wavelengths
shorter than the approximate 70-km wavelength resolution limitation
of nadir altimeter data (Xu and Fu, 2012) is an important issue for
interpretation of SWOT data. Spectra of SSH are shown in Fig. F.4 in
Appendix F for a region southeast of the Gulf Stream in the two ROMS
simulations of the North Atlantic circulation considered in Section 3
(see Figs. 10 and 11), one with a weak internal wave field similar to
the CCS model and the other with an energetic internal wave field from
inclusion of high-frequency wind and tidal forcing. The SSH spectra
in the models without and with high-frequency forcing have spectral
rolloffs of about 𝑙−5 and 𝑙−3, respectively, at wavenumbers higher than
about 1/50 cpkm. Because the flattening of the SSH spectrum from the
model with high-frequency forcing occurs only at wavenumbers higher
than about 1/50 cpkm, the intersection of the SSH signal spectrum and
the noise spectrum for 15-km smoothed SWOT data occurs at only a
slightly higher wavenumber (shorter wavelength) than for the model

without high-frequency forcing. As for the CCS model used in this
study, the SSH spectra from both North Atlantic models intersect the
noise spectrum at wavelengths longer than 15 km.

The issue of the uncertainty of the spectral characteristics of SSH
at high wavenumbers and its implications for the resolution of SWOT
measurements of SSH are discussed further in Appendix F. The con-
clusion is that the wavenumber spectral characteristics of SSH are
not presently known from observations at wavelengths shorter than
70 km and must therefore be inferred from high-resolution models.
However, different models give different results (see the discussion in
Appendix F). SWOT will provide the first observational data from which
model representations of small-scale SSH variability can be tested.

4.4.2. Error spectra from pre-processed WaCM data
The alongshore wavenumber spectra of signals and errors of WaCM

estimates of velocity components 𝑢 and 𝑣 and vorticity 𝜁 are shown
in Fig. 13c for speed measurement errors with a standard deviation of
𝜎spd = 0.50 m s−1. As discussed in Section 4.2 and in more detail in
Appendix I.3, we have assumed that the pre-processed WaCM velocity
estimates will be isotropically smoothed with a half-power filter cutoff
wavelength of 10 km and oversampled on a 1 km × 1 km grid. As for the
case of SWOT considered above, the theoretical error spectra computed
by the analytical expression (I.40) for 𝑢 and 𝑣 and the analytical
expression (I.43) partitioned as (I.45b) and (I.46a) for 𝜁 (the green
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lines) agree very well with the error spectra computed empirically from
the simulated WaCM data (the blue lines). The error spectra for 𝑣 and
𝜁 are very similar in magnitude and wavenumber characteristics to the
spectra of errors of 𝑣𝑔 and 𝜁𝑔 from the simulated SWOT data with 10-km
smoothing shown in Fig. 13b. The error spectra for 𝑢 from pre-processed
WaCM data and for 𝑢𝑔 from SWOT data with 10-km smoothing applied
in post-processing are very different because of the filtering of the
first-difference operator used to calculate 𝑢𝑔 from SSH, as discussed
previously.

4.4.3. Error spectra from post-processed SWOT and WaCM data
To illustrate the effects of smoothing in ground-based

post-processing to improve the signal-to-noise ratio for scientific appli-
cations of SWOT and WaCM data, the wavenumber spectral characteris-
tics of the signals and errors for isotropic 2-dimensional smoothing with
half-power filter cutoff wavelengths of 𝜆𝑐 = 20 km, 50 km and 80 km
are shown in Figs. 14 and 15 for SWOT and WaCM, respectively. The
signal and error spectra are all attenuated at wavenumbers higher than
𝜆−1𝑐 . The 2-dimensional smoothing additionally attenuates the error
spectra at all wavenumbers by the factor of 2𝛥𝑥∕𝜆𝑐 noted above in
Section 4.4.1 in the discussion of the spectra of SWOT data smoothed
with 𝜆𝑐 = 10 km in Fig. 13b.

An important thing to note from Figs. 14 and 15 is that the noise
spectra are attenuated much more quickly than the signal spectra with
increased smoothing. Smoothing therefore improves the signal-to-noise
variance ratio. This is a key point in our approach to assessing the
resolution capability of maps of velocity and vorticity constructed from
SWOT and WaCM data.

The effects of isotropic 2-dimensional smoothing of pre-processed
SWOT and WaCM data in simulated ground-based post-processing to
reduce the effects of uncorrelated measurement errors are examined in
Section 6 from instantaneous maps of the variables of interest with the
same filter cutoff wavelengths of 𝜆𝑐 = 20 km, 50 km and 80 km used for
the spectra on Figs. 14 and 15. The strategy used in this study to define
the resolution capabilities from the resulting maps of signals and errors
for these and other choices of 𝜆𝑐 is summarized in the next section.

5. A strategy for assessing resolution capability from noisy satel-
lite observations

The resolution capabilities of SWOT and WaCM estimates of velocity
and vorticity are defined in this study by the amount of smoothing
required to reduce the errors to achieve a specified signal-to-noise
(S/N) ratio. The effects of uncorrelated measurement errors on esti-
mates of surface velocity and vorticity are attenuated in Section 6 by
isotropic 2-dimensional spatial smoothing of instantaneous snapshots
of the simulated pre-processed SWOT and WaCM data. In a further
effort to suppress noise, temporal averaging is applied in addition
to 2-dimensional spatial smoothing of the simulated satellite data in
Sections 8–10.

There is ambiguity in how to define the signal in the S/N metric.
We define the S/N ratio based on the spatial variances of the residual
signal and residual errors after smoothing. The signal variance is thus
defined to be the spatial variance of the true value of the variable of
interest after applying the same smoothing that is applied to reduce the
errors. An arguably better choice is to compare the spatial variance of
the smoothed errors with the spatial variance of the unsmoothed signal.
From an observational perspective, however, this strategy would have
tenuous relevance to the maps that can be constructed from the error-
contaminated satellite observations since it is not possible to reduce
the errors by smoothing the observed data without also smoothing the
signal.

While the ‘‘moving target’’ of the systematic reduction of signal
variance with increased smoothing may not be ideal, this is the only
practical approach to assessing the resolution capability of the noisy
satellite estimates; the smoothed signal is the best possible estimate of

the variable of interest that could be achieved from noisy satellite data
after applying a specified amount of smoothing to reduce the effects of
uncorrelated measurement errors. Because of spatial correlation of the
signal variability as indicated by the redness of the signal wavenum-
ber spectra in Figs. 13–15, the error variance usually decreases more
rapidly than the signal variance, in which case the S/N ratio increases
with increased smoothing. The preferential attenuation of the error
variance compared with the signal variance is evident from the example
wavenumber spectra shown in Figs. 14 and 15.

For the case of the uncorrelated measurement errors considered in
this study, there is a direct relationship between the signal-to-noise
(S/N) variance ratio and the cross correlation between the error-free
and noisy fields. To see this, consider �̂�(𝑥, 𝑦) to be an estimate of a signal
𝑧(𝑥, 𝑦) contaminated by uncorrelated errors 𝜖(𝑥, 𝑦),

�̂�(𝑥, 𝑦) = 𝑧(𝑥, 𝑦) + 𝜖(𝑥, 𝑦).

The squared cross correlation between �̂�(𝑥, 𝑦) and 𝑧(𝑥, 𝑦) is

�̂�2𝑧�̂� =

(

Cov [(𝑧 + 𝜖), 𝑧]
)2

Var [𝑧 + 𝜖] Var [𝑧]
=

(

Cov [𝑧, 𝑧] + Cov [𝑧, 𝜖]
)2

(

Var [𝑧] + 2Cov [𝑧, 𝜖] + Var [𝜖]
)

Var [𝑧]
, (9)

where Cov and Var are shorthand notations for the spatial cross covari-
ance and variance. Since the errors 𝜖 are uncorrelated with the signal
𝑧, their cross covariance is Cov [𝑧, 𝜖] = 0. And since Cov [𝑧, 𝑧] = Var [𝑧],
the squared cross correlation can be expressed as

�̂�2𝑧�̂� =

(

Var [𝑧]
)2

(

Var [𝑧]
)2 + Var [𝜖] Var [𝑧]

= 1
1 + 𝛾−2

, (10a)

where

𝛾2 = Var [𝑧]
Var [𝜖]

(10b)

is the S/N variance ratio.
Specification of a threshold of minimum S/N variance ratio 𝛾2

for which the error-contaminated estimates are scientifically useful is
somewhat subjective. Example maps are shown in Fig. 16 for 𝛾2 = 1,
4 and 10 for the case of normalized vorticity computed from noisy
WaCM data, which is considered in detail later in Section 6.2. A choice
of 𝛾2 = 1 (Fig. 16a) is clearly too liberal since any given small-scale
feature is as likely to be attributable to noise as to real variability of
the signal of interest. A mathematically convenient choice of threshold
is 𝛾2 = 10, which corresponds to a S/N standard deviation ratio of
𝛾 = 3.16 (Fig. 16c). The signal standard deviation is then about three
times larger than the error standard deviation, thus resulting in a clear
distinction between the signal and errors in maps of the noisy fields
�̂�(𝑥, 𝑦). For a value of 𝛾2 = 10, the squared cross correlation (10a)
between the signal 𝑧 and the noisy estimate �̂� is �̂�2𝑧�̂� = 1.10−1 = 0.91
so that the cross correlation between 𝑧 and �̂� is �̂�𝑧�̂� = 0.95.

A less conservative choice of 𝛾2 = 4 for the threshold S/N variance
ratio corresponds to a signal standard deviation that is twice as large as
the error standard deviation (Fig. 16b). The squared cross correlation
between the signal 𝑧 and the estimate �̂� is then �̂�2𝑧�̂� = 1∕1.25 = 0.80 so
that the cross correlation between 𝑧 and �̂� is �̂�𝑧�̂� = 0.89.

Our subjective assessment from visual inspection of maps with
varying S/N ratios such as those shown in Fig. 16 is that a S/N standard
deviation ratio of 𝛾 = 2 is insufficient to distinguish the signal from the
errors unambiguously. We have therefore adopted the threshold S/N
standard deviation ratio of 𝛾 = 3.16 to define the resolution capability
in the analysis that follows. Readers can judge for themselves from the
examples of error-contaminated maps in Fig. 16 and in the maps in
Sections 6 and 8 whether they consider this threshold to be overly
conservative. Since the amount of smoothing required to achieve a
specified threshold S/N ratio increases with increasing value of the
S/N ratio, lowering the threshold from our preferred choice of 𝛾 =
3.16 yields higher resolution assessments (see Fig. 51 in Section 13.5
below). The relative resolution capabilities of the spatially smoothed
instantaneous fields constructed from SWOT versus WaCM data in
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Fig. 16. Examples showing the characteristics of noisy data after isotropic 2-dimensional smoothing to achieve signal-to-noise standard deviation ratios of 1, 2 and 3.16 (rows a,
b and c, respectively). For illustration purposes, these are maps of the normalized vorticity 𝜁∕𝑓 constructed from simulated noisy WaCM data as in Section 6.2 below for the case
of uncorrelated speed measurement errors with a standard deviation of 𝜎spd = 0.50 m s−1. The left, middle and right columns show, respectively, the noisy estimates of 𝜁∕𝑓 , the
error-free 𝜁∕𝑓 signal and the residual errors after smoothing with the half-power filter cutoff wavelength 𝜆𝑐 labeled to the left of each row.

Section 6, or of the spatially smoothed time-averaged fields constructed
by either instrument in Sections 8–10, would not change substantially
by adopting a threshold different from 𝛾 = 3.16. In other words,
changing the threshold value of 𝛾 would not qualitatively alter our
conclusions regarding the relative resolution capabilities of SWOT and
WaCM.

6. The effects of measurement errors on estimates of instanta-
neous velocity and vorticity fields

The effects of uncorrelated measurement errors are investigated
in this section in isolation from the additional effects of sampling
errors by assessing the resolution capabilities of maps of velocity and
vorticity constructed from simulated SWOT and WaCM data for the
idealized scenario of complete sampling of the full CCS domain on
each satellite overpass. In reality, of course, the variables of interest
can only be estimated within the measurement swaths at the time of
each overpass. The analysis of simulated noisy SWOT and WaCM ob-
servations in this section must therefore be viewed as the best possible
resolution of instantaneous fields that could be achieved within the
actual SWOT and WaCM measurement swaths. The effects of sampling
errors from the limited swath widths and irregular revisit intervals are
investigated separately and in combination with measurement errors
in Sections 8–10 based on simulated time averages of noisy SWOT and
WaCM observations.

For the reasons discussed at the end of the introduction, veloc-
ity estimates are characterized in this study in terms of the scalar
magnitude of the vector-averaged velocity (which is equivalent to the
current speed in the instantaneous maps considered in this section),
rather than considering each velocity component separately. In the

case of SWOT, the adequacy of the geostrophic approximation was
discussed in Section 3 and this issue is not considered any further
in this study. The question addressed for SWOT in this section is
thus how the uncorrelated errors of the SSH measurements affect the
resolution capabilities of estimates of velocity and vorticity computed
geostrophically from SWOT data, irrespective of the accuracy of the
geostrophic approximation.

6.1. SWOT

The procedure for simulating pre-processed SWOT estimates of SSH
for this study was to smooth the SSH fields on the 0.5 km × 0.5 km grid
of the CCS model using an isotropic Parzen smoother with a half-power
filter cutoff wavelength of 2 km to mimic the footprint size of 1 km in
the baseline science requirements for SWOT (see Appendix B.1). These
smoothed SSH fields were then subsampled on a 1 km × 1 km grid
over the full CCS model domain. The measurement errors with 2-km
smoothing are shown in Appendix B.1 to be uncorrelated for this sam-
ple spacing. The errors of SWOT measurements of SSH on this sample
grid were simulated by adding Gaussian-distributed random errors with
the standard deviation of 𝜎ℎ = 2.74 cm derived in Appendix F.

To assess the effects of errors in SWOT measurements of SSH,
the estimates of velocity and vorticity that are of interest here were
computed geostrophically from the error-free and noisy SSH fields. The
results for error-free SSH and geostrophically computed surface velocity
and vorticity are shown in the upper left panels of Figs. 17a–17c for the
CCCS region of the full CCS model domain. As noted previously from
Fig. 5, the rich distribution of small-scale variability in the vorticity
field in the top left panel of Fig. 17c compared with the smooth SSH
field in the top left panel of Fig. 17a from which it was computed
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is a testament to the extreme spatial high-pass filtering operation of
double differentiation to compute the vorticity geostrophically from
SSH. Even the single differentiation of SSH to compute the velocity
field geostrophically in the upper left panel of Fig. 17b results in
considerable small-scale variability compared with the SSH field.

The effects of the 𝜎ℎ = 2.74-cm SSH measurement errors on un-
smoothed SWOT estimates of SSH and geostrophically computed veloc-
ity and vorticity are shown in the lower left panels of Figs. 17a–17c. The
SSH field has a distinctly speckled appearance but most of the features
in the error-free fields are recognizable in the error-contaminated field.
In contrast, the geostrophically computed velocity and vorticity signals
are completely swamped by the errors. The masking of the velocity and
vorticity signals is not surprising in view of the large error standard
deviations derived in Section 4.1 (see Table 1 and the signal and noise
spectra in Fig. 13a).

It is clear that the noisy pre-processed SWOT estimates of SSH will
have to be smoothed in ground-based post-processing to reduce the
errors in geostrophically computed estimates of velocity and vorticity.
Illustrative examples of error-free and noisy SSH fields are shown,
respectively, in the top and bottom rows of Fig. 17a for smoothing with
half-power filter cutoff wavelengths of 20, 50 and 80 km. The uncor-
related SSH measurement errors are quickly mitigated with increased
smoothing (see Fig. 12a). A small amount of residual SSH measurement
errors is visually apparent with 20-km smoothing but the errors become
invisible with 50-km smoothing.

The reduction of errors in SWOT estimates of velocity requires
more smoothing than for SSH (Fig. 17b). The residual errors of the
velocity field computed geostrophically from the SSH field with 20-
km smoothing for which the S/N standard deviation ratio is 1.5 would
likely still render the velocity estimates unusable for most applications.
The errors in the velocity estimates are essentially eliminated with
50-km smoothing for which the S/N standard deviation ratio is 7.70.
Qualitatively, it thus appears that the resolution capability for SWOT
estimates of velocity falls somewhere between 20 km and 50 km. This
is quantified below.

Because of the amplification of measurement errors by differentia-
tion, even more smoothing is required to obtain useful SWOT estimates
of vorticity (Fig. 17c). The signal of interest is completely unrecog-
nizable in the vorticity field computed geostrophically from the SSH
field with 20-km smoothing. The noisy field with 50-km smoothing for
which the S/N standard deviation ratio is 2.74 still has a somewhat
mottled appearance compared with the 50-km smoothed error-free
field. For example, the mesoscale anticyclone near the northwest corner
of the CCCS region is broken up into multiple smaller-scale features in
the noisy field. Numerous other artifacts of the 50-km smoothed mea-
surement errors could easily be misinterpreted as small-scale signals.
Qualitatively, it thus appears that the resolution capability for SWOT
estimates of vorticity is somewhat coarser than 50 km.

It is noteworthy that the S/N standard deviation ratio of 2.74 for
50-km smoothing falls below our minimum threshold of 3.16, thus
providing further rationale for why we advocated the value of 3.16
in Section 5 to define the resolution capability. The residual errors
diminish very quickly with increased smoothing (see Fig. 12c). The
S/N standard deviation ratio of 7.93 achieved by smoothing with a
half-power filter cutoff wavelength of 80 km (see the right panels of
Fig. 17c) is more than sufficient to eliminate essentially all of the
residual errors in the geostrophically computed vorticity field.

To determine the resolution capability of in-swath SWOT estimates
of velocity and vorticity, we smoothed the error-free and noisy SSH
fields with half-power filter cutoff wavelengths ranging from 10 km to
150 km. We then computed the velocity and vorticity fields geostrophi-
cally from these smoothed error-free and noisy SSH fields. The resulting
S/N standard deviation ratios are shown as functions of half-power
filter cutoff wavelength in Fig. 18a. According to our criterion of a
S/N threshold of 3.16, the wavelength resolution capability of in-swath
SWOT estimates of instantaneous velocity is approximately 32 km,

which falls between the smoothing shown in the second and third
columns of Fig. 17b. For in-swath SWOT estimates of vorticity, the
S/N threshold of 3.16 implies a resolution capability of approximately
54 km, which is slightly more than the 50-km smoothing shown in the
third column of Fig. 17c.

It is shown in Appendix C that the feature resolution capability is
approximately half of the wavelength resolution. Fig. 18a thus suggests
that SWOT will be able to detect velocity and vorticity features with
diameter scales of approximately 16 km and 27 km, respectively,
within each measurement swath. These resolution capabilities will be
degraded somewhat by edge effects in the smoothing from the fact that
the 50-km swath widths of the SWOT measurements (see Section 7)
are comparable to the half-power filter cutoff wavelengths required to
achieve the S/N threshold of 3.16. This is especially an issue for SWOT
estimates of vorticity since they require more smoothing than for SWOT
estimates of velocity.

6.2. WaCM

A similar procedure was followed to simulate the effects of mea-
surement errors on WaCM estimates of velocity and vorticity. The 5-km
footprint size anticipated for pre-processed WaCM estimates of surface
velocity was achieved by isotropically smoothing the 0.5 km × 0.5 km
gridded surface velocity fields from the CCS model with a half-power
filter cutoff wavelength of 10 km (see Appendix B.2). In the baseline
design, the measurement errors with this smoothing are uncorrelated
with a speed standard deviation of 𝜎spd = 0.50 m s−1 on a 5 km × 5 km
grid. Assuming that these speed uncertainties are equally partitioned
between two orthogonal velocity components, this corresponds to an
error standard deviation of 𝜎𝑢,𝑣 = 0.354 m s−1 for each component.

As discussed previously, the simulated WaCM data in this study
were oversampled on a 1 km × 1 km grid in order to improve the
derivative estimates for calculation of the vorticity signal (see Ap-
pendix H). The 10-km smoothing and 1 km × 1 km oversampling
were achieved by adding uncorrelated errors with a standard devia-
tion of 3.54 m s−1 to each unsmoothed velocity component on the
0.5 km × 0.5 km model grid prior to smoothing and subsampling. This
10-fold increase in noise level compared with the baseline standard de-
viation of 𝜎𝑢,𝑣 = 0.354 m s−1 for the uncorrelated errors of pre-processed
WaCM estimates of surface velocity components is commensurate with
the 10-fold difference between the 0.5 km × 0.5 km model grid spacing
and the 5-km footprint size of the WaCM data.

The effects of the velocity component measurement errors on 10-
km smoothed estimates of velocity and vorticity from pre-processed
WaCM data are shown in the lower left panels of Figs. 19a and 19b.
The smoother appearances of the noisy velocity and vorticity fields
compared with the lower left panels of Figs. 17b and 17c for SWOT
estimates of velocity and vorticity are because of the 10-km smoothing
applied in the pre-processing of WaCM data compared with only 2-
km smoothing in pre-processing of SWOT data. The velocity signal of
interest is vaguely detectable in the noisy field in the bottom left panel
of Fig. 19a but the vorticity signal is completely masked in the bottom
left panel of Fig. 19b.

The resolution capabilities of in-swath WaCM estimates of velocity
and vorticity were assessed by applying the same smoothing to the
error-free and noisy velocity component fields. Examples of the velocity
and vorticity fields computed from smoothed velocity fields with and
without simulated measurement errors are shown in Figs. 19a and 19b
for half-power filter cutoff wavelengths of 20, 50 and 80 km. For in-
swath velocity, the S/N ratio is only 2.30 with the 80-km smoothing
shown in the last column of Fig. 19a. According to the S/N = 3.16
criterion adopted here, this amount of smoothing is insufficient. The
inadequacies of 80-km smoothing are visually apparent from the dis-
crepancies between the smoothed map of error-free velocity in the top
right panel and the smoothed map of the velocity signal plus errors in
the bottom right panel.
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Fig. 17a. Maps of simulated SWOT estimates of SSH for the CCCS region shown in the bottom panel of Fig. 5a. The top panels are the error-free fields from the pre-processed
SWOT data with no additional smoothing (left), and after isotropic 2-dimensional smoothing with half-power filter cutoff wavelengths of 20, 50 and 80 km (columns 2, 3 and 4,
respectively). The bottom panels show the fields computed with the addition of simulated uncorrelated SSH measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm but
without sampling errors (i.e., as if the measurement swaths spanned the full CCS model domain on each satellite overpass). The same color bar is used for all of the panels.

Fig. 17b. The same as Fig. 17a, except maps of simulated SWOT estimates of the magnitudes of geostrophically computed surface velocity for the CCCS region shown in the
bottom panel of Fig. 5b. The panels in the top row were computed from error-free SSH fields and the panels in the bottom row were computed with the addition of simulated
uncorrelated SSH measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm. The same color bar is used for all of the panels and the signal-to-noise standard deviation ratio
is labeled above each of the bottom panels.
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Fig. 17c. The same as Fig. 17a, except maps of simulated SWOT estimates of geostrophically computed and normalized vorticity 𝜁𝑔∕𝑓 for the CCCS region shown in the bottom
panel of Fig. 5c. The panels in the top row were computed from error-free SSH fields and the panels in the bottom row were computed with the addition of simulated uncorrelated
SSH measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm. The same color bar is used for all of the panels and the signal-to-noise standard deviation ratio is labeled
above each of the bottom panels.

Fig. 18. The scale dependencies of the ratios of the standard deviations of the signal and the uncorrelated measurement errors for a snapshot of the full CCS region from simulated
(a) SWOT; and (b) WaCM estimates of instantaneous surface velocity (thin lines) and vorticity (thick lines) after isotropic 2-dimensional smoothing using a Parzen smoother with the
half-power filter cutoff wavelengths indicated along the abscissas. The velocity and vorticity were computed geostrophically for SWOT. The gray areas correspond to signal-to-noise
(S/N) standard deviation ratios less than 3.16, which is equivalent to a signal-to-noise variance ratio of 10. The vertical dashed lines indicate the wavelengths above which the
S/N standard deviation ratios exceed 3.16. The dynamic range of the abscissa is larger in (b) to accommodate the lower S/N ratios of WaCM estimates of velocity and vorticity
with the baseline speed standard deviation of 𝜎spd = 0.50 m s−1 for the uncorrelated errors of WaCM measurements of velocity. The improved resolution capabilities that would be
achieved from WaCM with smaller measurement errors are summarized later in Fig. 44 and Table 4a and b.

For the case of in-swath vorticity, the S/N ratio is only 1.72 with the
80-km smoothing shown in the last column of Fig. 19b. There are nu-
merous artifacts in the bottom right panel that would be misinterpreted
as small-scale vorticity signals.

The S/N standard deviation ratios for velocity and vorticity are
shown as functions of the half-power filter cutoff wavelength in Fig. 18b.
By the S/N = 3.16 threshold adopted here, the wavelength resolutions

for in-swath WaCM estimates of velocity and vorticity are coinci-
dentally both approximately 130 km. The more rapid convergence
toward this threshold for vorticity compared with velocity is because
of the noise attenuation at both high and low wavenumbers in the
band-pass filtering operation of the response function for centered
difference estimates of the derivatives in the calculation of vorticity
(see Appendix H).
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Fig. 19a. Maps of simulated WaCM estimates of the magnitudes of the total surface velocity for the CCCS region shown in the bottom panel of Fig. 3a. The top panels are the
error-free fields from the pre-processed WaCM data with no additional smoothing (left), and after isotropic 2-dimensional smoothing with half-power filter cutoff wavelengths of
20, 50 and 80 km (columns 2, 3 and 4, respectively). The bottom panels show the fields computed with the addition of simulated uncorrelated velocity measurement errors with
a speed standard deviation of 𝜎spd = 0.50 m s−1 equally partitioned between the two velocity components. The same color bar is used for all of the panels and the signal-to-noise
standard deviation ratio is labeled above each of the bottom panels.

Fig. 19b. The same as Fig. 19a, except maps of simulated WaCM estimates of normalized vorticity 𝜁∕𝑓 computed from the total surface velocity for the CCCS region shown in
the bottom panel of Fig. 3b. The same color bar is used for all of the panels and the signal-to-noise standard deviation ratio is labeled above each of the bottom panels.
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A noteworthy feature of the S/N curves for WaCM estimates of
velocity and vorticity in Fig. 18b is that they are much flatter than for
the SWOT estimates in Fig. 18a. This flatness implies that the standard
deviation of the residual errors decreases only slightly faster than the
signal with increased smoothing. It also means that the resolution capa-
bilities for WaCM are more sensitive to the choice of the threshold value
of the S/N standard deviation ratio that is used to define resolution
capability. Lowering the threshold value from our recommended value
of 3.16 to a value of 2, for example (see Fig. 51 in Section 13.5 below),
would correspond to much higher resolution capabilities of 63 km and
88 km for WaCM estimates of velocity and vorticity, respectively. For
SWOT, the same choice of a threshold S/N value of 2 would only
improve the resolution capabilities from 32 km to 24 km for velocity
and from 54 km to 44 km for vorticity.

6.3. Discussion of the effects of measurement errors alone

It is seen from Fig. 18 that the resolution capability of in-swath
SWOT estimates of instantaneous velocity and vorticity are superior
to those from WaCM data with the baseline noise standard deviation
of 𝜎spd = 0.50 m s−1 when considering the effects of measurement
errors alone, i.e., by considering the unrealistic case of measurement
swaths that sample the entire CCS model domain on each satellite
overpass. However, in addition to the limitations of the geostrophic
approximation discussed in Section 3, SWOT data are severely limited
by the narrow measurement swaths (see the top panels of Fig. 20).
It is shown in Section 8 that the sampling errors arising from these
narrow measurement swaths are a more significant limitation than
measurement errors for mapping the geostrophically computed velocity
and vorticity fields over the full CCS model domain considered in this
study. But even if SWOT estimates of these variables are considered
only within the narrow measurement swaths, the 32-km and 54-km
smoothing required to achieve a S/N ratio of 3.16 (see Fig. 18a) for
geostrophically computed velocity and vorticity, respectively, will lead
to artifacts from edge effects near the edges of the two parallel 50-km
measurement swaths.

With its much wider measurement swaths (see the bottom panels
of Fig. 20 for a swath width of 1200 km and Fig. 41 for a swath
width of 1800 km), edge effects are less of an issue for WaCM than for
SWOT. Measurement errors are therefore more limiting than sampling
errors. This is quantified in Sections 8–10. The resolution capability
of ∼130 km for in-swath WaCM estimates of instantaneous snapshots
of velocity and vorticity is coarse for investigations of small-scale
variability. But it is much better than the present resolution capability
of about 200 km by about 1 month (see Fig. 50).

The improved resolutions that could be achieved from WaCM for
measurement noise standard deviations smaller than the baseline value
of 𝜎spd = 0.50 m s−1 are investigated in Section 10.2. If the noise
can be reduced to 𝜎spd = 0.25 m s−1, for example, it is shown that
the resolution capabilities of instantaneous snapshot maps of velocity
and vorticity constructed from WaCM data would be about 50 km and
74 km, respectively. These values are still somewhat coarser than can
be achieved in SWOT estimates of velocity and vorticity, but over a
swath width that is more than an order of magnitude wider for WaCM
and is therefore less prone to edge effects in the smoothed fields.

Thus far, we have considered only the effects of spatial smooth-
ing to mitigate the effects of measurement errors. At least in prin-
ciple, the residual errors can also be reduced by applying temporal
smoothing. In practice, this introduces the additional effects of the
sampling errors that are discussed in Section 7. The effects of com-
bined space–time smoothing are investigated in Sections 8–10 where
it is shown that temporal smoothing is advantageous for WaCM but,
perhaps counterintuitively, detrimental for SWOT.

7. SWOT and WaCM sampling characteristics

The sampling characteristics of the SWOT and WaCM radars are
fundamentally different. SWOT will measure SSH across a swath width
of 120 km with a 20-km gap centered on the satellite ground track, thus
resulting in two parallel 50-km swaths. For the purposes of the analysis
in Section 8, we have assumed that WaCM will have a swath width of
1200 km with a 100-km gap centered on the satellite ground track, thus
resulting in two parallel 550-km swaths. Examples of SWOT and WaCM
measurement swaths for single simulated satellite overpasses of the CCS
model domain are overlaid on a map of the vorticity field in Fig. 20.
It is shown in Sections 8 and 9 that the factor-of-11 better sampling
coverage for WaCM compared with SWOT has a profound effect on
the ability to map the space–time evolution of the surface velocity and
vorticity fields.

Recent engineering developments indicate that it may be possible to
increase the swath width of WaCM to 1800 km, which is a factor-of-17
better coverage than SWOT. The improved sampling afforded by this
wider swath and the resulting improvements in the resolution capabil-
ities for time-averaged maps of velocity and vorticity constructed from
WaCM data are summarized in Section 10.

The limited swath widths and the discrete space–time sampling
patterns result in the following three sources of sampling errors that
occur independently of the effects of measurement errors considered in
Sections 4 and 6:

1. One form of sampling errors arises from the need to synthesize
the measurements from multiple satellite overpasses in order to
map the variables of interest over regions larger than the mea-
surement swaths from a single satellite overpass. The interest in
this study is in mapping the velocity and vorticity fields over
the full CCS model domain. Because of the rapid evolution of
submesoscale features in these variables between the times of
different satellite overpasses, spatial discontinuities can occur
across the edges of neighboring or overlapping measurement
swaths from the different orbits. For example, adjacent pairs of
SWOT measurement swaths are sampled about 10 days apart
(see the left panel of Fig. 21). Any temporal evolutions of the
structure, location and intensity of small-scale features in the
regions of overlap will be misinterpreted as spatial variability
in time-averaged maps constructed from measurements along
multiple satellite overpasses.

2. An equally important and related source of sampling errors
arises from differences between the time average of the dis-
cretely sampled fields and the true time average. Because of
the rapid evolution of submesoscale variability, the estimated
time-average is corrupted by unresolved temporal variability
between the discrete samples. This is similar to the classical
problem of aliasing but this source of sampling errors is more
complicated in maps constructed from the measurements from
multiple satellite overpasses. The discrete sampling then occurs
at different times in different regions of the mapping domain,
resulting in a patchwork of different aliasing artifacts.

3. The two sources of sampling errors summarized above can be
avoided if the satellite data are smoothed and analyzed on
a swath-by-swath basis. But this introduces a third source of
sampling errors in the form of edge effects that can occur from
incomplete data within the span of the smoother. This type of
sampling errors was neglected in Section 6 by considering the
idealized case of SWOT and WaCM measurement swaths that
sample the full CCS model domain on each satellite overpass.
An estimate of the spatially smoothed field within an actual
measurement swath is imperfect if the distance between the
estimation location and a swath edge is less than half of the
span of data that are included in the weighting function of the
smoother. The imperfections worsen the closer the estimates

284



D.B. Chelton, M.G. Schlax, R.M. Samelson et al. Progress in Oceanography 173 (2019) 256–350

Fig. 20. Examples of the measurement swaths for single ascending and descending overpasses of SWOT (top panels) and WaCM with a swath width of 1200 km (bottom panels)
overlaid on the snapshot of the normalized vorticity 𝜁∕𝑓 from the top panel of Fig. 3b. The improved sampling coverage by WaCM with a swath width of 1800 km is shown in
Fig. 41. The ground tracks for SWOT in this figure are the actual planned orbit. The ground tracks for WaCM are for illustrative purposes and could be adjusted longitudinally to
optimize the sampling of any specific region of the world ocean. The details of the sampling of the CCS region would change accordingly.

are to the swath edge. This source of error is worse for some
smoothing algorithms than for others and the magnitudes of
the errors can depend on the detailed structure of the field
near the edges of the measurement swaths. Edge effects are
especially problematic when smoothing with a half-power filter
cutoff wavelength that is comparable to or larger than the swath
width.

All three of the above sources of sampling errors are exacerbated
by a narrow swath width and are thus much bigger issues for SWOT
than for WaCM. The magnitudes of the first two sources of sampling
errors summarized above also depend strongly on the satellite repeat
period. SWOT will be launched into a prograde orbit (ascending ground
tracks from southwest to northeast) with an inclination of 77.6◦, an
altitude of 890.3 km and a 21-day exact repeat with 292 orbits per
repeat period. As WaCM is in the early stages of planning, the exact
orbit has not yet been determined. For the simulations in this study, we
have assumed the same orbit configuration as the QuikSCAT satellite,
which is a retrograde orbit (ascending ground tracks from southeast to
northwest) with an inclination of 98.7◦, an altitude of 802.7 km and a
4-day exact repeat with 57 orbits per repeat period.

The effects of the above orbit parameters on the space–time sam-
pling patterns are shown in Fig. 21. The dots in each panel indicate the

longitudes and times of ascending ground tracks over a longitudinal
range of 25◦ at a fixed reference latitude. The sampling patterns are
similar for the descending ground tracks, except shifted in time by
about half a day. The longitudes of the descending ground tracks
relative to the longitudes of the ascending ground tracks vary with
latitude and are therefore not displayed in Fig. 21.

Consider first the space–time sampling pattern for the WaCM orbit
adopted for this study, which is simpler than the sampling pattern
for SWOT. As noted above, we assume a swath width of 1200 km
for the analysis in 8; the improved sampling for a swath width of
1800 km is considered in Section 10.1. As shown in the right panel of
Fig. 21, ascending ground tracks cross the western and eastern portions
of the CCS model domain (indicated by the vertical dashed lines)
approximately one day apart. This is followed by a 2-day gap and then
the same pair of ascending ground tracks are sampled again with the
same 1-day time separation. During the 2-day gap, the outer portions
of a 1200-km WaCM measurement swath from ascending ground tracks
outside of the CCS model domain sample small portions of the model
domain. In addition, the CCS model domain is sampled twice along
descending ground tracks (not shown in Fig. 21) approximately half
a day earlier than each ascending ground track. The net result is that
nearly every grid point in the CCS model domain is sampled at least
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Fig. 21. Time and relative longitude plots of sequential ascending ground track overpasses of SWOT and WaCM measurements along a fixed latitude. There are analogous sampling
patterns for the descending overpasses, except shifted approximately half a day in time. The sampling pattern shown for SWOT is based on the orbit parameters of the planned
21-day exact repeat mission. The sampling pattern shown for WaCM is based on the orbit parameters for the 4-day exact repeat QuickSCAT mission. For reference, the vertical
dashed lines in both panels indicate the longitudinal extent of the western and eastern corners of the CCS model domain and the two pairs of horizontal dotted lines in both panels
indicate the 3.5-day sampling periods during which the CCS model domain is sampled in the two 4-day subcycles of SWOT sampling during each 21-day exact repeat period of
the SWOT orbit.

Fig. 22. Illustration of the two 4-day subcycles of SWOT sampling of the CCS model domain over a 14-day interval of the 21-day exact repeat period (see the left panel of Fig. 21).
The swaths from the first 4-day subcycle (days 3.5–7.0) are shown in blue in the left panel and the swaths from the second 4-day subcycle (days 13.5–17.0) are shown in red in
the middle panel. The combined swaths from the two 4-day subcycles are overlaid in the right panel. The intersecting diagonal lines overlaid on the right panel are the ground
tracks of the 10-day exact repeat orbit of the TOPEX, Jason-1, Jason-2 and Jason-3 altimeters. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

four times by WaCM during each 4-day repeat period (see Fig. 23
below).

The sampling pattern for SWOT is considerably more complicated
than for WaCM. From the left panel of Fig. 21, it can be seen that the
SWOT ground tracks will map out a grid with a westward-migrating
longitude spacing of 2.466◦ during the first half of each 21-day repeat
period. This track spacing is coarse relative to the 120-km span of
the two parallel measurement swaths of the SWOT radar. The SWOT
ground tracks then map out another grid with the same coarse west-
ward migrating longitude spacing of 2.466◦ during the second half
of the 21-day repeat period. The grid of ground track overpass times
from the second half of each repeat period is interleaved spatially half

way between the grid from the first half, thus resulting in a longitude
spacing of 1.233◦ of the ground tracks during each 21-day repeat
period. Within the longitudinal extent of the CCS model domain, this
interleaved pattern of ground tracks results in the two 4-day subcycles
indicated by pairs of horizontal dotted lines in Fig. 21. The 4-day
subcycles are separated by 6-day gaps in coverage.

In addition to the sampling summarized in the left panel of Fig. 21
for the ascending SWOT orbits, there is analogous sampling on descend-
ing orbits. These descending orbits occur about half a day later than the
ascending orbits.

With the 120-km span of the two parallel measurement swaths of
the SWOT radar and its 77.6◦ orbit inclination, the 1.233◦ longitudinal
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Fig. 23. Histograms of the numbers of samples by SWOT and WaCM (thin and thick
lines, respectively) during the first 4 days and the full 14 days (top and bottom panels,
respectively) of the 14-day sampling period for the CCS model domain during each
21-day exact repeat period of the SWOT orbit. The histogram values are expressed as
percentages of the total number of grid points in the CCS model domain. The histograms
for WaCM are based on a swath width of 1200 km. The improved sampling by WaCM
with a swath width of 1800 km is shown later in Fig. 42.

spacing of ground tracks provides very nearly complete coverage of
the Earth’s surface between about 78◦N and 78◦S during each 21-day
repeat period. The interleaved sampling of the CCS region in two 4-
day subcycles separated by 6-day gaps is shown in the left and middle
panels of Fig. 22. It can be seen from the right panel of Fig. 22
that there are small diamond-shaped regions that are never sampled
by SWOT. These diamond-shaped regions account for about 3% of
the area in the CCS region. For context, the thick lines in the right
panel of Fig. 22 show the coarse ground track spacing of the 10-
day repeat orbit that has been maintained since September 1992 by
the TOPEX/Poseidon, Jason-1, Jason-2 and Jason-3 sequence of nadir
altimeters. An important aspect of the SWOT sampling over the 21-day
repeat period is the characteristic noted previously from the left panel
of Fig. 21 that spatially adjacent parallel swaths are sampled about 10
days apart. It will be seen in Section 8 that this results in severe artifacts
in maps of the variables of interest constructed from multiple satellite
overpasses because of the effects of the first of the three sampling errors
summarized above.

From the space–time sampling pattern of the SWOT orbit, there are
two natural choices of time scale for SWOT sampling of the CCS model
domain considered in this study. About 73% of the region is sampled in
each of the two 4-day periods but approximately 14 days are required
for SWOT to sample the full CCS region (excluding the above-noted
small diamond-shaped regions that are never sampled). Histograms of
SWOT and WaCM sampling of the CCS model domain are shown in
Fig. 23 for 4-day and 14-day periods. For the case of the 4-day period
shown in the top panel, 52% of the grid points in the CCS model are
sampled once by SWOT and 27% are not sampled at all. The remaining
21% of the grid points that are sampled twice correspond to the regions
of overlap of the measurement swaths from the intersecting ascending
and descending ground tracks. During the same 4-day period, about

90% of the model grid points are sampled four times by WaCM with a
1200-km swath (see Section 10.1 for the case of an 1800-km swath),
and about 9% of the grid points are sampled five times. About 1% of
the grid points are sampled only three times by WaCM.

Histograms of the SWOT and WaCM sampling for the 14-day period
are shown in the bottom panel of Fig. 23. About 53% of the CCS model
grid points are sampled twice by SWOT during this 14-day period while
about 26% and 17% of the grid points are sampled once and three
times, respectively. The 3% of the grid points that are never sampled
by SWOT correspond to the white diamond-shaped regions in Fig. 22.
During the same 14-day period, about 88% of the model grid points
are sampled either 13 or 14 times by WaCM. All but about 1% of the
remaining grid points are sampled more than 14 times.

The effects of the sampling characteristics summarized above on
maps of space–time smoothed velocity and vorticity constructed from
simulated SWOT and WaCM data over the CCS model domain are
investigated in Sections 8–10, both separately and in combination with
the effects of the measurement errors that were previously considered
in isolation in Section 6.

8. The effects of combined measurement and sampling errors on
estimates of time-averaged velocity and vorticity fields

The improvements of the signal-to-noise ratios of SWOT and WaCM
estimates of velocity and vorticity that can be achieved from spatial
smoothing alone within a single measurement swath were assessed in
Section 6. Mapping the variables of interest over a domain larger than
a single swath of the instrument requires time averaging of measure-
ments from multiple satellite orbits. While time averaging can mitigate
the effects of uncorrelated measurement errors, it can also introduce
artifacts from the three types of sampling errors discussed in Section 7.
The question addressed in this section is whether the benefits of the
attenuation of measurement errors from time averaging prevail over
the added effects of sampling errors. It will be shown that sampling
errors are the primary issue for SWOT and measurement errors are the
primary issue for WaCM.

Because of the 4-day and 14-day subcycles in the 21-day repeat
orbit of SWOT that were discussed in Section 7, two natural choices for
temporal averaging period are 4 days and 14 days. These are the times
required for, respectively, coarse and nearly complete SWOT coverage
of the full CCS model domain (see Fig. 22). The 4-day averaging period
matches the exact repeat period of the orbit assumed here for WaCM.
With the swath width of 1200 km used for the simulations of WaCM
data in this section, essentially all of the grid points in the CCS model
domain are sampled by WaCM at least four times during each 4-day
repeat period (see Fig. 23). In contrast, none of the grid points are
sampled more than twice during a 4-day subcycle of the SWOT orbit;
about half are sampled only once and about a quarter are not sampled
at all. SWOT therefore benefits much less than WaCM from error
reduction by time averaging. Moreover, the sampling errors discussed
in Section 7 are much more severe for SWOT because its swath width is
narrower by more than an order of magnitude than the 1200-km swath
width of WaCM assumed for the analysis in this section. The benefits
of increasing the WaCM swath width to 1800 km are summarized in
Section 10.

8.1. Time averages of error-free velocity and vorticity

Before determining the S/N ratios of SWOT and WaCM estimates
of velocity and vorticity from space–time smoothed fields of noisy SSH
and velocity components, it is useful to provide context by looking at
the effects of time averaging alone on the velocity and vorticity fields
of interest. Maps of the magnitude of error-free surface velocity and
vorticity from the CCS model at the full 0.5 km × 0.5 km grid resolution
of the model with no spatial smoothing are shown in Fig. 24 for a
snapshot and for 4-day and 14-day vector-averaged velocity centered
on the time of the snapshot. The two time averages were computed
from snapshots of the model output at intervals of 0.5 days.

287



D.B. Chelton, M.G. Schlax, R.M. Samelson et al. Progress in Oceanography 173 (2019) 256–350

Fig. 24. An illustration of the effects of time averaging on error-free surface velocity and vorticity fields centered on the same date as the snapshots in Fig. 3: Column (a) The
instantaneous snapshots (the same as the top panels of Fig. 3a and b, repeated here for easy comparison with the other two panels of this figure); Column (b) Four-day average
maps; and Column (c) Fourteen-day average maps. The averages were constructed from model output at intervals of 0.5 days. The velocity maps in the top panels of columns (b)
and (c) are the magnitudes of the 4-day and 14-day vector-averaged velocity fields.

The periodic structures with very small scales in the vorticity fields
in the bottom panels of Figs. 24b and c that are not present in instan-
taneous maps such as that shown in the bottom panel of Fig. 24a are
likely aliasing artifacts from discrete sampling of submesoscale features
that are rapidly advected by the strong jet-like currents that are evident
in the top panels. Such aliasing issues would not occur if the model
output had been saved at a sufficiently fine sample interval, e.g., hourly
rather than twice per day. The existence of this aliasing emphasizes
how quickly the small-scale variability evolves, thus exposing one
of the challenges in mapping submesoscale variability from satellite
observations.

Notwithstanding the possible aliasing artifacts, it is visually appar-
ent that the energetic small-scale variance in the instantaneous maps
in Fig. 24a is dramatically reduced in the 4-day and 14-day averages

in Figs. 24b and c. This is quantified by the alongshore wavenumber
spectra shown in Fig. 25. In the case of velocity, the variance at the
smallest wavenumbers (longest wavelengths) is reduced by modest
factors of about 2 and 3 in 4-day and 14-day averages, respectively.
The amount of variance attenuation from time averaging alone in-
creases monotonically with increasing wavenumber. At a wavenumber
of 0.02 cpkm (a wavelength of 50 km), for example, the variance of
the magnitude of the vector-averaged velocity is reduced by about a
factor of 4 in the 4-day average and about a factor of 11 in the 14-
day average. At a wavelength of 10 km, these reductions of variance
increase to factors of about 9 and 49, respectively.
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Fig. 25. Alongshore wavenumber spectra of velocity and normalized vorticity com-
puted from the model surface velocity fields for the instantaneous snapshot, the 4-day
average and the 14-day average (thin, medium and thick lines, respectively) shown
in Fig. 24. The velocity spectra for 4-day and 14-day averages were computed from
the magnitudes of the vector-averaged velocity fields over the respective time periods.
The smoothed spectra were computed by ensemble averaging as in Figs. 13–15, except
from the raw 0.5 km × 0.5 km grid with a cross-shore spacing of 5 km.

The variance reductions from time averages alone are even greater
for vorticity. The vorticity variance at the longest wavelengths is re-
duced by factors of about 4 and 8 in the 4-day and 14-day averages,
respectively. These variance reductions increase to factors of about 7
and 29 at a wavelength of 50 km and factors of about 16 and 80 at a
wavelength of 10 km.

The reductions of variance at the lowest wavenumbers in the time-
averaged fields in both panels of Fig. 25 are perhaps surprising. This
apparently occurs because the most energetic features with large scales
in the alongshore dimension are generally narrow in the cross-shore
dimension. The locations of these elongated features evolve quickly in
time. Their contributions to the alongshore wavenumber spectrum are
thus attenuated in the 4-day and 14-day averaged velocity and vorticity
fields.

As summarized in Section 5, our metric for defining the resolution
capability is based on the square root of the ratio of the spatial variance
of the signal to the spatial variance of the total errors. In the space–
time smoothed fields considered in Sections 8.4, 8.5, 9 and 10, the
total errors are partitioned between measurement errors and sampling
errors. In order for the S/N ratio to improve, the space–time smoothing
must attenuate the total error variance more than the amount by which
the signal variance is attenuated by the same space–time smoothing.

8.2. The data processing procedure for assessing resolution capability

The procedure for assessing the relative importance of measurement
errors and sampling errors and determining the resolution capabilities
for SWOT and WaCM estimates of space–time smoothed velocity and
vorticity is the following:

Step 1. Twice-daily snapshots of SSH (for simulated SWOT data)
and surface velocity (for simulated WaCM data) were con-
structed on the complete 0.5 km × 0.5 km model grid in two
combinations:

(i) The error-free model output of SSH and surface veloc-
ity.

(ii) The model output of SSH and surface velocity with
Gaussian-distributed uncorrelated measurement errors
added. To simulate SWOT measurement errors, the
uncorrelated errors added to the SSH fields had a
standard deviation of 5.48 cm on the 0.5 km × 0.5 km
model grid. To simulate WaCM measurement errors,
the uncorrelated errors added to each velocity compo-
nent had a standard deviation of 3.54 m s−1 on the
0.5 km × 0.5 km model grid. When smoothed in step 2
below to achieve footprint diameters of 1 km and
5 km for SWOT and WaCM, respectively, this yields the
desired measurement error standard deviations of 𝜎ℎ =
2.74 cm for simulated pre-processed SWOT estimates of
SSH and 𝜎𝑢,𝑣 = 0.354 m s−1 for simulated pre-processed
WaCM estimates of each velocity component. The lat-
ter corresponds to the baseline standard deviation of
𝜎spd = 0.50 m s−1 for speed measurement errors equally
partitioned between the two velocity components.

Step 2. To simulate pre-processing of SWOT data, the twice-daily
error-free and noisy SSH fields from step 1 were smoothed
isotropically on the 0.5 km × 0.5 km model grid with a
half-power filter cutoff wavelength of 2 km to achieve the
desired SWOT footprint diameter of 1 km. To simulate pre-
processing of WaCM data, the twice-daily error-free and noisy
surface velocity fields from step 1 were similarly smoothed
isotropically on the 0.5 km × 0.5 km model grid with a half-
power filter cutoff wavelength of 10 km to achieve the WaCM
footprint diameter of 5 km. The smoothed SSH and surface
velocity fields on the 0.5 km × 0.5 km model grid were then
subsampled on a 1 km × 1 km grid to simulate the pre-
processed SWOT and WaCM data used throughout the rest
of this study.

Step 3. The twice-daily snapshots of simulated pre-processed SWOT
estimates of SSH and WaCM estimates of surface velocity
from step 2 were sampled on the complete grid and at only
the times and locations of the in-swath measurements to
obtain maps with four different combinations of signal and
simulated measurement and sampling errors for each choice
of averaging period (4 days and 14 days):

(i) Error-free SSH and surface velocity signals on the com-
plete 1 km × 1 km grid.

(ii) SSH and surface velocity signals plus Gaussian dis-
tributed uncorrelated measurement errors on the com-
plete 1 km × 1 km grid.

(iii) Error-free SSH and surface velocity signals sampled
only at the 1 km × 1 km grid points within the mea-
surement swaths at the time of each individual satellite
overpass rounded to the nearest 0.5-day time step of
the model.

(iv) SSH and surface velocity signals plus Gaussian dis-
tributed uncorrelated measurement errors sampled
only at the 1 km × 1 km grid points within the
measurement swaths at the time of each individual
satellite overpass rounded to the nearest 0.5-day time
step of the model.

Step 4. For each of the two averaging periods considered here (4 days
and 14 days), the time-averaged error-free SSH and surface
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Fig. 26. Maps of 4-day averaged SSH computed from error-free and noisy simulated SWOT measurements of SSH with isotropic 2-dimensional smoothing using a Parzen smoother
with a half-power filter cutoff wavelength of 25 km: Column (a) The 4-day average over the full model domain computed from error-free model SSH fields at a time step of
0.5 day over the 4-day period; Column (b) The 4-day average over the full model domain computed from model SSH fields at a time step of 0.5 day over the 4-day period with
simulated uncorrelated measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm; Column (c) The 4-day average computed from simulated SWOT swath sampling of error-free
model SSH fields at the times and locations of each satellite observation over the 4-day period; and Column (d) The 4-day average computed from simulated SWOT swath sampling
of model SSH fields at the times and locations of each satellite observation over the 4-day period with simulated uncorrelated measurement errors with a standard deviation of
𝜎ℎ = 2.74 cm. The bottom panels are the error maps computed by subtracting the error-free map in Column (a) from the error-contaminated maps in the top row of the respective
Columns (b)–(d).

velocity component fields on the 1 km × 1 km grid (map i
from step 3) and the time-averaged maps of SSH and surface
velocity with the three combinations of errors in maps ii–
iv from step 3 (measurement errors alone, sampling errors
alone, and combined measurement and sampling errors) were
additionally smoothed spatially with half-power filter cutoff
wavelengths ranging from 10 to 150 km.

Step 5. Velocity and vorticity were computed geostrophically from
each set of four space–time smoothed maps of SSH from
step 4 using centered difference estimates of the spatial
derivatives in order to assess the resolution capabilities for
SWOT. Likewise, vorticity was computed from each set of
space–time smoothed maps of surface velocity components
from step 4 using centered difference estimates of the spatial
derivatives to assess the resolution capabilities for WaCM.

