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Abstract—Taking into account the coupling of the ocean with the atmosphere is essential to
properly describe vortex dynamics in the ocean. The forcing of a circular eddy with the relative
wind stress curl leads to an Ekman pumping with non zero area integral. This in turn creates a
source or a sink in the eddy. We revisit the two point vortex-source interaction, now coupled with
an unsteady wind, leading to a time-varying circulation and source strength. Firstly, we recover
the various fixed points of the two vortex-source system, and we calculate their stability. Then
we show the effect of a weak amplitude, sub-harmonic, or harmonic time variation of the wind,
leading to a similar variation of the circulation and the source strength of the vortex-sources.
We use a multiple time scale expansion of the variables to calculate the long time variation
of these vortex trajectories around neutral fixed points. We study the amplitude equation and
obtain its solution. We compute numerically the unstable evolution of the vortex-sources when
the source and circulation have a finite periodic variation. We also assess the influence of this
time variation on the dispersion of a passive tracer near these vortex-sources.
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DOI: 10.0000/S1560