Step 6. The errors for each set of three space–time smoothed fields
with measurement and/or sampling errors from step 5 were
computed for each variable of interest by subtracting the
space–time smoothed error-free value on the complete
1 km × 1 km grid from the space–time smoothed error-
contaminated value at each 1 km × 1 km grid point. The sets
of three error fields as functions of the half-power filter cutoff
wavelength of the spatial smoothing allow assessments of the

effects of measurement errors alone, sampling errors alone,
and the combination of measurement and sampling errors.

Step 7. The spatial variances of each of the three error fields ob-
tained in step 6 and the spatial variance of the space–time
smoothed error-free signals from step 5 were computed from
the 1 km × 1 km gridded values for each variable of interest
for each of the half-power filter cutoff wavelengths of the
spatial smoothing. In the case of SWOT, the 1 km × 1 km grid
points outside of the sample swaths during the 4-day and 14-
day averaging periods (see Fig. 22) were excluded from the
variance calculations. There were no grid points with missing
values in any of the WaCM fields for either time average.

Step 8. The resolution capabilities for SWOT and WaCM estimates
of each variable of interest were defined as summarized in
Section 5 to be the half-power filter cutoff wavelength above
which the signal-to-noise variance ratios exceed a value of
10 (i.e., a signal-to-noise standard deviation ratio of 3.16).
This half-power filter cutoff wavelength was estimated by
linear interpolation between the discretely chosen filter cutoff
wavelengths that were applied in step 4.
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8.3. SWOT Estimates of Space–Time Smoothed Sea Surface Height

To provide context for understanding the combined effects of mea-
surement and sampling errors on SWOT estimates of surface ocean
velocity and vorticity that are the primary interest of this study, it is
enlightening to look at time averages of the simulated SWOT measure-
ments of SSH from which surface velocity and vorticity are computed
geostrophically in Sections 8.4 and 8.5.

We first consider the 4-day subcycle of the SWOT orbit with the
measurement swaths shown in the left panel of Fig. 22. The four
maps of 4-day average SWOT measurements of SSH from step 4 of the
procedure summarized in Section 8.2 are shown in the top four panels
of Fig. 26 for the case of 2-dimensional spatial smoothing with a half-
power filter cutoff wavelength of 25 km. The map in the top panel of
Fig. 26d simulates the 4-day average SSH field that would be obtained
from SWOT data based on the combination of SWOT sampling errors
and measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm for
a footprint diameter of 1 km. The maps in the top panels of Figs. 26b
and c represent the SSH fields that would be obtained from SWOT data
if it were possible to isolate, respectively, the measurement errors and
sampling errors in real data. The bottom three panels are the differences
of each of the three error-contaminated fields in the associated top
panels minus the error-free field in Fig. 26a.

The background mottled appearance of the error field in the bottom
panel of Fig. 26d represents the residual uncorrelated measurement
errors after smoothing with the half-power filter cutoff wavelength of
25 km used for Fig. 26. The most important thing to note is that the
largest errors with magnitudes exceeding 1 cm in the bottom panel of
Fig. 26d coincide geographically with the largest errors in the bottom
panel of Fig. 26c that includes only the effects of sampling errors. The
total errors in Fig. 26d are thus seen to be dominated by sampling
errors, at least in the regions of most energetic submesoscale variability
in the eastern portion of the CCS model domain.

The 4-day average SSH maps in Figs. 26c and d are affected by two
of the three sources of sampling errors discussed in Section 7. Some of
the sampling errors in the bottom panels of Figs. 26c and d are edge-
effect artifacts from incomplete data within the span of the smoother
near the edges of the SWOT measurement swaths. But most are aliasing
artifacts from inaccurate representation of the 4-day average of the SSH
field. As discussed in Section 7 from the top panel of Fig. 23, 27% of
the CCS model domain is not sampled at all during the 4-day period.
These white areas in Figs. 26c and d are sampled over the second 4-
day subcycle that begins 6 days later (see the middle panel of Fig. 22).
Within the 73% of the CCS model domain that is measured by SWOT
during the first 4-day subcycle, 52% of the region is sampled only once
and 21% is sampled twice. The latter corresponds to the diamond-
shaped areas formed by the intersections of ascending and descending
measurement swaths. One or two samples are not adequate to resolve
the rapidly evolving submesoscale features during the 4-day averaging
period.

Because none of the grid points in the CCS model domain are
sampled more than twice and about half are sampled only once, time
averaging over the 4-day subcycle does little to reduce the measure-
ment errors. Most of the reduction of measurement errors in Fig. 26d
is therefore attributable to the 25-km spatial smoothing that reduces
the 𝜎ℎ = 2.74 cm standard deviation of the uncorrelated noise by
about a factor of 12.5 (see Appendix D and Fig. 12a) and results in
the background mottled appearance noted above.

It is noteworthy that the SSH errors in the bottom panel of Fig. 26b
that includes only the effects of measurement errors are much smaller
than the mottled background noise from residual measurement errors in
the bottom panel of Fig. 26d, even in the regions of weak submesoscale
variability where sampling errors are relatively small in Fig. 26d.
This is because the measurement errors in Fig. 26b are much more
effectively suppressed by the averaging of the eight individual SSH
maps at 0.5-day intervals during the 4-day averaging period. From

the sampling characteristics noted above, only 21% of the CCS model
domain benefits from temporal averaging of the measurement errors.
But those regions are sampled only twice during the 4-day averaging
period, thus reducing the measurement noise by half as much as the
averaging of eight realizations in Fig. 26b. The remaining 79% of the
CCS model domain is sampled only once (52%) or not at all (27%)
during the 4-day period and thus do not benefit at all from temporal
averaging of the measurement errors.

Intuitively, it may seem that the errors in Fig. 26d can be suppressed
by increasing the averaging period to 14 days to increase the number
of samples, thus also expanding the SWOT coverage to nearly all of the
CCS model domain (see the right panel of Fig. 22). However, because
the SWOT sampling consists of only two 4-day subcycles during the 14-
day period, measurement errors are only slightly reduced in the longer
14-day average. This is because only about 17% and 1% of the region
are sampled three and four times, respectively; about 53% of the CCS
model domain is sampled twice during the 14-day period and about
26% is sampled only once.

More importantly than the small reduction of the effects of measure-
ment errors from the modest increase in the numbers of samples at any
given location, the longer averaging period of 14 days includes consid-
erably more temporal evolution of the energetic submesoscale features
compared with the 4-day averaging period for Fig. 26. The SWOT
sampling during the 14-day period consists of two 4-day subcycles that
are interleaved spatially and separated by a 6-day gap. The sampling
errors are consequently dramatically worse in the 14-day average SSH
field than in the 4-day average SSH field (compare the bottom panels of
Figs. 27c and d with the bottom panels of Figs. 26c and d). In addition
to the inadequate resolution of the rapidly evolving submesoscale
features and the edge effects of smoothing that were both evident in
the 4-day average maps in Fig. 26, the third source of sampling errors
discussed in Section 7 arises in the 14-day average from discontinuities
of SSH at the boundaries of spatially adjacent measurement swaths that
are separated by about 10 days in time (see the left panel of Fig. 21).
It will be seen in Sections 8.4 and 8.5 that the velocity and vorticity
computed geostrophically from centered difference estimates of the
derivatives of the SSH field at these boundaries misinterpret temporal
variability as spatial variability.

It is clear from Fig. 26 and especially from Fig. 27 that errors from
inadequate sampling of rapidly evolving submesoscale features will
severely impact the accuracy of geostrophically computed velocity and
vorticity fields that are defined in terms of first and second derivatives,
respectively, that are approximated by centered differences of the SSH
in space–time smoothed simulated noisy SWOT data. In contrast, the
far superior sampling by WaCM and the fact that it measures velocity
directly and thus requires only first derivatives of velocity to estimate
vorticity, sampling errors are much less of an issue for WaCM than for
SWOT. This is shown below from simulated SWOT and WaCM estimates
of surface velocity and vorticity in Sections 8.4 and 8.5, respectively.

8.4. The resolution capabilities of time-averaged surface velocity fields

As in Section 6, the simulated SWOT estimates of velocity in this
section neglect the limitations of the geostrophic approximation dis-
cussed in Section 3. The question addressed here for SWOT is thus how
the combined SSH measurement errors and sampling errors affect the
resolution capabilities of geostrophically computed SWOT estimates of
velocity, irrespective of the accuracy of the geostrophic approximation.
It will be seen that the resolutions that can be achieved in SWOT
estimates of velocity are so coarse that the geostrophic approximation
may not be a major limitation.

The four maps of the magnitudes of 4-day vector-averaged
geostrophically computed SWOT estimates of velocity from step 5 of
the procedure summarized in Section 8.2 are shown in the top four
panels of Fig. 28 for the case of spatial smoothing with a half-power
filter cutoff wavelength of 25 km. These are the magnitudes of the
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Fig. 27. The same as Fig. 26, except for 14-day averages of SSH computed from simulated SWOT measurements of SSH with isotropic 2-dimensional smoothing using a Parzen
smoother with a half-power filter cutoff wavelength of 25 km.

surface velocity field computed geostrophically from the simulated
SWOT estimates of SSH with 25-km smoothing in the top four panels of
Fig. 26. The map in the top panel of Fig. 28d simulates the magnitude of
the velocity field that would be estimated geostrophically from SWOT
data based on the combination of SWOT sampling and simulated mea-
surement errors with a standard deviation of 𝜎ℎ = 2.74 cm. The maps
in the top panels of Figs. 28b and c represent the magnitudes of the
velocity fields,4 that would be obtained from SWOT data contaminated
by, respectively, measurement and sampling errors individually. With
real observations, it is of course not possible to separate the two sources
of errors in space–time smoothed maps. Analogous to Fig. 26, the
bottom three panels are the differences of each of the three error-
contaminated fields in the associated top panels minus the error-free
field in Fig. 28a.

As in the case of the SSH mapping errors in Figs. 26c and d, the
largest errors in the velocity fields in the bottom panel of Fig. 28d
coincide geographically with the largest errors in the bottom panel of
Fig. 28c that includes only the effects of sampling errors. The total
errors in Fig. 28d are thus dominated by sampling errors, at least in
the regions of most energetic submesoscale variability in the eastern
portion of the CCS model domain. These sampling errors arise primarily
from inaccurate representation of the 4-day average of the velocity field
because of unresolved space–time variability of the rapidly evolving
submesoscale features in the SSH field.

4 For expediency, the magnitude of the estimated vector-averaged velocity
fields will be referred to hereafter as velocity fields, with understanding that
‘‘velocity’’ implicitly refers to the magnitude of the time-averaged vector
velocity field.

While the patterns of the total error field in the bottom panel of
Fig. 28d are generally similar to the patterns of sampling errors alone
in the bottom panel of Fig. 28c, there is considerably more small-scale
variability in the total error field. The small-scale noise in the total
error field in the bottom panel of Fig. 28d is much more energetic
than the small-scale noise in the map of measurement errors alone
in the bottom panel of Fig. 28b. As discussed in Section 8.3 from
comparisons of the SSH errors in the bottom panels of Figs. 26b and
d, this is because the simulated measurement errors in Fig. 28b have
been much more effectively suppressed by the averaging of the eight
individual maps at 0.5-day intervals during the 4-day averaging period.
The effects of measurement errors are even more evident in the total
error field for geostrophically computed velocity in the bottom panel
of Fig. 28d than in the total error field for SSH in Fig. 26d because the
relatively small mottled background noise in the 25-km smoothed SSH
field is amplified in the centered difference estimates of the derivatives
in the geostrophic equations. This amplification of noise in maps of
geostrophically computed velocity constructed from simulated SWOT
data has been discussed previously by Pujol et al. (2012) and Gaultier
et al. (2016).

As in the case of the SSH fields considered in Section 8.3, increasing
the averaging time from 4 days to 14 days does not improve the
accuracy of SWOT estimates of the surface velocity field (Fig. 29). The
sampling errors are even worse in the 14-day averaged geostrophically
computed velocity field than in the 14-day average SSH field in Fig. 27.
In addition to sampling errors from inadequate resolution of the rapidly
evolving submesoscale velocity field and the edge effects of smoothing
that were both evident in the 4-day average maps in Fig. 28, the
sampling errors that arise from discontinuities at the boundaries of
spatially adjacent measurement swaths that are separated temporally
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Fig. 28. Maps of the magnitudes of 4-day averages of surface velocity computed geostrophically from error-free and noisy simulated SWOT measurements of SSH with isotropic
2-dimensional smoothing using a Parzen smoother with a half-power filter cutoff wavelength of 25 km: Column (a) The 4-day average over the full model domain computed
geostrophically from error-free model SSH fields at a time step of 0.5 day over the 4-day period; Column (b) The 4-day average over the full model domain computed geostrophically
from model SSH fields at a time step of 0.5 day over the 4-day period with simulated uncorrelated SSH measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm; Column (c)
The 4-day average computed geostrophically from simulated SWOT swath sampling of error-free model SSH fields at the times and locations of each satellite observation over the
4-day period; and Column (d) The 4-day average computed geostrophically from simulated SWOT swath sampling of model SSH fields at the times and locations of each satellite
observation over the 4-day period with simulated uncorrelated SSH measurement errors with a standard deviation of 𝜎ℎ = 2.74 cm. The bottom panels are the error maps computed
by subtracting the error-free map in Column (a) from the error-contaminated maps in the top row of the respective Columns (b)–(d).

as noted previously by about 10 days in the 14-day average result in
misinterpretation of temporal variability as spatial variability in the
centered difference estimates of the derivatives of the SSH field at these
boundaries. These sampling issues in maps of geostrophically computed
velocity constructed from simulated SWOT data have been discussed
previously by Gaultier et al. (2016, see their Fig. 5c).

Aside from time averaging that was shown above to be ineffective,
the effects of sampling and measurement errors can be suppressed by
increasing the spatial smoothing of the SSH field prior to computing
the velocity component fields using the geostrophic approximation.
The S/N standard deviation ratios as functions of the half-power filter
cutoff wavelength are shown in Figs. 30a and b for, respectively, 4-day
and 14-day averages of geostrophically computed SWOT estimates of
velocity magnitude. The solid lines are the S/N ratios for combined
measurement and sampling errors, which represents the total errors
in SWOT estimates of velocity. The dotted and dashed lines are, re-
spectively, the S/N ratios for measurement and sampling errors alone,
which can be isolated in our simulated SWOT data but of course could
not be distinguished in real observational data.

The S/N ratio for measurement errors alone (the dotted lines in
Figs. 30a and b) improves rapidly with increased smoothing, intersect-
ing the threshold of 3.16 at a half-power filter cutoff wavelength of

about 20 km for 4-day averages and 14 km for 14-day averages. If
measurement errors were the only issue in SWOT estimates of surface
velocity, these would be the resolution capabilities of 4-day and 14-
day averages according to our criterion summarized in Section 5. But
as noted above from the maps in Figs. 28 and 29, SWOT estimates
of surface velocity are more severely affected by sampling errors than
measurement errors. This is evident from the dashed lines in Figs. 30a
and b by the slow improvement of the S/N ratio for sampling errors
alone when the smoothing is increased. The S/N ratio of the total
errors (the solid lines in Figs. 30a and b) quickly converges toward the
S/N ratio of the sampling errors alone, thus showing the dominance of
the effects of sampling errors in the total errors of SWOT estimates of
surface velocity.

A peculiarity of Fig. 30a is that the S/N ratios for sampling errors
alone and for total errors in estimates of the magnitudes of 4-day
averaged velocity asymptote with increased smoothing to a value that is
coincidentally just slightly higher than 3.16 for filter cutoff wavelengths
longer than about 50 km. This indicates that the signal variance and
sampling error variance both decrease at the same rate with high spatial
smoothing, resulting in an approximate constant S/N ratio. There is
thus no benefit to smoothing with a filter cutoff wavelength longer than
about 50 km. According to our criterion, the resolution capability of
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Fig. 29. The same as Fig. 28, except the magnitudes of 14-day averages of surface velocity computed geostrophically from simulated SWOT measurements of SSH with isotropic
2-dimensional smoothing using a Parzen smoother with a half-power filter cutoff wavelength of 25 km.

SWOT estimates of 4-day averaged surface velocity is about 52 km,
which corresponds to the wavelength at which the S/N ratio for the
total errors (and for sampling errors alone) intersects the threshold of
3.16. The resolution capability worsens to about 132 km in 14-day
averages because of the increased sampling errors.

Because of the flatness of the S/N curves in Figs. 30a and b, the
resolution capability inferred from the S/N ratio is very sensitive to the
choice of threshold value of the S/N standard deviation ratio. Lowering
the threshold from our recommended value of 3.16 to a value of 2,
for example, would improve the estimated resolution capability from
52 km to 28 km in SWOT estimates of 4-day averaged velocity fields
(see Fig. 51 in Section 13.5 below).

The results of this analysis indicate that reducing the standard devi-
ation of the uncorrelated measurement errors of SWOT estimates of SSH
from the value of 𝜎ℎ = 2.74 cm assumed for our calculations would have
negligible effect on the resolution capability of maps of geostrophically
computed estimates of the time-averaged velocity field constructed
from SWOT data. Moreover, time averaging does not improve the S/N
ratios of SWOT estimates of surface velocity because the sampling
errors from inadequate sampling of rapidly evolving submesoscale
velocity structures worsens when increasing the averaging period from
4 days to 14 days. The S/N ratio can be improved by spatial smoothing,
but only to a limited degree.

It can thus be concluded that geostrophically computed SWOT
estimates of surface velocity will be most useful on a swath-by-swath
basis with no time averaging. The resolution capability is then the value
of about 32 km deduced in Section 6 from Fig. 18, except only within
the SWOT measurement swaths rather than for the artificial swaths
across the full CCS domain considered in Section 6.

As noted in Section 6, the 50-km widths of each of the two parallel
SWOT measurement swaths will result in some contamination of the
swath-by-swath estimates of geostrophically computed velocity from
edge effects of the ∼30-km smoothing. It may be possible to utilize the
nadir altimeter on the SWOT satellite to help interpolate across the 20-
km nadir gap, thus resulting in 30-km smoothed maps of SSH across the
full 120-km swath. The different resolution and error characteristics of
the nadir altimeter will have to be taken into consideration in order to
assess the benefits of this merging of the KaRIN and nadir altimeter data
from the SWOT satellite. We have not investigated this in the present
study.

The results for WaCM estimates of surface velocity are much more
encouraging than for the SWOT estimates considered above. With the
factor-of-11 improvement in sampling for the 1200-km swath width
considered in this section, sampling errors are much less of an issue
for WaCM. The total errors are dominated by measurement errors and
time averaging is much more effective at improving the S/N ratio.

The dominance of the effects of measurement errors is readily
apparent from the 4-day averaged WaCM estimates of velocity shown
in Fig. 31 for the case of spatial smoothing with the same half-power
filter cutoff wavelength of 25 km used in Fig. 28 for SWOT estimates of
velocity. In contrast to the error maps for SWOT estimates of velocity
shown in Fig. 28, the sampling errors shown for WaCM in the bottom
panel of Fig. 31c are mostly smaller than the measurement errors shown
in the bottom panel of Fig. 31b. The total errors in the bottom panel of
Fig. 31d are thus dominated by measurement errors.

The patterns of the total error field in Fig. 31d are similar to the
patterns of measurement errors alone in Fig. 31b but the magnitudes of
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Fig. 30. The S/N standard deviation ratios for the full CCS region for the magnitude of the vector-averaged velocity (referred to for expedience as ‘‘velocity’’) computed from
simulated satellite estimates of time-averaged SSH (for SWOT) and surface velocity (for WaCM) as functions of the half-power filter cutoff wavelength of 2-dimensional isotropic
smoothing using a Parzen smoother: (a) Geostrophically computed SWOT estimates of 4-day averaged velocity; (b) Geostrophically computed SWOT estimates of 14-day averaged
velocity; (c) WaCM estimates of 4-day averaged velocity; and (d) WaCM estimates of 14-day averaged velocity. The dotted lines correspond to estimates over the full model
domain with simulated uncorrelated measurement errors (𝜎ℎ = 2.74 cm for SWOT and 𝜎spd = 0.50 m s−1 for WaCM). The dashed lines correspond to estimates from simulated swath
sampling of error-free fields. The thick solid lines correspond to estimates from simulated swath sampling with uncorrelated measurement errors (𝜎ℎ = 2.74 cm for SWOT and
𝜎spd = 0.50 m s−1 for WaCM). The S/N ratios for WaCM are based on a swath width of 1200 km. The improved S/N ratios for WaCM with a swath width of 1800 km are shown
later in Figs. 43a and b. The gray area in each panel indicates S/N standard deviation ratios less than 3.16, which corresponds to a S/N variance ratio of 10. The vertical dashed
line in each panel indicates the wavelength above which the S/N standard deviation ratios exceed a value of 3.16 for the case of combined measurement and sampling errors.

the total errors are somewhat larger. This is because the measurement
errors alone in the bottom panel of Fig. 31b are more effectively
suppressed by the averaging over the eight individual maps at 0.5-
day intervals during the 4-day averaging period. As essentially all of
the grid points in the CCS model domain are sampled only four times
during each 4-day orbit repeat period (see the top panel of Fig. 23),
i.e., half as many as the number of twice-daily maps averaged for the
bottom panel of Fig. 31b, the residual measurement errors are about
√

2 times larger in the sampled field in the bottom panel of Fig. 31d.
Because sampling errors are less of an issue for WaCM estimates of

surface velocity, the total errors can be reduced much more effectively
than for SWOT by increasing the averaging period. This is visually
evident from the maps of 14-day averages shown in Fig. 32.

The speckled appearance of the velocity estimates in the 4-day
average with 25-km smoothing in the top panel of Fig. 31d renders
WaCM estimates of surface velocity with this amount of smoothing too
noisy for most applications. The S/N standard deviation ratio in this
case is only 1.63, which is well below our recommended threshold
of 3.16. The velocity estimates in the 14-day average with 25-km
smoothing in the top panel of Fig. 32d are still somewhat speckled, but

the measurement errors have been reduced enough that the velocity
estimates may be useful for many applications. The S/N ratio in this
case is 2.89, which is close to our threshold of 3.16.

The effects of noise reduction from spatial smoothing are shown in
Figs. 30c and d from the S/N standard deviation ratios as functions
of the half-power filter cutoff wavelength for, respectively, 4-day and
14-day averages of WaCM estimates of velocity. The S/N ratios for
sampling errors alone (the dashed lines) exceed the threshold of 3.16
for all choices of smoothing, thus showing the secondary importance
of sampling errors to the total errors in WaCM estimates of surface
velocity. With increased smoothing, the S/N ratios for the case of
total errors (the solid lines) parallel the S/N ratios for the case of
measurement errors alone (the dotted lines). The small offsets between
this pair of lines in both Figs. 30c and d represent the relatively small
but not negligible contributions of sampling errors to the total errors.
According to our criterion, the resolution capabilities of WaCM esti-
mates of 4-day and 14-day averaged surface velocity are about 60 km
and 28 km, respectively. These are significant improvements over the
130-km resolution deduced in Section 6 for WaCM estimates of instan-
taneous velocity fields. It should be kept in mind, however, that the
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Fig. 31. Maps of the magnitudes of 4-day averages of surface velocity from error-free and noisy simulated WaCM measurements of surface velocity with a swath width of 1200 km
with isotropic 2-dimensional smoothing using a Parzen smoother with a half-power filter cutoff wavelength of 25 km: Column (a) The 4-day average over the full model domain
computed from error-free model surface velocity fields at a time step of 0.5 day over the 4-day period; Column (b) The 4-day average over the full model domain computed from
model surface velocity fields at a time step of 0.5 day over the 4-day period with simulated uncorrelated speed measurement errors with a standard deviation of 𝜎spd = 0.50 m s−1;
Column (c) The 4-day average computed from simulated WaCM swath sampling of error-free model surface velocity fields at the times and locations of each satellite observation
over the 4-day period; and Column (d) The 4-day average computed from simulated WaCM swath sampling of model surface velocity fields at the times and locations of each
satellite observation over the 4-day period with simulated uncorrelated speed measurement errors with a standard deviation of 𝜎spd = 0.50 m s−1. The bottom panels are the error
maps computed by subtracting the error-free map in Column (a) from the error-contaminated maps in the top row of the respective Columns (b)–(d).

signal variance is reduced at short wavelengths in the time-averaged
fields (see Figs. 24 and 25).

8.5. The resolution capabilities of time-averaged surface vorticity fields

The procedure summarized in Section 8.2 and applied in Section 8.4
to assess the resolution capabilities of SWOT and WaCM estimates of
surface velocity is applied in this section to assess the resolution ca-
pabilities of vorticity estimated from space–time smoothed SWOT and
WaCM data. Differentiation of the velocity fields to estimate vorticity
amplifies the errors in the velocity fields. It can therefore be anticipated
that the resolution capabilities will be worse for vorticity than for
velocity. As in Section 8.4, the simulated SWOT estimates of vorticity
derived from geostrophically computed velocity in this section neglect
the limitations of the geostrophic approximation discussed in Section 3.

Maps of geostrophically computed SWOT estimates of vorticity
are shown for 4-day and 14-day averages in Figs. 33 and 34, re-
spectively, for the case of spatial smoothing with a half-power filter
cutoff wavelength of 50 km. The larger smoothing compared with the
25-km smoothing used for the velocity fields in Figs. 28 and 29 is
commensurate with the noise amplification from the differentiation to
compute vorticity from the geostrophically computed velocity field.
Qualitatively, the characteristics of the maps of vorticity errors in the

bottom panels of Figs. 33 and 34 are similar to the characteristics of the
maps of velocity errors in the bottom panels of Figs. 28 and 29. The
total errors in geostrophically computed SWOT estimates of vorticity
are even more dominated by sampling errors than was the case in
geostrophically computed SWOT estimates of velocity. This is to be
expected because small-scale variability is much more energetic and
evolves much more quickly in the vorticity field than in the velocity
field. The errors in the SWOT estimates of time-averaged vorticity in the
top panels of Figs. 33d and 34d are too large for the SWOT estimates
of vorticity to be useful for most applications.

The S/N standard deviation ratios as functions of the half-power
filter cutoff wavelength are shown in Figs. 35a and b for, respectively,
4-day and 14-day averages of geostrophically computed SWOT esti-
mates of vorticity. As in the case of SWOT estimates of velocity in
Figs. 30a and b, the S/N ratios for the effects of measurement errors
alone (the dotted lines) on SWOT estimates of vorticity improve rapidly
with increased smoothing, intersecting the threshold of 3.16 at half-
power filter cutoff wavelengths of about 38 km and 32 km for 4-day
and 14-day averages, respectively. SWOT estimates of vorticity are thus
again dominated by sampling errors. In this case, however, the S/N
ratios asymptote with increased smoothing to a value of 2 in 4-day
averages. In 14-day averages, the S/N ratios increase more gradually to
about the same value of 2 for a filter cutoff wavelength of 150 km. The
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Fig. 32. The same as Fig. 31, except the magnitudes of 14-day averages of surface velocity from WaCM with isotropic 2-dimensional smoothing using a Parzen smoother with a
half-power filter cutoff wavelength of 25 km.

S/N ratios never reach our recommended threshold of 3.16 in either
the 4-day or 14-day averages.

Like the geostrophically computed SWOT estimates of velocity con-
sidered in Section 8.4, we conclude that geostrophically computed
SWOT estimates of vorticity will be most useful on a swath-by-swath
basis. The resolution capability is then the value of about 54 km
deduced in Section 6 from Fig. 18, except only within the SWOT mea-
surement swaths. Since the two parallel SWOT measurement swaths
each have a width of 50-km, the 54-km half-power filter cutoff wave-
length required to achieve a S/N ratio of 3.16 is comparable to the
swath width. As discussed in Section 6, swath-by-swath estimates of
vorticity will therefore be even more contaminated by edge effects of
the smoothing than will be the case for swath-by-swath SWOT estimates
of surface velocity.

Because of its factor-of-11 improvement in sampling for the 1200-
km swath width considered in this section, WaCM estimates of surface
vorticity are again much more encouraging than the SWOT estimates
considered above. Maps of 4-day and 14-day averages of WaCM es-
timates of vorticity are shown in Figs. 36 and 37, respectively, for
the case of spatial smoothing with the same half-power filter cutoff
wavelength of 50 km considered for SWOT in Figs. 33 and 34. The
error characteristics for WaCM estimates of vorticity are qualitatively
very similar to those of WaCM estimates of velocity in Figs. 31 and
32. Overall, the total errors are dominated by measurement errors
(compare the bottom panels of Figs. 36b and d for the case of 4-
day averages and the bottom panels of Figs. 37b and d for the case
of 14-day averages). Sampling errors are comparable in magnitude to
measurement errors in the regions of strongest meandering large-scale

currents where submesoscale variability is most energetic. Elsewhere,
measurement errors are much larger than sampling errors.

The S/N standard deviation ratios as functions of the half-power
filter cutoff wavelength are shown in Figs. 35c and d for, respectively,
4-day and 14-day WaCM estimates of vorticity. The S/N ratios for
sampling errors alone (the dashed lines) exceed the threshold of 3.16
for filter cutoff wavelengths of about 25 km in 4-day averages and
about 10 km in 14-day averages. Sampling errors are thus of secondary
concern and the total errors are dominated by measurement errors for
all choices of spatial smoothing. As in Figs. 30c and d for space–time
smoothed WaCM estimates of velocity, the small offsets between the
S/N ratios for the case of total errors (the solid lines) and for the case
of measurement errors alone (the dotted lines) in both Figs. 35c and d
indicate that the effects of sampling errors on the resolution capabilities
of space–time smoothed maps of vorticity constructed from WaCM data
are small but not negligible.

By our criterion, the resolution capabilities of WaCM estimates
of 4-day and 14-day averaged vorticity with combined measurement
and sampling errors are about 87 km and 62 km, respectively. These
are significant improvements over the 130-km resolution deduced in
Section 6 for WaCM estimates of instantaneous vorticity fields. Note
again, however, that the signal variance is significantly reduced at short
wavelengths in the time averaged fields (see Figs. 24 and 25).

9. Sensitivity of estimated resolution capabilities to the choice of
smoother

The assessments of resolution capability in Sections 6, 8.4 and 8.5
were based on the S/N standard deviation ratios computed from error-
free and noise-contaminated velocity and vorticity fields smoothed
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Fig. 33. Maps of 4-day averages of normalized surface vorticity 𝜁𝑔∕𝑓 computed geostrophically from error-free and noisy simulated SWOT measurements of SSH with isotropic
2-dimensional smoothing using a Parzen smoother with a half-power filter cutoff wavelength of 50 km. The various combinations of measurement and sampling errors are the
same as for Columns (a)–(d) of Figs. 26 and 28. The bottom panels are the error maps computed by subtracting the error-free map in Column (a) from the error-contaminated
maps in the top row of the respective Columns (b)–(d). In order to see the relatively small effects of measurement errors alone, the color bar for the bottom panel of Column b
differs from the color bar for the bottom panels of Columns c and d.

spatially using the Parzen smoother that is summarized in Appendix A.
The choice of the Parzen smoother for these calculations was motivated
in part by the fact that it will be used in the onboard pre-processing of
SWOT data. The Parzen smoother is also very efficient computationally.
The degree to which our assessments of resolution capabilities are
sensitive to the choice of smoother is investigated in this section from
the S/N ratios computed from velocity and vorticity fields smoothed
using the quadratic loess smoother that is summarized in Appendix C.

Computationally, the 2-dimensional loess smoother consists of a
weighted least squares fit to a quadratic surface (Cleveland and Devlin,
1988). The primary advantages of the loess smoother are that its
filter transfer function has smaller sidelobes and rolls off more steeply
through the half-power filter cutoff wavelength than does the filter
transfer function of the Parzen smoother (see Schlax and Chelton, 1992;
see also Fig. C.3 in Appendix C). The loess smoother is therefore more
effective at attenuating small-scale noise. (It also attenuates more of the
small-scale signal variability.)

A disadvantage of the loess smoother is that the weighted least
squares fits at each individual grid point are much more computa-
tionally intensive than the Parzen smoother. This computational effort
increases as the product of the filter cutoff wavelengths in each di-
mension. The difference in computing time for the set of filter cutoffs
considered in this study is more than a factor of 50, which was a
significant issue because a total of 1200 smoothed maps were required
to generate the signal-to-noise graphs in Figs. 18, 30, 35 and 43.

Another disadvantage of the loess smoother is that its total span
for a given half-power filter cutoff wavelength is 83.5% larger than

the span of the Parzen smoother (see Appendix C). This results in
potentially more problems with edge-effect artifacts in the smoothed
fields.

The S/N standard deviation ratios for SWOT and WaCM estimates
of instantaneous snapshots of velocity and vorticity smoothed spatially
using the loess smoother are shown as functions of the half-power filter
cutoff wavelength in Fig. 38. These S/N graphs are qualitatively similar
to those in Fig. 18 based on the Parzen smoother but with somewhat
larger values of the S/N standard deviation ratio at all filter cutoff
wavelengths. The resolution capabilities inferred from our threshold
S/N standard deviation ratio of 3.16 therefore improve, as summarized
in Table 3.

The improved resolution capabilities inferred from loess smooth-
ing are especially impressive for WaCM estimates of instantaneous
snapshots of velocity and vorticity. Because of the flatness of the S/N
curves, small increases in the S/N values result in large improvements
in the resolution capability inferred from any specified threshold value
of S/N ratio. As noted previously from Fig. 18 in Section 6.2, the
flatness of the S/N curves also implies that the estimated resolution
capability is very sensitive to the choice of the threshold value of
the S/N standard deviation ratio used to define resolution capability.
Lowering the threshold from our recommended value of 3.16 to a
value of 2, for example, would improve the loess-based estimates of
resolution capabilities from 99 km to 47 km for velocity and from
89 km to 59 km for vorticity.

It is important to bear in mind that the estimates of resolution
capability in Fig. 38 assume that the measurement swaths sample the
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Fig. 34. The same as Fig. 33, except for 14-day averages of normalized vorticity 𝜁𝑔∕𝑓 computed geostrophically from simulated SWOT measurements of SSH with isotropic
2-dimensional smoothing using a Parzen smoother with a half-power filter cutoff wavelength of 50 km.

entire CCS model domain on each satellite overpass. While this is very
nearly achieved by just one side of the two-sided measurement swaths
of WaCM, complete coverage of the CCS model domain is a highly
idealized representation of SWOT sampling. Because its sampling con-
sists of two parallel swaths with 50-km width separated by a 20-km
nadir gap, in-swath estimates of velocity and vorticity from SWOT
measurements of SSH are subject to edge-effect contamination in the
smoothed fields. The resolution capabilities suggested from Fig. 38a are
therefore optimistic estimates of what will be achieved from in-swath
estimates of actual SWOT data.

The S/N standard deviation ratios for 4-day and 14-day averaged
estimates of velocity fields computed from simulated SWOT and WaCM
data smoothed spatially using the loess smoother are shown as func-
tions of the half-power filter cutoff wavelength in Fig. 39. The results
are qualitatively very similar to those obtained in Fig. 30 using the
Parzen smoother. The dependencies of the S/N ratios for measurement
errors alone, sampling errors alone and combined measurement and
sampling errors have very similar characteristics for both smoothing
algorithms. The only significant differences are that the S/N ratios
increase somewhat faster with increased smoothing and thus intersect
our recommended threshold value of 3.16 at somewhat shorter half-
power filter cutoff wavelengths. The resolution capabilities of SWOT
and WaCM estimates of velocity fields inferred from the loess smoother
are consequently somewhat better than those inferred from Fig. 30
based on the Parzen smoother. The resolution capability improves by
about 30% and 20% for geostrophically computed SWOT estimates of,
respectively, 4-day and 14-day averaged velocity fields, and by about

12% for WaCM estimates of velocity fields for both choices of time
averaging (see Table 3).

The S/N standard deviation ratios for 4-day and 14-day averaged
SWOT and WaCM estimates of vorticity based on the loess smoother are
shown as functions of the half-power filter cutoff wavelength in Fig. 40.
As in the case of the space–time smoothed velocity fields considered
above, the results are qualitatively very similar to those obtained in
Fig. 35 using the Parzen smoother. Recall from Figs. 35a and b that
the S/N ratios for SWOT estimates of vorticity inferred from Parzen
smoothing never reached the threshold of 3.16. The S/N ratios for
sampling errors and combined measurement and sampling errors in
SWOT estimates of 4-day averaged vorticity using the loess smoother
asymptote with increased smoothing to a value that is coincidentally
just slightly higher than 3.16. Because of the flatness of the S/N curve,
the resolution capability inferred from this figure is sensitive to the
choice of threshold value of the S/N standard deviation ratio. By our
criterion of a threshold value of 3.16, the resolution capability inferred
from loess smoothing is 100 km for 4-day averages (Fig. 40a). The
resolution capability worsens to 143 km for 14-day averaged SWOT
estimates of velocity (Fig. 40b). As discussed previously, the degra-
dation of resolution capability with increased temporal averaging is
from increased sampling errors because of the space–time sampling
pattern of the SWOT 21-day exact-repeat orbit that samples the full CCS
model domain in two 4-day subcycles that are interleaved spatially and
separated by 6-day gaps.

For WaCM, the faster increases of the S/N standard deviation ratios
with increased smoothing using the loess smoother result in about 19%
improvements in the resolution capabilities of WaCM estimates of both
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Fig. 35. The S/N standard deviation ratios for the full CCS region from estimates of time-averaged surface vorticity computed from simulated satellite estimates of time-averaged
SSH (for SWOT) and surface velocity (for WaCM) as functions of the half-power filter cutoff wavelength of 2-dimensional isotropic smoothing using a Parzen smoother: (a)
Geostrophically computed SWOT estimates of 4-day averaged vorticity; (b) Geostrophically computed SWOT estimates of 14-day averaged vorticity; (c) WaCM estimates of 4-day
averaged total vorticity; and (d) WaCM estimates of 14-day averaged total vorticity. The dotted, dashed and thick solid lines correspond to the same combinations of signal and
errors as in Fig. 30 and the gray area in each panel indicates S/N standard deviation ratios less than 3.16. The S/N ratios for SWOT in the top panels never exceed the threshold
value of 3.16. The vertical dashed lines for WaCM in the bottom panels indicate the wavelengths above which the S/N standard deviation ratios exceed a value of 3.16 for the
case of combined measurement and sampling errors based on a swath width of 1200 km and a standard deviation of 𝜎spd = 0.50 m s−1 for the speed measurement noise. The
improved S/N ratios for WaCM with a swath width of 1800 km are shown in Figs. 43c and d.

4-day and 14-day averaged vorticity fields (see Figs. 40c and d and
Table 3).

The comparisons in Table 3 of the resolution capabilities of SWOT
and WaCM estimates of velocity and vorticity based on the Parzen and
loess smoothers provide a measure of how rigorously the resolution
capabilities reported here should be interpreted. In addition to the sub-
jectivity of our recommended choice of 3.16 as the minimum threshold
value for the S/N standard deviation ratio, the half-power filter cutoff
wavelength above which the S/N ratios exceed this threshold changes
by 10%–40% as summarized in Table 3, depending on the variable of
interest, the averaging time, and the choice of smoother. Importantly,
however, the relative rankings of resolution capabilities for the two
instruments and for the three choices of time averages considered in
Figs. 38–40 are insensitive to the details of the smoothing algorithm.

The Parzen smoother and the loess smoother were both applied for
all of the calculations in this study. The resolution capabilities will be

discussed based on the more conservative estimates obtained from the
Parzen smoother.

10. The benefits of improved sampling and measurement accuracy
for WaCM

A conclusion from Section 8 is that measurement errors are a
minor concern in space–time smoothed maps of surface velocity and
vorticity computed geostrophically from SWOT data. The total errors
in these fields are dominated by sampling errors owing to the narrow
swath width of SWOT measurements of SSH. Reducing the SWOT
measurement errors would therefore have little effect on the resolution
capabilities of space–time smoothed maps of the velocity and vorticity
fields computed geostrophically from SWOT data over a domain the
size of the CCS. Aside from multiple SWOT instruments operating si-
multaneously on different satellites in coordinated orbits, the only way
to improve the resolution capability would be to reduce the sampling
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Fig. 36. Maps of 4-day averages of normalized total surface vorticity 𝜁∕𝑓 computed from error-free and noisy simulated WaCM measurements of surface velocity with a swath
width of 1200 km and a standard deviation of 𝜎spd = 0.50 m s−1 for the speed measurement noise with isotropic 2-dimensional smoothing using a Parzen smoother with a half-power
filter cutoff wavelength of 50 km. The various combinations of measurement and sampling errors are the same as for Columns (a)–(d) of Fig. 31. The bottom panels are the error
maps computed by subtracting the error-free map in Column (a) from the error-contaminated maps in the top row of the respective Columns (b)–(d).

errors by increasing the width of the measurement swath. This might be
achievable to a limited degree at increased cost by increasing the power
of the transmitted signals. But altimetry is fundamentally restricted to
measurements at relatively small incidence angles, and hence narrow
swaths, compared with the Doppler scatterometer measurements by
WaCM.

In contrast to SWOT, the dominance of the measurement error
contribution to the total errors in maps of surface velocity and vorticity
constructed from WaCM data implies that the accuracy and resolution
capability can be improved by reducing the measurement noise in the
WaCM data. For the calculations in Section 8, it was assumed that
the uncorrelated measurement errors will have a standard deviation of
𝜎𝑢,𝑣 = 0.354 m s−1 for each velocity component, which corresponds to
a standard deviation of 𝜎spd = 0.50 m s−1 in speed errors. It may be
technologically possible to reduce the WaCM measurement errors, thus
improving the resolution capabilities for maps of velocity and vorticity
fields constructed from WaCM data.

While sampling errors were shown in Section 8 to be secondary
to measurement errors in determining the resolution capabilities of
space–time smoothed maps of velocity and vorticity constructed from
WaCM data, they are not negligible. This was evident in Figs. 30c and
d and Figs. 35c and d from the small offsets between the S/N ratios
for the cases of total errors and measurement errors alone (see also the
analogous figures with loess smoothing in Figs. 39c and d and Figs. 40c
and d). The resolution capabilities of space–time smoothed maps of
velocity and vorticity constructed from WaCM data can thus also be

improved by reducing the sampling errors, which can be achieved by
increasing the swath width.

The improvements of the resolution capabilities from increasing the
swath width and reducing the uncorrelated measurement errors are
investigated individually and in combination in this section.

10.1. The benefits of increasing the WaCM measurement swath to 1800 km

Recent engineering studies have concluded that it may be possi-
ble to extend the swath width of WaCM from the 1200-km swath
considered for the simulations in Section 8 to 1800 km. With the
nadir gap of 100 km, WaCM sampling would then consist of a pair
of parallel measurement swaths with 850-km widths. The full CCS
model domain is more than completely sampled by just one of the
parallel measurement swaths on ascending orbits (see the left panel
of Fig. 41) and nearly the entire CCS model domain can be sampled
with an appropriate choice of orbit ground tracks by just one of the
parallel measurement swaths on descending orbits (see the right panel
of Fig. 41).

The implications of the improved sampling afforded by the wider
swath width of 1800 km are shown by the histograms of WaCM
sampling of the CCS model domain in Fig. 42. For the 4-day period
shown in the top panel, the average number of samples is about 6.5.
For comparison, the average number of samples per 4-day repeat was
only about 4 for the 1200-km swath considered in Section 8 (see the top
panel of Fig. 23). For the 14-day period shown in the bottom panel of
Fig. 42, the average number of samples for a swath width of 1800 km is
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Fig. 37. The same as Fig. 36, except for 14-day averages of normalized surface vorticity 𝜁∕𝑓 computed from simulated WaCM measurements of surface velocity with 2-dimensional
isotropic smoothing using a Parzen smoother with a half-power filter cutoff wavelength of 50 km.

Fig. 38. The same as Fig. 18, except the S/N standard deviation ratios from simulated satellite estimates of instantaneous snapshots of surface velocity as functions of the half-power
filter cutoff wavelength of 2-dimensional isotropic smoothing using a loess smoother rather than the Parzen smoother used for Fig. 18.

about 23, compared with only about 13.5 for a swath width of 1200 km
(see the bottom panel of Fig. 23).

The increased number of WaCM samples during each 4-day and 14-
day averaging period reduces the sampling errors because of improved
sampling of the rapidly evolving submesoscale variability compared

with the simulations in Section 8. It also reduces the effects of uncor-
related measurement errors somewhat through the time-averaging of
a larger number of observations at each grid location over the course
of the averaging period. The net effects of the smaller sampling and
measurement errors on the S/N standard deviation ratios in space–
time smoothed maps of velocity and vorticity with a swath width
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Fig. 39. The same as Fig. 30, except the S/N standard deviation ratios from simulated satellite estimates of time-averaged surface velocity as functions of the half-power filter
cutoff wavelength of 2-dimensional isotropic smoothing using a loess smoother rather than the Parzen smoother used for Fig. 30.

of 1800 km are shown in Fig. 43. By our criterion, the resolution
capabilities of WaCM estimates of 4-day and 14-day averaged surface
velocity (Figs. 43a and b) are about 44 km and 21 km, respectively.
These are substantial improvements over the resolutions capabilities of
60 km and 28 km deduced in Section 8.4 for a swath width of 1200 km
(Figs. 30c and d). The resolution capabilities of WaCM estimates of
4-day and 14-day averaged vorticity with a swath width of 1800 km
(Fig. 43c and d) are about 70 km and 51 km, respectively, which
are again substantial improvements over the resolutions of 87 km and
62 km deduced in Section 8.5 for a swath width of 1200 km (Figs. 35c
and d).

A noteworthy feature of Fig. 43 is that the offsets between the S/N
ratios for the cases of total errors (the solid lines) and measurement
errors alone (the dotted lines) are much smaller for the 1800-km swath
width than for the 1200-km swath shown in Figs. 30c and d and
Figs. 35c and d. In fact, these two curves in each panel of Fig. 43 are so
similar that little would be gained by increasing the WaCM swath width
beyond 1800 km. Further improvements in the resolution capabilities of
space–time smoothed maps of velocity and vorticity constructed from
WaCM data are more effectively achieved by reducing the uncorrelated
measurement errors, which is considered in Section 10.2.

10.2. The benefits of reducing the WaCM measurement noise

The resolution capabilities of WaCM estimates of velocity and vor-
ticity that were deduced in Section 6 for instantaneous maps and in
Sections 8.4, 8.5 and 10.1 for time-averaged maps were based on the
baseline standard deviation of 𝜎spd = 0.50 m s−1 for the speeds of the
uncorrelated errors of WaCM measurements of surface velocity. For
the simulations throughout this study, these speed uncertainties are
assumed to be equally partitioned between each velocity component.
Measurement errors could be reduced by increasing the transmit power
of the WaCM antenna or by increasing the antenna size. The added
cost of these options must be traded off against the scientific benefits
of higher resolution maps of velocity and vorticity. To assess the
scientific benefits of higher resolution maps, we extended the analyses
of Sections 6, 8.4, 8.5 and 10.1 to determine the resolution capabilities
of maps of velocity and vorticity constructed from simulated WaCM
data with smaller uncorrelated measurement errors.

The effects of reducing the uncorrelated errors in WaCM mea-
surements of surface velocity can be inferred from the derivations in
Appendix I.4 of the effects of measurement errors on the wavenumber
spectral contents of smoothed WaCM estimates of velocity component
and vorticity fields. It is shown from Eqs. (I.48a) and (I.52), with the
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Fig. 40. The same as Fig. 35, except the S/N standard deviation ratios from simulated satellite estimates of time-averaged surface vorticity as functions of the half-power filter
cutoff wavelength of 2-dimensional isotropic smoothing using a loess smoother rather than the Parzen smoother used for Fig. 35.

latter partitioned as (I.54a) and (I.55a), that the wavenumber spectral
values of the errors of smoothed WaCM estimates of, respectively,
velocity component and vorticity fields both depend linearly on the
variances 𝜎2𝑢 and 𝜎2𝑣 of the velocity component measurement errors.
Since the variance of the smoothed fields is equal to the integral of their
wavenumber spectrum according to Parseval’s Theorem, the variances
of the errors of the smoothed fields decrease linearly with decreasing
variance of the velocity component measurement errors.

The S/N standard deviation ratios for smoothed estimates of veloc-
ity component and vorticity fields for any particular choice of half-
power filter cutoff wavelength depends inversely on the measurement
error standard deviation. The resolution capability defined as in previ-
ous sections to be the half-power filter cutoff wavelength above which
the S/N standard deviation ratios exceed a value of 3.16 therefore
decreases systematically with decreasing measurement error standard
deviation, though not necessarily linearly since the signal contribution
to the S/N standard deviation ratios does not necessarily vary linearly
with filter cutoff wavelength.

We first consider the case of instantaneous snapshot maps of veloc-
ity and vorticity that could be obtained from a single overpass of the
CCS model domain. The benefits of improving the WaCM measurement
accuracy were quantified by repeating the calculations in Section 6 of
the S/N standard deviation ratios for spatially smoothed WaCM maps

of instantaneous velocity and vorticity based on standard deviations
of the uncorrelated speed measurement errors ranging from 𝜎spd =
0.10 m s−1 to 0.50 m s−1, which we continue to assume are equally
partitioned between the two orthogonal velocity components. As in
Section 6, we isolate the effects of measurement errors by considering
the idealized scenario of complete sampling of the full CCS model
domain on each overpass of the WaCM satellite. This is nearly achieved
for both ascending and descending orbits for a swath width of 1200 km
(Fig. 20) and is essentially achieved for a swath width of 1800 km
(Fig. 41). The variances of the error-free signals for each choice of
half-power filter cutoff wavelength are unchanged from Section 6 in
these calculations, but the variances of the errors of the smoothed fields
decrease linearly with the measurement error variance as summarized
above.

The dependencies of the resolution capabilities of smoothed maps of
WaCM estimates of instantaneous velocity and vorticity on the standard
deviation of the speed measurement errors were deduced from graphs
of the S/N standard deviation ratios like those shown in Fig. 18b. The
results are shown in Fig. 44 for both Parzen and loess smoothing. As
discussed in Section 9, the filtering efficiency of the loess smoother
improves the resolution capability compared with the Parzen smoother,
albeit with higher computational effort. For discussion purposes, we
will continue to adopt the more conservative resolution capabilities
inferred from the Parzen smoother.
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Fig. 41. The same as the bottom two panels of Fig. 20, except examples of the measurement swaths for single ascending and descending overpasses of WaCM for the case of a
swath width of 1800 km. The ground tracks are for illustrative purposes and could be adjusted longitudinally to optimize the sampling of any specific region of the world ocean.
The details of the sampling of the CCS region would change accordingly.

Table 3
The resolution capabilities deduced in Sections 6, 8 and 9 for SWOT and WaCM
estimates of the magnitude of surface ocean velocity and vorticity in an instantaneous
snapshot and in 4-day and 14-day averages based on spatial smoothing using the Parzen
and loess smoothers for measurement error standard deviations of 𝜎ℎ = 2.74 cm for
SWOT and 𝜎spd = 0.50 m s−1 equally partitioned between the two velocity components
for WaCM. A horizontal line indicates that the S/N ratio did not exceed the threshold
of 3.16 for any of the choices of half-power filter cutoff wavelength considered in
Section 8. The last column shows the percent improvement of the resolution capability
inferred from the loess smoother compared with the Parzen smoother. The results for
WaCM are based on a swath width of 1200 km. The improved resolution capabilities
if the WaCM swath can be extended to 1800 km are listed in Table 4 based on the
Parzen smoother. The resolutions based on Parzen smoothing that are listed in this
table are shown graphically in Fig. 51 in Section 13.5 below.

Instrument Averaging Resolution Resolution Percent
period from Parzen from Loess improvement

Velocity

SWOT Snapshot 32 km 23 km 28%
SWOT 4 days 52 km 36 km 31%
SWOT 14 days 132 km 107 km 19%

WaCM Snapshot 130 km 99 km 24%
WaCM 4 days 60 km 52 km 13%
WaCM 14 days 28 km 25 km 11%

Vorticity

SWOT Snapshot 54 km 34 km 37%
SWOT 4 days – 100 km –
SWOT 14 days – 143 km –

WaCM Snapshot 130 km 89 km 32%
WaCM 4 days 87 km 71 km 18%
WaCM 14 days 62 km 50 km 19%

For the sake of specificity in the discussion that follows, the resolu-
tion capabilities for the baseline standard deviation of 𝜎spd = 0.50 m s−1

for the uncorrelated speed measurement errors will be compared with

Fig. 42. The same as the thick lines in Fig. 23, except histograms of the number of
samples by WaCM during 4 days and 14 days based on a swath width of 1800 km
rather than 1200 km.

the resolutions that could be achieved by halving the noise standard
deviation to 𝜎spd = 0.25 m s−1. The numerical values of the resolution
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Fig. 43. The same as the bottom two panels of Fig. 30 and the bottom two panels of Fig. 35, except the S/N standard deviation ratios for WaCM estimates of 4-day and 14-day
averaged velocity and vorticity fields for the baseline standard deviation of 𝜎spd = 0.50 m s−1 for the speed measurement noise and a swath width of 1800 km rather than 1200 km.

capabilities are listed in Table 4a and b. The resolution capabilities for
other choices of 𝜎spd can be determined graphically from Fig. 44.

Reducing the speed measurement noise to 𝜎spd = 0.25 m s−1

would dramatically improve the resolution capability of instantaneous
snapshots of velocity from 130 km to 50 km (see Fig. 44a and Table 4a).
The resolution capability of instantaneous snapshots of vorticity would
improve from 130 km to 74 km (see Fig. 44b and Table 4b). The
benefits of the higher resolution with the smaller measurement noise
of 0.25 m s−1 for instantaneous snapshots of velocity and vorticity can
be seen visually in Fig. 50 below.

The effects of improving the WaCM measurement accuracy on
space–time smoothed maps of velocity and vorticity were similarly
quantified by repeating the calculations in Sections 8.4, 8.5 and 10.1 of
the S/N standard deviation ratios like those shown in Figs. 30, 35, 39,
40 and 43 for standard deviations of uncorrelated speed measurement
errors ranging from 𝜎spd = 0.10 m s−1 to 0.50 m s−1. For space–
time smoothed maps, it was shown in Section 10.1 that the swath
width of the WaCM measurements is also a factor in determining the
resolution capability. We therefore estimated the resolution capabilities
for both of the swath widths that were considered in Sections 8.4, 8.5
and 10.1. The results for swath widths of 1200 km and 1800 km are
shown, respectively, by the blue and red lines in Fig. 45. The solid and
dashed lines are the resolution capabilities inferred based on smoothing

using the Parzen and loess smoothers, respectively. For discussion pur-
poses, we again consider the more conservative resolution capabilities
inferred from the Parzen smoother.

The dependencies of the resolution capabilities of 4-day averaged
WaCM estimates of the surface velocity field on the standard deviation
of the speed measurement errors are shown in Fig. 45a. For the baseline
standard deviation of 𝜎spd = 0.50 m s−1 assumed in Sections 8.4 and
10.1 for the uncorrelated speed measurement errors, it was shown from
Figs. 30c and 43a that increasing the swath width from 1200 km to
1800 km would improve the resolution capability for 4-day averaged
velocity fields from 60 km to 44 km. Reducing the standard deviation
of the measurement noise to 𝜎spd = 0.25 m s−1 would further improve
this resolution capability to 18 km (see Fig. 45a and Table 4c).

For 14-day averaged velocity fields, it was shown from Figs. 30d
and 43b that the resolution capability for a speed measurement noise
of 𝜎spd = 0.50 m s−1 would improve from 28 km for a swath width of
1200 km to 21 km for a swath width of 1800 km. Reducing the standard
deviation of the speed measurement noise to 𝜎spd = 0.25 m s−1 would
further improve the 14-day averaged velocity resolution capability to
10 km (see Fig. 45b and Table 4e), which is the inherent resolution
of the pre-processed estimates of surface velocity with a footprint
diameter of 5 km for the simulations in this study.
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Fig. 44. The resolution capabilities of WaCM estimates of instantaneous snapshot maps
of the full CCS region (which are essentially achieved on each satellite overpass with a
swath width of 1800 km — see Fig. 41) as functions of the standard deviation 𝜎spd of the
uncorrelated errors of WaCM measurements of surface velocity: (a) maps of velocity;
and (b) maps of vorticity. The solid and dashed lines in each panel correspond to
the half-power filter cutoff wavelengths above which the S/N standard deviation ratios
exceed a value of 3.16 using Parzen and loess smoothers, respectively. For reference, the
vertical dashed line in each panel indicates a standard deviation of 𝜎spd = 0.25 m s−1 for
the uncorrelated speed measurement errors, which corresponds to half of the baseline
value of 𝜎spd = 0.50 m s−1.

Table 4
The resolution capabilities deduced in Sections 6, 8 and 10 for maps of the surface
ocean velocity and vorticity based on spatial smoothing of WaCM data using the Parzen
smoother for: (a) instantaneous snapshots of velocity; (b) instantaneous snapshots of
vorticity; (c) 4-day averages of velocity; (d) 4-day averages of vorticity; (e) 14-day
averages of velocity; and (f) 14-day averages of vorticity. The results are listed for
combinations of 1200 km and 1800 km swath widths and standard deviations of
𝜎spd = 0.50 m s−1 and 0.25 m s−1 for the uncorrelated errors of WaCM measurements of
current speed. The swath width for instantaneous maps of velocity and vorticity in (a)
and (b) is assumed to be the full CCS model domain, which is essentially achieved on
every satellite overpass with a swath width of 1800 km (see Fig. 41). Example maps
with the resolutions listed in Tables a–d are shown in Figs. 48–50. The resolutions
listed in this table are shown graphically in Fig. 51 in Section 13.5 below.

Swath width Measurement noise 𝜎spd Swath width Measurement noise 𝜎spd

0.50 m s−1 0.25 m s−1 0.50 m s−1 0.25 m s−1

(a) Instantaneous velocity maps (b) Instantaneous vorticity maps

CCS Model 130 km 50 km CCS Model 130 km 74 km

(c) 4-Day Averaged velocity maps (d) 4-Day Averaged vorticity maps

1200 km 60 km 28 km 1200 km 87 km 59 km
1800 km 44 km 18 km 1800 km 70 km 45 km

(e) 14-Day Averaged velocity maps (f) 14-Day Averaged vorticity maps

1200 km 28 km 11 km 1200 km 62 km 42 km
1800 km 21 km 10 km 1800 km 51 km 34 km

The dependencies of the resolution capabilities of 4-day averaged
WaCM estimates of the vorticity field on the speed measurement error
standard deviation are shown Fig. 45c. For the baseline standard devia-
tion of 𝜎spd = 0.50 m s−1 for the uncorrelated speed measurement errors,
it was shown from Figs. 35c and 43c that increasing the swath width
from 1200 km to 1800 km would improve the resolution capability
for 4-day averaged vorticity fields from 87 km to 70 km. Reducing the
standard deviation of the speed measurement errors to 𝜎spd = 0.25 m s−1

would further improve the resolution capability to 45 km (see Fig. 45c
and Table 4d).

For 14-day averaged vorticity fields, it was shown from Figs. 35d
and 43d that the resolution capability for a speed measurement noise
of 𝜎spd = 0.50 m s−1 would improve from 62 km for a swath width of
1200 km to 51 km for a swath width of 1800 km. Reducing the standard
deviation of the speed measurement noise to 𝜎spd = 0.25 m s−1 would
further improve the 14-day averaged vorticity resolution capability to
34 km (see Fig. 45d and Table 4f)

While the improved spatial resolution capabilities summarized
above for space–time smoothed maps of velocity and vorticity esti-
mated from WaCM data for an increased swath width of 1800 km and a
reduction of the standard deviation of uncorrelated speed measurement
errors to 0.25 m s−1 are impressive, we note again that much of
the small-scale velocity and vorticity signals that are of interest are
attenuated in 4-day and 14-day averaged fields, especially the latter
(see Figs. 24 and 25). Depending on the application, the coarser spatial
resolution of instantaneous snapshot maps of velocity and vorticity
constructed from WaCM data (Fig. 44) may be preferable to the higher
spatial resolution of the time-averaged maps (see Figs. 48–50).

11. Discussion

The preceding analysis has assessed the resolution capabilities of
surface ocean velocity and vorticity fields estimated from simulated
interferometric altimeter measurements of SSH by SWOT and Doppler
radar measurements of surface velocity by WaCM. The simulated satel-
lite data for this study were constructed based on the high-resolution
model of the California Current System summarized in Section 2 with
uncorrelated measurement errors added to the SSH and surface velocity
fields with the standard deviations in the baseline designs of the SWOT
and WaCM instruments.

For SWOT, our analysis includes a derivation of the baseline science
requirement for the standard deviation of the uncorrelated errors of
the SSH measurements, a number that cannot be found unambigu-
ously in the SWOT documentation. This derivation (see Appendix F)
concludes that the requirement for the uncorrelated errors of SWOT
measurements of SSH, as specified in the SWOT Science Requirements
Document (Rodríguez and Callahan, 2016) in terms of the wavenumber
spectrum after smoothing in ground-based post-processing, corresponds
to a standard deviation of 𝜎ℎ = 2.74 cm for pre-processed SWOT
estimates of SSH with a footprint size of 1 km.

Our error analysis includes derivations of analytical expressions for
the variances (Appendix G) and the wavenumber spectra (Appendix I)
of errors of the estimates of the derived variables (geostrophically
computed velocity and vorticity for SWOT and vorticity for WaCM),
with and without spatial smoothing. The errors are shown as func-
tions of the half-power filter cutoff wavelength of the smoothing in
Fig. 12. The wavenumber spectra shown in Figs. 13–15 quantify the
scale dependencies of these errors. The equations for the variances
and wavenumber spectra of the errors of the derived variables all
depend explicitly on the variance of the uncorrelated measurement
errors and are thus applicable to arbitrary specification of measurement
noise. This allows an assessment of the degree of improvement in
the accuracies of the derived variables that would be achieved by
improving the baseline measurement accuracies.

The calculations presented in Sections 6, 8, 9 and 10.1 are based
on the above standard deviation of 𝜎ℎ = 2.74 cm for the uncorrelated
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Fig. 45. The resolution capabilities of WaCM estimates of 4-day and 14-day averages (left and right columns) of surface velocity and vorticity (top and bottom rows) as functions of
the standard deviation 𝜎spd of the uncorrelated speed errors of WaCM measurements of surface velocity for swath widths of 1200 km and 1800 km (blue and red lines, respectively).
The solid and dashed lines in each panel correspond to the half-power filter cutoff wavelengths above which the S/N standard deviation ratios exceed a value of 3.16 using Parzen
and loess smoothers, respectively. For reference, the vertical dashed line in each panel indicates a standard deviation of 𝜎spd = 0.25 m s−1 for the uncorrelated speed measurement
errors, which corresponds to half of the baseline value of 𝜎spd = 0.50 m s−1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

errors of SWOT measurements of SSH with a footprint size of 1 km, and
a standard deviation of 𝜎spd = 0.50 m s−1 for the uncorrelated errors of
WaCM measurements of surface ocean velocity with a footprint size of
5 km. The benefits of reducing the measurement noise are investigated
for WaCM in Section 10.2. Improved measurement accuracy is not con-
sidered for SWOT because the total errors in maps of SWOT estimates
of velocity and vorticity are so strongly dominated by sampling errors
that reducing the measurement errors would offer little benefit.

For WaCM, we have assumed that the uncorrelated speed errors are
equally partitioned between the two orthogonal velocity components,
thus resulting in a baseline standard deviation of 𝜎𝑢,𝑣 = 0.354 m s−1

for each component. In reality, the errors of each velocity component
will vary differently across the measurement swaths because of the
geometrical transformation issues discussed in Section 4.2. For approx-
imation of the derivatives of the velocity components that are required
to estimate vorticity from WaCM data, we have further assumed that
the velocity estimates with 5 km footprint size are oversampled on a
1 km × 1 km grid. It is shown in Appendix H that 3-point centered
differences on this grid retain more of the small-scale signal in the
vorticity field without having to resort to centered difference estimates
of the derivatives with a wider stencil width on the 5 km × 5 km grid
on which the WaCM measurement errors are uncorrelated.

The measurement error standard deviations of 𝜎ℎ = 2.74 cm for
SWOT and 𝜎spd = 0.50 m s−1 for WaCM are swath-averaged values. It
is shown in Fig. F.1 of Appendix F that the SWOT measurement errors
will increase toward each edge of the measurement swaths and with

increasing significant wave height (SWH). WaCM measurement errors
also increase toward the edges of the measurement swaths and will
depend on SWH (Rodríguez, 2018). In this study, we have considered
the SWOT and WaCM measurement errors to have uniform standard
deviations across the full widths of their measurement swaths. Because
we have neglected the increases of measurement errors toward the
swath edges, our analysis in this study likely underestimates the overall
effects of measurement errors on space–time smoothed estimates of
velocity and vorticity fields constructed from SWOT and WaCM data.
The results presented in Sections 6 and 8–10 should therefore be
considered optimistic estimates of the resolution capabilities of actual
SWOT and WaCM data.

The CCS model used for our assessments of the resolution capabil-
ities of SWOT and WaCM estimates of surface velocity and vorticity
has some limitations that should be kept in mind. As summarized
in Section 2, the model was forced with seasonally varying winds,
heat flux and freshwater flux, and thus omits the significant effects
of synoptic atmospheric forcing. Inertial motions are therefore poorly
represented in the model. They will be considered unwanted ‘‘noise’’
in most applications of SWOT and WaCM data. While they are not a
concern in this study because of their weak signal levels in the model,
their effects on SSH and surface velocity will have to be addressed in
the analysis of actual SWOT and WaCM data. We note that mesoscale
and submesoscale variability may also be underrepresented in the
model because of the seasonal atmospheric forcing. The model also
has high dissipation and lacks tidal forcing. It is therefore likely that
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internal wave variability is considerably underestimated in the model.
In spite of these limitations, we believe that the model provides useful
comparisons of the resolution capabilities of maps of surface velocity
and vorticity constructed from SWOT and WaCM data.

The importance of the grid resolution of the model for proper
representation of the effects of submesoscale variability is evident from
Fig. 1. Submesoscale variability increases dramatically by increasing
the grid resolution from 4 km to the 0.5 km grid spacing of the model
used for our simulations. The choice of grid resolution is clearly an
important consideration in choosing a model from which to assess the
resolution capabilities of SWOT and WaCM estimates of surface velocity
and vorticity. For example, Qiu et al. (2016) evaluated the resolution
capability of maps of vorticity constructed from simulated SWOT data
based on a model of the Kuroshio Extension with a grid spacing of
1/30◦ (approximately 3 km). The much less energetic submesoscale
variability in that model compared with the CCS model used in this
study is partly attributable to the coarseness of their model grid. The
weaker submesoscale variability in the model output used in the Qiu
et al. (2016) study is compounded by the fact that their analysis was
based on daily averages rather than instantaneous snapshots of the
model output.

The extent to which accurate model representation of submesoscale
variability is important in model-based simulations of SWOT and
WaCM data depends on the amount of smoothing that must be applied
to the simulated satellite data to achieve adequate signal-to-noise
ratio in maps of the variables of interest. Given the coarse resolution
capabilities inferred from the analysis in Sections 6 and 8–10 and
summarized in Tables 3 and 4, it may not be necessary to use a model
with resolution as high as the 0.5-km grid of the CCS model used in
this study. It nonetheless seems prudent to use as high a resolution
model as possible in order to be sure that aliasing issues from discrete
sampling at satellite overpass times are adequately accounted for. To
this end, the daily averages analyzed by Qiu et al. (2016) are likely
an issue, even for the coarse resolution capabilities of SWOT estimates
of geostrophically computed velocity and vorticity. The twice-daily
snapshots analyzed in this study are also less than ideal; evidence of
aliasing from inadequate sampling of the rapidly evolving submesoscale
field was readily apparent from the 4-day and 14-day averages of
error-free vorticity in the bottom panels of Fig. 24.

In addition to analysis of the effects of uncorrelated measurement
and sampling errors, we also investigated limitations of the geostrophic
approximation that must be used to estimate surface velocity and
vorticity from SWOT measurements of SSH (Section 3). Because of the
above-noted underestimation of internal gravity wave energy in the
CCS model used in this study, we were not able to use this model to
assess the effects of the SSH signatures of internal waves on velocity
estimates computed geostrophically from SSH. We did, however, use
the CCS model to investigate the effects of ageostrophic variability
from cyclostrophic motion, which results in geostrophically computed
velocities that overestimate the positive vorticity of cyclonic features
and underestimate the magnitude of the negative vorticity of anticy-
clonic features. The former are more prevalent, presumably because of
the tendency for anticyclonic features to become inertially unstable. It
was shown in Section 3 that the errors from cyclostrophic motion may
often exceed 0.1 m s−1 but can be reduced to less than 0.05 m s−1 by
smoothing with a half-power filter cutoff wavelength of 50 km or more.

Contamination of geostrophically computed SWOT estimates of sur-
face velocity by internal gravity waves is an important issue in need of
rigorous analysis that is beyond the scope of this study. Some insight
into the effects of internal waves on the interpretation of SWOT data
was provided in Section 3 based on two high-resolution simulations of
the ocean circulation southeast of the Gulf Stream in the western North
Atlantic (see Figs. 10 and 11). A simulation forced by low-frequency
winds and without tides results in ageostrophic submesoscale features
similar to the cyclostrophic features found in the CCS model used in this
study. The same North Atlantic simulation forced by hourly winds and

ocean tides results in a dramatically different geostrophically computed
velocity field consisting of internal wave structures that overwhelm the
submesoscale velocity features that are of interest.

The apparent velocity structures computed geostrophically from the
SSH signatures of internal waves are a gross misrepresentation of the
surface manifestation of the actual internal wave velocities. SWOT
data will have to be judiciously smoothed spatially and/or temporally
to mitigate contamination of the geostrophically computed velocity
estimates by internal gravity waves.

While contamination of SWOT estimates of surface velocity and
vorticity by ageostrophic processes is clearly an issue, it should be kept
in mind that SWOT was not designed to determine the surface velocity
and vorticity fields that are the primary focus of this study. However,
many users of SWOT data intend to investigate ocean dynamics from
SWOT estimates of velocity and vorticity. The analysis presented in this
study provides a useful framework for understanding the limitations of
SWOT data for such applications.

It should also be noted that some of the same ageostrophic sig-
nals that contaminate SWOT estimates of velocity and vorticity will
be considered unwanted ‘‘noise’’ in the context of many applications
of the total velocity measured by WaCM. In particular, the surface
velocity signatures of internal gravity waves and inertial motions could
obscure some of the velocity signals of the mesoscale and submesoscale
currents that will be the primary interest in many studies. A sense
of the magnitudes of these ageostrophic velocities can be inferred
from the modeling result shown in the bottom left panel of Fig. 10.
Values exceeding 0.5 m s−1 are common. The partitioning of this
ageostrophic velocity between inertial motions, internal waves and
other ageostrophic processes is presently not well understood.

A point worth emphasizing is that the ‘‘contamination’’ of WaCM
data by ageostrophic processes differs fundamentally from the con-
tamination of SWOT data by the same ageostrophic processes. The
velocity signatures of inertial motions and internal waves are true
velocities. In contrast, the apparent surface velocity field computed
geostrophically from the SSH signatures of ageostrophic processes are
fictitious velocities that do not exist in nature.

Although the spectral characteristics of SSH at high wavenumbers
(short wavelengths) were not a primary focus of this investigation,
useful insight into the nature of SSH variance at poorly observed
small scales can be obtained from the CCS model used throughout
this study and from the above two North Atlantic models considered
briefly in Section 3 and Appendix F. It is shown in Figs. F.3 and F.4
that the rolloff at high wavenumbers in the SSH spectra from all three
of these models is steeper than the approximate 𝑙−5∕2 dependence on
wavenumber 𝑙 that is assumed in the 68th-percentile global average
SSH spectrum that is the basis for defining the science requirements for
SWOT measurement accuracy and resolution (Rodríguez and Callahan,
2016). This 68th-percentile wavenumber spectrum is based on extrap-
olation of along-track SSH spectra from nadir altimetry that resolves
variability only down to a wavelength scale of about 70 km (Xu and
Fu, 2012). The validity of this extrapolation cannot be determined from
presently available observational data and must therefore be inferred
from high-resolution ocean circulation models.

A consequence of the steeper rolloff of the wavenumber spec-
tra from the three models considered in this study is that the 68th-
percentile spectrum assumed in the SWOT requirements document
may overestimate the variance at high wavenumbers, in which case
the 15-km resolution of the SWOT data as defined spectrally in the
science requirements would be overly optimistic. In particular, the 15-
km smoothed white noise spectrum for the SWOT requirement of the
standard deviation of 𝜎ℎ = 2.74 cm for the uncorrelated measurement
errors that is derived for a footprint size of 1 km in Appendix F may
intersect the true SSH signal spectrum at a wavelength longer than 15
km. Achieving the science goal of resolving the signal spectrum down
to a wavelength of 15 km would then require a higher measurement
accuracy in the pre-processed SWOT estimates of SSH, i.e., a smaller
standard deviation of the uncorrelated measurement errors.
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Since little is known about the spectral characteristics of SSH at
wavelengths shorter than 70 km, it is possible that the CCS model used
in this study and the two North Atlantic models considered briefly in
Section 3 and Appendix F underestimate the variance at high wavenum-
bers. As discussed at the end of Appendix F, the wavenumber spectrum
of SSH at wavelengths shorter than 70 km is flatter in the MITgcm
model (Rocha et al., 2016; Savage et al., 2017) and thus has higher
variance at these high wavenumbers. The differences between the spec-
tral characteristics of SSH at high wavenumbers from different models
underscores how little is known about ocean variability on scales
smaller than 70 km. One of the primary contributions of the SWOT
mission will be to elucidate the nature of spatial variability of SSH
at these smaller scales that have heretofore not been observable from
space. This will enable testing of the various model representations of
small-scale variability of SSH.

Notwithstanding the issues summarized above, the analysis pre-
sented in Sections 6 and 8–10 provides useful insight into the resolution
that can be expected in maps of the surface velocity and vorticity
fields constructed from SWOT and WaCM data. From simulated SWOT
measurements of SSH and WaCM measurements of surface velocity
based on the CCS model used in this study, it is shown in Appendix G
and Section 4 (see also Tables 1 and 2 and the bottom left panels
of Figs. 17b, 17c, 19a and 19b) that the standard deviations of the
uncorrelated measurement errors assumed in our analysis result in
velocity and vorticity errors that are too large for the SWOT and WaCM
data to be useful for oceanographic applications at the full resolutions
of the pre-processed data (footprint sizes of 1 km for SWOT and 5 km
for WaCM). It will therefore be necessary to smooth the pre-processed
satellite data in ground-based post-processing to reduce the effects of
uncorrelated measurement errors and improve the signal-to-noise ratios
in SWOT and WaCM estimates of velocity and vorticity.

The standard deviations of the errors of the variables of interest
decrease rapidly with increased smoothing (see Fig. 12). The signal
standard deviations also decrease with increased smoothing, but usu-
ally less rapidly than the error variances. The signal-to-noise (S/N)
standard deviation ratios therefore generally improve with increased
smoothing. From visual inspection of many maps such as the examples
shown in Fig. 16 for S/N standard deviation ratios of 1, 2 and 3.16,
we recommend a ratio of 3.16 (which corresponds to a S/N variance
ratio of 10) as a guideline minimum threshold for maps of velocity and
vorticity constructed from SWOT and WaCM data. While subjective,
this S/N ratio is sufficiently high to distinguish the signal from the noise
unambiguously. For readers willing to accept a lower S/N ratio, the
corresponding resolution capabilities can be inferred from the graphs
in Sections 6, 8.4, 8.5, 9 and 10.1, specifically Figs. 18, 30, 35, 38–40
and 43. The results are compared graphically in Fig. 51 in Section 13.5
below for the resolution capabilities of SWOT and WaCM estimates of
velocity and vorticity for the cases of threshold S/N standard deviation
ratios of 3.16 and 2.00.

In addition to the subjective choice of a threshold S/N standard
deviation ratio of 3.16 adopted in this study to define resolution
capability, the discussion in Section 9 (see also Figs. 44 and 45 in
Section 10.2) shows that the precise values of the resolution capabilities
of SWOT and WaCM estimates of surface velocity and vorticity depend
to some extent on the details of the algorithm used to smooth the noisy
satellite data. For example, it was shown in Section 9 that the resolution
capabilities of instantaneous snapshots and space–time smoothed maps
of velocity and vorticity that would be inferred based on the loess
smoother are better than those inferred from the Parzen smoother (see
Table 3) but the relative rankings of resolution capabilities for the two
instruments and for the choices of time averages considered in Section 9
(instantaneous snapshots and time averages over 4 and 14 days) are
insensitive to the details of the smoothing algorithm.

A disadvantage of the loess smoother is that it is more than a factor
of 50 more computationally intensive than the Parzen smoother for the
set of filter cutoffs considered in this study. This was a significant issue

since a total of 1200 smoothed maps were required to generate the S/N
graphs in Figs. 18, 30, 35 and 43 that are based on Parzen smoothing.
Another disadvantage of the loess smoother and other smoothers that
attenuate small-scale noise more effectively than the Parzen smoother
is that the desirable characteristics of their filter transfer functions
(small side lobes and a steep rolloff through the half-power filter cutoff
wavenumber) require wider spans of data for each smoothed estimate.
Such smoothers are therefore subject to greater edge-effect contamina-
tion of smoothed estimates near the edges of the measurement swaths.
The assessments of resolution capabilities in this study are based on the
more conservative estimates obtained using the Parzen smoother.

We first investigated the effects of measurement errors alone on the
resolution capabilities of SWOT and WaCM estimates of surface velocity
and vorticity. The analysis in Section 6 considered the idealized case of
measurement swaths that span the entire CCS model domain on each
satellite overpass. This is a highly unrealistic representation of SWOT
sampling, which consists of a 120-km swath with a 20-km nadir gap
(see the top panels of Fig. 20). For WaCM, however, most of the CCS
model domain is sampled on each overpass by just one of the two
parallel measurement swaths for the case of a total swath width of
1200 km (see the bottom panels of Fig. 20). If the total swath width
can be extended to 1800 km, essentially all of the CCS model domain
would be sampled on each overpass by just one of the two parallel
measurement swaths (see Fig. 41).

Based on uncorrelated measurement errors alone without consider-
ation of the limitations of swath width, the conclusion of Section 6 is
that the resolution capabilities of SWOT estimates of surface velocity
and vorticity are substantially better than those of estimates obtained
from WaCM with the baseline standard deviation of 0.50 m s−1 for
the uncorrelated measurement errors (see Table 3). If the WaCM mea-
surement noise can be reduced to 0.25 m s−1, however, the resolution
capabilities approach those of SWOT estimates of velocity and vorticity
(see Section 10.2 and Table 4a and b), with the distinct advantage of a
factor-of-17 wider measurement swath.

Mapping of the velocity and vorticity fields over domains larger
than individual measurement swaths requires combining measurements
from multiple satellite overpasses. Space–time smoothing of the satel-
lite data to construct such maps introduces sampling errors in addition
to the measurement errors considered in isolation in Section 6. As
discussed in detail in Section 7, sampling errors arise predominantly
from inadequate sampling of rapidly evolving submesoscale features
in the surface velocity and vorticity fields. To the extent that the
CCS model used in this study may underestimate the SSH variance at
high wavenumbers as discussed above, our assessment of resolution
capabilities for SWOT estimates of velocity and vorticity may be overly
optimistic. Because small-scale features generally evolve more rapidly
than large-scale features, higher spectral variance at high wavenumbers
would likely increase the aliasing artifacts in time-averaged maps of
velocity and vorticity constructed from SWOT. This would decrease
the signal-to-noise ratio in the time-averaged maps, thus worsening the
resolution capabilities.

It is evident from the figures in Sections 8.4 and 8.5 that the
sampling errors summarized in Section 7 are much worse for SWOT
than for WaCM because of the narrow measurement swath of the SWOT
instrument and the space–time sampling pattern of the SWOT orbit;
during each 21-day exact-repeat orbit, the full CCS domain considered
in this study is observed during two 4-day subcycles that are interleaved
spatially and separated temporally by 6-day gaps (see Figs. 21–23).
Spatially adjacent swaths are separated in time by 10 days. Sampling
errors are consequently the primary concern in maps of geostrophically
computed velocity and vorticity constructed from SWOT data. The
sampling errors are so large that our threshold S/N standard deviation
ratio of 3.16 is not achieved in either 4-day or 14-day averaged vorticity
fields using the Parzen smoother, even with the maximum half-power
filter cutoff wavelength of 150 km considered in this study. Moreover,
the resolution capability of SWOT estimates of 14-day averages of
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velocity is substantially worse than in 4-day averages because of the
increased sampling errors in the longer time average.

We thus conclude that geostrophically computed SWOT estimates
of velocity and vorticity will be useful primarily within individual
measurement swaths. But even then, there are likely to be issues from
the edge effects of spatial smoothing with a span that is comparable
to the 50-km width of each of the two parallel measurement swaths.
These edge effects will be exacerbated by the increased measurement
errors toward the inner and outer edges of each measurement swath
(see Fig. F.1) that have not been taken into consideration in this study.
To mitigate the multi-faceted effects of sampling errors, mapping of the
surface velocity and vorticity fields from SWOT data will likely have to
be done with the aid of dynamic interpolation from a data assimilation
model, as suggested, for example, by Ubelmann et al. (2015).

12. Space–Time Smoothed SSH Fields from SWOT Data

Because of amplification of errors by the centered-difference ap-
proximations of the derivatives required to compute geostrophic veloc-
ity and vorticity from SSH, SWOT estimates of the derivative quantities
are extremely sensitive to the standard deviation of 𝜎ℎ = 2.74 cm of the
uncorrelated errors in the SSH measurements on a 1 km × 1 km grid
(see Table 1). As pointed out in Section 11, however, SWOT was not
designed to map the surface velocity and vorticity fields that are the
focus of this study. It was specifically designed to map the global SSH
field with significantly higher resolution than can be achieved from the
present constellation of nadir altimeters.

The scientific value of the improved resolution and accuracy of
space–time smoothed SSH fields constructed from SWOT data should
not be underestimated. Pujol et al. (2012), Fu and Ubelmann (2014)
and Gaultier et al. (2016) have previously shown that maps of SSH from
SWOT will be superior to the SSH maps from presently available nadir
altimeter data. We show this here from simulated altimeter data based
on the CCS model used in this study.

Space–time smoothed maps of SSH were constructed from simulated
sampling by SWOT and from simulated sampling by nadir altimeters
processed in a manner similar that of the ‘‘two-sat’’ SSH fields produced
and archived by CLS/AVISO from the merged measurements from two
simultaneously operating altimeters. Our intent is not to reproduce all
of the details of the CLS/AVISO mapping procedure (see Pujol et al.,
2016, and references therein). In view of the conclusion of Section 8
that SWOT measurement errors are negligible compared with sampling
errors and the fact that sampling errors are much worse for the sparse
sampling by two nadir altimeters than for the wide-swath SWOT al-
timeter, measurement errors were not included in our simplified form
of the CLS/AVISO smoothing procedure. Instead, we consider only the
effects of sampling errors by constructing a simulated CLS/AVISO SSH
map by the following procedure.

The twice-daily SSH fields in the 30-day simulation of the CCS
model used in this study were linearly interpolated in space and time to
the locations of actual TOPEX/Poseidon and ERS-1 altimeter observa-
tions during the period 22 May to 21 June 1993, which corresponds
to the same time period as the climatologically forced CCS model
simulation. These simulated error-free TOPEX/Poseidon and ERS-1 data
were smoothed along the satellite ground tracks with a half-power filter
cutoff wavelength of 37 km. The along-track smoothed SSH values were
then subsampled at every third point, corresponding to a spacing of
about 18 km.

The resolution capability of the CLS/AVISO SSH fields is limited
to wavelengths longer than about 200 km and time scales longer
than about a month (see Appendix A.3 of Chelton et al., 2011). The
subsampled and smoothed SSH values along the TOPEX/Poseidon and
ERS-1 ground tracks were therefore smoothed and interpolated to the
CCS model grid using a 2-dimensional objective analysis procedure
with a half-power filter cutoff wavelength of 200 km in each dimension.
To mimic the monthly smoothing in the CLS/AVISO SSH fields, all of

the smoothed and subsampled simulated TOPEX/Poseidon and ERS-1
SSH observations within the 30-day period were weighted equally in
the 2-dimensional smoothing.

The effects of sampling errors on the 200-km by 30-day smoothed
SSH fields constructed from simulated SWOT and nadir altimeter data
are shown in Fig. 46. The ‘‘true’’ space–time smoothed SSH field con-
structed from twice-daily error-free model output is shown in Fig. 46a.
The space–time smoothed maps constructed from simulated CLS/AVISO
processing of error-free nadir altimeter data and from simulated error-
free SWOT data are shown in the top panels of Figs. 46b and c,
respectively. The bottom panels show the sampling errors in the maps
constructed from the simulated altimeter data.

The superiority of SWOT sampling is visually apparent in Fig. 46
from the smaller sampling errors. The standard deviation of 0.34 cm
for the sampling errors in the SWOT map is a factor of 3.2 smaller than
the standard deviation of 1.09 cm in the nadir altimeter map. Moreover,
the dynamic range of the errors is nearly a factor of four smaller in the
SWOT map: the extrema of the sampling errors range from only −1.3 cm
to +1.3 cm in the SWOT map compared with a range of −6.5 cm to
+3.7 cm in the nadir altimeter map. The present resolution of 200 km
by one month will thus be achieved from SWOT data with much smaller
sampling errors than in the presently available CLS/AVISO SSH fields.

It is noteworthy that the CCS region considered in our analysis
coincidentally lies within the latitude range of most favorable space–
time sampling by SWOT. The mapping errors increase somewhat at
higher and lower latitudes, although they are still much smaller than
the errors in maps constructed from nadir altimeter data (Pujol et al.,
2012; see their Fig. 1 and their Tables 2 and 3).

The simulations in Fig. 46 do not include the effects of uncorre-
lated measurement errors. As noted above, measurement errors have
negligible effect for the 200-km smoothing applied for the simulated
SWOT map of SSH Fig. 46c. Uncorrelated measurement errors are a
more significant consideration in the simulated ‘‘two-sat’’ CLS/AVISO
map of SSH in Fig. 46b because the point-to-point noise in the nadir
altimeter measurements at intervals of 6 km along the satellite ground
track has a standard deviation of about 3 cm. This is slightly higher than
the 𝜎ℎ = 2.74 cm standard deviation of the uncorrelated measurement
errors in the pre-processed SWOT estimates of SSH with a smaller
footprint size of 1 km. Smoothing the SWOT data 2-dimensionally to
a resolution of 6 km (i.e., with a half-power filter cutoff wavelength
of 12 km in each dimension — see Appendix B) to be commensurate
with the 6-km along-track resolution of nadir altimeter data would
reduce the SWOT noise standard deviation by about a factor of six (see
Appendix D). The resulting standard deviation of about 0.46 cm for the
noise in the 12-km smoothed SWOT data (see Fig. 12a) is more than a
factor of six smaller than the 3-cm noise of the nadir altimeter data from
which CLS/AVISO maps are constructed. Accounting for the effects of
uncorrelated measurement errors in the simulations in Fig. 46 would
thus worsen the errors in our simulated CLS/AVISO SSH field compared
with the simulated SWOT SSH field.

A complete and rigorous analysis of the improved accuracy and
resolution of SSH fields that will be achieved from SWOT data, in-
cluding consideration of the effects of uncorrelated measurement errors
mentioned above as well as orbit errors and other long-wavelength
measurement errors, is beyond the scope of this study. Fig. 47 offers
a sense of what can be expected from sampling errors alone. The two
curves show the standard deviation of the sampling errors from spa-
tially smoothed 30-day and 21-day averages of simulated SWOT data.
The 1.09 cm standard deviation from our simulation of the sampling
errors in CLS/AVISO SSH fields with 200-km by 30-day smoothing
shown in Fig. 46b can be achieved from SWOT data with only 100-km
by 21-day smoothing. One application that will especially benefit from
the improved accuracy and improved spatial and temporal resolution
of SSH fields constructed from SWOT data is the identification and
tracking of mesoscale eddies (e.g., Chelton et al., 2011), and more gen-
erally, the study of mesoscale ocean dynamics. The smaller sampling
errors from SWOT will significantly reduce the mislocation of eddies in
presently available SSH fields (see, for example, Fig. 3 of Pascual et al.,
2006).
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Fig. 46. Maps of 30-day averaged SSH smoothed 2-dimensionally with a half-power filter cutoff wavelength of 200 km in each dimension: Column (a) The ‘‘true’’ space–time
smoothed field computed from error-free model SSH fields at a time step of 0.5 day over the 30-day period; Column (b) The space–time smoothed field computed from simulated
TOPEX/Poseidon and ERS-1 nadir altimeter sampling of error-free model SSH fields at the times and locations of each altimeter observation over the 30-day period; and Column (c)
The space–time smoothed field computed from simulated SWOT swath sampling of error-free model SSH fields at the times and locations of each SWOT observation over the
30-day period. The bottom panels are maps of the sampling errors computed by subtracting the error-free map in Column (a) from the simulated satellite-sampled maps in the
top row of the respective columns (b) and (c).

13. Summary and conclusions

High-resolution global satellite estimates of surface ocean velocity
and vorticity would be of broad interest to a wide range of physical,
biological and chemical oceanography applications. In this study, we
conducted an exhaustive investigation the effects of uncorrelated mea-
surement errors and sampling errors on the resolution capabilities of
instantaneous and space–time smoothed maps of velocity and vorticity
fields derived from simulated measurements by two different tech-
niques: (1) Altimetric measurements of SSH by interferometry from the
Surface Water and Ocean Topography (SWOT) mission with a planned
launch in 2021; and (2) Doppler radar measurements of surface ocean
velocity from a future scatterometer mission that we have referred
to as a Winds and Currents Mission (WaCM). WaCM is one of seven
recommended NASA Earth Systems Explorer missions in the recent

decadal survey by the National Academies of Science, Engineering and
Medicine (NASEM, 2018).

The analysis procedures used in this study and the results and con-
clusions of our assessments of the resolution capabilities of SWOT and
WaCM estimates of surface ocean velocity and vorticity are summarized
below.

13.1. The analysis procedures

Our strategy for assessing resolution capability is summarized in
detail in Section 5. Simulated SWOT and WaCM data were generated
based on, respectively, the SSH and surface velocity fields from 30 days
of twice-daily output from the CCS model summarized in Section 2.
Uncorrelated measurement errors with the baseline standard deviations
were added to the model simulations of SSH and velocity. For SWOT,
we used the error standard deviation of 𝜎ℎ = 2.74 cm that is derived
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Fig. 47. The standard deviations of the sampling errors in 2-dimensionally smoothed
30-day and 21-day averaged SSH fields constructed from simulated SWOT data as
functions of half-power filter cutoff wavelength. The horizontal dashed line corresponds
to the 1.09-cm standard deviation of the sampling errors in the simulated CLS/AVISO
SSH field in the bottom panel of Fig. 46b constructed from error-free model SSH
fields subsampled at the times and locations of the TOPEX/Poseidon and ERS-1 nadir
altimeter observations over a 30-day period.

for a footprint size of 1 km in Appendix F. For WaCM, we used a
baseline standard deviation of 𝜎spd = 0.50 m s−1 for a footprint size
of 5 km but we also considered the benefits of smaller measurement
errors in Section 10.2. Noise-free and noisy SSH and velocity fields on
the 0.5 km × 0.5 km model grid were processed in manners that mimic
the pre-processing that will be applied to the SWOT and WaCM data to
achieve footprint sizes of 1 km and 5 km, respectively. Maps of noise-
free and noisy SSH and velocity fields with these footprint sizes were
then constructed on a 1 km × 1 km grid over the full model domain
and on subsampled grids within the measurement swaths at the times
and locations of the overpasses of each of the two satellite instruments.

The errors of surface velocity and vorticity fields estimated from
the simulated pre-processed SWOT and WaCM data are too large for
the estimates to be useful scientifically (see Tables 1 and 2 and the
bottom left panels of Figs. 17b, 17c, 19a and 19b). It will be necessary
to smooth the pre-processed SWOT and WaCM data in ground-based
post-processing to reduce the effects of measurement noise in the maps
of the variables of interest in this study. Four combinations of SSH and
velocity fields (noise-free on the full grid, noise-free on the subsampled
grid, noisy on the full grid and noisy on the subsampled grid) were
successively smoothed with half-power filter cutoff wavelengths rang-
ing from 10 km to 150 km. We also investigated the added benefits
of time averaging to reduce the effects of measurement and sampling
errors.

For each filter cutoff and each choice of time averaging, we com-
puted the spatial standard deviations of the smoothed noise-free fields
and the error fields for the cases of measurement errors alone, sampling
errors alone and combined measurement and sampling errors. Our
definition of resolution capability is based on the signal-to-noise (S/N)
ratios of the standard deviations of the smoothed noise-free fields and
the smoothed error fields. The S/N ratios for the cases of measurement
errors alone and sampling errors alone allow an assessment of the
relative contribution of each type of error to the total errors in maps of
velocity and vorticity constructed from the simulated satellite data.

With increased spatial smoothing, the noise standard deviations
usually decrease more rapidly than the signal standard deviations. The
S/N ratios therefore improve with increased smoothing. Based on visual
comparisons of many maps of smoothed noise-free and noisy velocity
and vorticity fields constructed from the simulated satellite data (see,
for example, Fig. 16), we defined the resolution capability as the half-
power filter cutoff wavelength above which the S/N standard deviation
ratios exceed a threshold value of 3.16, which corresponds to a S/N
variance ratio of 10. The improvements in the resolution capabilities

inferred based on a more liberal S/N standard deviation ratio of 2 are
shown in Fig. 51 in Section 13.5 below.

The sensitivity of our assessment of resolution capability to the
details of the smoothing algorithm was investigated in Section 9 (see
also Figs. 44 and 45 in Section 10.2) from consideration of two dif-
ferent smoothers. The resolution capability inferred based on the loess
smoother is better than that inferred based on the Parzen smoother
(see Table 3). This is attributable to the more efficient attenuation of
small-scale variability because of the better filtering properties of the
loess smoother, albeit with more than 50 times more computational
effort for the set of calculations in this study. The relative rankings
of resolution capabilities for the two instruments and for the choices
of time averaging considered in this study (instantaneous snapshots
and time averages over 4 and 14 days) are insensitive to the details
of the smoothing algorithm. We applied both the Parzen smoother and
the loess smoother for the analysis presented here. Our assessments of
resolution capabilities are based on the more conservative estimates
inferred from the Parzen smoother.

13.2. Instantaneous snapshot estimates of velocity and vorticity

Based on our criterion of a minimum S/N standard deviation ratio
of 3.16 and the Parzen smoother, we showed in Section 6 that the
in-swath resolution capabilities (i.e., the resolution capabilities when
measurement errors are the only consideration) for instantaneous snap-
shot maps of geostrophically computed SWOT estimates of velocity and
vorticity would be 32 km and 54 km, respectively, based on the spatial
variances of the signals in the CCS model considered in this study (see
Fig. 18a). These numbers represent the wavelengths of the features
that can be resolved with a S/N standard deviation ratio of 3.16. The
corresponding radii of resolvable features are about four times smaller
than the wavelength resolution (see Appendix B). The above resolution
capabilities for instantaneous maps of SWOT estimates of velocity and
vorticity correspond to the upper range of submesoscale variability.

In comparison, the in-swath resolution capabilities for instantaneous
maps of velocity and vorticity constructed from WaCM data with the
baseline standard deviation of 𝜎spd = 0.50 m s−1 for the uncorrelated
measurement errors, equally partitioned between the two velocity com-
ponents, would be 130 km for both variables (see Fig. 18b). Reducing
the WaCM measurement errors to 𝜎spd = 0.25 m s−1 would improve
these resolution capabilities to 50 km and 74 km for instantaneous
maps of velocity and vorticity, respectively (see Fig. 44 and Table 4a
and b).

In terms of measurement errors alone, and aside from the limitations
of the geostrophic approximation discussed in Section 3, velocity and
vorticity would thus be estimated in instantaneous snapshots with
higher resolution from SWOT than from WaCM, although only modestly
so if the WaCM measurement noise can be reduced to 𝜎spd = 0.25 m s−1.

An important qualification of the conclusion that the resolution
capabilities of in-swath estimates of velocity and vorticity are better for
SWOT than for WaCM is that the analysis of the effects of measurement
errors alone in Section 6 considers the case of measurement swaths that
sample the entire CCS model domain and thus neglects any edge effects
of the smoothing near the edges of the measurement swaths. With its
120-km swath width and a 20-km nadir gap, it can be seen from the
top panels of Fig. 20 that complete coverage of the CCS model domain
on a single satellite overpass is a highly idealized representation of
SWOT sampling. In addition to its sparse coverage, edge effects will be
problematic because the half-power filter cutoff wavelengths of 32 km
and 54 km required to achieve a S/N standard deviation ratio of 3.16
for in-swath SWOT estimates of velocity and vorticity are comparable
to the width of each parallel measurement swath. The above numbers
must therefore be considered the most optimistic possible outlook for
the resolution capabilities of velocity and vorticity fields constructed
from SWOT data within the confines of a single measurement swath.

In contrast, the idealized complete coverage of the CCS model
domain considered for the analysis in Section 6 would be very nearly

313



D.B. Chelton, M.G. Schlax, R.M. Samelson et al. Progress in Oceanography 173 (2019) 256–350

achieved on each satellite overpass by WaCM for a region of this size.
With a total swath width of 1200 km, WaCM coverage would be nearly
complete with just one side of the two parallel measurement swaths
(see the bottom panels of Fig. 20). WaCM coverage would be essentially
complete on each overpass if the swath width can be extended to
1800 km (Fig. 41).

13.3. Space–Time Smoothed Estimates of Velocity and Vorticity

Mapping of the velocity and vorticity fields over a region larger than
an individual measurement swath requires space–time smoothing of the
satellite data from multiple overpasses of the region of interest. This is
especially needed for SWOT because of its narrow 120-km swath width.
For both SWOT and WaCM, time averaging can reduce the effects of the
measurement errors considered in Section 6 but it also introduces the
three types of sampling errors that are summarized in Section 7. We
investigated the effects of combined measurement and sampling errors
in Sections 8–10 for the cases of 4-day and 14-day averages. These
choices of time averages correspond to the two subcycles of each repeat
of the 21-day SWOT orbit (see Figs. 22 and 23). The 4-day averaging
time also corresponds to the exact-repeat period of the WaCM orbit
assumed in this study.

The resolution capabilities inferred from the analysis in Section 8
for SWOT and WaCM estimates of space–time smoothed velocity and
vorticity fields are summarized in Table 3 for a swath width of 1200 km
in the case of WaCM. Whereas SWOT outperformed WaCM from the
consideration of measurement errors alone in Section 6, the relative
performance of the two instruments is not so simple for space–time
smoothed velocity and vorticity fields. Because of the narrow swath
width of SWOT and the space–time sampling pattern of the SWOT
21-day exact-repeat orbit that samples the full CCS model domain
in two 4-day subcycles that are interleaved and separated by 6-day
gaps, the total errors in maps of geostrophically computed velocity
and vorticity constructed from SWOT data are dominated by sampling
errors. Improving the measurement accuracy would have very little
effect on the total errors in SWOT estimates of space–time smoothed
maps of velocity and vorticity.

For velocity, the resolution capability of SWOT estimates of 4-day
averages is 52 km based on the Parzen smoother (see Fig. 30a), but
with large gaps in the maps because of the sparse SWOT sampling of
the CCS model domain during a 4-day period (see Fig. 28). Because
spatially adjacent swaths are separated by 10 days, sampling errors are
even worse in SWOT estimates of time-averaged velocity fields over
the 14-day period required for SWOT to map the entire CCS model
domain; the resolution capability degrades to 132 km (see Fig. 30b).
For SWOT estimates of space–time smoothed vorticity fields, sampling
errors are so large that the S/N standard deviation ratio never reaches
our threshold minimum of 3.16 for either choice of averaging period
based on the Parzen smoother (see Figs. 35a and b).

A conclusion of this study is thus that SWOT will be of limited value
for spatially complete mapping of velocity and vorticity fields without
the use of a data assimilation model. Its primary contribution will be
the SSH mapping capabilities for which it was designed. SWOT will
map the global SSH field with accuracy and resolution significantly bet-
ter than are presently achieved from the merging of SSH measurements
from multiple nadir altimetry missions (see Section 12 and Figs. 46
and 47). Among other applications, this will greatly benefit studies of
mesoscale eddy dynamics.

For spatially complete global mapping of the surface velocity and
vorticity fields, the Doppler radar measurements from a WaCM mission
would be far superior to SWOT. With its wider measurement swath and
the 4-day orbit repeat period assumed for the simulations of WaCM data
in this study, sampling errors are much less of an issue than for SWOT.
The effects of measurement errors in instantaneous snapshot maps of
the velocity and vorticity can therefore be reduced with time averaging.
By our criterion, the resolution capabilities for WaCM estimates of 4-
day averaged maps of velocity and vorticity based on a swath width

of 1200 km and a standard deviation of 𝜎spd = 0.50 m s−1 for the
uncorrelated measurement errors (see Figs. 30c and 35c) are 60 km and
87 km, respectively, which correspond to the lower range of mesoscale
variability. Increasing the swath width to 1800 km would improve
these resolution capabilities to 44 km and 70 km (see Section 10.1 and
Figs. 43a and c).

For both swath widths, the spatial resolutions of WaCM estimates
of velocity and vorticity could be further improved by increasing the
averaging period, e.g., to the 14-day averaging period considered in
Sections 8–10. It is not clear, however, how much of an advantage
the improved spatial resolution in these longer time averages would
be since increasing the averaging time also attenuates the smaller-scale
velocity and vorticity signals that are of interest (see Figs. 24 and 25).

The fact that measurement noise is the primary source of errors
in WaCM maps of the space–time smoothed velocity and vorticity
fields means that the resolution capabilities would be improved if the
standard deviation of uncorrelated WaCM measurement errors can be
reduced from the baseline value of 𝜎spd = 0.50 m s−1 assumed in
Sections 6, 8.4, 8.5, 9 and 10.1. The benefits of improving the WaCM
measurement accuracy were investigated in Section 10.2 (see Fig. 45).
If the measurement errors can be reduced to 𝜎spd = 0.25 m s−1,
for example, with the same footprint size of 5 km, the resolution
capabilities for WaCM estimates of 4-day averaged fields based on a
swath width of 1800 km would improve from the above-noted 44 km
and 70 km to 18 km and 45 km for velocity and vorticity, respectively
(see Figs. 45a and c).

The resolution capabilities summarized above for WaCM estimates
of 4-day averaged maps of surface velocity and vorticity constructed
using the Parzen smoother are listed in Table 4c and d for the cases of
1200-km and 1800-km swath widths and standard deviations of 𝜎spd =
0.50 m s−1 and 0.25 m s−1 for the uncorrelated speed measurement
errors. For comparisons, the resolution capabilities of WaCM estimates
of velocity and vorticity are also listed for the cases of instantaneous
snapshots (Table 4a and b) and 14-day averages (Table 4e and f).

13.4. Visual assessments of the WaCM resolution capabilities

The improvements in the resolution of velocity and vorticity maps
that would be achieved from WaCM over the present resolution ca-
pability of about 200 km by one month in geostrophically computed
maps constructed from multi-mission nadir altimeter data are visually
apparent from the 4-day averages shown in Figs. 48 and 49 for the CCS
region considered in this study. For the purposes of this comparison,
we have adopted the more conservative resolution capabilities inferred
from Fig. 45 based on Parzen smoothing.

Although lacking the highly energetic submesoscale variability that
is evident in the instantaneous maps in Fig. 3, the resolutions of
about 60 km and 90 km that are attainable in 4-day averaged maps
of, respectively, velocity and vorticity (Figs. 48b and 49b) with the
baseline standard deviation of 𝜎spd = 0.50 m s−1 for the uncorrelated
measurement noise and a swath width of 1200 km are a dramatic
improvement over the present capabilities shown in Figs. 48a and 49a.
The increased resolutions of about 45 km and 70 km that would be
achieved in 4-day averaged maps of velocity and vorticity with a wider
swath width of 1800 km are shown in Figs. 48c and 49c. The further
improvements to resolutions of about 20 km and 45 km that would
be achieved in 4-day averaged maps of velocity and vorticity from
WaCM if the swath width can be increased to 1800 km and the standard
deviation of the WaCM uncorrelated measurement noise can be reduced
to 𝜎spd = 0.25 m s−1 are shown in Figs. 48e and 49e.

While the 4-day averaging in Figs. 48 and 49 reduces the mea-
surement noise and improves the spatial resolution compared with
instantaneous snapshots, the time averaging attenuates the small-scale
signal variability that is of interest, as noted above (Fig. 24). Depending
on the application, the coarser spatial resolution capability of the snap-
shots may be preferable to the 4-day averages. This is visually apparent
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Fig. 48. Space–time smoothed maps of the magnitudes of vector-averaged error-free surface velocity with the wavelength resolutions that can be achieved from presently available
altimeter data and from 4-day averages of WaCM data with the combinations of measurement noise 𝜎spd and swath widths listed in Table 4c: (a) The resolution of 200 km by
30 days that can be achieved with the geostrophic approximation from SSH maps constructed from presently available merged nadir altimetry data; (b) A resolution of 60 km
that could be achieved in 4-day averages of WaCM data for a swath width of 1200 km and 𝜎spd = 0.50 m s−1; (c) A resolution of 45 km that could be achieved in 4-day averages
of WaCM data for a swath width of 1800 km and 𝜎spd = 0.50 m s−1; (d) A resolution of 25 km that could be achieved in 4-day averages of WaCM data for a swath width of
1200 km and 𝜎spd = 0.25 m s−1; and (e) A resolution of 20 km that could be achieved in 4-day averages of WaCM data for a swath width of 1800 km and 𝜎spd = 0.25 m s−1.

from Fig. 50, which shows instantaneous snapshot maps of velocity
and vorticity with the resolution capabilities that are achievable from
WaCM data with measurement error standard deviations of 𝜎spd =
0.50 m s−1 and 0.25 m s−1.

13.5. Final comments

A qualification of the analysis in Sections 6 and 8–10 is that we
have neglected the effects of correlated measurement errors. Because of
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Fig. 49. Space–time smoothed maps of error-free vorticity scaled by the local Coriolis parameter 𝑓 with the wavelength resolutions that can be achieved from presently available
altimeter data and from 4-day averages of WaCM data with the combinations of measurement noise 𝜎spd and swath widths listed in Table 4d: (a) The resolution of 200 km by
30-days that can be achieved with the geostrophic approximation from SSH maps constructed from presently available merged nadir altimetry data; (b) A resolution of 90 km that
could be achieved in 4-day averages of WaCM data for a swath width of 1200 km and 𝜎spd = 0.50 m s−1; (c) A resolution of 70 km that could be achieved in 4-day averages of
WaCM data for a swath width of 1800 km and 𝜎spd = 0.50 m s−1; (d) A resolution of 60 km that could be achieved in 4-day averages of WaCM data for a swath width of 1200 km
and 𝜎spd = 0.25 m s−1; and (e) A resolution of 45 km that could be achieved in 4-day averages of WaCM data for a swath width of 1800 km and 𝜎spd = 0.25 m s−1.

the spatial high-pass filtering property of the derivative operator, these
long-wavelength errors are secondary to the effects of uncorrelated
errors on estimates of the surface ocean velocity and vorticity fields that
are the primary interest in this study. A more important limitation is
that we considered the uncorrelated measurement errors to be spatially
homogeneous across the SWOT and WaCM measurement swaths. In

reality, the measurement errors for both instruments increase toward
the inner and outer edges of each swath.

Another caveat to our analysis is that we have assumed that the
measurement errors of WaCM estimates of surface velocity are equally
partitioned between the two orthogonal velocity components. We have
thus neglected the geometrical transformation issues associated with
the limited azimuthal diversity of the Doppler measurements of radial
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Fig. 50. Spatially smoothed maps of the magnitudes of vector-averaged error-free surface velocity (top row) and error-free vorticity scaled by the local Coriolis parameter 𝑓
(bottom row) with the wavelength resolutions that can be achieved from presently available altimeter data and from instantaneous snapshot maps of WaCM data on a single
satellite overpass with the combinations of measurement noise 𝜎spd and swath widths listed in Table 4a and b: (a) The resolution of 200 km by 30 days that can be achieved for
velocity computed geostrophically from presently available merged nadir altimetry data (the same as Fig. 48a); (b) A resolution of 130 km that could be achieved for velocity
from a snapshot of WaCM data with 𝜎spd = 0.50 m s−1; (c) A resolution of 50 km that could be achieved for velocity from a snapshot of WaCM data with 𝜎spd = 0.25 m s−1;
(d) The resolution of 200 km by 30 days that can be achieved for vorticity from presently available merged nadir altimetry data (the same as Fig. 49a); (e) A resolution of
130 km that could be achieved from a snapshot of WaCM data with 𝜎spd = 0.50 m s−1; and (f) A resolution of 130 km that could be achieved from a snapshot of WaCM data with
𝜎spd = 0.25 m s−1.

velocity near the swath edges. Errors of the cross-track velocity compo-
nent increase toward the inner edges of the two parallel measurement
swaths and errors of the along-track component increase toward the
outer edges of the measurement swaths.

The resolution capabilities inferred from our analysis are based
on a specified minimum S/N standard deviation ratio. Some readers
may feel that our recommended threshold value of 3.16 is overly

conservative. The resolution capabilities inferred based on lower S/N
ratios can be estimated graphically from Figs. 18, 30, 35, 38–40 and
43. To illustrate the sensitivities of inferred resolution capabilities to
the choice of threshold S/N standard deviation ratio, the results are
shown graphically in Fig. 51 for snapshots, 4-day averages and 14-day
averages of velocity and vorticity based on our recommended S/N ratio
of 3.16 (the red lines) and on a more liberal ratio of 2.00 (the green

317



D.B. Chelton, M.G. Schlax, R.M. Samelson et al. Progress in Oceanography 173 (2019) 256–350

Fig. 51. Graphical representation of the resolution capabilities for snapshots, 4-day averages and 14-day averages of SWOT and WaCM estimates of velocity and vorticity based
on Parzen smoothing. Four different combinations of swath width and measurement noise are shown for WaCM. Note that swath width is irrelevant to the resolutions shown for
snapshots in the top panels (see the discussion in Section 6). The red lines are the resolution capabilities listed in Tables 3 and 4 for the S/N standard deviation ratio threshold
of 3.16 recommended in this study. The green lines are the resolution capabilities inferred from Figs. 18, 30, 35, 38–40 and 43 based on a more liberal S/N standard deviation
ratio threshold of 2.00. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

lines) that we feel is the smallest value that should be considered (see
Fig. 16).

Because of our incomplete treatment of measurement errors, the
assessments of resolution capabilities deduced from the analysis in
Sections 6 and 8–10 and summarized graphically in Fig. 51 are likely
to be somewhat optimistic.

We also emphasize that our assessments of resolution capabilities
are specific to the CCS region during the summertime, and in particular,
to the representation of the CCS surface currents in the ROMS model
with 0.5 km × 0.5 km grid resolution used here to simulate SWOT and
WaCM data. Since the S/N ratios for WaCM estimates of the velocity
and vorticity fields depend predominantly on measurement errors that

are relatively homogeneous geographically, the resolution capabilities
inferred from this study will improve in regions or at times of more
energetic spatial variability of velocity and vorticity. Likewise, the
resolution capabilities for WaCM will be degraded when the velocity
and vorticity variability is less energetic.

It is less clear how the resolution capabilities will change geo-
graphically and seasonally for SWOT because the S/N ratio depends
predominantly on sampling errors owing to the narrow measurement
swaths. While the signal variance increases when the variability is more
energetic, so does the variance of the sampling errors. Depending on the
relative increases in signal and sampling error variances, the resolution
capabilities may actually worsen for SWOT when the variability is more
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energetic. Likewise, the sampling error variance may decrease more
than the signal variance when the variability is less energetic, thereby
improving the resolution capabilities for SWOT. The results for SWOT
are thus likely to be regionally and seasonally specific.

The immunity of WaCM measurements of surface velocity to errors
from the geostrophic approximation that must be used for SWOT
estimates of surface velocity is an important advantage of WaCM.
In principle, surface divergence and hence vertical velocity can be
estimated from WaCM measurements of surface velocity. This cannot
be done from SWOT data since geostrophically computed velocity is
non-divergent.

In practice, estimation of surface divergence from WaCM data will
be challenging since the velocity field is nearly geostrophic on the
scales that will be resolvable by WaCM. The non-divergent part of
the velocity signal on these scales is therefore weak. In particular, the
divergence is much weaker than the vorticity that has been a focus
of this study. Divergence and vorticity both involve first derivatives of
velocity. The residual noise variance for a given space–time smoothing
of divergence will therefore be about the same as the residual noise
variance for space–time smoothed vorticity. It can thus be anticipated
that the signal-to-noise ratio that is the basis for defining the res-
olution capability in this study will be smaller for divergence than
for vorticity. The resolution capability of WaCM estimates of space–
time smoothed surface divergence will therefore be coarser than the
resolution capabilities determined for vorticity in Sections 8–10.

We close by reiterating the important point that WaCM would
provide simultaneous measurements of vector winds collocated with
the measurements of surface ocean velocity that were considered in
this study. The WaCM measurements of vector winds will have the
same footprint size of 5 km as the surface ocean velocity measure-
ments, which is about a factor-of-5 smaller than the footprint size
of QuikSCAT measurements of vector winds. The WaCM technology
for measurements of both wind velocity and surface current velocity
is mature and has been demonstrated from an aircraft version of a
Doppler scatterometer that has been built by NASA and flown in several
field campaigns over the past year and additional field campaigns are
planned in the future (Rodríguez et al., 2018).

Acknowledgments

We thank Ralph Milliff, Bo Qiu, Ernesto Rodríguez and Lee-Lueng Fu
for many helpful editorial comments and suggestions that improved the
manuscript. This research was funded by NASA Grants NNX13AD78G,
NNX14AM72G, NNX13AE32G, NNX14AM66G, NNX16AH76G,
NNX14AM71G and NNX17AH54G. The two North Atlantic Ocean sim-
ulations in this study were performed using HPC resources from GENCI-
TGCC with support from Grant 2017-A0010107638 for Jonathan Gula.

Appendices

To provide a road map of the unusually large number of appendices
(nine total) in this paper and to clarify the logic of the ordering of the
appendices, we include here a brief overview of the content of each
appendix.

Appendix A provides a detailed description of the Parzen smoother
that is the primary filter used in this study to simulate the smoothing
applied in the pre-processing of simulated SWOT and WaCM data
and the additional smoothing applied in simulated ground-based post-
processing of simulated SWOT and WaCM data to reduce the effects
of measurement errors in estimates of velocity and vorticity. The filter
transfer function for the Parzen smoother that is given by (A.11) and
the relationship (A.12b) between the span of the Parzen smoother
and the corresponding half-power filter cutoff wavelength are used
extensively throughout later appendices.

Appendix B shows that the footprint diameter that is achieved
by smoothing a field of uncorrelated white noise with a specified

half-power filter cutoff wavelength of 𝜆𝑐 can be characterized as ap-
proximately 𝜆𝑐∕2. The science requirement for SWOT measurements
of SSH with a footprint size (diameter) of 1 km can thus be achieved
with isotropic 2-dimensional smoothing using a Parzen smoother with
a half-power filter cutoff wavelength of 2 km. The errors of these pre-
processed SWOT estimates of SSH are shown to be uncorrelated when
sampled on a 1 km × 1 km grid.

The baseline design assumed here for WaCM measurements of sur-
face velocity components with a footprint size of 5 km can be achieved
with isotropic 2-dimensional smoothing using a Parzen smoother with
a half-power filter cutoff wavelength of 10 km. While the errors of
these pre-processed WaCM estimates of velocity are uncorrelated when
sampled on a 5 km × 5 km grid, it is shown later in Appendix H that
it is advantageous to oversample the WaCM data on a 1 km × 1 km
grid because the response function for standard centered difference
estimates of derivatives on the finer grid retains more small-scale
variability in the vorticity signal.

Appendix C shows that the filter transfer function of the Parzen
smoother is almost identical to that of the Gaussian-weighted smoother
with an appropriately chosen e-folding scale. A feature of isotropic
Gaussian smoothing in two dimensions, i.e., with Gaussian weight-
ing dependent only on the radial distance of the simulated obser-
vations from the location of the smoothed estimate, is that it can
be applied either as a single 2-dimensional weighted average or as
separate 1-dimensional weighted averages in each of two orthogo-
nal dimensions. The close similarity of the Parzen smoother to the
Gaussian smoother thus implies that smoothing successively using a
1-dimensional Parzen smoother with the same half-power filter cutoff
wavelength in each dimension is essentially equivalent to isotropic
2-dimensional smoothing.

While the Parzen smoothing that was applied to the simulated
SWOT and WaCM data in Sections 6 and 8–10 was implemented
truly isotropically, the derivations of analytical expressions for the
wavenumber spectral content of 2-dimensionally smoothed fields in Ap-
pendices E, F, H and I and for the theoretical error spectra in Figs. 13–
15 in Section 4.4, are greatly simplified if the Parzen smoothing is
applied 1-dimensionally in each dimension.

Appendix C also includes a comparison of the filter transfer function
of the Parzen smoother with that of the quadratic loess smoother. The
latter has the desirable property that its filter transfer function rolls
off more steeply through the half-power filter cutoff wavelength, but
it is much more computationally intensive. It is shown in Sections 9
and 10.2 that the more effective attenuation of small-scale noise that is
achieved with the loess smoother or other smoothers with similar filter
transfer function properties improves our assessment of the resolution
capability somewhat (see Table 3 and Figs. 44 and 45).

Appendix D determines the reduction of the variance of uncorre-
lated errors that is achieved by 2-dimensional smoothing. For isotropic
smoothing with a half-power filter cutoff wavelength of 𝜆𝑐 , it is shown
from (D.14c) that the error variance is reduced by the factor 4𝛥𝑥𝛥𝑦 𝜆−2𝑐
that is the same as would be achieved by block averaging of measure-
ment errors on a 𝛥𝑥×𝛥𝑦 grid with a span of 𝜆𝑐∕2 in each dimension. This
variance reduction factor, which is equivalent to a standard deviation
reduction factor of 2(𝛥𝑥𝛥𝑦)1∕2𝜆−1𝑐 , is used extensively in the derivations
in Appendices E–G and I.

Appendix E quantifies the effects of 2-dimensional smoothing on the
1-dimensional wavenumber spectrum of 2-dimensional uncorrelated
white noise. As in the case of low-pass filtering of a 1-dimensional
dataset, 2-dimensional smoothing of a 2-dimensional dataset attenuates
the spectral content of the 1-dimensional spectrum at wavenumbers
higher than the half-power filter cutoff wavelength 𝜆𝑐 . For uncorrelated
noise, the spectral values are also attenuated at all wavenumbers (not
just at high wavenumbers) by the constant multiplicative factor of
2𝛥𝑥∕𝜆𝑐 in (E.11b), where 𝛥𝑥 and 𝜆𝑐 are the grid spacing and half-
power filter cutoff wavelength in the dimension perpendicular to the
dimension of the 1-dimensional spectrum.
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The results of Appendix E are used in the derivations of
1-dimensional spectra of smoothed fields of uncorrelated errors in Ap-
pendices F and I. In the context of the analysis presented in this paper,
the interest is in 1-dimensional spectra in the alongshore dimension.
In the context of actual satellite data, the interest is in 1-dimensional
spectra in the along-track dimension.

Appendix F determines the variance of the uncorrelated errors of
pre-processed SWOT estimates of SSH based on the science require-
ments for SWOT that are expressed in terms of the intersection of
an hypothesized wavenumber spectrum of the SSH signal and the
wavenumber spectrum of smoothed uncorrelated noise. The analysis
concludes that the error standard deviation for the baseline design is
𝜎ℎ = 2.74 cm.

Our derived error standard deviation of 𝜎ℎ = 2.74 cm is used
throughout this study, including in the propagation-of-error analysis in
Appendix G to determine the standard deviations of errors of geostroph-
ically computed SWOT estimates of velocity and vorticity. The deriva-
tions of the analytical formulas for the 1-dimensional wavenumber
spectra of errors in SWOT estimates of SSH and geostrophically com-
puted velocity and vorticity in Appendix I are also based on an error
standard deviation of 𝜎ℎ = 2.74 cm. Likewise, the error fields for the
simulated SWOT data used in Sections 4, 6, 8 and 9 are predicated on
an error standard deviation of 𝜎ℎ = 2.74 cm.

Appendix G applies standard propagation-of-error analysis to derive
analytical expressions for the variances of the errors of derivative quan-
tities estimated from the pre-processed SWOT and WaCM data. In the
case of SWOT, the velocity components are computed geostrophically
from derivatives of SSH. The vorticity is then estimated from deriva-
tives of the geostrophically computed velocity components, i.e., from
second derivatives of SSH. In the case of WaCM, the velocity is mea-
sured directly and vorticity is obtained from derivatives of the velocity
components. The derivatives in this study are all estimated using
standard centered differences (see Appendix H). This finite differencing
amplifies the errors in the measured variables.

The equations that are derived in Appendix G are all expressed in
terms of the variances of the uncorrelated errors of the pre-processed
SWOT and WaCM data. Throughout this study, the error variance of
𝜎2ℎ = (2.74 cm)2 that is derived in Appendix F is used for SWOT
estimates of SSH and an error variance of 𝜎2𝑢,𝑣 = (0.354 m s−1)2 is
used for the variances 𝜎2𝑢 and 𝜎2𝑣 of the errors of WaCM estimates
of the two orthogonal velocity components 𝑢 and 𝑣. The equations
for the variances of the errors of the derivative quantities (the two
geostrophically computed velocity components and vorticity for SWOT
and vorticity for WaCM) are applicable to any specified values of 𝜎2ℎ or
𝜎2𝑢 and 𝜎2𝑣 .

Appendix H examines the wavenumber spectral characteristics of
the response functions of various finite-difference estimates of deriva-
tives applied to the pre-processed SWOT and WaCM data and in com-
bination with smoothing in ground-based post-processing.

For the amount of smoothing that will be required to achieve scien-
tifically useful signal-to-noise ratios in geostrophically computed SWOT
estimates of velocity and vorticity obtained from pre-processed SSH on
a 1 km × 1 km grid, it is shown that standard centered differencing with
a 3-point stencil width provides adequate estimates of derivatives.

For the 5 km × 5 km grid on which the errors of pre-processed
WaCM estimates of velocity are uncorrelated, derivatives estimated
from centered differences with a 9-point stencil width are signifi-
cantly better than from standard centered differences with a 3-point
stencil width. If the pre-processed WaCM data are oversampled on a
1 km × 1 km grid, however, it is shown that it is not necessary to esti-
mate derivatives with a 9-point stencil for the amount of smoothing that
will be required to achieve scientifically useful signal-to-noise ratios in
WaCM estimates of vorticity. This is because a 3-point stencil retains
considerably more small-scale signal variability in vorticity estimates
when computed on an oversampled 1 km × 1 km grid rather than on
a 5 km × 5 km grid. Although a 9-point stencil on a 5 km × 5 km grid

retains even more small-scale variability, that portion of the vorticity
wavenumber spectrum is attenuated by the spatial smoothing that is
required to achieve adequate signal-to-noise ratio. For the resolution
capability of WaCM estimates of vorticity deduced from this study, any
advantage of the 9-point stencil is therefore lost in WaCM estimates of
vorticity computed on an oversampled 1 km × 1 km grid.

Throughout this study, we therefore assume that the pre-processed
WaCM data will be available on a 1 km × 1 km grid and derivatives
are estimated with a standard 3-point stencil. This oversampling leads
to some complications in the derivations of analytical expressions for
the standard deviations and wavenumber spectra of errors of the WaCM
estimates of velocity and vorticity in Appendices G and I.

Appendix I derives analytical expressions for the 1-dimensional
wavenumber spectra of the errors of all of the variables that are of in-
terest in this study. The analysis begins with derivations in Appendix I.1
of the spectral characteristics of the errors of SSH and geostrophically
computed velocity components and vorticity estimated from the pre-
processed SWOT data. The effects on the spectral characteristics of
the errors after isotropic 2-dimensional smoothing in ground-based
post-processing of SWOT data are then derived in Appendix I.2. The
analogous derivations for velocity components and vorticity estimated
from pre-processed WaCM data and after smoothing in ground-based
post-processing are presented in Appendices I.3 and I.4, respectively.
The theoretical error spectra derived in Appendix I are shown in
Figs. 13–15 to agree very well with spectra computed empirically from
the simulated SWOT and WaCM error fields generated for the analysis
in Sections 6 and 8–10.

As in Appendix G, the equations derived in Appendix I are all
expressed in terms of the variances of the uncorrelated measurement
errors and the filter transfer function for whatever smoother is applied
in the ground-based post-processing. While this study assumes error
variances of 𝜎2ℎ = (2.74 cm)2 and 𝜎2𝑢 = 𝜎2𝑣 = (0.354 m s−1)2 for SWOT
and WaCM measurements of SSH and the two velocity components,
respectively, the equations for the wavenumber spectra of the errors
of the derivative quantities (the geostrophically computed velocity
components and vorticity for SWOT and the vorticity for WaCM) are
applicable to any specified values of 𝜎2ℎ or 𝜎2𝑢 and 𝜎2𝑣 .

Appendix A. The Parzen smoother

Parzen smoothing is used extensively throughout this study. It is
applied in the first step of our analysis of simulated satellite data
to mimic the onboard pre-processing of the raw radar measurements
to achieve footprint sizes of 1 km and 5 km for SWOT and WaCM,
respectively (see Appendix B). It is subsequently applied to the maps
of SSH for SWOT and surface velocity components for WaCM to mimic
smoothing in ground-based post-processing to reduce the effects of
measurement errors to acceptable levels for the variables of interest
in this study (see Appendices C and D and Sections 6 and 8–10 ). To
understand the filtering implied at both of these stages of smoothing,
and to quantify what is meant by the ‘‘footprint size’’ of pre-processed
data (Appendix B) and by ‘‘feature resolution’’ in smoothed fields
constructed in ground-based post-processing (Appendix C), the filtering
properties of the Parzen smoother are derived in this appendix.

The filtering properties of any smoother can be understood by
considering the case of a 1-dimensional spatial series that is contin-
uous. The results can be extended straightforwardly to the case of two
dimensions. The results can also be extended to discrete sampling, but
the equations become unnecessarily cumbersome for present purposes
of characterizing the wavenumber content of the filtered output.

Any linear, space-invariant filter applied to a continuous spatial
series 𝑧(𝑥) can be written as the convolution

𝑧(𝑥) = 𝑤(𝑥) ∗ 𝑧(𝑥) ≡ ∫

∞

−∞
𝑤(𝑥 − 𝑠) 𝑧(𝑠) 𝑑𝑠, (A.1)

where the asterisk is short-hand notation for the convolution integral on
the right side of the equation and 𝑤(𝑥) is the weighting function of the
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Fig. A.1. The weighting functions (top panels) and log-linear plots of the squared filter transfer functions (bottom panels) for uniformly weighted running-average smoothers with
spans of 1 km and 0.5 km (thin lines in panels a and b, respectively) and for a Parzen weighted running average smoother with a span of 1 km (thick line in panel b).

smoother. The overbar distinguishes the smoothed value 𝑧(𝑥) from the
unfiltered value 𝑧(𝑥). The Fourier transform of the weighting function
𝑤(𝑥), which is called the filter transfer function of the smoother, is
given by

𝑊 (𝑘) = ∫

∞

−∞
𝑤(𝑥) 𝑒−𝑖2𝜋𝑘𝑥 𝑑𝑥, (A.2)

where 𝑘 is wavenumber in the 𝑥 dimension.
The wavenumber contents of the unfiltered and smoothed data are

defined by their Fourier transforms, which can be denoted as 𝑍(𝑘)
and 𝑍(𝑘), respectively. By the Convolution Theorem, the convolution
integral (A.1) in the space domain can be expressed as multiplication
in the wavenumber domain. The wavenumber content 𝑍(𝑘) of the
smoothed output 𝑧(𝑥) is therefore related to the wavenumber content
𝑍(𝑘) of the unfiltered data 𝑧(𝑥) by

𝑍(𝑘) = 𝑊 (𝑘)𝑍(𝑘). (A.3)

The filter transfer function 𝑊 (𝑘) thus defines the wavenumber content
of the smoothed output.

In one dimension, any smoother can be characterized by its filter
cutoff wavenumber 𝑘𝑐 , which is defined here to be the wavenumber at
which the squared value of the filter transfer function passes through a
value of 0.5. The ideal filter has a filter transfer function that consists
of values of 1 for wavenumbers |𝑘| ≤ 𝑘𝑐 and 0 for higher wavenumbers.
In practice, the filter transfer functions of real smoothers decrease
gradually with increasing wavenumber across the low-wavenumber
pass band and roll off steeply through the filter cutoff wavenumber 𝑘𝑐 .
Most real smoothers also have undesirable sidelobes at wavenumbers
higher than 𝑘𝑐 .

For the simple block-average smoother with uniform weighting over
a span of 𝐿1 centered on the estimation location, the weighting function
is

𝑤1(𝑥) =
1
𝐿1

Π
(

𝑥
𝐿1

)

. (A.4a)

The subscript 1 is used here to distinguish this uniform-weighted aver-
age from the Parzen weighted average considered below and Π(𝑥∕𝐿1)
is shorthand notation for the rectangle function defined by

Π
(

𝑥
𝐿1

)

≡

{

1 if − 𝐿1∕2 ≤ 𝑥 ≤ 𝐿1∕2

0 otherwise.
(A.4b)

The output (A.1) of the uniform-weighted average smoother with
weighting function (A.4) is thus

𝑧1(𝑥) =
1
𝐿1 ∫

∞

−∞
Π
(

𝑥 − 𝑠
𝐿1

)

𝑧(𝑠) 𝑑𝑠 = 1
𝐿1 ∫

𝑥+𝐿1∕2

𝑥−𝐿1∕2
𝑧(𝑠) 𝑑𝑠. (A.5)

For discretely sampled values of 𝑧(𝑥), the integral on the right side of
this equation becomes a discrete sum.

The filter transfer function (A.2) of the uniform-weighted average
smoother is

𝑊1(𝑘) = ∫

∞

−∞
𝑤1(𝑥) 𝑒−𝑖2𝜋𝑘𝑥 𝑑𝑥 = 1

𝐿1 ∫

𝐿1∕2

−𝐿1∕2
𝑒−𝑖2𝜋𝑘𝑥 𝑑𝑥 = sinc(𝑘𝐿1), (A.6a)

where sinc(𝑘𝐿1) is standard shorthand notation for

sinc(𝑘𝐿1) ≡
sin(𝜋𝑘𝐿1)
𝜋𝑘𝐿1

. (A.6b)

The half-power filter cutoff wavenumber for the uniform-weighted
average smoother is the value 𝑘𝑐 of the wavenumber 𝑘 at which the
squared value of the filter transfer function (A.6) has a value of 0.5.
The solution to this transcendental equation is

𝑊 2
1 (𝑘𝑐 ) = sinc2(𝑘𝑐𝐿1) = 0.5

⇒ 𝑘𝑐 =
0.4430
𝐿1

. (A.7)

The weighting function (A.4) and the squared value of the filter
transfer function (A.6) of the uniform-weighted average smoother are
shown for the case of 𝐿1 = 1 km in Fig. A.1a. A highly undesirable
feature of the simple uniform-weighted average smoother is that its
filter transfer function has large sidelobes outside of the main lobe
that defines the range of wavenumbers |𝑘| ≤ 𝑘𝑐 that are of inter-
est. According to (A.3), these sidelobes contaminate the frequency
content of the smoothed values 𝑧(𝑥) by admitting considerable vari-
ance at wavenumbers higher than the desired half-power filter cutoff
wavenumber 𝑘𝑐 .

The sidelobes of the uniform-weighted average smoother can be
suppressed by replacing the uniform weighting with a tapered weight-
ing. A simple approach to tapering is to apply a succession of uniform-
weighted averages. For example, the weighting function for two suc-
cessive applications of a uniform-weighted average with a span of 𝐿1
can be shown to be equivalent to a single triangular weighted average
with a span of 𝐿2 = 2𝐿1. More generally, 𝑝 successive applications of a
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uniform-weighted average with a span of 𝐿1 are equivalent to a single
weighted average with a span of 𝐿𝑝 = 𝑝𝐿1 and a weighting function
that consists of a piecewise continuous polynomial of order 𝑝 − 1.

Mathematically, the weighting function 𝑤𝑝(𝑥) of 𝑝 successive ap-
plications of a uniform-weighted average smoother with a span of
𝐿1 consists of 𝑝 self-convolutions of the rectangle weighting function
(A.4) of the uniform-weighted average. The Fourier transform of this
smoother (i.e., its filter transfer function) is therefore easily determined
from the Convolution Theorem to be the multiplicative product of 𝑝 of
the filter transfer functions (A.6) of the uniform-weighted average,

𝑊𝑝(𝑘) = sinc 𝑝(𝑘𝐿1). (A.8)

The extremum of the 𝑗th sidelobe of this filter transfer function has
a value of sinc 𝑝(𝑘𝑗𝐿1), where 𝑘𝑗 = (𝑗 + 1∕2)∕𝐿1, 𝑗 = 1, 2, 3,… . Since
sinc𝑝(𝑘𝑗𝐿1) = (−1)𝑗∕

[

([𝑗 + 1∕2]𝜋)
]𝑝, it has a magnitude less than 1 for

all 𝑗 and the sidelobe extrema decrease rapidly in magnitude, both with
increasing 𝑗 and with increasing 𝑝. For the case of the dominant 𝑗 = 1
sidelobe, the sinc function has a value of sinc(1.5) = sin(1.5𝜋)∕(1.5𝜋) =
−0.212. The dominant sidelobe of the filter transfer function for 𝑝
successive applications of the uniform-weighted average thus has a
magnitude of 0.212 𝑝 and a squared magnitude of 0.212 2𝑝.

There is no practical advantage to smoothing with more than 𝑝 = 4
successive applications of a uniform-weighted average since the ex-
tremum of the dominant sidelobe of its squared filter transfer function
is 4.08×10−6, i.e., an attenuation factor of more than 50 dB. The quadru-
ple pass of the uniform-weighted average is called the Parzen smoother.
Mathematically, the weighting function of the Parzen smoother can be
written as a quadruple convolution of the weighting function (A.4) of
the uniform-weighted average,

𝑤4(𝑥) =
1
𝐿4
1

[

Π
(

𝑥
𝐿1

)

∗Π
(

𝑥
𝐿1

)

∗Π
(

𝑥
𝐿1

)

∗Π
(

𝑥
𝐿1

)]

, (A.9)

where the subscript 4 signifies that the Parzen smoother is equivalent
to 4 successive applications of a uniform-weighted average. The output
of the Parzen smoother is the convolution

𝑧4(𝑥) = 𝑤4(𝑥) ∗ 𝑧(𝑥) = ∫

∞

−∞
𝑤4(𝑥 − 𝑠) 𝑧(𝑠) 𝑑𝑠. (A.10)

The filter transfer function (A.8) with 𝑝 = 4 for the Parzen weighting
function is

𝑊4(𝑘) = sinc4(𝑘𝐿1) = sinc4
(

𝑘𝐿4
4

)

, (A.11)

where 𝐿4 = 4𝐿1 and 𝐿1 is the span of each of the four successive
applications of the uniform-weighted average. The motivation for in-
troducing 𝐿4 will become apparent below. The half-power filter cutoff
wavenumber of the Parzen smoother is defined as in (A.7) to be the
value 𝑘𝑐 of the wavenumber 𝑘 at which the squared value of the
filter transfer function (A.11) has a value of 0.5. The solution to this
transcendental equation is

𝑊 2
4 (𝑘𝑐 ) = sinc8(𝑘𝑐𝐿1) = sinc8(𝑘𝑐𝐿4∕4) = 0.5

⇒ 𝑘𝑐 =
0.2276
𝐿1

= 0.9104
𝐿4

. (A.12a)

The value of 𝐿4 for a Parzen filter that has a half-power filter cutoff
wavelength of 𝜆𝑐 = 𝑘−1𝑐 is thus

𝐿4 = 0.9104 𝜆𝑐 . (A.12b)

While it would be very tedious to calculate the weights of the Parzen
smoother from the quadruple convolution (A.9), it is straightforward
with the help of integral tables to determine these weights from the
inverse Fourier transform of the filter transfer function (A.11). The
result is the piecewise cubic polynomial defined by

𝑤4(𝑥)=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

8
3𝐿4

(

1 − 24𝑥2

𝐿2
4

+
48|𝑥|3

𝐿3
4

)

if 0 ≤ |𝑥| ≤ 𝐿4∕4

8
3𝐿4

(

2 −
12|𝑥|
𝐿4

+ 24𝑥2

𝐿2
4

−
16|𝑥|3

𝐿3
4

)

if 𝐿4∕4 ≤ |𝑥| ≤ 𝐿4∕2

0 if |𝑥| > 𝐿4∕2.

(A.13)

The Parzen smoother thus has a full span of 𝐿4 that is defined above
to be four times larger than the span 𝐿1 of each of the four successive
applications of the uniform-weighted smoother upon which it is based.

In principle, the Parzen smoother (A.10) can be implemented either
as a succession of four applications of the uniform-weighted average
(A.5) with span 𝐿1 or as a single pass of (A.10) with the piecewise
cubic weighting (A.13) and a span of 𝐿4 = 4𝐿1. In practice, however,
application to discretely sampled data results in small differences in
the filtered output by the two procedures. When applied to data with
a uniformly spaced sample interval of 𝛥𝑥, for example, an arbitrarily
specified value of 𝐿4 can result in a value of 𝐿1 = 𝐿4∕4 that is a non-
integer multiple of 𝛥𝑥. Moreover, it is desirable for the full span of the
smoothing to be an odd multiple of 𝛥𝑥 so that the weighting function
is symmetric. This assures that there is no phase shift at any of the
wavenumbers in the filtered output. It is clearly not possible for both 𝐿1
and 𝐿4 to be odd integer multiples of 𝛥𝑥. The preferred implementation
of the Parzen smoother with uniformly spaced data is therefore as a
single pass of (A.10) with the piecewise cubic weighting (A.13).

The weighting function (A.13) and the square of the filter transfer
function (A.11) of the Parzen smoother are shown for the case of 𝐿4 =
1 km by the thick lines in Fig. A.1b. This is equivalent to a span of
𝐿1 = 𝐿4∕4 = 0.25 km for each of the four successive applications of the
uniform-weighted average (A.5).

For a given value of 𝐿1, it can be noted from (A.7) and (A.12a)
that the filter cutoff wavenumber 𝑘𝑐 is a factor of 0.228∕0.443 =
0.515 ≈ 0.5 smaller for the Parzen smoother than for the single-pass
uniform-weighted average smoother. To achieve the same half-power
filter cutoff wavenumber 𝑘𝑐 with both the uniform-weighted average
smoother and the Parzen smoother, the spans of the two smoothers can
be adjusted accordingly. A uniformly weighted average with a span of
𝐿1 = 0.5 km, for example, has a half-power filter cutoff wavenumber of
𝑘𝑐 = 0.443∕0.5 = 0.886 cpkm (cycles per km). As shown by the thin line
in the bottom panel of Fig. A.1b, this is very close to the half-power
filter cutoff wavenumber of 𝑘𝑐 = 0.910 cpkm for the Parzen smoother
with a span of 𝐿4 = 1 km shown by the thick line.

The much smaller sidelobes of the filter transfer function of the
Parzen smoother compared with those of the uniform-weighted average
smoother (see Fig. A.1b) are highly desirable attributes of the Parzen
smoother. This improved sidelobe suppression comes at the price of
somewhat more gradual rolloff through the filter cutoff wavenumber
𝑘𝑐 of the filter transfer function of the Parzen smoother (see the bottom
panel of Fig. A.1b).

Appendix B. Footprint size and pre-processing of SWOT and WaCM
data

B.1. SWOT pre-processing

The raw radar measurements by the Ka-band Radar Interferom-
eter (KaRIn) instrument on the SWOT satellite in its low-resolution
mode over the ocean have a footprint size of about 100 m. The plan
as presently summarized in the SWOT onboard processing document
(Peral, 2016) is to smooth the raw measurements of SSH onboard the
satellite to achieve the science requirement of a footprint size (diame-
ter) of 1 km for ocean observations. The SWOT Algorithm Development
Team has recently recommended changing the onboard processing to
a smaller footprint size of 0.5 km posted on a 0.25 km × 0.25 km
grid. The motivation for this increased resolution is to allow improved
detection and removal of noisy outliers in the SWOT estimates of SSH.

The rescoping of the SWOT science requirements to a smaller foot-
print size of 0.5 km with a concomitant factor-of-two increase of
the standard deviation of the uncorrelated measurement errors in the
onboard estimates of SSH would change some of the details of the
simulations of SWOT data in this study. As shown from the figures
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in Sections 6, 8 and 9, however, even the science requirement of a
footprint size of 1 km that was used for our simulations far exceeds
the signal resolution capability for geostrophically computed SWOT
estimates of the variables of interest in this study (surface velocity
and vorticity). The difference between 1 km and 0.5 km footprint sizes
in the onboard pre-processing of SWOT data is therefore irrelevant to
the analysis presented in Sections 6, 8 and 9. The SWOT Algorithm
Development Team acknowledges that the 0.5 km footprint size is
unnecessarily fine for most applications of SWOT data. The resulting
SSH measurements are likely to be smoothed to a wavelength resolution
of 2 km × 2 km in ground-based post-processing for the SWOT dataset
that is provided to the general science community. It is shown below
that this is equivalent to the wavelength resolution of measurements
with a footprint size of 1 km.

The onboard smoothing of the raw SWOT data will be achieved
using a Parzen smoother (see Appendix A) in the cross-track direction
and a Blackman–Harris smoother in the along-track direction (Peral,
2016). The parameters of each of these smoothers were carefully chosen
to have spatial autocorrelation values of 0.5 at the same lag, which
is essentially equivalent to having the same half-power filter cutoff
wavenumber for both smoothers.

The rationale for applying a different smoother in each dimension
in the onboard pre-processing of SWOT data is that the filter transfer
function of the Blackman–Harris smoother has slightly better sidelobe
suppression than the Parzen smoother [see Fig. 37 in Peral (2016); see
also Harris (1978)]. But for technical reasons related to the hardware
implementation of the onboard pre-processing, the Blackman-Harris
smoother cannot be applied in the cross-track direction. The better
sidelobe suppression of the Blackman-Harris smoother is not enough
to make any significant, or even detectable, difference in the smoothed
SSH values. For all intents and purposes, the 2-dimensional smooth-
ing of the raw SWOT data could thus be achieved equally well by
smoothing with a Parzen smoother in both dimensions. The filtering
properties of the onboard pre-processed estimates of SSH are therefore
discussed here in the context of 2-dimensional smoothing with the
Parzen smoother that was examined in detail in Appendix A.

The resolution of smoothed estimates of SSH is defined by Peral
(2016) as summarized below based on the lagged autocorrelation as-
sociated with the smoother applied to the raw data. An expression for
this spatial autocorrelation can be derived by noting that the square
of the filter transfer function of the smoother is proportional to the
wavenumber power spectral density of the low-pass filtered output of
the smoother applied to data consisting of uncorrelated (white) noise
with unit standard deviation. The autocovariance of this filtered output
can be obtained as the inverse Fourier transform of its power spectral
density. For white noise input data with unit standard deviation, this
autocovariance is equivalent to the autocorrelation.

For a Parzen smoother with a span of 𝐿4 in the 𝑥 dimension, the
autocorrelation is thus the inverse Fourier transform of the square of
the filter transfer function (A.11),

𝜌(𝑥) = ∫

∞

−∞
sinc8

(

𝑘𝐿4
4

)

𝑒𝑖2𝜋𝑘𝑥 𝑑𝑘 = 2∫

∞

0
sinc8

(

𝑘𝐿4
4

)

cos(2𝜋𝑘𝑥) 𝑑𝑘.

(B.1)

This can be evaluated with the help of integral tables. The result is a
piecewise continuous 7th-order polynomial that is symmetric about lag
𝑥 = 0. This is shown for positive lags 𝑥 in the bottom panel of Fig. B.1a
for a span of 𝐿4 = 2 km. The associated weighting function and squared
filter transfer function are shown, respectively, in the top and middle
panels of Fig. B.1a.

The minimum scale of features that can be resolved in the smoothed
data is defined by Peral (2016) to be the lag at which the autocor-
relation decays to a value of 0.5. Although somewhat subjective, this
is a reasonable definition. For the Parzen smoother with a span of
𝐿4 = 2 km shown in Fig. B.1a, the autocorrelation (B.1) decays to a
value of 0.5 at a lag of 𝑥 = 0.495 km (see the bottom panel of Fig. B.1a).

Since the autocorrelation is symmetric about zero lag, this can be
interpreted as the radius of features that can be resolved. The feature
diameter resolution after filtering with a Parzen smoother with a span
of 𝐿4 = 2 km is therefore approximately 1 km. This can be considered
the footprint diameter of SWOT measurements of SSH smoothed with
a half-power filter cutoff wavelength (A.12) of 𝜆𝑐 = 𝑘−1𝑐 = 𝐿4∕0.910 ≈
2 km. The autocorrelation for the Parzen smoother with 𝐿4 = 2 km
decays to a very small value of 0.050 at a radial lag of 1 km (see the
bottom panel of Fig. B.1a). The resulting smoothed estimates of SSH
are therefore essentially uncorrelated when posted on a 1 km × 1 km
grid.

The present official requirement for the pre-processing of SWOT
data in the SWOT onboard processing document (Peral, 2016) is for
SSH estimates on a 1 km × 1 km grid to be statistically uncorre-
lated. From the preceding discussion, this can be achieved using a
2-dimensional Parzen smoother with a span of 𝐿4 = 2 km in each
dimension. The half-power filter cutoff wavenumber (A.12a) for this
span is 𝑘𝑐 = 0.455 ≈ 0.5 cpkm (see the middle panel of Fig. B.1a). A
wavenumber of 0.5 cpkm is also the Nyquist wavenumber for a sample
interval of 𝛥𝑥 = 1 km. The resolution and sampling requirements for
the pre-processed SWOT estimates of SSH as stated in the onboard
processing document (Peral, 2016) can thus be achieved using a Parzen
smoother with a span of 𝐿4 = 2 km in each dimension, and posting the
smoothed SSH estimates on a 1 km × 1 km grid. The estimates of SSH
obtained by smoothing with a half-power filter cutoff wavelength of
2 km could be posted on a finer grid, but the resulting gridded values
would no longer be statistically uncorrelated.

As discussed at the beginning of this appendix, the onboard process-
ing for SWOT estimates of SSH is likely to change to a smaller footprint
size of 0.5 km. Based on the preceding discussion, this can be achieved
by smoothing with a half-power filter cutoff wavelength of 1 km. The
analysis throughout this study is based on the science requirements for
a footprint size of 1 km, which is achieved by smoothing with a half-
power filter cutoff wavelength of 2 km as summarized above. None of
the conclusions of this study would change if the analysis were based
on the smaller footprint size of 0.5 km since the results of the additional
smoothing in ground-based post-processing that will be needed to
achieve an adequate signal-to-noise ratio would be essentially the same
for either footprint size.

B.2. WaCM pre-processing

The WaCM mission is still in the early stages of planning. To reduce
the measurement errors, the present plan is to smooth the pooled raw
measurements of radial velocity from multiple antenna look angles
into 5 km × 5 km areas from which two orthogonal components of
velocity (e.g., along-track and cross-track components) are estimated.
The feature resolution of these velocity estimates will thus effectively
have a footprint diameter of 5 km. In analogy with the discussion in
Appendix B.1 for pre-processing of SWOT data, this can be achieved
using a 2-dimensional Parzen smoother with a half-power filter cutoff
wavelength of 10 km. This corresponds to a span of approximately
𝐿4 = 10 km (see Fig. B.1b). The associated autocorrelation decays to
a value of 0.5 at a lag of 𝑥 = 2.476 km, thus corresponding to a feature
diameter resolution of approximately 5 km. The autocorrelation for
the Parzen smoother with 𝐿4 = 10 km decays to a very small value
of 0.050 at a radial lag of 5 km (see the bottom panel of Fig. B.1b).
The resulting smoothed estimates of surface velocity are therefore
essentially uncorrelated when posted on a 5 km × 5 km grid.

The variables that are of primary interest in this study are the
surface velocity field itself and the surface vorticity, which is computed
from derivatives of the velocity components. For centered-difference
estimates of these derivatives, it is shown later in Appendix H that it
is advantageous to post the pre-processed WaCM estimates of surface
velocity on a grid that is finer than 5 km × 5 km. For the analysis in this
study, the smoothed velocity estimates were posted on a 1 km × 1 km.
The measurement errors are not uncorrelated on this finer grid.
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Fig. B.1. The weighting functions (top panels), log-linear plots of the squared filter transfer functions (middle panels) and lagged autocorrelation functions (bottom panels) for
Parzen smoothers with spans of 2 km (Column a) and 10 km (Column b) that are used in this study to simulate pre-filtering of SWOT data and WaCM data, respectively. The
half-power filter cutoff wavelengths of these Parzen smoothers (the reciprocals of the filter cutoff wavenumbers shown by the dotted lines in the middle panels) are approximately
2 km and 10 km. The dotted lines in the bottom panels indicate the lags at which the autocorrelation functions decay to values of 0.5 and 0.05.

Appendix C. Feature resolution

Maps of the variables of interest in this study (surface velocity
and vorticity) constructed from SWOT and WaCM data pre-processed
as summarized in Appendix B are too noisy to be useful for most
applications (see the unsmoothed fields in the bottom left panels of
Figs. 17a–17c and Figs. 19a–19b). For these variables, it will be neces-
sary to smooth the pre-processed data in ground-based post-processing
to mitigate the effects of the uncorrelated measurement errors. The
variance of the errors can be reduced to any desired level with sufficient
2-dimensional smoothing. The error reduction factor is derived later in
Appendix D. The purpose of this appendix is to quantify the filter cutoff
wavelength and the implied feature resolution scale for a given amount
of smoothing.

The procedure used in this study to mitigate the effects of mea-
surement errors and increase the signal-to-noise ratio is to apply 2-
dimensional smoothing to the noisy estimates of SSH from SWOT
and surface velocity components from WaCM. This smoothing can be
applied anisotropically, i.e., with different filter cutoff wavenumbers in
each of two orthogonal dimensions. For the purposes of the analysis in
Sections 6 and 8–10, however, the 2-dimensional smoothing was ap-
plied isotropically. The 2-dimensional weighting function for isotropic
smoothing can be expressed as

𝑤2𝑑 (𝑥, 𝑦) = 𝑤2𝑑 (𝑟), (C.1)

where 𝑟 = (𝑥2+𝑦2)1∕2 is the radial distance from the estimation location
to each data point within the 2-dimensional span of the smoother. It is
shown below that 2-dimensional smoothing with the Parzen smoother
used in this study is essentially equivalent to separate 1-dimensional
smoothing in each of two orthogonal dimensions. The effects of the 2-
dimensional smoothing can thus be understood from consideration of
the filtering properties of successive 1-dimensional smoothing in each
dimension. This simplifies the derivation of the wavenumber spectral
characteristics of 2-dimensionally smoothed fields presented later in
Appendix I.

There are many possible choices of smoothers to reduce errors.
While the details of the filter transfer functions differ for the various
smoothers, any smoother applied in, say, the 𝑥 dimension can be char-
acterized by the half-power filter cutoff wavenumber 𝑘𝑐 , or equivalently
the half-power filter cutoff wavelength 𝜆𝑐 = 𝑘−1𝑐 , that is associated with
the particular choice of the parameters of the smoother. For example,
the values of 𝑘𝑐 for the uniform-weighted average and the Parzen
smoother considered in Appendix A are related to the parameters 𝐿1
and 𝐿4 that define the spans of each of these smoothers by (A.7)
and (A.12a), respectively. Other smoothers have analogous relations
between 𝑘𝑐 and the parameters of the smoother; see, for example, the
Gaussian and loess smoothers summarized later in this section. The
primary distinctions between different smoothers are the steepness of
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Fig. C.1. Log–log plots of the squared filter transfer functions of Parzen smoothers
with half-power filter cutoff wavelengths of 20, 50 and 80 km (thin solid, thick solid
and dashed lines, respectively). The horizontal dotted line corresponds to an ordinate
value of 0.5. The half-power filter cutoff wavelengths for the Parzen smoothers are
shown by the three vertical dotted lines, which are the wavenumbers at which each
squared filter transfer function intersects the horizontal dotted line.

Fig. C.2. Log–log plots of the squared filter transfer functions with a half-power filter
cutoff wavelength of 50 km for the Parzen smoother (thick line, which is the same as
the thick line in Fig. C.1) and a Gaussian-weighted smoother (thin line). The horizontal
dotted line corresponds to an ordinate value of 0.5 and the vertical dotted line is the
wavenumber at which the two squared filter transfer functions intersect the horizontal
dotted line.

the rolloff of the squared filter transfer function through 𝑘𝑐 and the
amplitudes of the sidelobes at wavenumbers higher than 𝑘𝑐 .

The analyses of resolution capability in Sections 6 and 8–10 de-
termine the signal-to-noise ratio as a function of isotropic filter cutoff
wavelength 𝜆𝑐 for each of the variables of interest (the two components
of velocity and vorticity) computed from the simulated satellite data
(SSH for SWOT and the two velocity components for WaCM) smoothed
with 19 different values of 𝜆𝑐 ranging from 10 km to 200 km. These
smoothed fields were generated for instantaneous maps, 4-day averages
and 14-day averages of SSH for SWOT and the two velocity compo-
nents for WaCM for fields constructed from error-free model output,
measurement errors alone, sampling errors alone and combined mea-
surement and sampling errors. Together with the pre-processed SWOT
and WaCM data smoothed with 𝜆𝑐 = 2 km and 10 km, respectively, 20
different smoothed maps were computed for each measured variable,
each choice of time averaging, each combination of measurement and
sampling errors, and two choices of swath width for WaCM (1200 km
and 1800 km). A total of 1200 smoothed maps of the simulated
satellite data were thus required to generate the signal-to-noise graphs
in Figs. 18, 30, 35, 38–40 and 43.

Because of the computational effort required for these calcula-
tions, the standard smoother used throughout this study was the

Fig. C.3. Log–log plots of the squared filter transfer functions with a half-power filter
cutoff wavelength of 50 km for the Parzen smoother (thick line, which is the same as
the thick line in Fig. C.1), the loess smoother (thick dashed line) and the uniformly
weighted running average smoother (thin dashed line). The horizontal and vertical
dotted lines are the same as in Fig. C.2.

Parzen smoother that is discussed in detail in Appendix A. The Parzen
smoother is computationally efficient and very easy to implement as
a simple weighted average with weights defined by (A.13). For a
given choice of half-power filter cutoff wavenumber 𝑘𝑐 and associated
wavelength 𝜆𝑐 = 𝑘−1𝑐 , the span of a 1-dimensional Parzen smoother
inferred from (A.12b) is

Parzen Smoother ∶ 𝐿4 = 0.910 𝜆𝑐 ≈ 𝜆𝑐 . (C.2)

The squared filter transfer function for the Parzen smoother is
shown in Fig. C.1 in log–log format (the standard format used for
the wavenumber spectra shown throughout this paper) for filter cutoff
wavelengths of 𝜆𝑐 = 20, 50 and 80 km, corresponding to weighted
averages with spans of 𝐿4 = 18.2, 45.5 and 72.8 km.

It is useful to compare the Parzen smoother with the Gaussian-
weighted smoother for which the weighting function in one dimension
is

𝑤𝐺(𝑥) =
1

√

𝜋 𝐿𝐺
𝑒−𝑥

2∕𝐿2
𝐺 , (C.3)

where 𝐿𝐺 defines the e-folding scale of the Gaussian weighting. The
normalization factor

√

𝜋 𝐿𝐺 constrains the weighting function (C.3) to
have unit area, as required for unbiased smoothing. As discussed in
Appendix A, the filter transfer function of any smoother is defined to be
the Fourier transform (A.2) of the weighting function of the smoother.
For the Gaussian smoother (C.3), this is

𝑊𝐺(𝑘) = ∫

∞

−∞
𝑤(𝑥) 𝑒−𝑖2𝜋𝑘𝑥 𝑑𝑥 = 𝑒−(𝜋𝐿𝐺𝑘)2. (C.4)

As defined in Appendix A, the half-power filter cutoff wavenumber of
the Gaussian smoother is the wavenumber 𝑘𝑐 at which the squared
value of the filter transfer function (C.4) has a value of 0.5,

𝑊 2
𝐺 (𝑘𝑐 ) = 𝑒−2(𝜋𝐿𝐺𝑘𝑐 )2 = 0.5.

The parameter 𝐿𝐺 of the Gaussian smoother (C.3) is thus related to
the desired half-power filter cutoff wavenumber 𝑘𝑐 and associated
wavelength 𝜆𝑐 = 𝑘−1𝑐 by

𝐿𝐺 =
(

−
ln(0.5)
2𝜋2

)1∕2 1
𝑘𝑐

= 0.187 𝜆𝑐 . (C.5)

The squared filter transfer function of the Gaussian smoother is
shown in log–log format by the thin line in Fig. C.2 for the case of
a half-power filter cutoff wavelength of 𝜆𝑐 = 50 km. For comparison,
the thick line is the squared filter transfer function of the Parzen
smoother from Fig. C.1 for the same half-power filter cutoff wavelength
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of 𝜆𝑐 = 50 km. It is evident that the filtering properties of the Parzen
smoother are indistinguishable from those of the Gaussian smoother for
wavenumbers smaller than about 2𝑘𝑐 . The two squared filter transfer
functions differ somewhat at higher wavenumbers, but the variability
at these wavenumbers is attenuated by more than 15 dB relative to
the variability at the lower wavenumbers within the pass band of the
smoother.

A useful feature of isotropic Gaussian smoothing in two dimensions
is that it can be applied either as a single 2-dimensional weighted
average or as separate 1-dimensional Gaussian smoothing with the
weighting function (C.3) in each of two orthogonal dimensions. This
can be seen by noting that the 2-dimensional weighting function (C.1)
for the isotropic Gaussian smoother is

𝑤2𝑑
𝐺 (𝑥, 𝑦) = 𝑤2𝑑

𝐺 (𝑟) = 1
𝜋𝐿2

𝐺

𝑒−𝑟
2∕𝐿2

𝐺 = 1
𝜋𝐿2

𝐺

𝑒−(𝑥
2+𝑦2)∕𝐿2

𝐺 . (C.6a)

The normalization 𝜋𝐿2
𝐺 constrains the 2-dimensional weighting func-

tion 𝑤2𝑑
𝐺 (𝑟) to have unit volume, as required for unbiased smoothing.

The right side of (C.6a) can be rewritten as

𝑤𝐺(𝑥, 𝑦) = 𝑤𝐺(𝑥)𝑤𝐺(𝑦), (C.6b)

where 𝑤𝐺(𝑥) is the 1-dimensional Gaussian weighting function (C.3)
in the 𝑥 dimension and 𝑤𝐺(𝑦) is an analogous expression in the 𝑦
dimension. At least in principle, the isotropic 2-dimensional Gaus-
sian smoother can thus be applied as separate 1-dimensional Gaussian
smoothers in each orthogonal dimension. It is of course not possible to
extend the Gaussian weighting to 𝑥, 𝑦 → ±∞. The separability (C.6b) is
therefore not precisely valid in practice.

Because of the very close similarity between the squared filter
transfer functions of the Parzen and Gaussian smoothers (see Fig. C.2),
and therefore between the weighting functions of the two smoothers
that can be obtained from the inverse Fourier transforms of the filter
transfer functions, smoothing isotropically with a 2-dimensional Parzen
smoother shares the separability property (C.6b) for all intents and pur-
poses. In other words, isotropic 2-dimensional Parzen smoothing can
be implemented as separate 1-dimensional Parzen smoothing in each
of two orthogonal dimensions. This property is used in Appendices D,
E and I (see also Section 4) to derive theoretical expressions for the
effects of smoothing on the magnitudes and wavenumber spectral char-
acteristics of residual uncorrelated measurement errors after smoothing
SWOT and WaCM data in simulated ground-based post-processing.

The very small sidelobes of the filter transfer function of the Parzen
smoother, and the lack of sidelobes in the filter transfer function of
the Gaussian smoother, are desirable characteristics of any smoother.
An undesirable feature of these smoothers is that the rolloffs of their
squared filter transfer functions through 𝑘𝑐 are gradual compared with
some other smoothers. The assessment of resolution capability of SWOT
and WaCM data deduced from smoothed fields in Sections 6 and 8–
10 depends to some degree on the details of the filtering properties
of the smoother that is used to suppress the errors. This is apparent
in Sections 9 and 10.2 from the resolution capabilities inferred from
the quadratic loess smoother compared with the Parzen smoother. The
quadratic loess smoother introduced by Cleveland and Devlin (1988)
has better filtering properties than the Gaussian and Parzen smoothers
(Schlax and Chelton, 1992).

Mathematically, the quadratic loess smoother is a locally weighted
least squares fit of the data to a quadratic function over a span of 𝐿𝑞 .
The standard weighting for the quadratic loess smoother is the tricubic
function used by Cleveland and Devlin (1988). For a given choice of
half-power filter cutoff wavelength 𝜆𝑐 , it can be shown that the span
for this quadratic loess smoother is

Quadratic Loess Smoother ∶ 𝐿𝑞 ≈ 1.67 𝜆𝑐 . (C.7)

This is 83.5% larger than the span (C.2) of the Parzen smoother.
The squared filter transfer function for a 1-dimensional quadratic

loess smoother is shown in log–log format by the thick dashed line

in Fig. C.3 for the case of a half-power filter cutoff wavelength of
𝜆𝑐 = 50 km (i.e., a span of 𝐿𝑞 = 83.5 km). For comparison, the thick
solid line is the squared filter transfer function of the Parzen smoother
from Figs. C.1 and C.2 for the same half-power filter cutoff wavelength
of 𝜆𝑐 = 50 km. While the sidelobes of the quadratic loess smoother
with tricubic weighting function are larger than the sidelobes of the
Parzen smoother, they occur at wavenumbers closer to the filter cutoff
wavenumber 𝑘𝑐 and the rolloff of the filter transfer function has much
better characteristics for the loess smoother. Specifically, the squared
filter transfer function of the loess smoother is somewhat flatter in the
pass band and rolls off much more steeply through 𝑘𝑐 . At a wavelength
of 30 km, for example, i.e., a wavenumber of 𝑘 = 0.0333 cpkm = 1.67 𝑘𝑐 ,
the squared filter transfer function for the loess smoother is 27.3 times
smaller than that of the Parzen smoother (i.e., an attenuation factor
of more than 14 dB). Even with its larger-amplitude sidelobes, the
magnitude of the squared filter transfer function of the loess smoother
is smaller than that of the Parzen smoother at all wavenumbers less
than about 0.07 cpkm (a wavelength of about 14 km), by which point
both squared filter transfer functions are down by about 50 dB from the
values within the pass band of the smoother so that sidelobe contam-
ination is no longer an issue. The inferiority of simple block averages
(i.e., uniformly weighted running averages) is readily apparent from the
numerous large sidelobes of its squared filter transfer function shown
by the thin dashed line in Fig. C.3.

The quadratic loess smoother is thus seen to be more effective than
the Parzen smoother for attenuating high-wavenumber variability. In
addition to the large span (C.7) required to achieve a filter cutoff wave-
length 𝜆𝑐 , a disadvantage of the loess smoother is that the least squares
fitting procedure is computationally intensive on the 1 km × 1 km
grid used in this study for simulated SWOT and WaCM data, especially
for large spans 𝐿𝑞 in two dimensions. It is apparent from the figures
in Sections 9 and 10.2, however, that the better noise suppression
properties of the loess smoother improve the assessment of resolution
capability (see Table 3).

The precise estimates of the resolution capabilities of SWOT and
WaCM data thus depend somewhat on the specific details of the
smoother used to suppress the effects of measurement errors. However,
the relative resolution capabilities of SWOT compared with WaCM do
not depend on the choice of smoother used in the analysis.

The formalism developed in Appendix B to define the footprint sizes
of the pre-processed SWOT and WaCM data can be used to characterize
the feature resolution in smoothed fields constructed in ground-based
post-processing with any desired half-power filter cutoff wavenumbers
𝑘𝑐 and 𝑙𝑐 in the 𝑥 and 𝑦 dimensions. For the case of the Parzen smoother,
it was shown in Fig. B.1 that smoothing in the 𝑥 dimension with
spans of 𝐿4 = 2 km for SWOT and 𝐿4 = 10 km for WaCM results
in an autocorrelations of 0.5 at lags of about 0.5 km and 2.5 km,
respectively, and therefore feature diameter resolution scales of about
1 km for SWOT and 5 km for WaCM according to the criterion adopted
in Appendix B.

More generally, the feature diameter resolution scale for a Parzen
smoother applied in the 𝑥 dimension with an arbitrary span of 𝐿4 in
ground-based post-processing is

Feature Diameter Resolution ≈
𝐿4
2
. (C.8a)

Since the half-power filter cutoff wavenumber (A.12a) for a Parzen
smoother with a span of 𝐿4 is 𝑘𝑐 ≈ 𝐿−1

4 , the feature diameter resolution
scale (C.8a) can be expressed equivalently as

Feature Diameter Resolution ≈ 1
2𝑘𝑐

. (C.8b)

In terms of half-power filter cutoff wavelength 𝜆𝑐 = 𝑘−1𝑐 , this is

Feature Diameter Resolution ≈
𝜆𝑐
2
. (C.8c)

Regardless of the specific formulation of the smoothing procedure,
the relationships (C.8b) and (C.8c) between feature diameter resolution
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and filter cutoff wavenumber 𝑘𝑐 or wavelength 𝜆𝑐 developed above for
the Parzen smoother are approximately applicable to any smoother.

The preceding analysis clarifies the relation between the
autocorrelation-based definition (C.8) of feature diameter resolution
and the half-power filter cutoff wavelength 𝜆𝑐 = 𝑘−1𝑐 that is often
used by oceanographers to characterize the resolution of filtered fields.
From (C.8c), the feature diameter resolution of fields smoothed with a
half-power filter cutoff wavenumber 𝑘𝑐 is about 𝜆𝑐∕2. This definition
of resolution, which is based on the lag at which the autocorrelation
of the smoothed fields decreases to a value of 0.5 as suggested by
Peral (2016), is coarser by 25% than the feature diameter resolution
of 𝜆𝑐∕2.5 as defined somewhat subjectively in Appendix A of Chelton
et al. (2011) using a different criterion. For consistency with the SWOT
documentation, we adopt the Peral (2016) definition in this study.

Appendix D. Error reduction by smoothing

Smoothing of the pre-processed SWOT estimates of SSH and WaCM
estimates of surface velocity in ground-based post-processing as sum-
marized in Appendix C clearly reduces the variance of the uncorrelated
errors. The objective of this appendix is to quantify the reduction that
can be achieved with 2-dimensional smoothing for given choices of
the half-power filter cutoff wavenumbers 𝑘𝑐 and 𝑙𝑐 in the 𝑥 and 𝑦
dimensions, respectively. The analysis that follows is based on the
Parzen smoother, but the results are at least qualitatively applicable
to any smoother with parameters calibrated to the same filter cutoff
wavenumber in each dimension.

The amount by which filtering 2-dimensionally with the Parzen
smoother reduces the variance of uncorrelated errors compared with
block averaging, i.e., compared with the uniform-weighted average
(A.4), can be derived from consideration of smoothing in one dimen-
sion and then extending the results to two dimensions. Consider a
1-dimensional discretely sampled spatial series 𝜖(𝑥𝑚) of errors at 𝑀
locations 𝑥𝑚 = 𝑚𝛥𝑥, 𝑚 = 0, 1,… ,𝑀 − 1. It will be assumed that
these errors are uncorrelated at the sample spacing of 𝛥𝑥. It was
shown in Appendix B that SWOT measurements of SSH smoothed in
pre-processing with a half-power filter cutoff wavelength of 2 km are
uncorrelated with a spacing of 𝛥𝑥 = 1 km. For WaCM, smoothing of
the surface velocity measurements in pre-processing with a half-power
filter cutoff wavelength of 10 km are uncorrelated with a spacing of
𝛥𝑥 = 5 km.

The error reduction by smoothing in ground-based post-processing
of the pre-processed SWOT and WaCM data can be quantified from the
wavenumber spectral characteristics of the filtered errors. Parseval’s
Theorem for the sample variance 𝜎2𝜖 of the uncorrelated errors in one
dimension without smoothing can be expressed as

𝜎2𝜖 =
𝑀∕2
∑

𝑖=1
𝑆1𝑑
𝜖 (𝑘𝑖)𝛥𝑘, (D.1)

where 𝛥𝑘 = (𝑀𝛥𝑥)−1 is the Fourier wavenumber interval between
independent spectral estimates for a record length of 𝑀𝛥𝑥 and 𝑆1𝑑

𝜖 (𝑘𝑖)
is the 1-sided, 1-dimensional power spectral density of the errors at
wavenumber 𝑘𝑖 = 𝑖𝛥𝑘. The zero wavenumber corresponding to the
index 𝑖 = 0 is excluded from the sum (D.1) because the power spectral
density at zero wavenumber is equivalent to the square of the sample
mean value, which does not contribute to the sample variance. The
wavenumber 𝑘𝑀∕2 = (𝑀∕2)𝛥𝑘 at the upper range of the summation
in (D.1) corresponds to the Nyquist wavenumber 𝑘 = (2𝛥𝑥)−1 that is
the highest resolvable wavenumber for the discrete sample interval 𝛥𝑥.
The 1-sided, 1-dimensional power spectral density 𝑆1𝑑

𝜖 (𝑘𝑖) on the right
side of (D.1) doubles the power at all wavenumbers except the zero and
Nyquist wavenumbers.

Since the errors 𝜖(𝑥𝑚) are uncorrelated, the wavenumber power
spectral density 𝑆1𝑑

𝜖 (𝑘𝑖) is white, i.e., constant at all wavenumbers.5 The

5 The spectral values at wavenumbers 𝑘𝑖 = 0 and the Nyquist wavenumber
𝑘𝑖 = 𝑀∕2 are not doubled in the 1-sided, 1-dimensional spectrum. Since

constant white-noise spectral value obtained by passing the constants
𝑆1𝑑
𝜖 (𝑘𝑖) and 𝛥𝑘 = (𝑀𝛥𝑥)−1 through the summation in (D.1) and

inverting the equation is thus

𝑆1𝑑
𝜖 (𝑘𝑖) =

𝜎2𝜖
(𝑀∕2)𝛥𝑘

=
𝜎2𝜖

𝑘
, 𝑖 = 1,… ,𝑀∕2. (D.2)

The wavenumber power spectral density after smoothing of the un-
correlated errors 𝜖(𝑥𝑚) in ground-based post-processing using a linear,
space-invariant filter with a filter transfer function 𝑊𝑘𝑐 (𝑘) that has a
half-power filter cutoff wavenumber 𝑘𝑐 can be expressed in terms of
the wavenumber spectrum (D.2) of the unfiltered errors by

𝑆1𝑑
𝜖 (𝑘𝑖) =

|

|

|

𝑊𝑘𝑐 (𝑘𝑖)
|

|

|

2
𝑆1𝑑
𝜖 (𝑘𝑖). (D.3a)

The overbar distinguishes the spectrum 𝑆1𝑑
𝜖 (𝑘𝑖) of the smoothed errors

from the spectrum 𝑆1𝑑
𝜖 (𝑘𝑖) of errors in the unfiltered pre-processed

data. The filter transfer functions of the uniform-weighted average and
the Parzen smoother considered below are given by (A.6) and (A.11),
respectively. Since these filter transfer functions are both real (as is the
case for any symmetric, linear filter), the absolute value can be omitted
from (D.3a). After substituting (D.2) for 𝑆1𝑑

𝜖 (𝑘𝑖), the spectrum (D.3a) of
the smoothed white noise can be written as

𝑆1𝑑
𝜖 (𝑘𝑖) =

𝜎2𝜖
𝑘

𝑊 2
𝑘𝑐
(𝑘𝑖). (D.3b)

Parseval’s Theorem for the sample variance of the residual uncor-
related errors after smoothing can be expressed analogous to (D.1) in
terms of the 1-sided, 1-dimensional power spectral density (D.3) of the
smoothed errors as

𝜎2𝜖 =
𝑀∕2
∑

𝑖=1
𝑆1𝑑
𝜖 (𝑘𝑖)𝛥𝑘. (D.4a)

The overbar distinguishes the residual variance 𝜎2𝜖 of the smoothed
errors from the variance 𝜎2𝜖 of the errors of the unsmoothed pre-
processed data that is given by (D.1). Substituting (D.3b) into the right
side of (D.4a) expresses the variance of the smoothed errors in terms
of the variance of the unsmoothed errors as

𝜎2𝜖 =
𝜎2𝜖
𝑘

𝑀∕2
∑

𝑖=1
𝑊 2

𝑘𝑐
(𝑘𝑖)𝛥𝑘. (D.4b)

Note again that the wavenumber 𝑘𝑀∕2 at the upper range of the
summation is the Nyquist wavenumber 𝑘 = (2𝛥𝑥)−1, a point that is
important below.

Eq. (D.4b) can be interpreted as a discretized statement that the
sample variance of smoothed white-noise errors is equal to the inte-
grated area under the squared filter transfer function. This is seen by
considering the limit as the record length 𝑀𝛥𝑥 approaches infinity for
fixed sample interval 𝛥𝑥. The wavenumber interval 𝛥𝑘 = (𝑀𝛥𝑥)−1 then
becomes an infinitesimally small value 𝑑𝑘 and the discrete wavenum-
bers 𝑘𝑖 = 𝑖𝛥𝑘 become continuous. The subscript 𝑖 can then be dropped
and the discrete summation becomes an integral so that (D.4b) can be
written as

𝜎2𝜖 = 𝛼 𝜎2𝜖 , (D.5a)

where

𝛼 = 1
𝑘 ∫

𝑘

0
𝑊 2

𝑘𝑐
(𝑘) 𝑑𝑘 = 2𝛥𝑥∫

𝑘

0
𝑊 2

𝑘𝑐
(𝑘) 𝑑𝑘. (D.5b)

The Nyquist wavenumber that defines the upper bound of the integral
is imposed by the discrete sample interval 𝛥𝑥, regardless of the record
length 𝑀𝛥𝑥. [As noted above, the zero wavenumber at the lower
bound of the integral in (D.5b) must be excluded from the discretized

the measurement errors are assumed to have a mean of zero, this detail is
unimportant for 𝑘𝑖 = 0. The non-doubling at 𝑘𝑖 = 𝑀∕2 will be ignored to
avoid unnecessary lack of clarity in the analysis that follows.
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form (D.4b) of this integral since it does not contribute to the sample
variance.]

It is well known that 1-dimensional block averaging of 𝐿 un-
correlated errors 𝜖(𝑥𝑚) in uniform-weighted averages with a span of
𝐿1 = 𝐿𝛥𝑥 on a sample grid spacing of 𝛥𝑥 on which the errors are
statistically uncorrelated reduces the uncorrelated error variance 𝜎2𝜖 by
a multiplicative factor of

𝛼1 =
1
𝐿
. (D.6)

The subscript 1 indicates that this value for 𝛼 in the error variance
reduction formula (D.5a) is specific to the uniform-weighted average.
The integral on the right side of (D.5b) after substituting (D.6) on the
left side of the equation is

∫

𝑘

0
𝑊 2

1 (𝑘) 𝑑𝑘 = 1
2𝐿𝛥𝑥

, (D.7)

where 𝑊1(𝑘) is the filter transfer function (A.6) of the uniform-weighted
average with a span of 𝐿1 = 𝐿𝛥𝑥, which has a half-power filter
cutoff wavenumber of 𝑘𝑐 ≈ 0.5𝐿−1

1 according to (A.7). The explicit
dependence of the filter transfer function 𝑊𝑘𝑐 (𝑘) on the half-power
filter cutoff wavenumber 𝑘𝑐 has been dropped in (D.7) in favor of the
subscript 1 in order to distinguish this filter transfer function from that
of the Parzen smoother considered below.

It can be anticipated from the close agreement of the half-power fil-
ter cutoff wavenumbers of the two filter transfer functions in Fig. A.1b
that the error reduction factor that is achieved using a 1-dimensional
Parzen smoother with a span of 𝐿𝑝 = 2𝐿1 = 2𝐿𝛥𝑥, i.e., twice the span
of the uniform-weighted average smoother, is approximately the same
as the error variance reduction factor (D.6) for a 1-dimensional block
average of 𝐿 uncorrelated errors over a span of 𝐿1 = 𝐿𝛥𝑥. This can be
shown to be the case as follows.

An approximate analytical expression for the ratio of the variances
𝜎21 and 𝜎24 of, respectively, uniform-weighted averages with a span of
𝐿1 = 𝐿𝛥𝑥 and Parzen-weighted averages with a span of 𝐿4 = 4𝐿1 =
4𝐿𝛥𝑥 applied to uncorrelated white noise can be derived from (D.5) by
considering the ratio

𝑅𝐿 =
𝜎24
𝜎21

=
∫

𝑘

0
𝑊 2

4 (𝑘) 𝑑𝑘

∫

𝑘

0
𝑊 2

1 (𝑘) 𝑑𝑘
=

∫

𝑘

0
sinc8(𝑘𝐿𝛥𝑥) 𝑑𝑘

∫

𝑘

0
sinc2(𝑘𝐿𝛥𝑥) 𝑑𝑘

, (D.8)

where 𝑊4(𝑘) is the filter transfer function (A.11) of the Parzen smoother
with a span of 𝐿4 = 4𝐿𝛥𝑥, which yields sinc4(𝑘𝐿𝛥𝑥) on the right side
of (A.11) and has a filter cutoff wavenumber of 𝑘𝑐 ≈ 𝐿−1

4 according to
(A.12a). Exact solutions for the two integrals on the right side of (D.8)
cannot be obtained analytically. However, solutions can be found in
integral tables if the upper bounds of the two integrals in (D.8) are
both ∞ rather than the Nyquist wavenumber 𝑘 . The ratio (D.8) can
thus be rewritten as

𝑅𝐿 =

𝐼8 − ∫

∞

𝑘
sinc8(𝑘𝐿𝛥𝑥) 𝑑𝑘

𝐼2 − ∫

∞

𝑘
sinc2(𝑘𝐿𝛥𝑥) 𝑑𝑘

, (D.9a)

where

𝐼2 = ∫

∞

0
sinc2(𝑘𝐿𝛥𝑥) 𝑑𝑘 = 1

2𝐿
(D.9b)

𝐼8 = ∫

∞

0
sinc8(𝑘𝐿𝛥𝑥) 𝑑𝑘 = 151

630𝐿
. (D.9c)

The solutions (D.9b) and (D.9c) for 𝐼2 and 𝐼8 are derived from the
general solution obtained from integral tables for the integral from 0
to ∞ of sinc 𝑝(𝑘𝐿𝛥𝑥) with 𝑝 = 2 and 8.

Because the sidelobes of sinc8(𝑘𝐿𝛥𝑥) decay so much faster than
the sidelobes of sinc2(𝑘𝐿𝛥𝑥) (see Figs. A.1b and C.3), the correction
term in the numerator of (D.9a) is much smaller than the correction

Fig. D.1. The ratio 𝑅𝐿 = 𝜎2
4∕𝜎

2
1 of the residual variance 𝜎2

4 after filtering uncorrelated
white noise using a Parzen smoother with a span of 𝐿4 = 4𝐿 and the residual variance
𝜎2
1 after filtering with a uniform-weighted running average with a span of 𝐿1 = 𝐿. The

dots correspond to the analytical approximation given by Eq. (D.11) and the solid line
is the exact solution obtained by numerical integration of Eq. (D.8).

term in the denominator. The ratio of variances of uncorrelated errors
smoothed with the Parzen smoother and the uniform-weighted average
can therefore be approximated as

𝑅𝐿 ≈
𝐼8

𝐼2 − ∫

∞

𝑘
sinc2(𝑘𝐿𝛥𝑥) 𝑑𝑘

, (D.10)

By approximating each of the sidelobes of sinc2(𝑘𝐿𝛥𝑥) as rectangles,
it can be shown with some effort that the correction term in the
denominator of this equation is approximately 𝜋−2𝐿−2 for sufficiently
large 𝐿. The meaning of ‘‘sufficiently large’’ is quantified below from
Fig. D.1. The ratio (D.10) of the variances of Parzen-weighted and
uniform-weighted averages with spans of 4𝐿𝛥𝑥 and 𝐿𝛥𝑥, respectively,
then becomes

𝑅𝐿 ≈
𝐼8

𝐼2 − 𝜋−2𝐿−2
, (D.11a)

where 𝐼2 and 𝐼8 are defined in terms of 𝐿 by (D.9b) and (D.9c).
The analytical approximation (D.11a) for 𝑅𝐿 is shown by the dots

in Fig. D.1 for values of 𝐿 ranging from 2 to 25. For comparison,
the solid line corresponds to the exact solution obtained by numerical
integrations of the numerator and denominator of (D.8) with 𝑘 =
(2𝛥𝑥)−1. The analytical approximation is almost imperceptibly too large
for 𝐿 = 2 and becomes indistinguishable from the numerical solution
for 𝐿 > 2. It is thus seen that the large 𝐿 approximation (D.11a) is
applicable to all practical choices of smoothing of the pre-processed
SWOT and WaCM data. The ratio 𝑅𝐿 in Fig. D.1 has a value of 0.5 for
𝐿 = 5. It is slightly larger for 𝐿 < 5 and slightly smaller for 𝐿 > 5.
Over the range 20 km ≤ 𝐿 ≤ 200 km considered in this study, the
numerical value of (D.11a) decreases from 0.484 to 0.480 and can thus
be approximated as

𝑅𝐿 ≈ 0.482. (D.11b)

For practical purposes, 𝑅𝐿 can be considered to have a value of 0.5.
In other words, the residual variance 𝜎24 of white-noise errors smoothed
using a Parzen smoother with a span of 𝐿4 = 4𝐿𝛥𝑥 is approximately
half as large as the residual variance 𝜎21 of white-noise errors smoothed
using a uniform-weighted average with a span of 𝐿1 = 𝐿𝛥𝑥. From (D.7)
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and (D.8) with 𝑅𝐿 ≈ 0.5, the integral in (D.5b) for the Parzen smoother
with a span of 𝐿4 is thus

∫

𝑘

0
𝑊 2

4 (𝑘) 𝑑𝑘 = 𝑅𝐿 ∫

𝑘

0
𝑊 2

1 (𝑘) 𝑑𝑘 ≈ 1
4𝐿𝛥𝑥

= 1
𝐿4

. (D.12a)

Since the half-power filter cutoff wavenumber for the Parzen smoother
with a span of 𝐿4 is 𝑘𝑐 = 0.910𝐿−1

4 according to (A.12a), this can be
written alternatively as

∫

𝑘

0
𝑊 2

4 (𝑘) 𝑑𝑘 =
𝑘𝑐

0.910
≈ 𝑘𝑐 . (D.12b)

From the form (D.12a) for the integral on the right side of (D.5b),
it is apparent that the multiplicative error variance reduction factor
(D.5b) for a 1-dimensional Parzen smoother with a span of 𝐿4 = 4𝐿𝛥𝑥
is

𝛼4 ≈
1
2𝐿

= 2𝛥𝑥
𝐿4

. (D.13)

This verifies the relationship between the error variance reduction fac-
tor for the 1-dimensional Parzen smoother and error variance reduction
factor (D.6) for a 1-dimensional block average with a span of 𝐿1 = 𝐿𝛥𝑥
that was anticipated above prior to considering the ratio 𝑅𝐿 defined
by (D.8). Namely, smoothing using a Parzen smoother with a span of
𝐿𝑝 = 2𝐿𝛥𝑥 yields an error variance reduction factor of 𝛼4 ≈ 𝐿−1,
which is obtained by substituting 𝐿𝑝 for 𝐿4 in (D.13). This is the
same as the value (D.6) for 𝛼1 that is obtained from smoothing with
a uniform-weighted running average with a span of 𝐿1 = 𝐿𝛥𝑥.

The above analysis in one dimension can be extended straightfor-
wardly to the case of filtering in two dimensions in the form of separate
1-dimensional smoothing in each of two orthogonal dimensions for a
sample grid spacing of 𝛥𝑥 × 𝛥𝑦 on which the errors are statistically
uncorrelated. The multiplicative error variance reduction factor 𝛼 in
(D.5a) that is achieved with 2-dimensional smoothing in this manner
using Parzen smoothers with spans of 𝐿4(𝑥) in the 𝑥 dimension and
𝐿4(𝑦) in the 𝑦 dimension is then just the product of factors of the form
(D.13) in each dimension,

𝛼4 ≈
4𝛥𝑥𝛥𝑦

𝐿4(𝑥)𝐿4(𝑦)
. (D.14a)

The filtering of the SSH and surface velocity fields from the CCS
model with simulated SWOT and WaCM uncorrelated measurement
errors in Sections 6 and 8–10 was applied isotropically with a 2-
dimensional weighting function of the form (C.1) that depends only on
the radial distance between the estimation location and each data point.
In general, this form of 2-dimensional smoothing differs from successive
applications of 1-dimensional smoothing in two orthogonal dimensions.
It was shown in Appendix C, however, that the two approaches are
essentially equivalent for the Parzen smoother with spans 𝐿4(𝑥) = 𝐿4(𝑦)
because of its close similarity to Gaussian smoothing. The advantage of
smoothing separately in each dimension is that the separability allows
the use of the factor (D.14a) to determine the error reduction from 2-
dimensional smoothing. Because of the essential equivalence of the two
forms of isotropic 2-dimensional smoothing with the Parzen smoother,
the error reduction factor (D.14a) is also applicable to the error fields
smoothed in Sections 6 and 8–10 with an isotropic 2-dimensional
Parzen weighting function.

To illustrate the effects of this error reduction with a specific ex-
ample, consider the case of an isotropic Parzen smoother with spans of
𝐿4(𝑥) = 𝐿4(𝑦) = 14 km applied to uncorrelated errors on a 1 km × 1 km
grid. Then 𝐿4(𝑥) = 14𝛥𝑥 and 𝐿4(𝑦) = 14𝛥𝑦. The error variance
reduction factor (D.14a) is therefore 𝛼4 ≈ 4∕142 = 1∕49, i.e., the same
as would be achieved by uniform-weighted block averaging over a
7 km × 7 km area. Recall, however, that the Parzen smoother has much
better filtering properties than the uniform-weighted average smoother
(see Figs. A.1b and C.3).

Because the half-power filter cutoff wavenumber (A.12a) for the
Parzen smoother is 𝑘𝑐 ≈ 𝐿−1

4 (𝑥) in the 𝑥 dimension and 𝑙𝑐 ≈ 𝐿−1
4 (𝑦) in

the 𝑦 dimension, a 2-dimensional span of 𝐿4(𝑥)×𝐿4(𝑦) can be expressed
alternatively as smoothing with half-power filter cutoff wavenumbers
of approximately 𝑘−1𝑐 × 𝑙−1𝑐 . The expression (D.14a) for the multi-
plicative reduction factor 𝛼 in the relation (D.5) for the residual error
variance after smoothing the pre-processed estimates with these half-
power filter cutoff wavenumbers can thus be written alternatively by
substituting 𝐿4(𝑥) = 𝑘−1𝑐 and 𝐿4(𝑦) = 𝑙−1𝑐 into (D.14a) to get

𝛼4 ≈ 4𝛥𝑥𝛥𝑦 𝑘𝑐 𝑙𝑐 . (D.14b)

For the case of isotropic smoothing with a half-power filter wavelength
of 𝜆𝑐 = 𝑘−1𝑐 = 𝑙−1𝑐 in each dimension, this becomes

𝛼4 ≈
4𝛥𝑥𝛥𝑦
𝜆2𝑐

. (D.14c)

The subscript 4 on the multiplicative error variance reduction factor
(D.14) to be used in the error reduction formula (D.5) is a reminder that
𝛼4 was derived specifically for the Parzen smoother. However, the form
(D.14b) provides an approximate characterization of the reduction of
uncorrelated error variance for other smoothers with parameters cho-
sen to give the same filter cutoff wavenumbers 𝑘𝑐 and 𝑙𝑐 . For isotropic
smoothing, the error reduction for any smoother with a half-power
filter cutoff wavelength 𝜆𝑐 is given approximately by (D.14c).

Appendix E. One-dimensional wavenumber spectra of 2-dimen-
sionally smoothed uncorrelated error fields

The procedure followed in Sections 6 and 8–10 to improve the
signal-to-noise ratio for SWOT and WaCM estimates of the variables
considered in this study (surface velocity and vorticity) is to reduce
the error variance by isotropic 2-dimensional smoothing of the variable
measured by each instrument (SSH for SWOT and velocity components
for WaCM). It was shown in Appendix C that the smoothing applied
in Sections 6 and 8–10 using a truly isotropic 2-dimensional Parzen
weighting function could be achieved essentially equivalently as suc-
cessive applications of a 1-dimensional Parzen smoother in each of
two orthogonal dimensions. This equivalence allowed the derivation
of the error variance reduction factor (D.14b) for separate smoothing
with half-power filter cutoff wavenumbers of 𝑘𝑐 and 𝑙𝑐 in the 𝑥 and 𝑦
dimensions.

The equivalence of the two methods of 2-dimensional smoothing is
used in this appendix to quantify the effects of isotropic 2-dimensional
smoothing on the wavenumber spectrum of residual measurement er-
rors. Of particular interest is the effect of 2-dimensional smoothing on
the 1-dimensional wavenumber spectrum6 of 2-dimensional uncorre-
lated white noise, which differs in an important way from what would
be achieved with a 1-dimensional dataset. The difference is not neces-
sarily intuitive but is needed for the derivation in Appendix F of the
standard deviation of uncorrelated errors from the spectral specifica-
tion of the science requirement for SWOT measurement accuracy. The
results are also essential to the interpretation of the spectral analyses
of the effects of smoothing of the measurement errors in ground-
based post-processing that are derived for both SWOT and WaCM in
Appendix I (see also Section 4.4). We therefore summarize the effects of
2-dimensional smoothing on the 1-dimensional wavenumber spectrum
in this appendix.

Consider a 2-dimensional spatial field 𝜖(𝑥, 𝑦) of uncorrelated mea-
surement errors (e.g., measurements of SSH by SWOT or measurements
of a velocity component by WaCM) at discrete locations (𝑥𝑚, 𝑦𝑛) for
𝑥𝑚 = 𝑚𝛥𝑥, 𝑚 = 0, 1,… ,𝑀 − 1 and 𝑦𝑛 = 𝑛𝛥𝑦, 𝑛 = 0, 1,… , 𝑁 − 1,
where 𝛥𝑥 and 𝛥𝑦 are the sample intervals in the 𝑥 and 𝑦 dimensions.
It will be assumed that the errors 𝜖(𝑥𝑚, 𝑦𝑛) are uncorrelated on this

6 The direction of the 1-dimensional spectrum could be defined to be
along the satellite ground track for the case of actual satellite data or in the
alongshore direction for the case of the spectral analysis of the model output
considered in Appendix I and Section 4.4.
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sample grid. Analogous to (D.1) for the 1-dimensional case considered
in Appendix D, Parseval’s Theorem for the relationship between the
sample variance 𝜎2𝜖 of this error field and its 2-dimensional wavenum-
ber sample power spectral density 𝑆2𝑑

𝜖 (𝑘𝑖, 𝑙𝑗 ) at wavenumbers 𝑘𝑖 = 𝑖𝛥𝑘
and 𝑙𝑗 = 𝑗𝛥𝑙 is

𝜎2𝜖 =
𝑀∕2
∑

𝑖=−𝑀∕2+1
𝑖≠ 0

𝑁∕2
∑

𝑗=−𝑁∕2+1
𝑗≠ 0

𝑆2𝑑
𝜖 (𝑘𝑖, 𝑙𝑗 )𝛥𝑙 𝛥𝑘, (E.1)

where 𝛥𝑘 = (𝑀𝛥𝑥)−1 and 𝛥𝑙 = (𝑁𝛥𝑦)−1 are the discrete Fourier
wavenumber intervals that are defined by the record lengths 𝑀𝛥𝑥
and 𝑁𝛥𝑦 in the 𝑥 and 𝑦 dimensions. As in the 1-dimensional case
(D.1), the zero wavenumbers corresponding to indices 𝑖 = 𝑗 = 0 are
excluded from the sums in (E.1) because the spectral values at these
wavenumbers correspond to the squared values of the sample mean in
each dimension, which do not contribute to the sample variance 𝜎2𝜖 . The
indices 𝑖 = 𝑀∕2 and 𝑗 = 𝑁∕2 that define the limits of the summations
in (E.1) correspond to the Nyquist wavenumbers 𝑘 = (2𝛥𝑥)−1 and
𝑙 = (2𝛥𝑦)−1 in the 𝑥 and 𝑦 dimensions, respectively

The 2-dimensional form (E.1) of Parseval’s Theorem can be inter-
preted as a discretized statement that the sample variance is equal
to the volume under the 2-dimensional wavenumber sample power
spectral density. Analogous to the procedure followed in one dimension
in Appendix D, this is seen by considering the limit as the record
lengths 𝑀𝛥𝑥 and 𝑁𝛥𝑦 in the 𝑥 and 𝑦 dimensions approach infinity
for fixed sample intervals 𝛥𝑥 and 𝛥𝑦. The wavenumber intervals 𝛥𝑘
and 𝛥𝑙 then become infinitesimally small values 𝑑𝑘 and 𝑑𝑙 and the
discrete wavenumbers 𝑘𝑖 = 𝑖𝛥𝑘 and 𝑙𝑗 = 𝑗𝛥𝑙 become continuous. The
subscripts 𝑖 and 𝑗 can then be dropped and the discrete summations
become integrals so that (E.1) can be written in simpler form as7

𝜎2𝜖 = ∫

𝑘

−𝑘
∫

𝑙

−𝑙
𝑆2𝑑
𝜖 (𝑘, 𝑙) 𝑑𝑙 𝑑𝑘. (E.2)

The variance of the discretely sampled error field 𝜖(𝑥𝑚, 𝑦𝑛) with in-
finitely long record lengths 𝑀𝛥𝑥 and 𝑁𝛥𝑦 in the two dimensions is
thus the integrated volume under the 2-dimensional sample power
spectral density. A point that is important to the analysis below and
in Appendix F is that the ranges of integration are finite. The Nyquist
wavenumbers 𝑘 and 𝑙 that define the lower and upper bounds of
the integrals are imposed by the discrete sample intervals 𝛥𝑥 and 𝛥𝑦,
regardless of the record lengths 𝑀𝛥𝑥 and 𝑁𝛥𝑦.

The integral representation (E.2) of Parseval’s Theorem greatly
simplifies the notation in the analysis that follows. It should be kept
in mind, however, that the observable resolutions 𝛥𝑘 and 𝛥𝑙 of the
wavenumbers 𝑘 and 𝑙 in the 𝑥 and 𝑦 dimensions will be finite and are
imposed by the finite record lengths 𝑀𝛥𝑥 and 𝑁𝛥𝑦.

The 2-dimensional wavenumber sample power spectral density
𝑆2𝑑
𝜖 (𝑘, 𝑙) of 2-dimensional uncorrelated errors is constant (i.e., white)

with a value that can be defined to be 𝑆0 at all wavenumbers 𝑘 and
𝑙 except 𝑘 = 0 and 𝑙 = 0 at which 𝑆2𝑑

𝜖 (𝑘, 𝑙) = 0 for errors that have a
sample mean value of zero. Parseval’s Theorem (E.2) then reduces to

𝜎2𝜖 = 4𝑘 𝑙𝑆0 =
𝑆0

𝛥𝑥𝛥𝑦
.

The constant 2-dimensional power spectral density for a specified white
noise error variance 𝜎2𝜖 obtained by inverting this equation is

𝑆2𝑑
𝜖 (𝑘, 𝑙) = 𝑆0 = 𝛥𝑥𝛥𝑦 𝜎2𝜖 , for − 𝑘 < 𝑘 ≤ 𝑘 and − 𝑙 < 𝑙 ≤ 𝑙 .

(E.3)

7 The zero wavenumbers 𝑘 = 𝑙 = 0 that are included in the integral (E.2)
must be excluded from the discretized form (E.1) of this integral since they
do not contribute to the sample variance. If the errors have a mean of zero,
however, inclusion of the zero wavenumbers in (E.2) is an irrelevant point
since the spectral values are then zero at 𝑘 = 0 and 𝑙 = 0. The Nyquist
wavenumbers −𝑘 and −𝑙 at the lower range of each of the integrals must
also be excluded from (E.2). To simplify the discussion, this minor distinction
between the integral and discrete forms of Parseval’s Theorem will be ignored
in the analysis that follows.

For the case of errors 𝜖(𝑥, 𝑦) of SWOT estimates of SSH in units of
cm, the 2-dimensional white-noise spectral value of 𝑆0 has units of
cm2/(cpkm)2. Similarly for the case of errors 𝜖(𝑥, 𝑦) of WaCM esti-
mates of a velocity component in units of m s−1, 𝑆0 has units of
(m s−1)2/(cpkm)2.

The 1-dimensional wavenumber sample power spectral density in
the 𝑦 dimension of a 2-dimensional field can be obtained from the
2-dimensional wavenumber sample power spectral density by inte-
grating over all wavenumbers 𝑘 in the 𝑥 dimension. For the 1-sided,
1-dimensional spectrum that combines the power at positive and nega-
tive wavenumbers 𝑙, this relationship for the 1-dimensional white noise
spectrum becomes,8

𝑆1𝑑
𝜖 (𝑙) = 2∫

𝑘

−𝑘
𝑆2𝑑
𝜖 (𝑘, 𝑙) 𝑑𝑘 = 4𝑘 𝑆0 =

2𝑆0
𝛥𝑥

, for 0 < 𝑙 ≤ 𝑙 . (E.4a)

From (E.3), this constant 1-sided, 1-dimensional white noise spectrum
can be expressed in terms of the uncorrelated error variance 𝜎2𝜖 as

𝑆1𝑑
𝜖 (𝑙) = 2𝛥𝑦 𝜎2𝜖 , for 0 < 𝑙 ≤ 𝑙 . (E.4b)

If the variance of the 2-dimensional white noise is suppressed
by smoothing 2-dimensionally in the form of separate 1-dimensional
smoothing with half-power filter cutoff wavenumbers of 𝑘𝑐 and 𝑙𝑐 in the
𝑥 and 𝑦 dimensions, respectively, the 2-dimensional spectrum 𝑆2𝑑

𝜖 (𝑘, 𝑙)
of the smoothed error fields is related to the 2-dimensional spectrum
𝑆2𝑑
𝜖 (𝑘, 𝑙) of the unsmoothed errors by

𝑆2𝑑
𝜖 (𝑘, 𝑙) = 𝑊 2

𝑘𝑐
(𝑘)𝑊 2

𝑙𝑐
(𝑙)𝑆2𝑑

𝜖 (𝑘, 𝑙), (E.5a)

where 𝑊𝑘𝑐 (𝑘) and 𝑊𝑙𝑐 (𝑙) are the filter transfer functions of the smoother
in the 𝑥 and 𝑦 dimensions, respectively. It has been assumed in (E.5a)
that the smoother is symmetric and linear so that the filter transfer
functions are real and hence the wavenumber spectrum of the smoothed
errors depends on the squares of the filter transfer functions rather than
their complex inner products. If the filter cutoff wavenumbers 𝑘𝑐 and
𝑙𝑐 are the same, separate 1-dimensional smoothing in this manner with
1-dimensional Parzen smoothers in each dimension is essentially equiv-
alent to isotropic smoothing with a 2-dimensional Parzen weighting
function that depends only on the radial distance from the estimation
location (see Appendix C).

From (E.3), the spectrum (E.5a) of the smoothed error fields can be
expressed in terms of the uncorrelated error variance 𝜎2𝜖 as

𝑆2𝑑
𝜖 (𝑘, 𝑙) = 𝛥𝑥𝛥𝑦 𝜎2𝜖 𝑊

2
𝑘𝑐
(𝑘)𝑊 2

𝑙𝑐
(𝑙). (E.5b)

As in (E.4a), the 1-sided, 1-dimensional wavenumber spectrum of
the smoothed error fields in the 𝑦 dimension is obtained from 𝑆2𝑑

𝜖 (𝑘, 𝑙)
by integrating over all wavenumbers 𝑘 in the 𝑥 dimension and dou-
bling the power at each wavenumber except the zero and Nyquist
wavenumbers,

𝑆1𝑑
𝜖 (𝑙) = 2∫

𝑘

−𝑘
𝑆2𝑑
𝜖 (𝑘, 𝑙) 𝑑𝑘.

From (E.5b), this can be expressed as

𝑆1𝑑
𝜖 (𝑙) = 2𝛥𝑥𝛥𝑦 𝜎2𝜖 𝑊

2
𝑙𝑐
(𝑙)∫

𝑘

−𝑘
𝑊 2

𝑘𝑐
(𝑘) 𝑑𝑘

= 4𝛥𝑥𝛥𝑦 𝜎2𝜖 𝑊
2
𝑙𝑐
(𝑙)∫

𝑘

0
𝑊 2

𝑘𝑐
(𝑘) 𝑑𝑘. (E.6a)

The last expression follows from the fact that 𝑊 2
𝑘𝑐
(𝑘) is symmetric about

𝑘 = 0.
For the Parzen smoother used in this study, the integral on the right

side of (E.6a) was shown by (D.12b) in Appendix D to be approximately

8 As noted in footnote 5, the spectral values at wavenumbers 𝑙 = 0 and
𝑙 are not doubled in the 1-sided, 1-dimensional spectrum in (E.4). As in
Appendix D this technicality will be ignored to avoid unnecessary lack of
clarity in the analysis that follows.
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equal to the half-power filter cutoff wavenumber 𝑘𝑐 . This relation
for the integral of the squared filter transfer function holds approxi-
mately for any other smoother with smoothing parameters calibrated
to the same half-power filter cutoff wavenumber 𝑘𝑐 . The 1-sided, 1-
dimensional spectrum (E.6a) of smoothed errors therefore simplifies to

𝑆1𝑑
𝜖 (𝑙) ≈ 4𝛥𝑥𝛥𝑦 𝜎2𝜖 𝑘𝑐 𝑊

2
𝑙𝑐
(𝑙). (E.6b)

It is illuminating to contrast the different effects of 2-dimensional
smoothing on the 2-dimensional spectrum (E.5b) compared with the 1-
sided, 1-dimensional spectrum (E.6b). The two spectra can be expressed
in terms of the constant white-noise spectral value 𝑆0 by substituting
(E.3) into (E.5b) and (E.6b) to get

𝑆2𝑑
𝜖 (𝑘, 𝑙) = 𝑊 2

𝑘𝑐
(𝑘)𝑊 2

𝑙𝑐
(𝑙)𝑆0 (E.7)

𝑆1𝑑
𝜖 (𝑙) = 4 𝑘𝑐 𝑊 2

𝑙𝑐
(𝑙)𝑆0. (E.8)

The 2-dimensional spectral values 𝑆2𝑑
𝜖 (𝑘, 𝑙) are thus equal to 𝑆0 mul-

tiplied by the product of the squared values of the filter transfer
functions in each dimension at the particular wavenumbers 𝑘 and 𝑙.
In contrast, the 1-dimensional spectral values 𝑆1𝑑

𝜖 (𝑙) are equal to 𝑆0
multiplied by the squared value of the filter transfer function in only the
𝑦 dimension with an additional constant multiplicative factor of 4𝑘𝑐 at
every wavenumber 𝑙. A factor of 2 can be accounted for by the doubling
of the power in the 1-sided, 1-dimensional spectrum. The additional
factor of 2𝑘𝑐 represents a constant attenuation that is applied at every
wavenumber 𝑙. For smoothing in the 𝑥 dimension with a filter cutoff
wavelength of 𝜆𝑐 = 𝑘−1𝑐 = 50 km, for example, this corresponds to an
attenuation by a factor of 25 cpkm at every wavenumber.9

For the benefit of the analysis in Appendix F, and to illustrate
the importance of the above distinction between the effects of 2-
dimensional smoothing on the 2-dimensional and 1-dimensional spec-
tra, each of these spectra can be compared with their counterparts for
the unsmoothed error fields. From (E.5a), the 2-dimensional spectrum
of the smoothed error fields is just the 2-dimensional spectrum of the
unsmoothed fields multiplied by the squared values of the two filter
transfer functions at each wavenumber 𝑘 and 𝑙. Consider an ideal filter
with transfer functions given by

𝑊𝑘𝑐 (𝑘) =

{

1 if |𝑘| ≤ 𝑘𝑐
0 otherwise

(E.9a)

𝑊𝑙𝑐 (𝑙) =

{

1 if |𝑙| ≤ 𝑙𝑐
0 otherwise.

(E.9b)

The 2-dimensional spectral values of the smoothed error fields are then
related to the 2-dimensional spectral values of the unsmoothed error
fields by

𝑆2𝑑
𝜖 (𝑘, 𝑙) =

{

𝑆2𝑑
𝜖 (𝑘, 𝑙) if |𝑘| ≤ 𝑘𝑐 and |𝑙| ≤ 𝑙𝑐
0 otherwise.

(E.10)

For the case of 1-dimensional spectra, it can be seen from (E.4b) and
(E.6b) that the 1-dimensional spectrum of smoothed errors is related to
the 1-dimensional spectrum of unsmoothed errors by

𝑆1𝑑
𝜖 (𝑙) = 2𝛥𝑥𝑘𝑐 𝑊 2

𝑙𝑐
(𝑙)𝑆1𝑑

𝜖 (𝑙). (E.11a)

For a half-power filter cutoff wavelength of 𝜆𝑐 in the 𝑥 dimension, this
is

𝑆1𝑑
𝜖 (𝑙) = 2𝛥𝑥

𝜆𝑐
𝑊 2

𝑙𝑐
(𝑙)𝑆1𝑑

𝜖 (𝑙). (E.11b)

9 The units on this attenuation factor are because 2𝑘𝑐 multiplies the constant
2-dimensional white noise spectral value 𝑆0 on the right side of (E.8), thus
assuring the proper units of the 1-dimensional spectrum on the left side of the
equation.

For the ideal filter in the 𝑥 dimension considered above that has the
filter transfer function (E.9a), the expression (E.11a) for the spectrum
of smoothed errors becomes

𝑆1𝑑
𝜖 (𝑙) =

{

2𝛥𝑥𝑘𝑐 𝑆1𝑑
𝜖 (𝑙) for 0 < 𝑙 ≤ 𝑙𝑐

0 otherwise.
(E.12a)

For the case of a Parzen smoother, a filter cutoff wavenumber of 𝑘𝑐 can
be achieved according to (A.12a) with a span of 𝐿4 ≈ 𝑘−1𝑐 . Neglecting
the imperfections of the filter transfer function of the Parzen smoother
for the sake of illustration, a span of 𝐿4 = 𝐿𝛥𝑥 expresses (E.12a) as

𝑆1𝑑
𝜖 (𝑙) =

{

2𝐿−1𝑆1𝑑
𝜖 (𝑙) for 0 < 𝑙 ≤ 𝑙𝑐

0 otherwise.
(E.12b)

The 1-dimensional spectral values at all wavenumbers in the pass band
would therefore be attenuated by a factor of 2𝐿−1.

In contrast to the 2-dimensional spectrum of smoothed error fields
that is unchanged in the low-wavenumber pass band |𝑘| ≤ 𝑘𝑐 and
|𝑙| ≤ 𝑙𝑐 according to (E.10) for an ideal filter, the smoothing in the
𝑥 dimension reduces the 1-dimensional spectral values within the pass
band |𝑙| ≤ 𝑙𝑐 in the 𝑦 dimension by the multiplicative factor of 2𝛥𝑥𝑘𝑐
in (E.12a) compared with the 1-dimensional spectrum (E.4b) of the
unfiltered errors. This perhaps non-intuitive point is important to the
derivation in Appendix F of the error variance of the pre-processed
SWOT estimates of SSH from the science requirement specification in
terms of the 1-sided, 1-dimensional power spectral density of SWOT
data smoothed with the above hypothetical ideal filter.

Appendix F. The standard deviation of uncorrelated errors in
SWOT estimates of SSH

The generation of simulated noisy SWOT measurements of SSH from
the CCS model for the analyses of resolution capabilities in Sections 6
and 8–10 and determination of the variances and wavenumber spectra
of the errors of geostrophically computed SWOT estimates of veloc-
ity and vorticity in Section 4 from the equations in Appendices G
and I, respectively, all require knowledge of the variance or standard
deviation of the uncorrelated errors in SWOT estimates of SSH. It is
difficult to find this information in the SWOT documentation. Several
different values are given or indirectly implied in two of the SWOT
documents. The Algorithm Theoretical Basis document for the SWOT
onboard processor (Peral, 2016) states, in the caption of Fig. 47, that
the swath-averaged standard deviation for a significant wave height
(SWH) of 2 m is 𝜎ℎ = 2.54 cm for the uncorrelated measurement
errors of SWOT data10 smoothed 2-dimensionally onto a 1 km × 1 km
grid with an isotropic half-power filter cutoff wavelength of 2 km
as summarized in our Appendix B.1. The Mission Performance and
Error Budget document (Esteban Fernandez, 2017) gives three different
values for the standard deviation of uncorrelated measurement errors
for 2-m SWH. The specification of the white-noise contribution to
the total error spectrum in the unnumbered first equation in Sec. 5.1
[see also Eq. (F.1) below] can be combined with the unnumbered last
equation in Sec. 5.1.1 for the 1-sided, 1-dimensional power spectral
density of the uncorrelated SSH measurement errors to deduce a value
of 𝜎ℎ = 2.74 cm. The swath-averaged standard deviation for 2-m SWH
is subsequently stated in Secs. 5.1.3 and 5.4.5 to be 2.5 cm and 2.4 cm,
respectively.

10 In the preceding appendices, the variance 𝜎2
𝜖 of uncorrelated errors was

denoted generically with the subscript 𝜖 in order to be applicable to either
SWOT or WaCM, which measure different variables. Hereafter, the subscript
𝜖 is replaced with a symbol that is indicative of the variable of interest. As
the focus in this appendix is on the errors of SWOT estimates of SSH, the
subscript ℎ is used in place of 𝜖. Other symbols are used in Appendices G and
I, depending on the variable of interest (see the discussion in the introduction
of Appendix G).
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Fig. F.1. The current projected performance of the SWOT instrument. The graph
shows the dependencies of the standard deviation of uncorrelated errors of SWOT
measurements of SSH on significant wave height (SWH) and swath location relative to
the satellite ground track. The seven solid lines correspond to SWH values increasing
from 2 m to 8 m at increments of 1 m (bottom to top). The errors for 0-m SWH
are essentially the same as those shown for 2-m SWH. This projected performance
incorporates improvements over the baseline science requirements for SWOT. The
horizontal dashed line is the estimate 𝜎ℎ = 2.74 cm of the cross-swath average standard
deviation of uncorrelated measurement errors derived in Appendix F from the baseline
science requirements.
Source: The solid lines in the figure are from Fig. 2.5 of Gaultier et al. (2017).

Four different values for the standard deviation 𝜎ℎ of the uncor-
related errors of SWOT measurements of SSH can thus be found in
the SWOT documentation. Among these, the value of 𝜎ℎ = 2.74 cm
is derived below from the wavenumber spectral specification of the
science requirements and thus represents the baseline accuracy require-
ment for uncorrelated errors in SWOT measurements of SSH with a
footprint size of 1 km. Although not stated as such, the three slightly
smaller values noted above may be projected estimates (at the time
of writing of the various sections of the reports) of the accuracy that
will actually be achieved from SWOT in orbit. Alternatively, they may
consider only the effects of instrumental errors and neglect smaller
sources of uncorrelated errors such as the effects of spacecraft pointing
errors on the signal-to-noise ratio across the measurement swaths.

Since the baseline requirement for the standard deviation of the
uncorrelated measurement errors is ambiguous in the SWOT docu-
mentation, and because this information is crucial for the simulated
SWOT sampling of the CCS model output in this study and likely in
other studies, an expression for the error standard deviation is derived
in this appendix. As in the spectral specification of SWOT measure-
ment accuracy requirements in Rodríguez and Callahan (2016), the
standard deviation of uncorrelated measurement errors derived below
is the global swath-averaged value for SWOT estimates of SSH with
a footprint size of 1 km in conditions of 2-m SWH. In reality, the
measurement errors increase toward each edge of the two parallel mea-
surement swaths. They also increase with increasing SWH, which varies
geographically and temporally. The most recent projected estimates of
the dependencies of the SWOT measurement errors on swath location
and SWH are shown in Fig. F.1 (see also Fig. 2.5 of Gaultier et al.,
2017).

The required variance 𝜎2ℎ of the uncorrelated errors in the pre-
processed SWOT estimates of SSH with a footprint size of 1 km is
determined here from the baseline spectral characterization of the
SWOT measurement errors that is specified in the SWOT Science Re-
quirements Document (Rodríguez and Callahan, 2016) in terms of
the residual errors after smoothing of the pre-processed data with a
half-power filter cutoff wavelength of 𝜆𝑐 = 15 km. Explanation of
what exactly is meant by this smoothing is contradictory in the SWOT

Fig. F.2. The 1-sided, 1-dimensional along-track wavenumber power spectral density of
the science requirements for measurement errors of SWOT data before and after (blue
and red lines, respectively) smoothing in ground-based post-processing to eliminate
variability with wavelengths shorter than a half-power filter cutoff wavelength of
𝜆𝑐 = 15 km (shown by the dotted black line). The dotted red line corresponds to the
requirement for red noise from orbit errors and long-wavelength measurement errors.
The dashed red line corresponds to the requirement for residual uncorrelated errors
after smoothing either 2-dimensionally with an ideal filter that has a magnitude of
1 for wavelengths longer than 𝜆𝑐 and 0 for shorter wavelengths or smoothing only
1-dimensionally in the cross-track dimension with any realizable low-pass filter that
has a half-power filter cutoff wavlength of 𝜆𝑐 . The solid red line is the sum of the
power spectral densities of the red noise and the low-pass filtered uncorrelated errors.
The dashed blue line corresponds to the uncorrelated errors in pre-processed SWOT
data for a footprint size of 1 km that is derived in Appendix F without the 15-km
smoothing. The solid blue line is the sum of the power spectral densities of the red
noise and the white noise in the pre-processed SWOT data. The thick black line is the
68th-percentile SSH signal power spectral density from the SWOT Science Requirements
Document (Rodríguez and Callahan, 2016). A power-law rolloff of 𝑙−5∕2 for alongshore
wavenumber 𝑙 is shown for reference as the thin black line. The dashed and solid green
lines show, respectively, the spectra of the residual uncorrelated noise and the total
noise that would be obtained if the SWOT data were smoothed 2-dimensionally using
a realizable Parzen smoother with a half-power filter cutoff wavelength of 𝜆𝑐 = 15 km
(For interpretation of the references to colour in this figure, the reader is referred to
the web version of this article.).

documentation. The requirement 2.7.2a in Sec. 2.7 of the Science Re-
quirements Document (Rodríguez and Callahan, 2016) explicitly states
that 15-km smoothing is to be performed 2-dimensionally. Consistent
with this specification, the Mission Performance and Error Budget doc-
ument (Esteban Fernandez, 2017) states in Sec. 4.1 that the objective of
the SWOT mission is to characterize SSH variability at spatial scales of
15 km and larger, which implicitly implies 2-dimensional smoothing.
But later in Sec. 5.1.1 of the document, it is stated that the smoothing is
to be applied only 1-dimensionally in the cross-track dimension by ‘‘an
ideal square filter’’ that is later clarified in Sec. 5.1.2 to be the simple
running average filter with the uniform weighting function given by
(A.4) in our Appendix A (which was shown in Figs. A.1 and C.3 to be
far from ideal in the wavenumber domain).

A rationale for smoothing only in the cross-track dimension is
given in the discussion following the last unnumbered equation in Sec.
5.1.1 of Esteban Fernandez (2017) based on consideration only of the
along-track wavenumber spectrum of smoothed SSH, as opposed to the
resolution of the 2-dimensional SSH fields themselves. While smoothing
only in the cross-track dimension is justifiable if the interest is solely
in the 1-dimensional along-track wavenumber spectrum, the smoothing
would more generally be applied isotropically in two dimensions to
achieve the resolution of 15 km. The analysis that follows therefore
assumes that the 15-km smoothing is applied in this manner.
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In the discussion that follows, we will consider both an idealized
filter and a realizable filter that rolls off gradually through the half-
power filter cutoff wavenumber. As expressed by (D.5a), smoothing the
pre-processed estimates of SSH with half-power filter cutoff wavenum-
bers of 𝑘𝑐 and 𝑙𝑐 in the 𝑥 and 𝑦 dimensions, respectively, reduces the
uncorrelated error variance 𝜎2ℎ by the approximate multiplicative factor
(D.14b) of 𝛼 = 4𝛥𝑥𝛥𝑦 𝑘𝑐𝑙𝑐 , where 𝛥𝑥 and 𝛥𝑦 are the sample intervals
at which the measurement errors are uncorrelated. For isotropic 2-
dimensional smoothing with 𝑘𝑐 = 𝑙𝑐 = 1∕15 cpkm and a uniform sample
interval of 𝛥𝑥 = 𝛥𝑦 = 1 km, this multiplicative factor is 𝛼 = 4∕152 =
1∕56.25. The science requirement for measurement accuracy could thus
have been specified in terms of the variance 𝜎2ℎ of residual errors after
smoothing isotropically with a filter cutoff wavelength of 𝜆𝑐 = 15 km.
The variance of the unsmoothed pre-processed SWOT estimates of SSH
that gives this value of 𝜎2ℎ could then be simply calculated as 𝜎2ℎ =
𝛼−1 𝜎2ℎ = 56.25 𝜎2ℎ.

The baseline requirement for instrument noise is instead specified in
the Science Requirements Document (Rodríguez and Callahan, 2016) in
terms of the 1-sided, 1-dimensional (along-track) wavenumber power
spectral density of the residual white-noise contribution to the total SSH
measurement errors after smoothing as

𝑆1𝑑
ℎ (𝑙) = 2 cm2∕cpkm, for 1∕1000 ≤ 𝑙 ≤ 1∕15cpkm. (F.1a)

The overbar signifies the 15-km smoothing of the SWOT data. The
instrumental errors are thus specified explicitly only for wavenumbers
𝑙 smaller than 𝑙𝑐 = 1∕15 cpkm, i.e., for wavelengths 𝜆 = 𝑙−1 longer than
the half-power filter cutoff wavelength of 𝜆𝑐 = 𝑙−1𝑐 = 15 km.

For 2-dimensional smoothing with an ideal isotropic 2-dimensional
filter, the specification of the spectrum (F.1a) would be extended from
the filter cutoff of 𝑙𝑐 = 1∕15 cpkm to the Nyquist wavenumber 𝑙 of
the SWOT data as

𝑆1𝑑
ℎ (𝑙) = 0, for 1∕15 < 𝑙 ≤ 𝑙 cpkm. (F.1b)

For the present official planned footprint size of 1 km and sample grid
spacings of 𝛥𝑥 = 𝛥𝑦 = 1 km for the pre-processed SWOT estimates of
SSH as specified in the onboard processing document (Peral, 2016), the
Nyquist wavenumber is 𝑙 = 0.5 cpkm. The residual white noise error
spectrum (F.1a) and (F.1b) after smoothing with the ideal isotropic
2-dimensional filter is shown by the dashed red line in Fig. F.2.

It was shown in Appendix E that the constant 1-sided, 1-dimensional
along-track wavenumber spectrum of residual uncorrelated measure-
ment errors after smoothing with half-power filter cutoff wavenumbers
of 𝑘𝑐 and 𝑙𝑐 in the 𝑥 and 𝑦 dimensions is related to the variance 𝜎2ℎ of
the unsmoothed errors by (E.6b). For the ideal isotropic 2-dimensional
filter specified by (F.1a) and (F.1b), the filter transfer function 𝑊𝑙𝑐 (𝑙)
on the right side of (E.6b) is given by (E.9b). Then (E.6b) simplifies to

𝑆1𝑑
ℎ (𝑙) =

{

4𝛥𝑥𝛥𝑦 𝑘𝑐 𝜎2ℎ if 0 < 𝑙 ≤ 𝑙𝑐
0 otherwise.

(F.2)

Comparing (F.2) with the science requirement (F.1) expresses the
variance of the pre-processed SWOT estimates of SSH as

𝜎2ℎ =
1 cm2∕cpkm
2𝛥𝑥𝛥𝑦 𝑘𝑐

. (F.3a)

The units in the numerator of this equation, in combination with the
units of the variables in the denominator, assure that the left side of
(F.3a) has units of cm2. For a sample interval of 𝛥𝑥 = 𝛥𝑦 = 1 km
between uncorrelated errors in pre-processed SWOT data and the post-
processing half-power filter cutoff wavenumber of 𝑘𝑐 = 1∕15 cpkm in
the science requirement specification, this gives a variance of

𝜎2ℎ = 7.5 cm2 = (2.74 cm)2 (F.3b)

for the errors of the pre-processed SWOT estimates of SSH. The require-
ment for 1 km × 1 km pre-processed estimates of SSH with isotropic
2-dimensional smoothing with a half-power filter cutoff wavelength

of 2 km to achieve a footprint size of 1 km is therefore that the
uncorrelated errors have a standard deviation of 𝜎ℎ = 2.74 cm.

As recently recommended by the SWOT Algorithm Development
Team (see Appendix B.1), a smaller footprint size of 0.5 km is likely
to be adopted in the near future for the onboard pre-processed SWOT
estimates of SSH. For pre-processing of the raw SWOT data with a
smaller isotropic filter cutoff wavelength of 1 km in order to achieve
the footprint size of 0.5 km, the standard deviation (F.3b) of allowed
measurement errors would increase by a factor of two.

The overall average measurement error standard deviation of 𝜎ℎ =
2.74 cm derived above from the baseline specification (F.1) in terms
of the white noise spectrum of the instrumental errors for 2-m SWH
is shown as the dashed line in Fig. F.1. It is visually apparent that
the across-swath average of the most recent projected estimate of the
measurement errors that will be achieved by SWOT for 2-m SWH is
smaller than 2.74 cm. An overall average of 2.74 cm appears to be more
representative of the projected errors for a SWH of about 4 m. If the
projected estimates of the measurement error characteristics shown in
Fig. F.1 are achieved, the results presented in Sections 6, 8 and 9 may
be somewhat pessimistic for 2-m SWH. From the analysis in Section 8,
however, space–time smoothed maps of the geostrophically computed
velocity and vorticity fields are much more susceptible to sampling
errors than measurement errors. The distinction between 2.74 cm and
the slightly smaller values of 2.54 cm, 2.5 cm and 2.4 cm noted above
from the various SWOT documents is therefore a minor issue in the
analysis of resolution capability presented in this paper.

The effects of a 𝜎ℎ = 2.74 cm standard deviation of errors in pre-
processed SWOT data on the standard deviations of errors of geostroph-
ically computed SWOT estimates of velocity and vorticity are quantified

Fig. F.3. The alongshore wavenumber power spectral density of SSH computed from
the CCS model. The spectrum shown by the red line was smoothed by ensemble
averaging over the individual spectra computed from alongshore grid lines that extend
the full length of the model domain shown in Fig. 5a with a cross-shore spacing of
5 km. The blue line is the spectrum computed empirically from simulated SSH error
fields with a footprint size of 1 km and a standard deviation of 𝜎ℎ = 2.74 cm after
smoothing 2-dimensionally using a Parzen smoother with a half-power filter cutoff
wavelength of 𝜆𝑐 = 15 km. The green line is the theoretical spectrum of SSH errors
derived in Appendix I.2 for the same filtering. The black line is the 68th-percentile
SSH spectrum from Fig. F.2 that is the basis for defining the science requirements for
SWOT. Power-law rolloffs of 𝑙−5∕2 and 𝑙−7∕2 for alongshore wavenumber 𝑙 are overlaid
for reference as thin lines. As noted in the caption for Fig. 13, the rolloff of 𝑙−7∕2 is
not significantly different from the rolloff of 𝑙−11∕3 that was deduced from along-track
altimeter data by Le Traon et al. (2008) and is consistent with the 𝑙−5∕3 spectral rolloff
of velocity in SQG theory (Held et al., 1995). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. F.4. The wavenumber power spectral densities of SSH computed from the boxed
region of the North Atlantic HF and LF simulations shown in Fig. 10 (blue and red lines,
respectively). The spectra were smoothed by ensemble averaging over the individual
spectra computed from ‘‘cross-shore’’ grid lines (southeast to northwest) over the region
shown by the boxes in Fig. 10. The thick black line is the 68th-percentile SSH spectrum
from Figs. F.2 and F.3 that defines the science requirements for SWOT and the green
line is the theoretical spectrum of SSH errors derived in Appendix I.1 and shown
previously in Fig. F.3 after smoothing 2-dimensionally using a Parzen smoother with
a half-power filter cutoff wavelength of 𝜆𝑐 = 15 km. Power-law rolloffs of 𝑙−5, 𝑙−3 and
𝑙−5∕2 for wavenumber 𝑙 are overlaid for reference as thin lines (For interpretation of
the references to colour in this figure, the reader is referred to the web version of this
article.).

in Appendix G using propagation-of-error analysis. The wavenumber
spectral characteristics of the errors in SWOT estimates of SSH and
geostrophically computed velocity components and vorticity estimated
from the pre-processed SWOT data and after additional smoothing in
ground-based post-processing are derived in Appendix I.

The uncorrelated measurement errors in the SWOT estimates of SSH
are superimposed on spatially correlated (long-wavelength) noise from
orbit errors and various environmental effects. The science requirement
for these red-noise errors is that they have a 1-sided, 1-dimensional
(along-track) power spectral density no larger than

𝑆1𝑑
𝑟𝑒𝑑 (𝑙) = 0.0125 𝑙−2 cm2∕cpkm, for 1∕1000 < 𝑙 < 1∕15 cpkm, (F.4)

which is shown extrapolated from the wavenumber 𝑙𝑐 = 1∕15 cpkm to
the Nyquist wavenumber 𝑙 = 0.5 cpkm for 1 km × 1 km sampling by
the dotted red line in Fig. F.2. It can be seen that smoothing with an
ideal isotropic 2-dimensional filter that has a half-power filter cutoff
wavelength of 𝜆𝑐 = 𝑙−1𝑐 = 15 km would have very little attenuation
effect on the red noise since it has so little power at wavenumbers
𝑙 > 𝑙𝑐 . The science requirement specification for the along-track power
spectral density of the total measurement errors in the SWOT data is
thus given approximately by the sum of the red-noise spectrum (F.4)
and the spectrum (F.1) of the residual white noise after ideal low-pass
filtering with a half-power filter cutoff wavelength of 15 km. This total
measurement error spectrum is shown by the solid red line in Fig. F.2.

The analysis above based on isotropic 2-dimensional smoothing
neglects the effects of imperfections of the filter transfer function of
any realizable low-pass filter that could be applied in practice in
ground-based post-processing of the pre-processed SWOT estimates of
SSH. Post-launch verification of the SWOT instrument performance as
specified spectrally by (F.1) for SWOT data smoothed 2-dimensionally

and isotropically as explicitly stated in the Science Requirements Doc-
ument (Rodríguez and Callahan, 2016) would therefore be subject to
imperfections of the filter transfer function. For example, the dashed
green line in Fig. F.2 shows the 1-sided, 1-dimensional power spectral
density of residual white noise errors after smoothing 2-dimensionally
using a Parzen smoother with a half-power filter cutoff wavelength
of 𝜆𝑐 = 𝑘−1𝑐 = 𝑙−1𝑐 = 15 km. The solid green line is the sum of
this realizable low-pass filtered white noise spectrum and the red-noise
spectrum (F.4). Because of the gradual rolloff of the filter transfer
function through the half-power filter cutoff wavelength 𝑙𝑐 , the flatness
of the residual error spectrum to the value specified by (F.1a) would
not be detectable when the pre-processed SWOT data are smoothed 2-
dimensionally with a realizable filter. The requirement for uncorrelated
measurement errors in the SWOT estimates of SSH that are specified in
the Science Requirements Document based on isotropic 2-dimensional
smoothing therefore cannot be formally tested in the spectral form
(F.1).

The issue of the untestability of the science requirement specifica-
tion (F.1) in terms of an ideal 2-dimensional filter can be alternatively
addressed by ‘‘reverse engineering’’ the science requirement to deter-
mine the required wavenumber spectral characteristics of the unfiltered
errors of SWOT estimates of SSH. From (E.4b) in Appendix E and the
variance (F.3) derived above from (F.1), the along-track white noise
spectrum for the uncorrelated errors in the unfiltered pre-processed
SWOT estimates of SSH in the baseline design is

𝑆1𝑑
ℎ (𝑙) = 2𝛥𝑦 𝜎2ℎ = 15cm2∕cpkm for 0 < 𝑙 ≤ 𝑙 , (F.5)

where 𝑙 = (2𝛥𝑦)−1 is again the Nyquist wavenumber for a sample
interval 𝛥𝑦.

The spectrum (F.5) of unfiltered uncorrelated measurement errors
is shown by the dashed blue line in Fig. F.2 for the case of a footprint
size of 1 km and grid spacings of 𝛥𝑥 = 𝛥𝑦 = 1 km. Except at the
short wavelengths over which the total SWOT measurement errors
are dominated by the contribution from uncorrelated measurement
errors, the wavenumber spectrum of long-wavelength measurement
errors shown by the dotted red line in Fig. F.2 is approximately the
same with and without smoothing with the half-power filter cutoff
wavelength of 15 km considered above. The wavenumber spectrum of
total errors in the pre-processed SWOT data without smoothing can
thus be approximated by the sum of the dashed blue line and the
dotted red line, which is shown as the solid blue line in Fig. F.2. In
contrast to the solid red line that is untestable because it is based on a
hypothetical ideal 2-dimensional low-pass filter, the requirement that
the wavenumber spectrum of unsmoothed measurement errors be no
greater than the solid blue line can be tested in post-launch verification.
This will also avoid edge effect problems from 15-km smoothing in the
cross-track dimension near the edges of the narrow 50-km swath on
each side of the satellite ground track (see further discussion below).
The specification (F.1) of the SWOT measurement errors based on
idealized filtering can thus be tested indirectly from the along-track
spectrum of unfiltered pre-processed SWOT data.

The preceding analysis is based on the science requirements as
specified by Rodríguez and Callahan (2016) in terms of isotropic 2-
dimensional smoothing with a half-power filter cutoff wavelength of
15 km in each dimension. As noted previously, Sec. 5.1.1 of the Mission
Performance and Error Budget document (Esteban Fernandez, 2017)
specifies smoothing only 1-dimensionally in the cross-track dimension.
In that case, the wavenumber power spectral density would be at-
tenuated uniformly at all wavenumbers by the factor 𝛼 = 1∕56.25
derived above, without the gradual rolloff at high wavenumbers that
would occur with along-track smoothing in addition to the cross-track
smoothing. This is true regardless of the imperfections of the filtering
in the cross-track dimension, i.e., perpendicular to the along-track
dimension of the 1-dimensional wavenumber spectrum.

The along-track wavenumber spectrum of this cross-track
1-dimensionally smoothed SSH extends uniformly to the Nyquist
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wavenumber 𝑙 = (2𝛥𝑦)−1 cpkm with the value of 𝑆1𝑑
ℎ (𝑙) = 2 cm2/cpkm

in the spectral specification (F.1) of the science requirements for the
uncorrelated measurement errors. However, the specification in the
unnumbered first equation of Sec. 5.1 of Esteban Fernandez (2017)
[equivalent to our Eq. (F.1a)] considers only the portion of this at-
tenuated spectrum for wavenumbers smaller than 1/15 cpkm. This
is effectively equivalent to assuming idealized isotropic smoothing in
both the cross-track and along-track dimensions, as in our analysis
above, with the distinction that the SWOT performance on-orbit can be
tested spectrally if only 1-dimensional cross-track smoothing is applied.
This cross-track smoothing can only be applied across the narrow 50-
km swath on each side of the satellite ground track. This is only 3.3
times the half-power filter cutoff wavelength of 15 km. The cross-track
smoothing will therefore be susceptible to artifacts from edge effects of
the smoothing. It is preferable to test the SWOT performance from the
spectrum (F.5) of unfiltered pre-processed SWOT estimates of SSH, as
noted above.

We note again that testability of the science requirement for SWOT
measurement accuracy would be a moot issue if the uncorrelated
measurement errors had been specified in terms of the variance 𝜎2ℎ
given by (F.3b) derived above for the pre-processed SWOT estimates
of SSH with a footprint size of 1 km. It would then be straightforward
to test the SWOT performance either from the noise in the SSH fields or
spectrally from (F.5) without the need for ground-based post-processing
to smooth either 2-dimensionally or 1-dimensionally (cross-track) with
a half-power filter cutoff wavelength of 𝜆𝑐 = 15 km. This will avoid
any of the edge effect problems mentioned above that could arise from
smoothing with a half-power filter cutoff wavelength of 15 km across
a swath width of only 50 km.

It is enlightening to compare the 68th-percentile SSH wavenumber
spectrum upon which the science requirement for SWOT measurement
accuracy is based with the alongshore wavenumber spectrum of SSH
from the CCS model used throughout this study. The two spectra
are shown in Fig. F.3 along with the empirical and theoretical spec-
tra of residual SSH measurement errors after isotropic 2-dimensional
smoothing with a half-power filter cutoff wavelength of 𝜆𝑐 = 15 km
(see Appendix I.2 for the details of the calculation of the theoretical
error spectrum). As discussed above, the science requirement is for the
SSH signal and error spectra with 15-km smoothing to intersect at a
wavenumber of 0.067 cpkm (a wavelength of 15 km), thus achieving
a signal-to-noise ratio of 1 at the wavelength resolution goal of 15
km. It is evident from Fig. F.3 that the SSH signal spectrum from the
CCS model used in this study intersects the error spectrum at a smaller
wavenumber of about 0.033 cpkm, which corresponds to a wavelength
of about 30 km. At this wavelength, the spectral power in the CCS
model is about a factor of 5 less energetic than the spectral power in
the assumed 68th-percentile spectrum.

The discrepancy between the intersections of the white-noise spec-
trum for SWOT measurement errors with 15-km isotropic 2-dimensional
smoothing and the two SSH signal spectra shown in Fig. F.3 raises
a question about whether the spectral specification of the science
requirements for SWOT will be achieved for the actual SSH spec-
trum. The difference occurs because the CCS model spectrum rolls off
more steeply toward high wavenumbers than does the 68th-percentile
spectrum assumed in the Science Requirements Document. In the
wavenumber range from about 0.003 cpkm to 0.1 cpkm (wavelengths
from about 300 km to 10 km), the dependence of the CCS model
spectrum on alongshore wavenumber 𝑙 is approximately 𝑙−7∕2 compared
with a rolloff of about 𝑙−5∕2 for the assumed 68th-percentile SSH
spectrum.

The flatter assumed 68th-percentile wavenumber spectrum is based
on extrapolation of along-track SSH spectra from nadir altimetry that
resolves variability only down to wavelength scales of about 70 km (Xu
and Fu, 2012). The validity of this extrapolation is unknown since ob-
servational data are not presently available to determine the SSH spec-
trum on these scales. Velocity measurements by acoustic Doppler cur-
rent profilers can be inverted by assuming geostrophy (see, for example,

Fig. 4 of Rocha et al., 2016). Such inversions omit the SSH signals from
internal gravity waves and other small-scale ageostrophic processes.
The spectral characteristics at wavelengths shorter than 70 km must
therefore be inferred from high-resolution ocean circulation models.

The contributions of internal gravity waves and other small-scale
ageostrophic processes to the spatial variability of SSH will flatten
the spectrum (i.e., increase the variance) at high wavenumbers. Some
insight into their effects on the wavenumber spectrum of SSH can be
gained from the pair of North Atlantic simulations shown in Figs. 10
and 11 of Section 3. The wavenumber rolloff in the SSH spectrum
computed from the model forced by monthly winds and no ocean tides
(the LF simulation) is about 𝑙−5 over all wavenumbers in the region
southeast of the Gulf Stream (Fig. F.4). Up to a wavenumber of about
1/50 cpkm, the spectral rolloff is also about 𝑙−5 in the model forced by
high-frequency winds and ocean tides (the HF simulation). At higher
wavenumbers, however, the spectral rolloff in the HF model flattens to
about 𝑙−3. As in the case of the spectrum from the CCS model shown
in Fig. F.3, the spectra from both the HF model and the LF model
intersect the error spectrum at wavelengths significantly longer than
the resolution goal of 15 km.

On the other hand, Savage et al. (2017) found flatter spectral
rolloffs between 𝑙−2 and 𝑙−1 at wavenumbers between 1/70 cpkm and
1/30 cpkm in high-resolution versions of the Massachusetts Institute
of Technology general circulation model (MITgcm) for a wide range
of dynamical regimes (see also Rocha et al., 2016). They attribute
most of this flattening of the SSH spectrum to internal gravity waves.
Depending on the signal power levels, a consequence of the flatter
spectral rolloffs is that the SSH signal spectra from the MITgcm model
can intersect the noise spectrum for 15-km smoothed SWOT data at
shorter wavelengths than from the three ROMS models considered in
Figs. F.3 and F.4. If the spectrum of SSH in the real ocean is similar
to the SSH spectra from the MITgcm model, the wavelength resolution
goal of 15 km will be achieved.

It is apparent from the discussion above that the details of the
wavenumber spectral characteristics of SSH differ from one model
to another and likely from one region to another. These differences
are apparently attributable to a variety of technical details of the
model formulations. One of the primary contributions of the SWOT
mission will be to provide the first observational evidence from which
the wavenumber spectral characteristics of SSH as represented in the
various models can be tested.

Appendix G. The standard deviations of the errors of SWOT and
WaCM estimates of derivative quantities

The variables of interest in this study include derivatives of the basic
measurements by SWOT and WaCM. For SWOT, the velocity must be
computed geostrophically from derivatives of the noisy SSH measure-
ments and the vorticity must be estimated from additional derivatives
of the geostrophically computed velocity estimates, i.e., double differ-
entiation of the noisy SSH measurements. For WaCM, the velocity will
be measured directly and vorticity will be computed from derivatives
of the noisy velocity component measurements. Estimation of these
derivatives by finite differencing of the gridded fields of the variable
measured by each instrument amplifies the errors in the measured
variables. The effects of these error amplifications on the uncertainties
of the SWOT and WaCM estimates of the derivative fields are quantified
in this appendix using standard propagation-of-error analysis.

Throughout this appendix, errors are denoted by 𝜖 with a subscript
symbol that is indicative of the variable of interest and the variances
of these errors are denoted by 𝜎2 with the same subscript. As in Ap-
pendix F, the subscript ℎ is used in Appendix G.1 to indicate the errors
of pre-processed SWOT estimates of SSH. The subscripts 𝑢𝑔 , 𝑣𝑔 and 𝜁𝑔
are used in Appendix G.1 to indicate the errors of geostrophically com-
puted SWOT estimates of the two velocity components and vorticity.
Similarly, the subscripts 𝑢, 𝑣 and 𝜁 are used in Appendix G.2 to indicate

335



D.B. Chelton, M.G. Schlax, R.M. Samelson et al. Progress in Oceanography 173 (2019) 256–350

the errors of WaCM estimates of the two velocity components and vor-
ticity. As in Appendices E and F, overbars are used in Appendix G.3 to
indicate the variances of residual errors after 2-dimensional smoothing
of the pre-processed SWOT data.

An important point to note is that the expressions (G.2b), (G.5) and
(G.8) derived below for the variances of the errors of geostrophically
computed SWOT estimates of the 𝑥 and 𝑦 components of velocity and
vorticity are all expressed in terms of the variance 𝜎2ℎ of the pre-
processed SWOT estimates of SSH. The value of 𝜎2ℎ = (2.74 cm)2 that
is derived for a footprint size of 1 km in Appendix F is used in the
applications of these equations in Section 4.1, but the same equations
can be used for any specified value of 𝜎2ℎ. Likewise, the expression
(G.15) derived below for the variance of errors of WaCM estimates of
vorticity is expressed in terms of the variances 𝜎2𝑢 and 𝜎2𝑣 of WaCM
estimates of the 𝑥 and 𝑦 components of velocity. A value of 𝜎2𝑢 = 𝜎2𝑣 =
(0.354 m s−1)2 for a footprint size of 5 km is used in the application of
this equation in Section 4.2, but the same equation can be used for any
specified values of 𝜎2𝑢 and 𝜎2𝑣 .

As noted previously, the uncorrelated measurement errors for both
SWOT and WaCM will vary in the cross-track direction and will depend
on significant wave height. The constant values of 𝜎ℎ = 2.74 cm and
𝜎𝑢 = 𝜎𝑣 = 0.354 m s−1 used throughout this study are the average values
across the measurement swaths. In actuality, these errors increase to-
ward the edges of the swaths as shown in Fig. F.1 for the case of SWOT.
Because we have neglected the cross-track variations of instrumental
noise, the effects of uncorrelated errors on the resolution capabilities of
SWOT and WaCM estimates of the variables of interest are likely to be
underestimated in Sections 6 and 8–10. In other words, the resolution
capabilities inferred from the analysis in this study are likely somewhat
optimistic.

G.1. Geostrophically computed SWOT estimates of velocity and vorticity
with 1 km footprint

The standard deviation of the uncorrelated instrumental noise con-
tribution to the pre-processed SWOT measurements of SSH was derived
in Appendix F from the wavenumber spectral specification (F.1) in the
baseline requirement for SWOT measurement errors. For measurements
with a footprint size of 1 km, the derived value of the standard devia-
tion for the baseline design is 𝜎ℎ = 2.74 cm. It is shown in the bottom
panel of Fig. B.1a that SWOT SSH measurement errors with a footprint
size of 1 km are essentially uncorrelated on a 𝛥𝑥 × 𝛥𝑦 = 1 km × 1 km
grid.

The error 𝜖𝑣𝑔 (𝑥, 𝑦) of the alongshore component of geostrophically
computed velocity 𝑣 = 𝑔𝑓−1𝜕ℎ∕𝜕𝑥 at grid location (𝑥, 𝑦) estimated from
cross-shore centered differences of the height errors at the adjacent grid
locations in the 𝑥 dimension is

𝜖𝑣𝑔 (𝑥, 𝑦) =
𝑔
𝑓

𝜖ℎ(𝑥 + 𝛥𝑥, 𝑦) − 𝜖ℎ(𝑥 − 𝛥𝑥, 𝑦)
2𝛥𝑥

. (G.1)

Since the height errors are assumed here to be spatially homogeneous,
the variance of these alongshore geostrophically computed velocity
errors obtained by propagation-of-error analysis is

𝜎2𝑣𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
2𝛥𝑥2

[

1 − 𝜌ℎ(2𝛥𝑥)
]

, (G.2a)

where 𝜌ℎ(2𝛥𝑥) is the autocorrelation of the SSH measurements at a
spatial lag of 2𝛥𝑥. This lagged autocorrelation is essentially zero since
the height errors for a footprint size of 1 km are essentially uncorrelated
on a 1 km × 1 km grid as noted above from the bottom panel of
Fig. B.1a. The variance of the alongshore geostrophically computed
velocity errors is therefore

𝜎2𝑣𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
2𝛥𝑥2

. (G.2b)

The Coriolis parameter at the central latitude 37◦N of the CCS model
domain is 𝑓 = 8.75 × 10−5 s−1. For gravitational acceleration 𝑔 =

9.81 m s−2, an SSH error variance of 𝜎2ℎ = (2.74 cm)2 and a grid spacing
of 𝛥𝑥 = 1 km, the standard deviation of the errors of the alongshore
geostrophically computed velocity component is

𝜎𝑣𝑔 (37
◦N) = 2.17 m s−1. (G.3)

The error 𝜖𝑢𝑔 (𝑥, 𝑦) of the cross-shore component of geostrophically
computed velocity 𝑢 = −𝑔𝑓−1𝜕ℎ∕𝜕𝑦 at grid location (𝑥, 𝑦) estimated
similarly from alongshore centered differences of the height errors at
the adjacent grid locations in the 𝑦 dimension is

𝜖𝑢𝑔 (𝑥, 𝑦) = −
𝑔
𝑓

𝜖ℎ(𝑥, 𝑦 + 𝛥𝑦) − 𝜖ℎ(𝑥, 𝑦 − 𝛥𝑦)
2𝛥𝑦

. (G.4)

Analogous to the derivation of (G.2b), the variance of these cross-shore
geostrophically computed velocity errors on a 1 km × 1 km grid is

𝜎2𝑢𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
2𝛥𝑦2

. (G.5)

For a uniform grid spacing 𝛥𝑥 = 𝛥𝑦 = 1 km, the cross-shore geostroph-
ically computed velocity errors 𝜖𝑢𝑔 (𝑥, 𝑦) at the central latitude 37◦N of
the CCS model domain have the same standard deviation (G.3) as the
alongshore velocity errors,

𝜎𝑢𝑔 (37
◦N) = 2.17 m s−1. (G.6)

The error 𝜖𝜁𝑔 (𝑥, 𝑦) of the vorticity 𝜁𝑔 = 𝜕𝑣𝑔∕𝜕𝑥 − 𝜕𝑢𝑔∕𝜕𝑦 at grid lo-
cation (𝑥, 𝑦) calculated from centered differences of the geostrophically
computed velocity component errors is

𝜖𝜁𝑔 (𝑥, 𝑦)=
𝜖𝑣𝑔(𝑥+𝛥𝑥, 𝑦)−𝜖𝑣𝑔(𝑥−𝛥𝑥, 𝑦)

2𝛥𝑥
−
𝜖𝑢𝑔(𝑥, 𝑦+𝛥𝑦)−𝜖𝑢𝑔(𝑥, 𝑦−𝛥𝑦)

2𝛥𝑦
. (G.7a)

From the expressions (G.1) and (G.4) for the geostrophically com-
puted velocity component errors calculated from centered differences
of height errors, (G.7a) can be written as the sum of four centered
differences of height errors with center points at (𝑥+ 𝛥𝑥, 𝑦), (𝑥− 𝛥𝑥, 𝑦),
(𝑥, 𝑦 + 𝛥𝑦) and (𝑥, 𝑦 − 𝛥𝑦),

𝜖𝜁𝑔 (𝑥, 𝑦) =
𝑔
𝑓

1
2𝛥𝑥

[

𝜖ℎ(𝑥 + 2𝛥𝑥, 𝑦) − 𝜖ℎ(𝑥, 𝑦)
2𝛥𝑥

−
𝜖ℎ(𝑥, 𝑦) − 𝜖ℎ(𝑥 − 2𝛥𝑥, 𝑦)

2𝛥𝑥

]

+
𝑔
𝑓

1
2𝛥𝑦

[

𝜖ℎ(𝑥, 𝑦 + 2𝛥𝑦) − 𝜖ℎ(𝑥, 𝑦)
2𝛥𝑦

−
𝜖ℎ(𝑥, 𝑦) − 𝜖ℎ(𝑥, 𝑦 − 2𝛥𝑦)

2𝛥𝑦

]

. (G.7b)

For a uniform grid spacing 𝛥𝑦 = 𝛥𝑥, this simplifies to

𝜖𝜁𝑔 (𝑥, 𝑦) =
𝑔
𝑓

1
4𝛥𝑥2

[

𝜖ℎ(𝑥 + 2𝛥𝑥, 𝑦)

+ 𝜖ℎ(𝑥 − 2𝛥𝑥, 𝑦)

− 4𝜖ℎ(𝑥, 𝑦)

+ 𝜖ℎ(𝑥, 𝑦 + 2𝛥𝑦)

+ 𝜖ℎ(𝑥, 𝑦 − 2𝛥𝑦)
]

. (G.7c)

For the 1 km × 1 km grid on which SWOT estimates of SSH are uncor-
related, the variance of the errors of SWOT estimates of 𝜁𝑔 obtained by
propagation-of-error analysis is

𝜎2𝜁𝑔 =
𝑔2

𝑓 2

20 𝜎2ℎ
(

4𝛥𝑥2
)2

. (G.8)

At the central latitude 37◦N of the CCS model domain, the standard
deviation of the errors of geostrophically computed SWOT estimates of
vorticity is thus

𝜎𝜁𝑔 (37
◦N) = 3.43 × 10−3 s−1. (G.9a)

Compared with the planetary vorticity of 𝑓 = 8.75 × 10−5 s−1 at 37◦N,
this standard deviation of the geostrophically computed vorticity errors
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is

𝜎𝜁𝑔 (37
◦N) = 39.1𝑓. (G.9b)

The uncertainties (G.3) and (G.6) of geostrophically computed
SWOT estimates of velocity and the uncertainty (G.9) of geostrophically
computed SWOT estimates of vorticity are very large compared with
the oceanographic signals of interest. Clearly the SWOT data must be
smoothed spatially and/or temporally to achieve scientifically useful
estimates of geostrophically computed velocity and vorticity. This is
discussed further in Appendix G.3 and Section 4.

G.2. WaCM estimates of vorticity with 5 km footprint

In the baseline design, the standard deviation of speed uncertainties
in WaCM estimates of surface velocity for a footprint size of 5 km
(i.e., after isotropic smoothing of the raw WaCM measurements with
a half-power filter cutoff wavelength of 10 km) is 𝜎spd = 0.50 m s−1.
WaCM estimates of velocity with a footprint size of 5 km are essentially
uncorrelated on a 𝛥𝑥 × 𝛥𝑦 = 5 km × 5 km grid (see the bottom
panel of Fig. B.1b). We will assume that the errors of the two velocity
components are uncorrelated with each other.

In reality, the standard deviations 𝜎𝑢 and 𝜎𝑣 of the errors of the 10-
km smoothed velocity estimates differ for the two orthogonal velocity
components 𝑢 and 𝑣. In Sections 6 and 8–10, we have assumed that
the speed uncertainties are equally partitioned between 𝑢 and 𝑣. The
standard deviations 𝜎𝑢 and 𝜎𝑣 are then both equal to a value 𝜎𝑢,𝑣 that
is related to the baseline design of 𝜎spd = 0.50 m s−1 by

𝜎𝑢,𝑣 =
𝜎spd
√

2
= 0.354 m s−1. (G.10)

In the analysis that follows, we allow for the possibility of different
error standard deviations for each velocity component.

The errors of WaCM estimates of vorticity 𝜁 = 𝜕𝑣∕𝜕𝑥− 𝜕𝑢∕𝜕𝑦 can be
calculated from centered differences of the velocity errors,

𝜖𝜁 (𝑥,𝑦) =
𝜖𝑣(𝑥 + 𝛥𝑥, 𝑦) − 𝜖𝑣(𝑥 − 𝛥𝑥, 𝑦)

2𝛥𝑥
−

𝜖𝑢(𝑥, 𝑦 + 𝛥𝑦) − 𝜖𝑢(𝑥, 𝑦 − 𝛥𝑦)
2𝛥𝑦

.

(G.11)

Since the 𝑢 and 𝑣 measurement errors are assumed to be spatially
homogeneous, uncorrelated with each other, and individually uncor-
related spatially on the 5 km × 5 km grid, the variance of the errors
of 𝜁 obtained by propagation-of-error analysis for a grid spacing of
𝛥𝑥 × 𝛥𝑦 = 5 km × 5 km on which the velocity component errors are
uncorrelated is

𝜎2𝜁 =
𝜎2𝑣

2𝛥𝑥2
+

𝜎2𝑢
2𝛥𝑦2

. (G.12)

For equal partitioning of the speed uncertainties between the 𝑢 and
𝑣 velocity components with standard deviations given by (G.10), the
standard deviation (G.12) of the errors of WaCM estimates of vorticity
for a uniform 5 km × 5 km grid is

𝜎𝜁
|

|

|

|5km
= 7.08 × 10−5 s−1. (G.13a)

Compared with the planetary vorticity of 𝑓 = 8.75 × 10−5 s−1 at the
central latitude 37◦N of the CCS model domain, this is

𝜎𝜁 (37◦N)
|

|

|

|5km
= 0.807𝑓. (G.13b)

It is shown in Appendix H that it is advantageous to oversample the
WaCM data on a grid spacing of 𝛥𝑥 = 𝛥𝑦 = 1 km because the response
function of centered differences on the finer grid retains more of the
high wavenumber variability in the vorticity signal. The footprint size
from the filtering in the pre-processing of WaCM data is still 5 km. The
standard deviations of the errors of WaCM estimates of the velocity
components are therefore still 𝜎2𝑢 and 𝜎2𝑣 , but the velocity component
errors on a 1 km × 1 km grid are spatially correlated. We will continue

to assume, however, that the errors of the two velocity components
are uncorrelated with each other, even on the oversampled 𝛥𝑥 × 𝛥𝑦 =
1 km × 1 km grid. The variance of the vorticity errors (G.11) then
becomes

𝜎2𝜁
|

|

|

|1km
=

𝜎2𝑣
2𝛥𝑥2

[

1 − 𝜌𝑣(2𝛥𝑥)
]

+
𝜎2𝑢

2𝛥𝑦2

[

1 − 𝜌𝑢(2𝛥𝑦)
]

, (G.14)

where 𝜌𝑣(2𝛥𝑥) and 𝜌𝑢(2𝛥𝑦) are the autocorrelations of, respectively, the
alongshore velocity errors 𝜖𝑣 at a spatial lag of 2𝛥𝑥 and the cross-shore
velocity errors 𝜖𝑢 at a spatial lag of 2𝛥𝑦.

For the Parzen smoother with a half-power filter cutoff wavelength
of 10 km in the baseline design for pre-processing of WaCM data, the
autocorrelations of errors of 𝑢 and 𝑣 at a lag of 2 km are about 0.638
(see the bottom panel of Fig. B.1b). The variance (G.14) of the errors
of WaCM estimates of vorticity on the oversampled 1 km × 1 km grid
then becomes

𝜎2𝜁
|

|

|

|1km
=

0.362 𝜎2𝑣
2𝛥𝑥2

+
0.362 𝜎2𝑢
2𝛥𝑦2

. (G.15)

Because of the smaller values of 𝛥𝑥 and 𝛥𝑦 in the denominators on the
right side of (G.15) compared with their values in the denominators
on the right side of (G.12), the standard deviation of vorticity errors is
larger on the oversampled 1 km × 1 km grid. This is the case despite
the smaller factor of 0.362 in the numerators of (G.15) that arises from
the spatial correlations of the errors on the 1 km × 1 km grid.

For equal partitioning of the speed uncertainties between the 𝑢 and 𝑣
velocity components with standard deviations (G.10), the standard de-
viation of the errors of WaCM estimates of vorticity on the oversampled
1 km × 1 km grid is

𝜎𝜁
|

|

|

|1km
= 2.13 × 10−4 s−1. (G.16a)

Compared with the planetary vorticity of 𝑓 = 8.75 × 10−5 s−1 at the
central latitude 37◦N of the CCS model domain, this is

𝜎𝜁 (37◦N)
|

|

|

|1km
= 2.43𝑓. (G.16b)

G.3. Geostrophically computed SWOT estimates of velocity and vorticity
with 5 km footprint

The standard deviation (G.10) of velocity component errors from
WaCM is much smaller than the standard deviations (G.3) and (G.6) of
the errors of geostrophically computed velocity components estimated
from SWOT measurements of SSH. Likewise, the standard deviation
(G.16) of the errors of WaCM estimates of vorticity on a 1 km × 1 km
grid is much smaller than the standard deviation (G.9) of the errors
of geostrophically computed vorticity estimated from SWOT data on a
1 km × 1 km grid. It must be kept in mind, however, that the footprint
size is five times coarser for the pre-processed WaCM measurements
of surface velocity than for the pre-processed SWOT measurements
of SSH. In this section, we quantify the reduction of the errors of
geostrophically computed SWOT estimates of velocity and vorticity that
can be achieved in ground-based post-processing by smoothing in a
manner that is commensurate with the smoothing with the same half-
power filter cutoff wavelength of 10 km planned for the pre-processing
of WaCM data.

Consider first the errors of SWOT estimates of the velocity compo-
nent 𝑣𝑔 computed geostrophically from centered differences of SWOT
estimates of SSH smoothed using the same Parzen smoother with a half-
power filter cutoff wavelength of 10 km considered in Appendix G.2 for
the pre-processing of WaCM data. The expression analogous to (G.2a)
for the variance of the resulting smoothed estimates of 𝑣𝑔 is

𝜎2𝑣𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
2𝛥𝑥2

[

1 − 𝜌ℎ(2𝛥𝑥)
]

=
𝜎2ℎ
𝜎2ℎ

[

1 − 𝜌ℎ(2𝛥𝑥)
]

𝜎2𝑣𝑔 , (G.17a)

where the overbar on 𝜎2ℎ distinguishes the variance of the smoothed
SSH errors from the variance 𝜎2ℎ of the pre-processed SWOT estimates
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of SSH and 𝜎2𝑣𝑔 on the right side of (G.17a) is the variance (G.2b) of
the errors of unsmoothed SWOT estimates of 𝑣𝑔 . The term 𝜌ℎ(2𝛥𝑥) in
the square brackets is the autocorrelation of the smoothed estimates of
SSH at a lag of 2𝛥𝑥.

Whereas the lagged autocorrelation was zero at nonzero lags for
the case of unsmoothed SSH data considered in (G.2b), it is nonzero
after smoothing with a half-power filter cutoff wavelength of 10 km.
As noted in Appendix G.2 from the bottom panel of Fig. B.1b, this
autocorrelation for the case of the Parzen smoother used here has a
value of about 0.638 at a lag of 2𝛥𝑥 = 2 km. And from (D.14c) in
Appendix D, smoothing of the errors of the pre-processed estimates of
SSH with a half-power filter cutoff wavelength of 10 km reduces the
SSH error variance by approximately a factor of 25. Then 𝜎2ℎ∕𝜎

2
ℎ ≈ 0.040

and (G.17a) becomes

𝜎2𝑣𝑔 = 0.0145 𝜎2𝑣𝑔 . (G.17b)

From (G.2b), the variance of the errors of the unsmoothed SWOT esti-
mates of 𝑣𝑔 is 𝜎2𝑣𝑔 = (2.17 m s−1)2 at the central latitude 37◦N of the CCS
model domain. The standard deviation (G.17b) of the errors of SWOT
estimates of the velocity component 𝑣𝑔 computed geostrophically from
smoothed SSH at 37◦N is therefore

𝜎𝑣𝑔 (37
◦N) = 0.261 m s−1. (G.18)

The standard deviation 𝜎𝑢𝑔 of the errors of SWOT estimates of the
velocity component 𝑢𝑔 computed geostrophically from smoothed SSH
is the same as 𝜎𝑣𝑔 . Smoothing the pre-processed SWOT estimates of
SSH with the same half-power filter cutoff wavelength of 10 km that
is planned for pre-processed WaCM estimates of surface velocity thus
reduces the error standard deviations (G.3) and (G.6) by more than
a factor of 8. Moreover, the standard deviations of the errors of 𝑢𝑔
and 𝑣𝑔 computed geostrophically from the smoothed SWOT estimates
of SSH are somewhat smaller than the standard deviations (G.10) of
pre-processed WaCM estimates of the two velocity components.

Derivation of the standard deviation of the errors of estimates of
vorticity computed geostrophically from smoothed SWOT estimates
of SSH is tedious. Analogous to (G.7c), the errors of the geostrophi-
cally computed vorticity estimated from smoothed SWOT data can be
expressed as

𝜖𝜁𝑔 (𝑥, 𝑦) =
𝑔
𝑓

1
4𝛥𝑥2

[

𝜖ℎ(𝑥 + 2𝛥𝑥, 𝑦)

+ 𝜖ℎ(𝑥 − 2𝛥𝑥, 𝑦)

− 4𝜖ℎ(𝑥, 𝑦)

+ 𝜖ℎ(𝑥, 𝑦 + 2𝛥𝑦)

+ 𝜖ℎ(𝑥, 𝑦 − 2𝛥𝑦)
]

, (G.19)

where the overbars indicate the errors after smoothing of the SWOT
data with the same half-power filter cutoff wavelength of 10 km consid-
ered in Appendix G.2 for pre-processing of WaCM data. Whereas the er-
rors 𝜖ℎ of the pre-processed SWOT estimates of SSH were uncorrelated
in (G.7c), the errors 𝜖ℎ of smoothed SSH are correlated.

Assuming that the error statistics are spatially homogeneous, the
variance of the errors (G.19) of smoothed geostrophically computed
vorticity after grouping of terms is

𝜎2𝜁𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
(4𝛥𝑥2)2

[

20 + 𝜌ℎ(0, 4𝛥𝑦)

+ 2 𝜌ℎ(−2𝛥𝑥, 2𝛥𝑦)

− 8 𝜌ℎ(0, 2𝛥𝑦)

+ 2 𝜌ℎ(2𝛥𝑥, 2𝛥𝑦)

+ 𝜌ℎ(−4𝛥𝑥, 0)

− 8 𝜌ℎ(−2𝛥𝑥, 0)

− 8 𝜌ℎ(2𝛥𝑥, 0)

+ 𝜌ℎ(4𝛥𝑥, 0)

+ 2 𝜌ℎ(−2𝛥𝑥,−2𝛥𝑦)

− 8 𝜌ℎ(0,−2𝛥𝑦)

+ 2 𝜌ℎ(2𝛥𝑥,−2𝛥𝑦)

+ 𝜌ℎ(0,−4𝛥𝑦)
]

,

where 𝜌ℎ(𝑚𝛥𝑥, 𝑛𝛥𝑦) is the 2-dimensional lagged autocorrelation be-
tween the errors of smoothed SWOT estimates of SSH separated by
𝑚𝛥𝑥 in the 𝑥 dimension and 𝑛𝛥𝑦 in the 𝑦 dimension. The overbars
on these lagged autocorrelations again indicate that they are based
on the smoothed SWOT estimates of SSH. Because the 2-dimensional
smoothing is applied isotropically, the lagged autocorrelations in the
above expression are symmetric about zero lag and 𝜌ℎ(𝑚𝛥𝑥, 𝑛𝛥𝑦) de-
pends only on the radial distance

[

(𝑚𝛥𝑥)2 + (𝑛𝛥𝑦)2
]1∕2. The variance

of the smoothed geostrophically computed vorticity errors can then be
written in terms of 1-dimensional lagged autocorrelations as

𝜎2𝜁𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
(4𝛥𝑥2)2

[

20 + 2 𝜌ℎ(4𝛥𝑥)

− 16 𝜌ℎ(2𝛥𝑥)

+ 8 𝜌ℎ(2
√

𝛥𝑥2 + 𝛥𝑦2)

− 16 𝜌ℎ(2𝛥𝑦)

+ 2 𝜌ℎ(4𝛥𝑦)
]

. (G.20)

For a uniform grid spacing 𝛥𝑦 = 𝛥𝑥, this simplifies to

𝜎2𝜁𝑔 =
𝑔2

𝑓 2

𝜎2ℎ
(4𝛥𝑥2)2

[

20 + 4 𝜌ℎ(4𝛥𝑥) − 32 𝜌ℎ(2𝛥𝑥) + 8 𝜌ℎ(2
√

2𝛥𝑥)
]

=
𝜎2ℎ
𝜎2ℎ

[

1 + 1
5
𝜌ℎ(4𝛥𝑥) −

8
5
𝜌ℎ(2𝛥𝑥) +

2
5
𝜌ℎ(2

√

2𝛥𝑥)
]

𝜎2𝜁𝑔 , (G.21)

where 𝜎2𝜁𝑔 is the variance (G.8) of the errors of unsmoothed SWOT
estimates of 𝜁𝑔 . As noted above in the derivation of (G.17b), 𝜎2ℎ∕𝜎

2
ℎ ≈

0.040 for Parzen smoothing of the errors with a filter cutoff wavelength
of 10 km. For the grid spacing 𝛥𝑥 = 𝛥𝑦 = 1 km of SWOT data, the
autocorrelations of smoothed SSH at lags of 2 km, 2

√

2 = 2.828 km
and 4 km are about 0.638, 0.403 and 0.155, respectively (see the
bottom panel of Fig. B.1b). The variance (G.21) of vorticity estimates
computed geostrophically from SWOT estimates of SSH smoothed using
a Parzen smoother with a half-power filter cutoff wavelength of 10 km
is therefore

𝜎2𝜁𝑔 = 0.00684 𝜎2𝜁𝑔 . (G.22)

From (G.9a), the variance of vorticity errors computed from unsmoothed
SSH is 𝜎2𝜁𝑔 = (3.43 × 10−3 s−1)2. The standard deviation of the errors
of SWOT estimates of vorticity computed geostrophically from 10-km
smoothed SSH is therefore

𝜎𝜁𝑔 = 2.84 × 10−4 s−1. (G.23a)

At the central latitude 37◦N of the CCS model domain where 𝑓 =
8.75 × 10−5 s−1, this is

𝜎𝜁𝑔 (37
◦N) = 3.23𝑓. (G.23b)

Smoothing the pre-processed SWOT estimates of SSH with the
same half-power filter cutoff wavelength of 10 km that is planned
for pre-processed WaCM estimates of surface velocity thus reduces
the standard deviation (G.9) of geostrophically computed vorticity
estimates by more than a factor of 12. The standard deviation (G.23)
of these geostrophically computed SWOT estimates of vorticity is only
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Fig. H.1. Log–log plots of the squared filter transfer functions (also referred to as
the response functions) for centered differences. The thick solid and dashed lines are
for, respectively, 3-point and 9-point centered differences on a 1 km grid. The thin
solid and dashed lines are for 3-point and 9-point centered differences on a 5 km
grid assuming that the discretely sampled data on the 5 km grid have been filtered to
attenuate variability at wavenumbers higher than the Nyquist wavenumber of 0.1 cpkm.
The short dashed straight line in this log–log plot corresponds to the (2𝜋𝑘)2 response
function for derivatives of a continuous variable.

slightly higher than the standard deviation (G.16) of WaCM estimates
of vorticity computed from 10-km smoothed velocity estimates on a
1 km × 1 km grid.

Even with 10-km smoothing, the standard deviations of the errors
of the estimates of velocity and vorticity from SWOT in (G.18) and
(G.23) and from WaCM in (G.10) and (G.16) are much larger than the
oceanographic signals of interest. Clearly, these errors must be further
reduced with additional spatial and/or temporal smoothing. The effects
of spatial smoothing on the variances of residual errors of SWOT and
WaCM estimates of velocity components and vorticity are discussed in
Section 4.3 (see Fig. 12).

Appendix H. The filter transfer functions for smoothed finite dif-
ference estimates of derivatives

The quantities of interest in this study of the resolution capabilities
of SWOT and WaCM include variables that require spatial differentia-
tion of the variables measured by the two instruments. In the case of
SWOT, the SSH measurements must be differentiated once to estimate
velocity components geostrophically and a second time to estimate
vorticity geostrophically. In the case of WaCM, the surface velocity
measurements must be differentiated once to obtain surface vorticity.
These derivatives must be approximated from the discretely sampled
data using finite difference methods. The effects of finite differencing
on the wavenumber spectral content of the estimated derivative fields
are quantified in this appendix, both from the pre-processed data and
with subsequent spatial smoothing in ground-based post-processing.

The standard procedure for estimating derivatives 𝑧′(𝑥) from grid-
ded values of a 1-dimensional variable 𝑧(𝑥) is from centered differences
of 𝑧(𝑥) at the adjacent grid locations,

𝑧′3𝑝𝑡(𝑥) =
1

2𝛥𝑥

[

𝑧(𝑥 + 𝛥𝑥) − 𝑧(𝑥 − 𝛥𝑥)
]

. (H.1)

This finite difference spans across three adjacent points, referred to
as the stencil width of the derivative estimate. To distinguish this
standard centered difference estimate of derivatives from the estimate
considered below based on a stencil width of nine points, (H.1) will
be referred to in this appendix as a 3-point centered difference. As this
is a linear filter, it can be written in the form (A.1) of a convolution
when applied to a continuous spatial series 𝑧(𝑥). For discrete sampling
at an interval 𝛥𝑥, this convolution integral can be written as a discrete
convolution but the equations in the analysis that follows become more

cumbersome without providing any improved insight into the filtering
properties of centered difference estimates of derivatives.

The filter weighting function in the convolution integral (A.1) for
the 3-point centered difference filter (H.1) can be determined by the
impulse response method (Bracewell, 1978), which gives

𝑤3𝑝𝑡(𝑥) =
1

2𝛥𝑥

[

𝛿(𝑥 + 𝛥𝑥) − 𝛿(𝑥 − 𝛥𝑥)
]

, (H.2)

where 𝛿(𝑥) is the Dirac delta, which can be visualized as having a value
of infinity at 𝑥 = 0 and zero elsewhere with unit area. The corre-
sponding filter transfer function obtained analytically as the Fourier
transform (A.2) of the filter weighting function (H.2) is

𝑊3𝑝𝑡(𝑘) =
1

2𝛥𝑥 ∫

∞

−∞

[

𝛿(𝑥 + 𝛥𝑥) − 𝛿(𝑥 − 𝛥𝑥)
]

𝑒−𝑖2𝜋𝑘𝑥 𝑑𝑥.

Using the sifting property of the Dirac delta reduces this to

𝑊3𝑝𝑡(𝑘) =
1

2𝛥𝑥
[

𝑒+𝑖2𝜋𝑘𝛥𝑥 − 𝑒−𝑖2𝜋𝑘𝛥𝑥
]

= 𝑖
sin(2𝜋𝑘𝛥𝑥)

𝛥𝑥
. (H.3a)

Substitution of Euler’s formula 𝑖 = 𝑒𝑖𝜋∕2 expresses the response function
for 3-point centered differences in the standard form of 𝐴𝑒𝑖𝜙,

𝑊3𝑝𝑡(𝑘) =
sin(2𝜋𝑘𝛥𝑥)

𝛥𝑥
𝑒𝑖𝜋∕2. (H.3b)

The 3-point centered differencing thus introduces a quadrature phase
shift of 𝜙 = 𝜋∕2 at each wavenumber 𝑘 with an amplitude of 𝐴 =
sin(2𝜋𝑘𝛥𝑥)∕𝛥𝑥. This filter transfer function is more commonly referred
to in the literature as the response function of the finite difference
estimate of the derivative. The squared magnitude of the complex
response function (H.3) is

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
= 𝑊 ∗

3𝑝𝑡(𝑘)𝑊3𝑝𝑡(𝑘) =
sin2(2𝜋𝑘𝛥𝑥)

𝛥𝑥2
, (H.4)

where the superscript asterisk denotes the complex conjugate.
For the pre-processing of SWOT and WaCM data with half-power

filter cutoff wavelengths of 2 km and 10 km, respectively, the minimum
gridding of the pre-processed data to avoid aliasing of the resolved
variability (wavelengths longer than 2 km for SWOT and 10 km for
WaCM) is 1 km for SWOT and 5 km for WaCM. We will therefore
consider centered differences for these two choices of 𝛥𝑥.

The squared response function (H.4) is shown in log–log format in
Fig. H.1 by the thick and thin solid lines for the cases of 𝛥𝑥 = 1 km
and 5 km, respectively. It is assumed in this figure that there is no
spectral power at wavenumbers higher than the Nyquist wavenumbers
for the sample intervals of 1 km and 5 km, which are 𝑘𝑚𝑎𝑥 = 0.5 cpkm
and 0.1 cpkm, respectively. The response functions have therefore both
been truncated at 𝑘𝑚𝑎𝑥 in Fig. H.1, thus eliminating irrelevant aliases
of the response function. The squared response functions for both 3-
point centered differences considered in Fig. H.1 rise monotonically to
a maximum of 𝛥𝑥−2 at a wavenumber of 𝑘 = (4𝛥𝑥)−1 and then drop
monotonically to zero at the Nyquist wavenumber (2𝛥𝑥)−1.

Although generally thought of as a high-pass filter, it can be seen
from Fig. H.1 that the response function for 3-point centered differences
is actually a band-pass filter. [Note that the logarithmic abscissa in
Fig. H.1 distorts the sin2 dependence on wavenumber 𝑘 in (H.4)]. The
attenuation of variability at low wavenumbers is the 3-point centered
difference representation of the squared filter transfer function (2𝜋𝑘)2

of high-pass filtering from differentiation of a continuous variable 𝑧(𝑥),
which is shown as the short dashed line in Fig. H.1. The attenuation of
the variability at the highest wavenumbers for 3-point centered differ-
ence estimates of the derivative arises from the smoothing implied by
the differencing between grid points separated by 2𝛥𝑥. An undesirable
characteristic of the 3-point centered difference filter is thus that the
variability at the highest wavenumbers is attenuated compared with
the squared filter transfer function (2𝜋𝑘)2 of the true derivative. This
high-wavenumber attenuation can be reduced and the overall accuracy
of the derivative estimate can be improved by increasing the number
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Fig. H.2. Log–log plots of the filtering from the combined effects of finite differencing
and smoothing with a Parzen smoother with half-power filter cutoff wavelengths of
𝜆𝑐 = 20, 50 and 80 km (top to bottom). This combined filtering consists of the product
of the squared filter transfer functions for each operation that are shown in Figs. C.1
and H.1. The thick solid and dashed lines are for Parzen smoothing of, respectively,
3-point and 9-point centered differences on a 1 km grid. The thin solid and dashed
lines are for Parzen smoothing of, respectively, 3-point and 9-point centered differences
on a 5 km grid assuming that the discretely sampled data on the 5 km grid have been
filtered to attenuate variability at wavenumbers higher than the Nyquist wavenumber
of 0.1 cpkm. The thin dashed line becomes indistinguishable from the thick solid and
thick dashed lines for smoothing with half-power filter cutoff wavelengths larger than
𝜆𝑐 = 40 km. All four lines are barely distinguishable for 𝜆𝑐 = 80 km. The short dashed
line corresponds to the (2𝜋𝑘)2 response function for derivatives of a continuous variable
without smoothing.

of grid points that are used in the estimate, i.e., the stencil width of the
derivative estimate (see, for example, Arbic et al., 2012).

The general centered difference estimate with a stencil width of 𝑀
points can be written as

𝑧′𝑀𝑝𝑡(𝑥) =
(𝑀−1)∕2
∑

𝑚=1
𝑎𝑚

[

𝑧(𝑥 + 𝑚𝛥𝑥)−𝑧(𝑥 − 𝑚𝛥𝑥)
]

, (H.5)

where the weights 𝑎𝑚 differ for each choice of 𝑀 . For the centered
differences (H.1) with a 3-point stencil, i.e., for 𝑀 = 3, there is only
one term in the sum (H.5) and the weight is 𝑎1 = (2𝛥𝑥)−1. Stencil
widths greater than 𝑀 = 9 are seldom used in practice. The weights
for estimates of the derivatives with a 9-point stencil (referred to in
this appendix as 9-point centered differences) can be shown to be

𝑎1 =
4

5𝛥𝑥
(H.6a)

𝑎2 = − 1
5𝛥𝑥

(H.6b)

𝑎3 =
4

105𝛥𝑥
(H.6c)

𝑎4 = − 1
280𝛥𝑥

. (H.6d)

Analogous to the relationship between (H.1) and (H.3a) for the
3-point centered difference, the filter transfer function (response func-
tion) obtained by the impulse response method for the general 𝑀-point
centered difference estimate (H.5) of the derivative is

𝑊𝑀𝑝𝑡(𝑘) = 2 𝑖
(𝑀−1)∕2
∑

𝑚=1
𝑎𝑚 sin(2𝜋𝑓𝑚𝛥𝑥). (H.7)

For the case of 𝑀 = 3, this reduces to (H.3a). The square of the
response function (H.7) for 9-point centered difference estimates of
the derivative is shown in Fig. H.1 for the cases of 𝛥𝑥 = 1 km and
5 km (the thick and thin dashed lines, respectively). Compared with
the response functions for the standard 3-point centered differences, the
9-point stencils retain significantly more high-wavenumber variability
of the true derivative shown by the short dashed line.

The disadvantage of stencils wider than 𝑀 = 3 is that they have
larger ‘‘edge effects’’. Because of missing terms in the summation (H.5),
centered differences cannot be computed closer than (𝑀 − 1)∕2 points
from the ends of the data record. This problem could be addressed by
ratcheting down to successively narrower stencils at the ends of the
data record, but the price paid for such a procedure is that the filter
transfer function changes for each of the successively reduced stencils.

The degree to which it is advantageous to estimate derivatives
using a wider stencil in this study depends on the subsequent pro-
cessing of the derivative fields. As noted previously, the derivative
variables of interest here are surface velocity and vorticity computed
geostrophically from pre-processed SWOT estimates of SSH (the latter
computed from second derivatives of SSH) and the vorticity computed
from pre-processed WaCM estimates of surface velocity. It is shown in
Sections 6 and 8–10 that maps of these variables must be smoothed in
ground-based post-processing to mitigate the effects of measurement
errors.

The combined effects of finite differencing and smoothing on the
wavenumber spectral content 𝑆𝑧′ (𝑘) of a derivative variable 𝑧′(𝑥) can be
expressed in terms of the product of the square of the response function
(H.7) of the finite differencing and the squared filter transfer function
of the smoother,

𝑆𝑧′ (𝑘) =
|

|

|

𝑊𝑀𝑝𝑡(𝑘)
|

|

|

2
|

|

|

𝑊𝑘𝑐 (𝑘)
|

|

|

2
𝑆𝑧(𝑘), (H.8a)

where 𝑆𝑧(𝑘) is the wavenumber spectrum of the pre-processed satellite
data (SSH for SWOT and surface velocity components for WaCM),
𝑊𝑘𝑐 (𝑘) is the filter transfer function of the particular choice of smoother
with a half-power filter cutoff wavenumber 𝑘𝑐 , and 𝑆𝑧′ (𝑘) is the
wavenumber spectrum of centered differences of smoothed values of
the variable 𝑧(𝑥). For the Parzen smoother considered in detail in
Appendices A–C, the filter transfer function 𝑊𝑘𝑐 (𝑘) is given by (A.11)
with a span of 𝐿4 = 0.910 𝑘−1𝑐 ≈ 𝑘−1𝑐 according to (A.12a). Since the
Parzen smoother is symmetric and real, its transfer function is also
symmetric and real. But from (H.3) and (H.7), the response function
𝑊𝑀𝑝𝑡(𝑘) for centered differencing is complex. Then (H.8a) can be
written as

𝑆𝑧′ (𝑘) =
|

|

|

𝑊𝑀𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

𝑘𝑐
(𝑘)𝑆𝑧(𝑘). (H.8b)
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Examples of the filter transfer function |

|

|

𝑊𝑀𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

𝑘𝑐
(𝑘) for com-

bined M-point centered differencing and spatial smoothing are shown
in Fig. H.2 for Parzen smoothing with half-power filter cutoff wave-
lengths of 𝜆𝑐 = 20, 50 and 80 km (corresponding to wavenumbers of
𝑘𝑐 = 𝜆−1𝑐 = 0.05, 0.02 and 0.0125 cpkm, see Fig. C.1) with 3-point
and 9-point centered difference estimates of the derivatives for grid
spacings of 𝛥𝑥 = 1 km and 5 km (see Fig. H.1). Several conclusions
can be drawn from Fig. H.2:

1. For the SWOT grid spacing of 𝛥𝑥 = 1 km, the filter transfer
functions for spatial smoothing combined with 3-point or 9-
point centered differencing (the thick solid and thick dashed
lines, respectively) are nearly indistinguishable for any of the
choices of smoothing shown in Fig. H.2. Since the signal-to-noise
ratios for SWOT estimates of any of the derivative quantities of
interest in this study are inadequate for smoothing with filter
cutoff wavelengths less than 20 km, it can be concluded that the
9-point centered differencing offers no advantage over 3-point
centered differencing for SWOT data on a 1 km × 1 km grid.

2. For a grid spacing of 𝛥𝑥 = 5 km relevant to WaCM, the filter
transfer functions for spatial smoothing combined with 3-point
or 9-point centered differencing (the thin solid and thin dashed
lines, respectively) differ significantly for 𝜆𝑐 = 20 km. Centered
differencing with a stencil width of 9 points on a 5 km grid
thus retains significantly more of the high-wavenumber content
of the derivatives and therefore gives improved estimates of the
derivatives with this choice of smoothing on a 5 km grid with
𝜆𝑐 = 20 km. The 9-point stencil offers a very slight improvement
for 𝜆𝑐 = 50 km and negligible improvement for 𝜆𝑐 = 80 km. It
can be concluded that, for filter cutoff wavelengths 𝜆𝑐 ≲ 60 km,
it would be advantageous to use 9-point centered differencing if
the pre-processed WaCM data are posted on a 5 km × 5 km grid.

3. Although gridding of pre-processed WaCM data on a
5 km × 5 km Nyquist-sampled grid is sufficient to avoid alias-
ing as discussed in Appendix B, the pre-processed data can
be posted on a finer grid. While ‘‘oversampling’’ the WaCM
data in this manner offers no advantage for mapping of the
surface velocity components, it is evident from Fig. H.2 that it is
advantageous for mapping of the velocity component derivative
fields from which vorticity is computed. This is seen for the
case of 𝜆𝑐 = 20 km in the top panel of Fig. H.2 from the fact
that the combined effects of the filter transfer function of the
smoother and the response functions for both 3-point and 9-point
centered differences with 𝛥𝑥 = 1 km (the thick solid and thick
dashed lines) retain more of the high-wavenumber content of the
derivatives than either 3-point or 9-point centered differences
with 𝛥𝑥 = 5 km (the thin solid and dashed lines). This implies
that 3-point centered differencing of pre-processed WaCM data
on an oversampled 1 km × 1 km grid (the thick solid line)
gives better estimates of the derivatives than can be obtained
even from 9-point centered differencing on the Nyquist-sampled
5 km × 5 km grid (the thin dashed line). For 𝜆𝑐 ≈ 40 km (slightly
shorter than the case of 𝜆𝑐 = 50 km shown in the middle panel
of Fig. H.2), the filter transfer functions for 3-point centered
differences with 𝛥𝑥 = 1 km are still slightly better than for 3-
point centered differences with 𝛥𝑥 = 5 km but become nearly
indistinguishable from 9-point centered differences with 𝛥𝑥 =
5 km. For 𝜆𝑐 ≳ 80 km, all of the centered difference estimates of
derivatives considered here give essentially equivalent results.

On the basis of the conclusions above deduced from Fig. H.2, it is
preferable for the purposes of WaCM estimates of small-scale vorticity
signal variability to grid the pre-processed WaCM data on the same
1 km × 1 km grid as SWOT rather than on the 5 km × 5 km grid that
satisfies Nyquist sampling of pre-processed WaCM data. Moreover, for
both WaCM and SWOT, a 3-point stencil width for centered differencing

on the 1 km × 1 km grid is adequate for the filter cutoff wavelengths of
𝜆𝑐 ≳ 20 km that are relevant to signal estimation in the assessments of
the resolution capabilities of derivative fields in Sections 6 and 8–10.

The above conclusion that oversampling the WaCM data on a
1 km × 1 km grid is preferable to Nyquist sampling on a 5 km × 5 km
grid was deduced from consideration of the effects of sampling and
centered difference stencil width on preservation of the small-scale
(high-wavenumber) signal contributions to the WaCM estimates of
velocity component derivatives for calculation of vorticity. The same
considerations apply to the error contributions to derivative estimates
from WaCM data. Note, however, that the finer gridding accentu-
ates the noise at high wavenumbers in finite-difference estimates of
derivatives. For the case of white noise and red signal in the velocity
measurements, it is preferable to attenuate the small-scale variability
in the error field. The conflicting goals of signal preservation and noise
suppression at high wavenumbers complicate the choice of the best
gridding of the WaCM data for mapping of the vorticity field.

From simulations, we found that the noise suppression from
5 km × 5 km gridding is more beneficial than signal preservation in the
signal-to-noise ratio of velocity component derivative fields smoothed
with half-power filter cutoff wavelengths less than about 25 km. For
larger smoothing scales, the advantage of signal preservation from
1 km × 1 km gridding is more beneficial. Since the analysis in Sec-
tions 6 and 8–10 concludes that wavelength scales smaller than about
25 km cannot be adequately resolved in vorticity maps constructed
from WaCM measurements of surface velocity,11 oversampling on a
1 km × 1 km grid is preferable for the simulations presented in this
study. A practical advantage of this oversampling is that the grid for
simulated WaCM data then matches the 1 km × 1 km grid of the
simulated SWOT data.

Appendix I. The wavenumber spectral characteristics of the errors
of SWOT and WaCM estimates of velocity and vorticity

Analytical expressions are derived in this appendix for the
1-dimensional wavenumber spectra of errors of estimates of each of
the variables of interest in this study (SSH, two orthogonal velocity
components and vorticity) based on the unsmoothed pre-processed
estimates of SSH for SWOT and velocity for WaCM, as well as for
the 1-dimensional wavenumber spectra of the variables of interest
computed from SSH and velocity fields smoothed in ground-based post-
processing. A noteworthy feature of the analysis is that the equations
for each of the wavenumber spectra derived in this appendix are
expressed in terms of the variance of the pre-processed data. The
equations can therefore accommodate variances of the uncorrelated
measurement errors (SSH for SWOT and surface velocity components
for WaCM) that differ from the present baseline specifications.

In the case of SWOT, the relevant equations for the wavenumber
spectra of unsmoothed fields are (I.2a), (I.5a), (I.10a) and (I.24a)
for, respectively, the errors of SWOT estimates of SSH, the 𝑥 and 𝑦
components of geostrophically computed velocity and geostrophically
computed vorticity. These equations are all expressed in terms of the
variance 𝜎2ℎ of the pre-processed SWOT estimates of SSH. The analogous
equations for the wavenumber spectra of smoothed SWOT estimates of
these variables are (I.29a) and (I.31a), (I.33a) and (I.35b). The value of
𝜎2ℎ = (2.74 cm)2 that is derived in Appendix F is used in the applications
of these equations in Section 4.4, but the above-referenced equations
can be used for any specified value of 𝜎2ℎ.

A limitation of the formulas derived below for the wavenumber
spectra of errors of geostrophically computed SWOT estimates of ve-
locity and vorticity is that they require the use of a constant value

11 It can be seen from Figs. 44c and d that the resolution capability of
vorticity maps constructed from WaCM data would exceed 25 km if the
standard deviation of speed measurement errors could be reduced to about
0.1 m s−1. At the present time, such measurement accuracy does not seem
technologically feasible.
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of the Coriolis parameter 𝑓 . The theoretical spectra for these errors
that are shown in Figs. 13a, 13b and 14 are based on the value of
𝑓 = 8.75 × 10−5 s−1 at the central latitude 37◦N of the CCS model
domain. Over the latitude range of the CCS model (see the left panel
of Fig. 2a), 𝑓 varies from 7.81× 10−5 s−1 at the 32.5◦N southern corner
of the model domain to 9.73 × 10−5 s−1 at the 42◦N northern corner
of the model domain. Compared with its value at 37◦N, the Coriolis
parameter is 11% larger at 42◦N and 11% smaller at 32.5◦N. This small
variation of 𝑓 and the fact that 𝑓 varies approximately linearly over
the latitudinal range of the CCS model domain result in negligibly small
differences between the theoretical and empirical spectra that are based
on the local value of 𝑓 at each grid point (see Figs. 13a, 13b and 14).

In the case of WaCM, the relevant equations for the wavenumber
spectra of the errors of unsmoothed velocity component and vorticity
fields are, respectively, (I.40b) and (I.43), with the latter partitioned as
(I.45b) and (I.46a). These equations are all expressed in terms of the
variances 𝜎2𝑢 and 𝜎2𝑣 of the errors of WaCM estimates of the 𝑥 and 𝑦
components of velocity. The analogous equations for the wavenumber
spectra of the errors of WaCM estimates of smoothed velocity compo-
nent and vorticity fields are, respectively, (I.48a) and (I.52), with the
latter partitioned as (I.54a) and (I.55a). A value of 𝜎2𝑢,𝑣 = (0.354 m s−1)2

is used for both 𝜎2𝑢 and 𝜎2𝑣 in the application of these equations in
Section 4.4, but the above-referenced equations can be used for any
specified values of 𝜎2𝑢 and 𝜎2𝑣 . This fact is used in Section 10.2 to
determine how much the resolution capability of WaCM estimates of
velocity and vorticity would improve if engineering efforts can reduce
the measurement error variance 𝜎2𝑢,𝑣.

I.1. Errors of SSH and geostrophically computed velocity and vorticity from
unsmoothed SWOT data

The 2-dimensional wavenumber power spectral density of a spa-
tially uncorrelated error field is constant at all wavenumbers 𝑘 and 𝑙
in the 𝑥 and 𝑦 dimensions, respectively, which correspond to the cross-
shore and alongshore dimensions for the CCS model domain considered
here but would correspond to cross-track and along-track in actual
SWOT data. For the case of uncorrelated instrumental errors with
variance 𝜎2ℎ for SWOT estimates of SSH, this constant (white) power
spectral density is related to 𝜎2ℎ by Eq. (E.3) in Appendix E, which is
repeated here for convenience,

𝑆2𝑑
ℎ (𝑘, 𝑙) =

𝜎2ℎ
4𝑘 𝑙

= 𝛥𝑥𝛥𝑦 𝜎2ℎ, (I.1)

where 𝑘 = (2𝛥𝑥)−1 and 𝑙 = (2𝛥𝑦)−1 are the Nyquist wavenumbers
for the sample intervals of 𝛥𝑥 and 𝛥𝑦. The errors of pre-processed
SWOT estimates of SSH obtained as summarized in Appendix B.1 by
smoothing the raw SWOT data with a half-power filter cutoff wave-
length of 2 km in each dimension are uncorrelated for a grid spacing
of 𝛥𝑥 × 𝛥𝑦 = 1 km × 1 km. The variance of the errors of these
pre-processed SWOT estimates of SSH that is derived in Appendix F
is 𝜎2ℎ = (2.74 cm)2.

The 1-sided, 1-dimensional alongshore power spectral density of the
errors of the pre-processed SWOT estimates of SSH is given by (E.4),
which can be expressed in terms of 𝜎2ℎ as12

𝑆1𝑑
ℎ (𝑙) = 2∫

𝑘

−𝑘
𝑆2𝑑
ℎ (𝑘, 𝑙) 𝑑𝑘 = 4𝛥𝑥𝛥𝑦 𝑘 𝜎2ℎ = 2𝛥𝑦 𝜎2ℎ. (I.2a)

For 𝜎2ℎ = (2.74 cm)2, the 1-dimensional alongshore spectrum (I.2a) of
SSH measurement errors in the baseline design is

𝑆1𝑑
ℎ (𝑙) = 15.0 cm2∕cpkm. (I.2b)

12 As noted in footnotes 5 and 8, the spectral values at wavenumbers 𝑙 = 0
and 𝑙 are not doubled in the 1-sided, 1-dimensional spectrum. In the interest
of clarity in the analysis that follows, this technical detail will again be ignored
as in Appendices D and E.

The 2-dimensional wavenumber spectrum of the errors of cross-
shore velocity 𝑢𝑔 computed geostrophically from centered differences
of the errors of pre-processed SWOT estimates of SSH can be deter-
mined analytically from the 2-dimensional spectrum (I.1) of SWOT SSH
measurement errors by

𝑆2𝑑
𝑢𝑔
(𝑘, 𝑙) =

𝑔2

𝑓 2
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
𝑆2𝑑
ℎ (𝑘, 𝑙) =

𝑔2

𝑓 2
𝛥𝑥𝛥𝑦 𝜎2ℎ

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
, (I.3)

where 𝑊3𝑝𝑡(𝑙) is the response function for the alongshore derivative in
the geostrophic relation 𝑢𝑔 = −𝑔𝑓−1𝜕ℎ∕𝜕𝑦 estimated from alongshore
centered differences with a 3-point stencil width. It is shown in Ap-
pendix H that 𝑊3𝑝𝑡(𝑙) is given by an expression analogous to (H.3a),
except with cross-shore grid spacing 𝛥𝑥 and wavenumber 𝑘 replaced
with their alongshore counterparts 𝛥𝑦 and 𝑙,

𝑊3𝑝𝑡(𝑙) = 𝑖
sin(2𝜋𝛥𝑦 𝑙)

𝛥𝑦
. (I.4)

The 1-sided, 1-dimensional alongshore spectrum of 𝑢𝑔 errors ob-
tained from the 2-dimensional spectrum (I.3) as in (I.2a) by integrating
over all cross-shore wavenumbers 𝑘 and doubling the power at each
wavenumber 𝑙 is

𝑆1𝑑
𝑢𝑔
(𝑙) = 2∫

𝑘

−𝑘
𝑆2𝑑
𝑢𝑔
(𝑘, 𝑙) 𝑑𝑘 =

𝑔2

𝑓 2
2𝛥𝑦 𝜎2ℎ

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
(I.5a)

=
𝑔2

𝑓 2
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
𝑆1𝑑
ℎ (𝑙), (I.5b)

where |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
= 𝛥𝑦−2 sin2(2𝜋𝛥𝑦 𝑙) is the squared magnitude of (I.4).

The form (I.5b) for 𝑆1𝑑
𝑢𝑔
(𝑙) follows from (I.2a).

The wavenumber spectrum of the errors of alongshore velocity
𝑣𝑔 computed geostrophically from the errors of pre-processed SWOT
estimates of SSH can be determined analytically following a procedure
similar to that used above for the wavenumber spectrum of the errors
of the cross-shore geostrophically computed velocity 𝑢𝑔 . In this case,
however, the cross-shore derivative in the geostrophic relation 𝑣𝑔 =
𝑔𝑓−1𝜕ℎ∕𝜕𝑥 is estimated by centered differences with a 3-point stencil
in the cross-shore direction, rather than in the alongshore direction. The
response function for these cross-shore centered differences is (H.3a),
which is repeated here for convenience,

𝑊3𝑝𝑡(𝑘) = 𝑖
sin(2𝜋𝛥𝑥 𝑘)

𝛥𝑥
. (I.6)

The 2-dimensional wavenumber spectrum of 𝑣𝑔 errors obtained from
cross-shore centered differences of the pre-processed SSH errors is thus
related to the 2-dimensional spectrum (I.1) of SWOT SSH measurement
errors by

𝑆2𝑑
𝑣𝑔
(𝑘, 𝑙) =
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2
. (I.7)

The 1-sided, 1-dimensional alongshore spectrum of the errors of
geostrophically computed alongshore velocity 𝑣𝑔 is

𝑆1𝑑
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(𝑙) = 2∫
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𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑑𝑘 (I.8a)

=
𝑔2

𝑓 2
2𝛥𝑥𝑆1𝑑

ℎ (𝑙)∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑑𝑘. (I.8b)

The last expression follows from (I.2a) and both forms for 𝑆1𝑑
𝑣𝑔
(𝑙) use the

fact that ||
|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
is symmetric about 𝑘 = 0. With the definition (I.6)

of 𝑊3𝑝𝑡(𝑘) and the transformation of variables 𝑘′ = 2𝜋𝛥𝑥 𝑘, the integral
on the right sides of (I.8a) and (I.8b) is

∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑑𝑘 = 1

2𝜋𝛥𝑥3 ∫

𝜋

0
sin2(𝑘′) 𝑑𝑘′ = 1

4𝛥𝑥3
. (I.9)

Then (I.8a) and (I.8b) become

𝑆1𝑑
𝑣𝑔
(𝑙) =

𝑔2

𝑓 2
𝛥𝑦
𝛥𝑥2

𝜎2ℎ (I.10a)
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=
𝑔2

𝑓 2
1

2𝛥𝑥2
𝑆1𝑑
ℎ (𝑙). (I.10b)

The expression (G.7b) in Appendix G for the errors of 𝜁𝑔 in terms
of finite differences of the uncorrelated errors of pre-processed SWOT
estimates of SSH can be written as

𝜖𝜁𝑔 (𝑥, 𝑦) = 𝜖1(𝑥, 𝑦) + 𝜖2(𝑥, 𝑦) + 𝜖3(𝑥, 𝑦) + 𝜖4(𝑥, 𝑦), (I.11)

where

𝜖1(𝑥, 𝑦) =
𝑔
𝑓

1
2𝛥𝑥

𝜖ℎ(𝑥 + 2𝛥𝑥, 𝑦) − 𝜖ℎ(𝑥, 𝑦)
2𝛥𝑥

(I.12a)

𝜖2(𝑥, 𝑦) = −
𝑔
𝑓

1
2𝛥𝑥

𝜖ℎ(𝑥, 𝑦) − 𝜖ℎ(𝑥 − 2𝛥𝑥, 𝑦)
2𝛥𝑥

(I.12b)

𝜖3(𝑥, 𝑦) =
𝑔
𝑓

1
2𝛥𝑦

𝜖ℎ(𝑥, 𝑦 + 2𝛥𝑦) − 𝜖ℎ(𝑥, 𝑦)
2𝛥𝑦

(I.12c)

𝜖4(𝑥, 𝑦) = −
𝑔
𝑓

1
2𝛥𝑦

𝜖ℎ(𝑥, 𝑦) − 𝜖ℎ(𝑥, 𝑦 − 2𝛥𝑦)
2𝛥𝑦

. (I.12d)

The contributions 𝜖1(𝑥, 𝑦) and 𝜖2(𝑥, 𝑦) correspond to centered cross-
shore differences of SSH errors with center points at (𝑥 + 𝛥𝑥, 𝑦) and
(𝑥−𝛥𝑥, 𝑦), respectively. Similarly, the contributions 𝜖3(𝑥, 𝑦) and 𝜖4(𝑥, 𝑦)
correspond to centered alongshore differences of SSH errors with center
points at (𝑥, 𝑦 + 𝛥𝑦) and (𝑥, 𝑦 − 𝛥𝑦), respectively.

It was shown in Appendix H that 1-dimensional centered differences
can be written as convolution integrals. For the 2-dimensional fields
considered here, centered cross-shore differences at (𝑥, 𝑦) can be written
as the convolution
𝜖ℎ(𝑥 + 𝛥𝑥, 𝑦) − 𝜖ℎ(𝑥 − 𝛥𝑥, 𝑦)

2𝛥𝑥
= 𝑤3𝑝𝑡(𝑥) ∗ 𝜖ℎ(𝑥, 𝑦), (I.13a)

where, analogous to (H.2), the filter weighting function for a 2-
dimensional field of SSH errors is

𝑤3𝑝𝑡(𝑥) =
1

2𝛥𝑥

[

𝛿(𝑥 + 𝛥𝑥, 𝑦) − 𝛿(𝑥 − 𝛥𝑥, 𝑦)
]

. (I.13b)

The similar expression for centered alongshore differences at (𝑥, 𝑦) is
𝜖ℎ(𝑥, 𝑦 + 𝛥𝑦) − 𝜖ℎ(𝑥, 𝑦 − 𝛥𝑦)

2𝛥𝑦
= 𝑤3𝑝𝑡(𝑦) ∗ 𝜖ℎ(𝑥, 𝑦), (I.14a)

where

𝑤3𝑝𝑡(𝑦) =
1

2𝛥𝑦

[

𝛿(𝑥, 𝑦 + 𝛥𝑦) − 𝛿(𝑥, 𝑦 − 𝛥𝑦)
]

. (I.14b)

The response functions (filter transfer functions) obtained as in (H.3a)
as the Fourier transforms of (I.13b) and (I.14b) are given by (I.4) and
(I.6), respectively,

The four contributions (I.12a)–(I.12d) to 𝜖𝜁𝑔 (𝑥, 𝑦) can be written as
shifted convolution integrals similar to (I.13a) and (I.14a),

𝜖1(𝑥, 𝑦) =
𝑔
𝑓

1
2𝛥𝑥

𝑤3𝑝𝑡(𝑥 − 𝛥𝑥) ∗ 𝜖ℎ(𝑥, 𝑦) (I.15a)

𝜖2(𝑥, 𝑦) = −
𝑔
𝑓

1
2𝛥𝑥

𝑤3𝑝𝑡(𝑥 + 𝛥𝑥) ∗ 𝜖ℎ(𝑥, 𝑦) (I.15b)

𝜖3(𝑥, 𝑦) =
𝑔
𝑓

1
2𝛥𝑦

𝑤3𝑝𝑡(𝑦 − 𝛥𝑦) ∗ 𝜖ℎ(𝑥, 𝑦) (I.15c)

𝜖4(𝑥, 𝑦) = −
𝑔
𝑓

1
2𝛥𝑦

𝑤3𝑝𝑡(𝑦 + 𝛥𝑦) ∗ 𝜖ℎ(𝑥, 𝑦). (I.15d)

The weighting functions on the right sides of (I.15a) and (I.15b) are
cross-shore-shifted versions of the weighting function (I.13b) of cen-
tered cross-shore differences at (𝑥, 𝑦). Likewise, the weighting functions
on the right sides of (I.15c) and (I.15d) are alongshore-shifted versions
of the weighting function (I.14b) of centered alongshore differences
at (𝑥, 𝑦). By the Shift Theorem, the Fourier transforms of these shifted
weighting functions are


[

𝑤3𝑝𝑡(𝑥 ± 𝛥𝑥)
]

= 𝑒±𝑖2𝜋𝛥𝑥 𝑘𝑊3𝑝𝑡(𝑘) (I.16)


[

𝑤3𝑝𝑡(𝑦 ± 𝛥𝑦)
]

= 𝑒±𝑖2𝜋𝛥𝑦 𝑙𝑊3𝑝𝑡(𝑙), (I.17)

where  indicates the Fourier transform and 𝑊3𝑝𝑡(𝑘) and 𝑊3𝑝𝑡(𝑙) are
given by (I.6) and (I.4). The shifted weighting functions in the con-
volution integrals (I.15a)–(I.15d) thus result in phase rotations of the
Fourier transforms 𝑊3𝑝𝑡(𝑘) and 𝑊3𝑝𝑡(𝑙).

The results above can be used to determine the Fourier transform
of the vorticity errors (I.11). This Fourier transform can be written as
the sum of the Fourier transforms of each of the four terms on the right
side of (I.11),


[

𝜁𝑔(𝑘, 𝑙)
]

= 1(𝑘, 𝑙) + 2(𝑘, 𝑙) + 3(𝑘, 𝑙) + 4(𝑘, 𝑙). (I.18)

By the Convolution Theorem and the response functions (I.16) and
(I.17) of the shifted centered differences, the four Fourier transforms
on the right side of (I.18) are

1(𝑘, 𝑙) =
𝑔
𝑓

1
2𝛥𝑥

𝑒𝑖2𝜋𝛥𝑥 𝑘 𝑊3𝑝𝑡(𝑘) [ℎ(𝑘, 𝑙)] (I.19a)

2(𝑘, 𝑙) = −
𝑔
𝑓

1
2𝛥𝑥

𝑒−𝑖2𝜋𝛥𝑥 𝑘 𝑊3𝑝𝑡(𝑘) [ℎ(𝑘, 𝑙)] (I.19b)

3(𝑘, 𝑙) =
𝑔
𝑓

1
2𝛥𝑦

𝑒𝑖2𝜋𝛥𝑦 𝑙 𝑊3𝑝𝑡(𝑙) [ℎ(𝑘, 𝑙)] (I.19c)

4(𝑘, 𝑙) = −
𝑔
𝑓

1
2𝛥𝑦

𝑒−𝑖2𝜋𝛥𝑦 𝑙 𝑊3𝑝𝑡(𝑙) [ℎ(𝑘, 𝑙)] , (I.19d)

where  [ℎ(𝑘, 𝑙)] is the Fourier transform of the SSH errors. Then (I.18)
becomes


[

𝜁𝑔(𝑘, 𝑙)
]

=
𝑔
𝑓
 [ℎ(𝑘, 𝑙)]

[(

𝑒𝑖2𝜋𝛥𝑥 𝑘 − 𝑒−𝑖2𝜋𝛥𝑥 𝑘

2𝛥𝑥

)

𝑊3𝑝𝑡(𝑘)

+
(

𝑒𝑖2𝜋𝛥𝑦 𝑙 − 𝑒−𝑖2𝜋𝛥𝑦 𝑙

2𝛥𝑦

)

𝑊3𝑝𝑡(𝑙)
]

= 𝑖
𝑔
𝑓
 [ℎ(𝑘, 𝑙)]

[

sin(2𝜋𝛥𝑥 𝑘)
𝛥𝑥

𝑊3𝑝𝑡(𝑘) +
sin(2𝜋𝛥𝑦 𝑙)

𝛥𝑦
𝑊3𝑝𝑡(𝑙)

]

= −
𝑔
𝑓
 [ℎ(𝑘, 𝑙)]

[

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
+ |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
]

. (I.20)

The last relation follows from (I.4) and (I.6).
The 2-dimensional power spectral density of the errors of SWOT

estimates of vorticity obtained as the squared magnitude of the Fourier
transform (I.20) is related to the power spectral density (I.1) of the SSH
errors by

𝑆2𝑑
𝜁𝑔
(𝑘, 𝑙) =

𝑔2

𝑓 2
𝑆2𝑑
ℎ (𝑘, 𝑙)

[

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

4

+ 2 ||
|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
+ |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

4
]

(I.21a)

=
𝑔2

𝑓 2
𝛥𝑥𝛥𝑦 𝜎2ℎ

[

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

4

+ 2 ||
|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
+ |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

4
]

. (I.21b)

The 1-sided, 1-dimensional alongshore spectrum of the errors of SWOT
estimates of 𝜁𝑔 is

𝑆1𝑑
𝜁𝑔
(𝑙) = 2∫

𝑘

−𝑘
𝑆2𝑑
𝜁𝑔
(𝑘, 𝑙) 𝑑𝑘

=
𝑔2

𝑓 2
2𝛥𝑥𝛥𝑦 𝜎2ℎ

(

2∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

4
𝑑𝑘

+ 4 ||
|

𝑊3𝑝𝑡(𝑙)
|

|

|

2

∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑑𝑘 + 1

𝛥𝑥
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

4
)

, (I.22)

where 𝑘 = (2𝛥𝑥)−1 is again the Nyquist wavenumber in the 𝑥 dimen-
sion. The expression (I.22) uses the fact that |

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
and |

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

4

are both symmetric about 𝑘 = 0. The second term on the right side of
(I.22) is the cross spectral term that arises from the fact that all four
contributions (I.12) to the vorticity errors (I.11) are cross correlated
since they share in common the SSH error 𝜖ℎ(𝑥, 𝑦).
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The second integral on the right side of (I.22) is given by (I.9). With
the same transformation of variables 𝑘′ = 2𝜋𝛥𝑥 𝑘 that was used in (I.9),
the first integral is

∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

4
𝑑𝑘 = 1

2𝜋𝛥𝑥5 ∫

𝜋

0
sin4(𝑘′) 𝑑𝑘′ = 3

16𝛥𝑥5
. (I.23)

Then (I.22) becomes

𝑆1𝑑
𝜁𝑔
(𝑙) =

𝑔2

𝑓 2
2𝛥𝑦 𝜎2ℎ

(

3
8𝛥𝑥4

+ 1
𝛥𝑥2

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
+ |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

4
)

(I.24a)

=
𝑔2

𝑓 2
𝑆1𝑑
ℎ (𝑙)

(

3
8𝛥𝑥4

+ 1
𝛥𝑥2

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
+ |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

4
)

, (I.24b)

where 𝑆1𝑑
ℎ (𝑙) is the 1-sided, 1-dimensional alongshore spectrum (I.2a)

of the SSH errors.
The analytical expressions (I.2a), (I.5a), (I.10a) and (I.24a) for the

1-sided, 1-dimensional alongshore spectra of errors of the pre-processed
SWOT estimates of SSH and the two velocity components and the
vorticity computed geostrophically from the pre-processed SWOT data
are shown for 𝜎2ℎ = (2.74 cm)2 by the solid green lines in Fig. 13a.

I.2. Errors of SSH and geostrophically computed velocity and vorticity from
smoothed SWOT data

The errors of SWOT estimates of velocity and vorticity computed
geostrophically from the pre-processed SWOT estimates of SSH (see
Appendix G and Table 1 in Section 4 and the maps in the bottom left
panels of Figs. 17b and 17c) are too large for the velocity and vorticity
estimates to be scientifically useful. It will be necessary to estimate
velocity and vorticity geostrophically from SWOT SSH fields that have
been smoothed in ground-based post-processing.

Throughout this study, we use isotropic filtering with 𝑘𝑐 = 𝑙𝑐 = 𝜆−1𝑐 ,
where 𝑘𝑐 and 𝑙𝑐 are the half-power filter cutoff wavenumbers in the
𝑥 and 𝑦 dimensions, respectively, and 𝜆𝑐 is the desired isotropic half-
power filter cutoff wavelength in km. It is shown in Appendix C that
separate 1-dimensional filtering in each dimension using the Parzen
smoother is essentially equivalent to isotropic smoothing with a 2-
dimensional Parzen smoother that depends only on radial distance from
the estimation location. This equivalence facilitates the derivation of
the theoretical wavenumber spectra of errors in this appendix. For a de-
sired filter cutoff wavelength of 𝜆𝑐 , the span of the Parzen smoother in
each dimension as given by (A.12b) in Appendix A is 𝐿4 = 0.910 𝜆𝑐 ≈ 𝜆𝑐 .
The filter transfer function of the Parzen smoother in the 𝑥 dimension,
for example, is given by (A.11), which can be written in terms of the
half-power filter cutoff wavelength 𝜆𝑐 as

𝑊𝜆𝑐 (𝑘) = sinc4
(

𝑘𝐿4
4

)

≈ sinc4
(

𝑘𝜆𝑐
4

)

=
(

sin(𝜋𝑘𝜆𝑐∕4)
𝜋𝑘𝜆𝑐∕4

)4
. (I.25)

The 2-dimensional wavenumber spectrum of 2-dimensionally
smoothed SSH measurement errors is obtained from the 2-dimensional
wavenumber spectrum (I.1) of uncorrelated errors of the pre-processed
SWOT estimates of SSH by

𝑆
2𝑑
ℎ (𝑘, 𝑙) = 𝑊 2

𝜆𝑐
(𝑘)𝑊 2

𝜆𝑐
(𝑙)𝑆2𝑑

ℎ (𝑘, 𝑙) = 𝛥𝑥𝛥𝑦 𝜎2ℎ 𝑊
2
𝜆𝑐
(𝑘)𝑊 2

𝜆𝑐
(𝑙), (I.26)

where 𝜎2ℎ is the variance of the SSH measurement errors. The over-
bar distinguishes the 2-dimensional spectrum 𝑆

2𝑑
ℎ (𝑘, 𝑙) of smoothed

SSH measurement errors from the 2-dimensional spectrum (I.1) of
unsmoothed errors. The 1-sided, 1-dimensional alongshore spectrum of
the smoothed SSH measurement errors is

𝑆
1𝑑
ℎ (𝑙) = 2∫

𝑘

−𝑘
𝑆
2𝑑
ℎ (𝑘, 𝑙) 𝑑𝑘 = 4𝛥𝑥𝛥𝑦 𝜎2ℎ 𝑊

2
𝜆𝑐
(𝑙)∫

𝑘

0
𝑊 2

𝜆𝑐
(𝑘) 𝑑𝑘. (I.27)

The right side of this equation uses the fact that 𝑊 2
𝜆𝑐
(𝑘) is symmetric

about 𝑘 = 0.
For the Parzen smoother used in this study, it is shown in

Appendix D that the integral of the associated squared filter transfer

function on the right side of (I.27) is given by (D.12), which can be
written as

∫

𝑘

0
𝑊 2

𝜆𝑐
(𝑘) 𝑑𝑘 = 1

𝐿4
= 1

0.910 𝜆𝑐
≈ 𝜆−1𝑐 . (I.28)

The 1-dimensional wavenumber spectrum (I.27) of smoothed SSH mea-
surement errors is therefore given approximately by

𝑆
1𝑑
ℎ (𝑙) =

4𝛥𝑥𝛥𝑦 𝜎2ℎ
𝜆𝑐

𝑊 2
𝜆𝑐
(𝑙) (I.29a)

= 2𝛥𝑥
𝜆𝑐

𝑊 2
𝜆𝑐
(𝑙)𝑆1𝑑

ℎ (𝑙), (I.29b)

where 𝑆1𝑑
ℎ (𝑙) is the 1-sided, 1-dimensional alongshore spectrum (I.2a)

of the SSH errors. As discussed in Appendix E, the multiplication factor
𝑊 2

𝜆𝑐
(𝑙) represents the low-pass filtering in the alongshore dimension

that attenuates the spectral power 𝑆1𝑑
ℎ (𝑙) at high wavenumbers and

the multiplicative factor 2𝛥𝑥𝜆−1𝑐 represents the additional attenuation
of the spectral power 𝑆1𝑑

ℎ (𝑙) at all wavenumbers from the low-pass
filtering in the cross-shore dimension.

The 2-dimensional wavenumber spectrum of the errors of the
geostrophically computed cross-shore velocity 𝑢𝑔 estimated from cen-
tered alongshore differences of the smoothed SSH errors is obtained
analogously to (I.3), except from the 2-dimensional spectrum (I.26) of
smoothed SSH,

𝑆
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2
. (I.30)

The 1-sided, 1-dimensional alongshore spectrum of the errors of
smoothed cross-shore geostrophically computed velocity 𝑢𝑔 is

𝑆
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Substitution of (I.28) for the integral on the right side of this equation
gives

𝑆1𝑑
𝑢𝑔
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. (I.31a)

From (I.29a), this can be written alternatively in terms of the 1-
dimensional alongshore spectrum 𝑆

1𝑑
ℎ (𝑙) of smoothed SSH measurement

errors,

𝑆
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2
, (I.31b)

where 𝑆
1𝑑
ℎ (𝑙) can be expressed in terms of the 1-dimensional alongshore

spectrum 𝑆1𝑑
ℎ (𝑙) of the unsmoothed SSH measurement errors by (I.29b).

The 2-dimensional wavenumber spectrum of the errors of
geostrophically computed alongshore velocity 𝑣𝑔 estimated from cen-
tered cross-shore differences of the smoothed SSH errors is obtained
analogously to (I.7), except from the 2-dimensional spectrum (I.26) of
smoothed SSH,
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2
. (I.32)

The 1-sided, 1-dimensional alongshore spectrum of the errors of
smoothed alongshore geostrophically computed velocity 𝑣𝑔 is
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𝑑𝑘. (I.33a)
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From (I.29a), this can be written alternatively in terms of the 1-
dimensional alongshore spectrum 𝑆

1𝑑
ℎ (𝑙) of smoothed SSH measurement

errors,

𝑆
1𝑑
𝑣𝑔
(𝑙) =
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2
𝑑𝑘, (I.33b)

where 𝑆
1𝑑
ℎ (𝑙) can again be expressed in terms of the 1-dimensional

alongshore spectrum 𝑆1𝑑
ℎ (𝑙) of the unsmoothed SSH measurement errors

by (I.29b). With 𝑊3𝑝𝑡(𝑘) and 𝑊𝜆𝑐 (𝑘) defined by (I.6) and (I.25), there
does not appear to be an analytical solution for the integral on the right
sides of (I.33a) and (I.33b). The integral must therefore be evaluated
numerically. The result is shown as a function of the half-power filter
cutoff wavelength 𝜆𝑐 in Fig. I.1a.

The 2-dimensional wavenumber spectrum of the errors of
geostrophically computed vorticity estimated from finite differences of
the smoothed SSH errors is obtained analogously to (I.21a), except from
the 2-dimensional spectrum (I.26) of smoothed SSH,
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(I.34a)
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. (I.34b)

The 1-sided, 1-dimensional alongshore spectrum of the errors of
smoothed geostrophically computed vorticity errors is
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. (I.35a)

The third integral on the right side of (I.35a) is approximately 𝜆−1𝑐
according to (I.28). Then (I.35a) can be expressed as

𝑆1𝑑
𝜁𝑔
(𝑙) =

𝑔2

𝑓 2

4𝛥𝑥𝛥𝑦 𝜎2ℎ
𝜆𝑐

𝑊 2
𝜆𝑐
(𝑙)

[

𝜆𝑐 ∫

𝑘

0
𝑊 2

𝜆𝑐
(𝑘) ||

|

𝑊3𝑝𝑡(𝑘)
|

|

|

4
𝑑𝑘

+ 2𝜆𝑐
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2

∫

𝑘

0
𝑊 2

𝜆𝑐
(𝑘) ||

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑑𝑘 + |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

4
]

.

(I.35b)

From (I.29a), this can be written alternatively in terms of the 1-
dimensional alongshore spectrum 𝑆

1𝑑
ℎ (𝑙) of smoothed SSH measurement

errors,
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,

(I.35c)

where 𝑆1𝑑
ℎ (𝑙) can again be expressed in terms of the 1-dimensional

alongshore spectrum 𝑆1𝑑
ℎ (𝑙) of the unsmoothed SSH measurement errors

by (I.29b). The second integral on the right sides of (I.35b) and (I.35c)
is the same integral that appears on the right sides of (I.33a) and (I.33b)
for which the solution obtained numerically is shown as a function of
the half-power filter cutoff wavelength 𝜆𝑐 in Fig. I.1a. The numerical
solution for the first integral on the right sides of (I.35b) and (I.35c)
is shown as a function of 𝜆𝑐 in Fig. I.1b. It is apparent from Fig. I.1a
and I1b that the value of the first integral decreases with increasing 𝜆𝑐
much more quickly than the value of the second integral.

The analytical expressions (I.29a), (I.31a), (I.33a) and (I.35b) for
the 1-sided, 1-dimensional alongshore spectra of the residual errors of
SWOT estimates of SSH and geostrophically computed velocity compo-
nents and vorticity after smoothing in ground-based post-processing of
the pre-processed SWOT data are applicable to any low-pass filter with
a half-power filter cutoff wavelength of 𝜆𝑐 . The results based on the
Parzen smoother are shown for 𝜎2ℎ = (2.74 cm)2 by the solid green lines
in Fig. 13b for a half-power filter cutoff wavelength of 𝜆𝑐 = 10 km and
in Fig. 14 for half-power filter cutoff wavelengths of 𝜆𝑐 = 20, 50 and
80 km. The theoretical spectra in these figures agree very well with
the spectra shown in Figs. 13b and 14 by the solid blue lines that were
computed empirically from the simulated SWOT error fields generated
for the analysis in Sections 6, 8 and 9.

I.3. Errors of pre-processed WaCM estimates of velocity and vorticity

The baseline design for the errors of the speeds of WaCM estimates
of surface ocean velocity is for isotropic smoothing of the raw WaCM
data in pre-processing with a half-power filter cutoff wavelength of
10 km to achieve a standard deviation of

𝜎spd = 0.50 m s−1. (I.36)

The measurement errors with 10-km smoothing are essentially uncor-
related for a grid spacing of 𝛥𝑥×𝛥𝑦 = 5 km × 5 km (see Appendix B.2).

If the 10-km smoothed WaCM data were subsampled on the
5 km × 5 km grid on which the errors are uncorrelated, the derivation
of analytical expressions for the 1-dimensional alongshore spectra of
the errors would be a straightforward modification of the derivation
of the analytical expression (I.2a) for the 1-dimensional alongshore
spectrum of the errors of pre-processed SWOT estimates of SSH. For
WaCM estimates of vorticity 𝜁 = 𝜕𝑣∕𝜕𝑥 − 𝜕𝑢∕𝜕𝑦, however, it is advan-
tageous to grid the WaCM data on a finer grid with dimensions of 𝛥𝑥×
𝛥𝑦 = 1 km × 1 km. The primary advantage is that centered difference
estimates of the derivatives on the finer grid retain more of the short-
wavelength variability in the vorticity signal (see Appendix H). For
the comparisons with geostrophically computed velocity and vorticity
estimated from simulated SWOT data, it is also convenient for the
analysis in this study to grid the WaCM data onto the same 1 km × 1 km
grid as the SWOT data.

With the 10-km smoothing assumed in the baseline design for pre-
processing of WaCM data, the standard deviation of the errors of
overlapping smoothed estimates of the speeds of WaCM measurements
of velocity on the finer 1 km × 1 km grid is still (I.36). But the
errors are no longer uncorrelated on the finer grid. As summarized
below, this complicates the derivation of analytical expressions for the
spectra of errors of the velocity components and vorticity estimated
from pre-processed WaCM data.

The footprint size of the raw WaCM radar data will likely be of order
100 m. For the simulated WaCM data in this study, the smallest possible
footprint size is the 0.5 km × 0.5 km grid spacing of the CCS model.
This is a factor of 10 finer than the 5 km × 5 km grid on which the pre-
processed data are uncorrelated with 10-km smoothing. To achieve the
baseline design of (I.36) for the standard deviation of the speeds of 10-
km smoothed errors of surface velocity measurements, the analysis in
Appendix D shows that the variance of unsmoothed errors in simulated
raw measurements with a footprint size of 0.5 km × 0.5 km is a factor of
100 times larger, hence the standard deviation is a factor-of-10 larger.
This can be seen from the error variance reduction formula (D.5a) with
the reduction factor 𝛼 given by (D.14c) for the case of smoothing of the
simulated raw measurements on a grid of 𝛿𝑥 × 𝛿𝑦 = 0.5 km × 0.5 km
using a Parzen smoother with an isotropic half-power filter cutoff
wavelength of 𝜆𝑐 = 10 km. The standard deviation of the speeds of the
unsmoothed velocity errors on the simulated raw measurement grid is
thus

𝜎′spd = 10 𝜎spd = 5.0 m s−1, (I.37)
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Fig. I.1. Numerical solutions as functions of half-power filter cutoff wavelength 𝜆𝑐 for the integrals labeled in the lower left corner of each panel that appear in the equations in
Appendix I: (a) The integral on the right sides of Eqs. (I.33a) and (I.33b), which also appears as the second integral on the right sides of Eqs. (I.35a), (I.35b), (I.35c) and (I.56)
and as the integral on the right sides of Eqs. (I.46a) and (I.46b) with 𝜆𝑐 = 10 km; (b) The first integral on the right sides of Eqs. (I.35a), (I.35b) and (I.35c); (c) The integral
on the right sides of Eqs. (I.48a) and (I.48b), which also appears as the integral on the right side of Eq. (I.54a) and in the denominator on the right side of Eq. (I.55b); and (d)
The integral on the right side of Eq. (I.55a) and in the numerator on the right side of Eq. (I.55b). The dashed lines in panels (c) and (d) correspond to the approximate solutions
obtained by replacing the term 𝑊 2

10 km(𝑘) in the integrands with a value of 1 for all wavenumbers 𝑘, as in Eqs. (I.49) and (I.56), respectively.

where the prime distinguishes this standard deviation of the errors of
the simulated raw measurements from the standard deviation (I.36) of
the speed errors after smoothing isotropically with a 10-km filter cutoff.

In general, the standard deviations 𝜎𝑢 and 𝜎𝑣 of the errors of the 10-
km smoothed velocity estimates differ for the two orthogonal velocity
components 𝑢 and 𝑣. Throughout Sections 6 and 8–10, however, we
have assumed that the speed uncertainties in the pre-processed WaCM
data are equally partitioned between 𝑢 and 𝑣. In this case, the standard
deviations 𝜎𝑢 and 𝜎𝑣 are both equal to a value 𝜎𝑢,𝑣 that is related to the
baseline design (I.36) by

𝜎𝑢,𝑣 =
𝜎spd
√

2
= 0.354 m s−1.

The subscript 𝑢, 𝑣 is intended to indicate that the error standard devia-
tion is the same for each velocity component. If the speed uncertainties
are also equally partitioned between 𝑢 and 𝑣 on the simulated raw mea-
surement grid, the standard deviations 𝜎′𝑢 and 𝜎′𝑣 of the uncorrelated
errors of each velocity component in the simulated unsmoothed raw
data are both equal to a value 𝜎′𝑢,𝑣 that is related to (I.37) by

𝜎′𝑢,𝑣 =
𝜎′spd
√

2
= 3.54 m s−1.

In the derivations that follow, we allow for the possibility of differ-
ent error standard deviations for each velocity component. Parseval’s

Theorem for the 2-dimensional white noise wavenumber spectrum of
the uncorrelated errors of the 𝑢 or 𝑣 velocity component on the 𝛿𝑥 ×
𝛿𝑦 = 0.5 km × 0.5 km simulated raw measurement grid can then be
expressed as

𝑆′ 2𝑑
𝑢;𝑣(𝑘, 𝑙) =

𝜎′ 2𝑢;𝑣
4𝑘′ 𝑙′

= 𝛿𝑥 𝛿𝑦 𝜎′ 2𝑢;𝑣, (I.38)

where 𝑘′ = (2𝛿𝑥)−1 and 𝑙′ = (2𝛿𝑦)−1 are the Nyquist wavenumbers in
the 𝑥 and 𝑦 dimensions. The subscript 𝑢; 𝑣 with the semicolon signifies
the choice of a subscript of either 𝑢 or 𝑣 on both sides of (I.38), depend-
ing on which velocity component is of interest. The spectrum thus has
the same form for each velocity component. The only difference is that
𝜎2𝑢;𝑣 on the right side of (I.38) is replaced with 𝜎′ 2𝑢 or 𝜎′ 2𝑣, depending on
whether the interest is in the spectrum 𝑆′ 2𝑑

𝑢 (𝑘, 𝑙) of 𝑢 or the spectrum
𝑆′ 2𝑑

𝑣 (𝑘, 𝑙) of 𝑣 on the left side of (I.38).
The form (I.38) for the spectrum of velocity component errors from

WaCM data is fundamentally different from the spectra (I.5) and (I.8) of
the errors of geostrophically computed velocity components estimated
from SWOT data. This is because of the different filtering imposed in
the case of SWOT by the filter transfer functions (response functions)
(I.4) and (I.6) for centered differences in orthogonal directions as
summarized in Appendix I.1.

The 2-dimensional wavenumber spectrum of 𝑢 or 𝑣 after smoothing
the simulated raw WaCM data with half-power filter cutoff wavelengths
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of 10 km in each dimension (which is shown in Appendix C to be
essentially equivalent to isotropic smoothing for the case of the Parzen
smoother considered here) is

�̃�2𝑑
𝑢;𝑣(𝑘, 𝑙) = 𝑊 2

10 km(𝑘)𝑊
2
10 km(𝑙)𝑆

′ 2𝑑
𝑢;𝑣(𝑘, 𝑙)

= 𝛿𝑥 𝛿𝑦 𝜎′ 2𝑢;𝑣 𝑊
2
10 km(𝑘)𝑊

2
10 km(𝑙), (I.39a)

where 𝑊 2
10 km(𝑘) and 𝑊 2

10 km(𝑙) are the squared values of the filter trans-
fer functions of smoothers with half-power filter cutoff wavelengths
of 10 km in the 𝑥 and 𝑦 dimensions, respectively. For the case of the
Parzen smoother used in this study, the filter transfer function in the
𝑥 dimension with a half-power filter cutoff wavelength of 10 km is
given by (A.11) in Appendix A with a span of 𝐿4 = 9.10 km. The
filter transfer function for Parzen smoothing in the 𝑦 dimension is the
same, except with wavenumber 𝑘 replaced with 𝑙. The tilde on the left
side of (I.39a) is intended as a reminder that isotropic 2-dimensional
smoothing with a half-power filter cutoff wavelength of 10 km has been
applied to unsmoothed errors of the simulated raw measurements on
the 0.5 km × 0.5 km grid.

With the 10-km smoothing applied to the raw WaCM data in pre-
processing, the smoothed velocity component estimates could be sub-
sampled onto a 5 km × 5 km grid with minimal aliasing that arises from
the imperfect gradual rolloff of the filter transfer function through the
half-power filter cutoff wavenumber of 0.1 cpkm (which is equivalent
to the Nyquist wavenumber for 𝛥𝑥 = 𝛥𝑦 = 5 km). For the reasons
discussed above, we assume that the raw data after 10-km smoothing
are subsampled onto a 𝛥𝑥×𝛥𝑦 = 1 km × 1 km grid. The 2-dimensional
wavenumber spectrum of the smoothed measurement errors on this
grid is the same as (I.39a), but is truncated at the Nyquist wavenumbers
𝑘 = (2𝛥𝑥)−1 = 0.5 cpkm and 𝑙 = (2𝛥𝑦)−1 = 0.5 cpkm that are
associated with the 1 km × 1 km grid spacing. In addition to the mo-
tivations discussed previously, the subsampling onto this 1 km × 1 km
grid eliminates essentially all aliasing by virtue of the fact that the
Nyquist wavenumbers are five times higher than the half-power filter
cutoff wavenumber of 0.1 cpkm for the 10-km smoothing applied in
the pre-processing of WaCM data.

For the 𝛥𝑥×𝛥𝑦 = 1 km × 1 km subsample grid, the grid spacings for
our simulated raw WaCM data are related to 𝛥𝑥 and 𝛥𝑦 by 𝛿𝑥 = 0.5𝛥𝑥
and 𝛿𝑦 = 0.5𝛥𝑦. And since the variances 𝜎′ 2𝑢 and 𝜎′ 2𝑣 of the errors
of these simulated raw and unsmoothed WaCM velocity component
estimates are related to the variances 𝜎2𝑢 and 𝜎2𝑣 of the errors of the
10-km smoothed velocity component estimates by 𝜎′ 2𝑢;𝑣 = 100 𝜎2𝑢;𝑣, the
spectrum (I.39a) can be written alternatively as

�̃�2𝑑
𝑢;𝑣(𝑘, 𝑙) = 25𝛥𝑥𝛥𝑦 𝜎2𝑢;𝑣 𝑊

2
10 km(𝑘)𝑊

2
10 km(𝑙). (I.39b)

This expresses the 2-dimensional spectrum of the velocity component
errors in terms of the grid spacing and variance after the 10-km
smoothing and the 𝛥𝑥×𝛥𝑦 = 1 km × 1 km subsampling that are applied
in our simulated pre-processing of the WaCM data.

The 1-sided, 1-dimensional alongshore spectrum of the errors of
WaCM estimates of velocity components obtained by integrating the 2-
dimensional spectrum (I.39b) over all cross-shore wavenumbers 𝑘 and
doubling the power at each alongshore wavenumber 𝑙 is

�̃�1𝑑
𝑢;𝑣(𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝑢;𝑣(𝑘, 𝑙) 𝑑𝑘

= 100𝛥𝑥𝛥𝑦 𝜎2𝑢;𝑣 𝑊
2
10 km(𝑙)∫

𝑘

0
𝑊 2

10 km(𝑘) 𝑑𝑘. (I.40a)

This expression uses the fact that 𝑊 2
10 km(𝑘) is symmetric about 𝑘 = 0.

The integral on the right side of (I.40a) is equal to (0.910 𝜆𝑐)−1 ≈ 𝜆−1𝑐
according to (D.12b). Since 𝜆𝑐 = 10 km = 10𝛥𝑥 for the smoothing
applied in the pre-processing of WaCM data, the 1-dimensional along-
shore spectrum (I.40a) of the errors of WaCM estimates of each velocity
component on a 𝛥𝑥 × 𝛥𝑦 = 1 km × 1 km grid is

�̃�1𝑑
𝑢;𝑣(𝑙) = 10𝛥𝑦 𝜎2𝑢;𝑣 𝑊

2
10 km(𝑙). (I.40b)

It should be noted that the multiplicative factors of 25, 100 and
10 in (I.39b), (I.40a) and (I.40b), respectively, are all specific to the
choices of 𝛿𝑥 = 𝛿𝑦 = 0.5 km for the footprint size of the raw data
as simulated in this study from the 𝛿𝑥 × 𝛿𝑦 = 0.5 km × 0.5 km gridded
velocity fields in the CCS model and the assumed 10-km smoothing and
𝛥𝑥 = 𝛥𝑦 = 1 km subsampling in the pre-processing of WaCM estimates
of velocity. We retain 𝛥𝑥 and 𝛥𝑦 in these equations as a reminder of
the need to keep track of units and to help facilitate adaptation of the
equations to other choices of 𝛿𝑥, 𝛿𝑦, 𝛥𝑥 and 𝛥𝑦.

For example, consider the same footprint size of 𝛿𝑥 = 𝛿𝑦 = 0.5 km
for the raw measurements but for subsampling of the 10-km smoothed
raw data onto the grid with 𝛥𝑥 = 𝛥𝑦 = 5 km on which the pre-
processed WaCM estimates of velocity components are uncorrelated.
Then 𝛿𝑥 = 0.1𝛥𝑥 and 𝛿𝑦 = 0.1𝛥𝑦 rather than 0.5𝛥𝑥 and 0.5𝛥𝑦 as in the
analysis above. The multiplicative factors in (I.39b), (I.40a) and (I.40b)
would then become 1, 4 and 2, respectively. If not for the imperfections
of the filter transfer function of the Parzen smoother, the values of
𝑊10 km(𝑘) and 𝑊10 km(𝑙) would be 1 at all wavenumbers 𝑘 < 𝑘 and
𝑙 < 𝑙 for the new Nyquist wavenumbers of 𝑘 = 𝑙 = 0.1 cpkm
associated with the 5 km × 5 km grid. The imperfections of the filter
transfer functions are nonetheless small for these ranges of 𝑘 and 𝑙. The
resulting analytical expression (I.39a) for the 2-dimensional spectra of
velocity component errors on a 𝛥𝑥 × 𝛥𝑦 = 5 km × 5 km would then
have the same form as the 2-dimensional spectrum (I.1) of errors of
pre-processed SWOT estimates of SSH. Likewise, the expressions (I.40a)
and (I.40b) for the 1-dimensional spectra of velocity component errors
would have the same form as the 1-dimensional spectrum (I.2a) of
errors of SWOT estimates of SSH.

The 2-dimensional wavenumber spectrum of the errors of vorticity
𝜁 = 𝜕𝑣∕𝜕𝑥 − 𝜕𝑢∕𝜕𝑦 estimated from the errors of pre-processed WaCM
estimates of the two velocity components is obtained straightforwardly
from the 2-dimensional spectrum (I.39b). For centered difference esti-
mates of the derivatives on the 𝛥𝑥 × 𝛥𝑦 = 1 km × 1 km subsampling
grid assumed in the derivation of (I.39b), the 2-dimensional spectrum
of vorticity errors is

�̃�2𝑑
𝜁 (𝑘, 𝑙) = �̃�2𝑑

𝜕𝑢∕𝜕𝑦(𝑘, 𝑙) + �̃�2𝑑
𝜕𝑣∕𝜕𝑥(𝑘, 𝑙), (I.41)

where

�̃�2𝑑
𝜕𝑢∕𝜕𝑦(𝑘, 𝑙) =

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
�̃�2𝑑
𝑢 (𝑘, 𝑙) (I.42a)

�̃�2𝑑
𝜕𝑣∕𝜕𝑥(𝑘, 𝑙) =

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
�̃�2𝑑
𝑣 (𝑘, 𝑙). (I.42b)

The tildes in the above equations again signify that 10-km smoothing
has been applied in the pre-processing of WaCM data. There is no cross
spectral term in (I.41) because the errors of WaCM estimates of 𝑢 and 𝑣
have been assumed to be uncorrelated. The response functions 𝑊3𝑝𝑡(𝑘)
and 𝑊3𝑝𝑡(𝑙) of the centered difference estimates of the derivatives in
the 𝑥 and 𝑦 dimensions, respectively, are given by (I.4) and (I.6) with
𝛥𝑥 = 𝛥𝑦 = 1 km.

The 1-sided, 1-dimensional alongshore spectrum of 𝜁 errors ob-
tained from (I.41) and (I.42) is

�̃�1𝑑
𝜁 (𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝜁 (𝑘, 𝑙) 𝑑𝑘 = �̃�1𝑑

𝜕𝑢∕𝜕𝑦(𝑙) + �̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙), (I.43)

where

�̃�1𝑑
𝜕𝑢∕𝜕𝑦(𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝜕𝑢∕𝜕𝑦(𝑘, 𝑙) 𝑑𝑘 = 2 |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2

∫

𝑘

−𝑘
�̃�2𝑑
𝑢 (𝑘, 𝑙) 𝑑𝑘 (I.44a)

�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝜕𝑣∕𝜕𝑥(𝑘, 𝑙) 𝑑𝑘 = 2 ∫

𝑘

−𝑘

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
�̃�2𝑑
𝑣 (𝑘, 𝑙) 𝑑𝑘.

(I.44b)

According to (I.40a), the integral on the right side of (I.44a) with
the multiplicative factor of 2 is equal to the 1-dimensional alongshore
spectrum �̃�1𝑑

𝑢 (𝑙) of the cross-shore velocity component errors. The
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contribution (I.44a) to the 1-dimensional alongshore spectrum (I.43)
of vorticity errors is therefore

�̃�1𝑑
𝜕𝑢∕𝜕𝑦(𝑙) =

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
�̃�1𝑑
𝑢 (𝑙), (I.45a)

where �̃�1𝑑
𝑢 (𝑙) can be expressed alternatively in the form (I.40b) to get

�̃�1𝑑
𝜕𝑢∕𝜕𝑦(𝑙) = 10𝛥𝑦 𝜎2𝑢

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
𝑊 2

10 km(𝑙). (I.45b)

From (I.39b), the contribution (I.44b) to the 1-dimensional
wavenumber spectrum of vorticity errors can be written as

�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙) = 100𝛥𝑥𝛥𝑦 𝜎2𝑣 𝑊

2
10 km(𝑙)∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

10 km(𝑘) 𝑑𝑘. (I.46a)

This equation uses the fact that |

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
and 𝑊 2

10 km(𝑘) are both
symmetric about 𝑘 = 0. From (I.40b), this can be written alternatively
in terms of the 1-dimensional wavenumber spectrum of alongshore
velocity component errors,

�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙) = 10𝛥𝑥 �̃�1𝑑

𝑣 (𝑙)∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

10 km(𝑘) 𝑑𝑘. (I.46b)

The integral on the right sides of (I.46a) and (I.46b) is the same integral
encountered in (I.33b) for the case of 𝜆𝑐 = 10 km. Numerical solutions
for this integral are shown as a function of half-power filter cutoff
wavelength 𝜆𝑐 in Fig. I.1a. For 𝛥𝑥 = 𝛥𝑦 = 1 km, the integral has a
value of 0.0221 at 𝜆𝑐 = 10 km.

The analytical expressions (I.40) and (I.43), with the latter parti-
tioned as (I.45a) and (I.46a), for the 1-sided, 1-dimensional alongshore
spectra of errors of WaCM estimates of the two velocity components
and the vorticity computed from the pre-processed WaCM data are ap-
plicable to any low-pass filter with a half-power filter cutoff wavelength
of 10 km. The results based on the Parzen smoother with 𝜎𝑢 = 𝜎𝑣 =
𝜎𝑢,𝑣 = 0.354 m s−1 are shown by the solid green lines in Fig. 13c.
These theoretical spectra agree very well with the spectra shown in
Fig. 13c by the solid blue lines that were computed empirically from
the simulated WaCM error fields generated for the analysis in Sections 6
and 8–10.

I.4. Errors of smoothed WaCM estimates of velocity and vorticity

The errors of WaCM estimates of velocity and vorticity computed
from the pre-processed WaCM data (see Appendix G and Table 1 in Sec-
tion 4 and the bottom left panels of Figs. 19a and 19b) are too large for
the velocity and vorticity estimates to be useful for most applications.
It will be necessary to smooth the pre-processed WaCM data in ground-
based post-processing to reduce the effects of measurement errors. As in
Appendix I.3, we assume here that the pre-processed WaCM estimates
of velocity have been smoothed with a filter cutoff wavelength of 10 km
and subsampled from the raw measurement grid (0.5 km × 0.5 km for
the simulations in this study) onto a 𝛥𝑥 × 𝛥𝑦 = 1 km × 1 km grid.

The 2-dimensional wavenumber spectrum of WaCM estimates of
each velocity component after smoothing in each dimension with a fil-
ter cutoff wavelength of 𝜆𝑐 in ground-based post-processing is obtained
from the 2-dimensional wavenumber spectrum (I.39b) of the errors of
the pre-processed estimates of the two velocity components by

�̃�2𝑑
𝑢;𝑣(𝑘, 𝑙) = 𝑊 2

𝜆𝑐
(𝑘)𝑊 2

𝜆𝑐
(𝑙) �̃�2𝑑

𝑢;𝑣(𝑘, 𝑙)

= 25𝛥𝑥𝛥𝑦 𝜎2𝑢;𝑣 𝑊
2
10 km(𝑘)𝑊

2
10 km(𝑙)𝑊

2
𝜆𝑐
(𝑘)𝑊 2

𝜆𝑐
(𝑙). (I.47)

The subscript 𝑢; 𝑣 with the semicolon again indicates that the equation
has the same form for both velocity components, differing only in the
choice of a subscript 𝑢 or 𝑣 on both sides of (I.47). The combined
tilde and overbar signify that the spectrum on the left side of (I.47)
is based on WaCM velocity component estimates that have been 2-
dimensionally smoothed twice, first in pre-processing with a half-power
filter cutoff wavelength of 10 km in each dimension (signified as in
Appendix I.3 by the tilde) and then in ground-based post-processing

with a half-power filter cutoff wavelength of 𝜆𝑐 in each dimension
(signified by the overbar).

The 1-sided, 1-dimensional alongshore spectrum of the smoothed
velocity errors is

�̃�1𝑑
𝑢;𝑣(𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝑢;𝑣(𝑘, 𝑙) 𝑑𝑘

= 100𝛥𝑥𝛥𝑦 𝜎2𝑢;𝑣 𝑊
2
10 km(𝑙)𝑊

2
𝜆𝑐
(𝑙)∫

𝑘

0
𝑊 2

10 km(𝑘)𝑊
2
𝜆𝑐
(𝑘) 𝑑𝑘.

(I.48a)

From (I.40b), this can be written alternatively in terms of the 1-
dimensional alongshore spectrum �̃�1𝑑

𝑢;𝑣(𝑙) of pre-processed WaCM esti-
mates of the velocity components,

�̃�1𝑑
𝑢;𝑣(𝑙) = 10𝛥𝑥 �̃�1𝑑

𝑢;𝑣(𝑙)𝑊
2
𝜆𝑐
(𝑙)∫

𝑘

0
𝑊 2

10 km(𝑘)𝑊
2
𝜆𝑐
(𝑘) 𝑑𝑘. (I.48b)

When the filter cutoff wavelength 𝜆𝑐 in the ground-based post-
processing is large compared with the 10-km filter cutoff wavelength
of the smoothing applied in pre-processing of WaCM data, the filter
transfer function 𝑊10 km(𝑘) in the integrand on the right sides of (I.48a)
and (I.48b) is approximately 1 across the low-wavenumber pass band
of the filter transfer function 𝑊𝜆𝑐 (𝑘). In this case, the 10-km filtering
in the pre-processing has relatively little effect on the integral on the
right sides of (I.48a) and (I.48b). Then (I.48a), for example, reduces to
the approximate form

�̃�1𝑑
𝑢;𝑣(𝑙) ≈ 100𝛥𝑥𝛥𝑦 𝜎2𝑢;𝑣 𝑊

2
10 km(𝑙)𝑊

2
𝜆𝑐
(𝑙)∫

𝑘

0
𝑊 2

𝜆𝑐
(𝑘) 𝑑𝑘.

Substitution of (I.28) simplifies this to

�̃�1𝑑
𝑢;𝑣(𝑙) ≈

100𝛥𝑥𝛥𝑦
𝜆𝑐

𝜎2𝑢;𝑣 𝑊
2
10 km(𝑙)𝑊

2
𝜆𝑐
(𝑙). (I.49)

More generally, the 1-dimensional alongshore spectra of velocity
component errors smoothed with a half-power filter cutoff wavelength
of 𝜆𝑐 in each dimension must be computed from (I.48a) or (I.48b).
Numerical solutions for the integral on the right sides of (I.48a) and
(I.48b) are shown as a function of 𝜆𝑐 by the solid line in Fig. I.1c. The
dashed line is the value of the integral when 𝑊 2

10 km(𝑘) is replaced with
a value of 1 for all wavenumbers 𝑘 as in (I.49). The two lines converge
rapidly and the approximate solution (I.49) is accurate to better than
10% for ground-based post-processing with 𝜆𝑐 ≥ 22 km.

The 2-dimensional wavenumber spectrum of the errors of vorticity
estimated from smoothed errors of WaCM estimates of the velocity
components is obtained analogously to (I.41) and (I.42), except with
the 2-dimensional spectra (I.40) of the errors of pre-processed WaCM
estimates of the two velocity components on the right sides of (I.42a)
and (I.42b) replaced with the 2-dimensional spectra (I.47) of the two
smoothed velocity component errors,

�̃�2𝑑
𝜁 (𝑘, 𝑙) = �̃�2𝑑

𝜕𝑢∕𝜕𝑦(𝑘, 𝑙) + �̃�2𝑑
𝜕𝑣∕𝜕𝑥(𝑘, 𝑙), (I.50)

where

�̃�2𝑑
𝜕𝑢∕𝜕𝑦(𝑘, 𝑙) =

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
�̃�2𝑑
𝑢 (𝑘, 𝑙) (I.51a)

�̃�2𝑑
𝜕𝑣∕𝜕𝑥(𝑘, 𝑙) =

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
�̃�2𝑑
𝑣 (𝑘, 𝑙). (I.51b)

As in (I.47), the combined tilde and overbar signify spectra that are
based on doubly smoothed WaCM velocity component estimates.

The 1-sided, 1-dimensional alongshore spectrum of the smoothed
vorticity errors obtained from (I.50) and (I.51) is

�̃�1𝑑
𝜁 (𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝜁 (𝑘, 𝑙) 𝑑𝑘 = �̃�1𝑑

𝜕𝑢∕𝜕𝑦(𝑙) + �̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙), (I.52)

where

�̃�1𝑑
𝜕𝑢∕𝜕𝑦(𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝜕𝑢∕𝜕𝑦(𝑘, 𝑙) 𝑑𝑘 = 2 |

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2

∫

𝑘

−𝑘
�̃�2𝑑
𝑢 (𝑘, 𝑙) 𝑑𝑘 (I.53a)
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�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙) = 2∫

𝑘

−𝑘
�̃�2𝑑
𝜕𝑣∕𝜕𝑥(𝑘, 𝑙) 𝑑𝑘 = 2 ∫

𝑘

−𝑘

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
�̃�2𝑑
𝑣 (𝑘, 𝑙) 𝑑𝑘.

(I.53b)

From (I.47), the first contribution (I.53a) to the 1-dimensional
alongshore spectrum (I.52) of vorticity errors can be written as

�̃�1𝑑
𝜕𝑢∕𝜕𝑦(𝑙)

= 100𝛥𝑥𝛥𝑦 𝜎2𝑢
|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
𝑊 2

10 km(𝑙)𝑊
2
𝜆𝑐
(𝑙)∫

𝑘

0
𝑊 2

10 km(𝑘)𝑊
2
𝜆𝑐
(𝑘) 𝑑𝑘.

(I.54a)

The integral on the right side of this equation is the same as the integral
on the right sides of (I.48a) and (I.48b). Numerical solutions for this
integral are shown as a function of 𝜆𝑐 in Fig. I.1c.

With (I.48a), the spectrum (I.54a) can be expressed more compactly
in terms of the 1-dimensional alongshore spectrum �̃�1𝑑

𝑢 (𝑙) of the 𝑢
component of smoothed velocity errors,

�̃�1𝑑
𝜕𝑢∕𝜕𝑦(𝑙) =

|

|

|

𝑊3𝑝𝑡(𝑙)
|

|

|

2
�̃�1𝑑
𝑢 (𝑙). (I.54b)

This could be written in terms of the 1-dimensional spectrum �̃�1𝑑
𝑢 (𝑙)

of pre-processed WaCM estimates of the 𝑢 component of smoothed
velocity errors by substituting (I.48b) for �̃�1𝑑

𝑢 (𝑙) on the right side of
(I.54b).

A similar procedure can be followed for the second contribution
(I.53b) to the 1-dimensional alongshore spectrum (I.52) of vorticity
errors. From (I.47), the expression (I.53b) can be written as

�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙)

= 100𝛥𝑥𝛥𝑦 𝜎2𝑣 𝑊
2
10 km(𝑙)𝑊

2
𝜆𝑐
(𝑙)∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

10 km(𝑘)𝑊
2
𝜆𝑐
(𝑘) 𝑑𝑘.

(I.55a)

With (I.48a), this can be expressed in terms of the 1-dimensional
alongshore spectrum �̃�1𝑑

𝑣 (𝑙) of the 𝑣 component of smoothed velocity
errors,

�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙) = �̃�1𝑑

𝑣 (𝑙)
∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

10 km(𝑘)𝑊
2
𝜆𝑐
(𝑘) 𝑑𝑘

∫

𝑘

0
𝑊 2

10 km(𝑘)𝑊
2
𝜆𝑐
(𝑘) 𝑑𝑘

. (I.55b)

This could be written in terms of the 1-dimensional spectrum �̃�1𝑑
𝑣 (𝑙) of

pre-processed WaCM estimates of the 𝑣 component of velocity errors
by substituting (I.48b) for �̃�1𝑑

𝑣 (𝑙) on the right side of (I.55b).
As in the case of the approximate expression (I.49) for the 1-

dimensional spectrum of smoothed velocity component errors, the
expression (I.55b) can be simplified when the filter cutoff wavelength
𝜆𝑐 in the ground-based post-processing is large compared with the
10-km filter cutoff wavelength of the smoothing applied in the pre-
processing of WaCM data. Then the filter transfer function 𝑊10 km(𝑘) in
the integrands on the right sides of (I.55a) and (I.55b) is approximately
1 across the low-wavenumber pass band of the filter transfer function
𝑊𝜆𝑐 (𝑘). In this case, the 10-km filtering in the pre-processing has
relatively little effect on the integral on the right side of (I.55a) and
either of the two integrals on the right side of (I.55b). Then (I.55a), for
example, reduces to the approximate form

�̃�1𝑑
𝜕𝑣∕𝜕𝑥(𝑙) ≈ 100𝛥𝑥𝛥𝑦 𝜎2𝑣 𝑊

2
10 km(𝑙)𝑊

2
𝜆𝑐
(𝑙)∫

𝑘

0

|

|

|

𝑊3𝑝𝑡(𝑘)
|

|

|

2
𝑊 2

𝜆𝑐
(𝑘) 𝑑𝑘.

(I.56)

The integral on the right side of this equation is the same as the integral
on the right side of (I.33). Numerical solutions for this integral were
shown as a function of 𝜆𝑐 in Fig. I.1a.

More generally, the 1-dimensional alongshore spectra of vorticity
errors smoothed with a half-power filter cutoff wavelength of 𝜆𝑐 in each
dimension must be computed from (I.55). Numerical solutions for the
integral on the right side of (I.55a) and in the numerator of (I.55b) are

shown as a function of 𝜆𝑐 by the solid line in Fig. I.1d and numerical
solutions for the integral in the denominator on the right side of (I.55b)
was shown as a function of 𝜆𝑐 by the solid line in Fig. I.1c. The dashed
lines are the values of the integrals when 𝑊 2

10 km(𝑘) is replaced with a
value of 1 for all wavenumbers 𝑘 as in (I.56). The approximate solution
to the new integral in (I.55a) and the numerator of (I.55b) is accurate
to better than 10% for ground-based post-processing with 𝜆𝑐 ≥ 37 km.

The analytical expressions (I.48) and (I.52), with the latter parti-
tioned as (I.54) and (I.55), for the 1-sided, 1-dimensional alongshore
spectra of the residual errors of WaCM estimates of the two veloc-
ity components and vorticity after smoothing in ground-based post-
processing of the pre-processed WaCM data are applicable to any
low-pass filter with a half-power filter cutoff wavelength of 𝜆𝑐 . The
results based on the Parzen smoother with 𝜎𝑢 = 𝜎𝑣 = 𝜎𝑢,𝑣 = 0.354 m s−1

are shown by the solid green lines in Fig. 15 for filter cutoff wave-
lengths of 𝜆𝑐 = 20, 50 and 80 km. These theoretical spectra agree very
well with the spectra shown by the solid blue lines that were computed
empirically from the simulated WaCM error fields generated for the
analysis in Sections 6 and 8–10.

References

Arbic, B.K., Scott, R.B., Chelton, D.B., Richman, J.G., Shriver, J.F., 2012. Effects of
stencil width on surface ocean geostrophic velocity and vorticity estimation from
gridded satellite data. J. Geophys. Res. 117, C03029, http://dx.doi.org/10.1029/
2011JC007367.

Ardhuin, F., et al., 2018. Measuring currents, ice drift, and waves from space: the Sea
Surface KInematics Multiscale monitoring (SKIM) concept. Ocean Sci. 14, 337–354.
http://dx.doi.org/10.5194/os-14-337-2018.

Barnier, B., Siefried, L., Marchesiello, P., 1995. Thermal forcing for a global ocean
circulation model using a three-year climatolofy of ECMWF analyses. J. Mar. Syst.
6, 363–380.

Beckmann, A., Haidvogel, D., 1993. Numerical simulation of flow around a tall isolated
seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr. 23,
1736–1753.

Bracewell, R.N., 1978. The Fourier Transform and its Applications. McGraw-Hill Book
Co., New York, p. 444.

Capet, X., McWilliams, J.C., Molemaker, M.J., Shchepetkin, F., 2008. Mesoscale to
submesoscale transition in the California current system. Part I: Flow structure,
eddy flux and observational tests. J. Phys. Oceanogr. 38, 29–43.

Carton, J., Giese, B., 2008. A reanalysis of ocean climate using Simple Ocean Data
Assimilation (SODA). Mon. Wea. Rev. 136, 2999–3017.

Chapron, B., Collard, F., Ardhuin, F., 2005. Direct measurements of ocean surface
velocity from space: Interpretation and validation. J. Geophys. Res. 110, C07008.
http://dx.doi.org/10.1029/2004JC002809.

Chelton, D.B., Freilich, M.H., 2005. Scatterometer-based assessment of 10-m wind
analyses from the operational ECMWF and NCEP numerical weather prediction
models. Mon. Wea. Rev. 133, 409–429.

Chelton, D.B., Schlax, M.G., Samelson, R.M., 2011. Global observations of nonlin-
ear mesoscale eddies. Prog. Oceanogr. 91, 167–216. http://dx.doi.org/10.1016/j.
pocean.2011.01.002.

Cleveland, W.S., Devlin, S.J., 1988. Locally weighted regression: An approach to
regression analysis by local fitting. J. Amer. Stat. Assoc. 83, 596–610.

Da Silva, A.M., Young, C., Levitus, S., 1994. Algorithms and Procedures, 1, Atlas of
Surface Marine Data 1994, NOAA Atlas NESDIS 6. p. 74.

Dewar, W., Flierl, G., 1987. Some effects of the wind on rings. J. Phys. Oceanogr. 17,
1653–1667.

Durand, M., Fu, L.-L., Lettenmaier, D.P., Alsdorf, D.E., Rodriguez, E., Esteban-
Fernandez, D., 2010. The surface water and ocean topography mission: observing
terrestrial surface water and oceanic submesoscale eddies. Proc. IEEE 98, 766–779.

Esteban Fernandez, D., 2017. SWOT Project Mission Performance and Error Budget. Jet
Propulsion Laboratory Document D-79084 Revision a, April 7. p. 83.

Flierl, G.R., 1988. On the instability of geostrophic vorticies. J. Fluid Mech. 197,
349–388.

Fu, L.-L., Chelton, D.B., Le Traon, P.-Y., Morrow, R., 2010. Eddy dynamics from satellite
altimetry: progress and challenges. Oceanog. 23, 14–25.

Fu, L.-L., Ferrari, R., 2008. Observing oceanic submesoscale processes from space. Eos
89, 488–489.

Fu, L.-L., Rodriguez, E., 2004. High-resolution measurement of ocean surface topog-
raphy by radar interferometry for oceanographic and geophysical applications. In:
Sparks, R.S.J., Hawkesworth, C.J. (Eds.), The State of the Planet: Frontiers and
Challenges in Geophysics. In: Geophys. Monogr. Ser., 150, AGU, Washington, DC,
pp. 209–224.

Fu, L.-L., Ubelmann, C., 2014. On the transition from profile altimeter to swath
altimeter for observing global ocean surface topography. J. Atmos. Oceanic Technol.
31, 560–568.

349

http://dx.doi.org/10.1029/2011JC007367
http://dx.doi.org/10.1029/2011JC007367
http://dx.doi.org/10.1029/2011JC007367
http://dx.doi.org/10.5194/os-14-337-2018
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb3
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb3
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb3
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb3
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb3
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb4
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb4
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb4
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb4
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb4
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb5
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb5
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb5
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb6
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb6
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb6
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb6
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb6
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb7
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb7
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb7
http://dx.doi.org/10.1029/2004JC002809
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb9
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb9
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb9
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb9
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb9
http://dx.doi.org/10.1016/j.pocean.2011.01.002
http://dx.doi.org/10.1016/j.pocean.2011.01.002
http://dx.doi.org/10.1016/j.pocean.2011.01.002
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb11
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb11
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb11
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb12
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb12
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb12
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb13
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb13
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb13
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb14
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb14
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb14
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb14
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb14
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb15
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb15
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb15
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb16
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb16
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb16
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb17
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb17
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb17
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb18
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb18
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb18
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb19
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb20
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb20
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb20
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb20
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb20


D.B. Chelton, M.G. Schlax, R.M. Samelson et al. Progress in Oceanography 173 (2019) 256–350

Gaube, P., Chelton, D.B., Samelson, R.M., Schlax, M.G., O’Neill, L.W., 2015. Satellite
observations of mesoscale eddy-induced ekman pumping. J. Phys. Oceanogr. 45,
104–132.

Gaultier, L., Ubelmann, C., Fu, L.-L., 2016. The challenge of using future SWOT data
for oceanic field reconstructions. J. Atmos. Oceanic Technol. 33, 119–126.

Gaultier, L., Ubelmann, C., Fu, L.-L., 2017. SWOT Simulator Documentation. Jet
Propulsion Laboratory, Release 2.3.0, March 15. p. 44.

Gula, J., Molemaker, M.J., McWilliams, J.C., 2015. Gulf stream dynamics along the
southeastern U.S. seaboard. J. Phys. Oceanogr. 45, 690–715.

Harris, F.J., 1978. On the use of windows for harmonic analysis with the discrete
fourier transform. Proc. IEEE 66, 51–83.

Held, I.M., Pierrehumbert, R.T., Garner, S.T., Swanson, K.L., 1995. Surface
quasi-geostrophic dynamics. J. Fluid Mech. 282, 1–20.

Klein, P., Lapeyre, G., 2009. The ocean vertical pump induced by mesoscale and
submesoscale turbulence. Ann. Rev. Mar. Sci. 1, 351–375.

Kloosterziel, R.C., Carnevale, G.F., Orlandi, P., 2007. Inertial instability in rotating and
stratified fluids: barotropic vortices. J. Fluid Mech. 583, 379–412.

Kloosterziel, R.C., van Heijst, G.J.F., 1991. An experimental study of unstable barotropic
vortices in a rotating fluid. J. Fluid Mech. 223, 1–24.

Le Traon, P.-Y., Klein, P., Lien Hua, B., Dibarboure, G., 2008. Do altimeter wavenumber
spectra agree with the interior or surface quasigeostrophic theory?. J. Phys.
Oceanogr. 38, 1137–1142.

Lee, T., Hakkinen, S., Kelly, K., Qiu, B., Bonekamp, H., Lindstrom, E.J., 2010. Satellite
observations of ocean circulation changes associated with climate variability.
Oceanog. 23, 70–81.

Lévy, M., Klein, P., Treguier, A.-M., 2001. Impact of sub-mesoscale physics on
production and subduction of phytoplankton in an oligotrophic regime. J. Mar.
Res. 59, 535–565.

Mahadevan, A., Thomas, L.N., Tandon, A., 2008. Comment on Eddy/wind interactions
stimulate extraordinary mid-ocean plankton blooms. Science 320 (448).

Marchesiello, P., McWilliams, J., Shchepetkin, A., 2003. Equilibrium structure and
dynamics of the California current system. J. Phys. Oceanogr. 33, 753–783.

Martin, A.P., Richards, K.J., 2001. Mechanisms for vertical nutrient transport within a
North Atlantic mesoscale eddy. Deep-Sea Res. II 48, 757–773.

Mason, E., Molemaker, J., Shchepetkin, A., Colas, F., McWilliams, J.C., Sangrà, P.,
2010. Procedures for offline grid nesting in regional ocean models. Ocean Modell.
35, 1–15.

McGillicuddy, D., Ledwell, J., Anderson, L., 2008. Response to comments on Eddy/wind
interactions stimulate extraordinary mid-ocean plankton blooms. Science 320 (488).

McGillicuddy, D., et al., 2007. Eddy/wind interactions stimulate extraordinary
mid-ocean plankton blooms. Science 316, 1021–1026.

Molemaker, M.J., McWilliams, J.C., Dewar, W.K., 2015. Submesoscale instability
and generation of mesoscale anticyclones near a separation of the California
undercurrent. J. Phys. Oceanogr. 45, 613–629.

NASEM (National Academies of Sciences, Engineering, and Medicine), 2018. Thriving
on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The
National Academies Press, Washington, DC, p. 700. http://dx.doi.org/10.17226/
24938.

Pascual, A., Faugere, Y., Larnicol, G., Le Traon, P.-Y., 2006. Improved description of
the ocean mesoscale variability by combining four satellite altimeters. Geophys.
Res. Lett. 33, http://dx.doi.org/10.1029/2005GL024633.

Penven, P., Debreu, L., Marchesiello, P., McWilliams, J., 2006. Applications of the
ROMS embedding procedure for the central California upwelling system. Ocean
Modell. 12, 157–187.

Peral, E., 2016. KaRIn: Ka-Band Radar Interferometer Onboard Processor (OBP) Algo-
rithm Theoretical Basis Document (ATBD). Jet Propulsion Laboratory Document
D-79130, Initial Release, June 27, 2016. p. 72.

Pujol, M.-I., Dibarboure, G., Le Traon, P.-Y., Klein, P., 2012. Using high-resolution
altimetry to observe mesoscale signals. J. Atmos. Oceanic Technol. 29, 1409–1416.

Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., Picot, N.,
2016. DUACS DT2014. the new multi-mission altimeter data set reprocessed over
20 years. Ocean Sci. 12, 1067–1090.

Qiu, B., Chen, S., Klein, P., Ubelmann, C., Fu, L.-L., Sasaki, H., 2016. Reconstructabil-
ity of three-dimensional upper-ocean circulation from SWOT sea surface height
measurements. J. Phys. Oceanogr. 46, 947–963.

Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.-L., Menemenlis, D., 2018.
Seasonality in transition scale from balanced to unblanced motions in the world
ocean. J. Phys. Oceanogr. 48, 591–605.

Rayleigh, L., 1916. On the dynamics of revolving fluids. Proc. Roy. Soc. Lond. A 93,
148–154.

Risien, C.R., Chelton, D.B., 2008. A global climatology of surface wind and wind stress
fields from eight years of quikSCAT scatterometer data. J. Phys. Oceanogr. 38,
2379–2413.

Rocha, C.B., Chereskin, T.K., Gille, S.T., Menemenlis, D., 2016. Mesoscale to
submesoscale wavenumber spectra in drake passage. J. Phys. Oceanogr. 46,
601–620.

Rodríguez, E., 2018. On the optimal design of Doppler scatterometers. Remote Sens.
10, https://www.mdpi.com/2072-4292/10/11/1765.

Rodríguez, E., Callahan, P.S., 2016. Surface Water and Ocean Topography Mis-
sion (SWOT) Project Science Requirements Document. Jet Propulsion Laboratory
Document D-61923, Rev a, March 18, 2016. p. 28.

Rodríguez, E., Wineteer, A., Perkovic-Martin, D., Gál, T., Stiles, B.W., Niamsuwan, N.,
Rodriguez Monje, R., 2018. Estimating ocean vector winds and currents using a
ka-band pencil-beam doppler scatterometer. Rem. Sens. 10 (576).

Savage, A.C., Arbic, B.K., Alford, M.H., Ansong, J.K., Farrar, J.T., Menemenlis, D.,
O’Rourke, A.K., Richman, J.G., Shriver, J.F., Voet, G., Wallcraft, A.J., Zamudio, L.,
2017. Spectral decomposition of internal gravity wave sea surface height in global
models. J. Geophys. Res. 122, 7803–7821.

Schlax, M.G., Chelton, D.B., 1992. Frequency domain diagnostics for linear smoothers.
J. Amer. Stat. Assoc. 87, 1070–1081.

Shchepetkin, A.F., McWilliams, J.C., 2005. The Regional Oceanic Modeling System
(ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic
model. Ocean Modell. 9, 347–404.

Shchepetkin, A.F., McWilliams, J.C., 2009. Correction and commentary for ocean
forecasting in terrain-following coordinates: Formulation and skill assessment of
the regional ocean modeling system by Haidvogel et al.. J. Comput. Phys. 227,
3595–3624, J. Comput. Phys. 228, 8985–9000.

Smith, W., Sandwell, D., 1997. Global seafloor topography from satellite altimetry and
ship depth soundings. Science 277, 1957–1962.

Stern, M., 1965. Interaction of a uniform wind stress with a geostrophic vortex.
Deep-Sea Res. 12, 355–367.

Ubelmann, C., Klein, P., Fu, L.-L., 2015. Dynamic interpolation of sea surface height
and potential applications for future high-resolution altimetry mapping. J. Atmos.
Oceanic Technol. 32, 177–184.

Willis, J.K., Chambers, D.P., Kuo, C.-Y., Shum, C.K., 2010. Global sea level rise. recent
progress and challenges for the decades to come. Oceanog. 23, 26–35.

Xu, Y., Fu, L.-L., 2012. The effects of altimeter instrument noise on the estimation of
the wavenumber spectrum of sea surface height. J. Phys. Oceanogr. 42, 2229–2233.

350

http://refhub.elsevier.com/S0079-6611(17)30361-0/sb21
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb21
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb21
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb21
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb21
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb22
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb22
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb22
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb23
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb23
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb23
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb24
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb24
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb24
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb25
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb25
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb25
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb26
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb26
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb26
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb27
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb27
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb27
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb28
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb28
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb28
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb29
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb29
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb29
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb30
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb30
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb30
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb30
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb30
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb31
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb31
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb31
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb31
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb31
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb32
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb32
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb32
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb32
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb32
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb33
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb33
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb33
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb34
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb34
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb34
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb35
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb35
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb35
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb36
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb36
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb36
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb36
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb36
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb37
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb37
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb37
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb38
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb38
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb38
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb39
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb39
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb39
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb39
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb39
http://dx.doi.org/10.17226/24938
http://dx.doi.org/10.17226/24938
http://dx.doi.org/10.17226/24938
http://dx.doi.org/10.1029/2005GL024633
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb42
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb42
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb42
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb42
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb42
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb43
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb43
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb43
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb43
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb43
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb44
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb44
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb44
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb45
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb45
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb45
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb45
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb45
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb46
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb46
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb46
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb46
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb46
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb47
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb47
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb47
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb47
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb47
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb48
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb48
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb48
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb49
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb49
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb49
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb49
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb49
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb50
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb50
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb50
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb50
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb50
https://www.mdpi.com/2072-4292/10/11/1765
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb52
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb52
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb52
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb52
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb52
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb53
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb53
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb53
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb53
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb53
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb54
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb55
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb55
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb55
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb56
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb56
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb56
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb56
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb56
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb57
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb58
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb58
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb58
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb59
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb59
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb59
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb60
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb60
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb60
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb60
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb60
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb61
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb61
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb61
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb62
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb62
http://refhub.elsevier.com/S0079-6611(17)30361-0/sb62

	Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity
	Introduction
	The CCS model
	The error characteristics of measured and derived variables from SWOT and WaCM data
	SWOT errors
	WaCM errors
	Error reductions from smoothing in ground-based post-processing
	Wavenumber spectral characteristics of the errors
	Error spectra from pre-processed SWOT data
	Error spectra from post-processed SWOT and WaCM data


	A strategy for assessing resolution capability from noisy satellite observations
	The effects of measurement errors on estimates of instantaneous velocity and vorticity fields
	WaCM
	Discussion of the effects of measurement errors alone

	SWOT and WaCM sampling characteristics
	The effects of combined measurement and sampling errors on estimates of time-averaged velocity and vorticity fields
	SWOT Estimates of Space–Time Smoothed Sea Surface Height
	The resolution capabilities of time-averaged surface velocity fields

	Discussion
	Space–Time Smoothed SSH Fields from SWOT Data
	Summary and conclusions
	Space–Time Smoothed Estimates of Velocity and Vorticity
	Visual assessments of the WaCM resolution capabilities

	Acknowledgments
	Appendices 
	Appendix A The Parzen Smoother
	Appendix B Footprint Size and Pre-Processing of SWOT and WaCM Data
	SWOT pre-processing
	WaCM pre-processing

	Appendix D Error Reduction by Smoothing
	Appendix E One-dimensional wavenumber spectra of 2-dimen-sionally smoothed uncorrelated error fields
	Appendix F The Standard Deviation of Uncorrelated Errors in SWOT Estimates of SSH
	Appendix G The Standard Deviations of the Errors of SWOT and WaCM Estimates of Derivative Quantities
	Geostrophically computed SWOT estimates of velocity and vorticity with 1 km footprint
	WaCM estimates of vorticity with 5 km footprint
	Geostrophically computed SWOT estimates of velocity and vorticity with 5 km footprint

	Appendix H The Filter Transfer Functions for Smoothed finite Difference Estimates of Derivatives
	Appendix I The Wavenumber Spectral Characteristics of the Errors of SWOT and WaCM Estimates of Velocity and Vorticity
	Errors of SSH and geostrophically computed velocity and vorticity from unsmoothed SWOT data
	Errors of SSH and geostrophically computed velocity and vorticity from smoothed SWOT data
	Errors of pre-processed WaCM estimates of velocity and vorticity
	Errors of smoothed WaCM estimates of velocity and vorticity

	References


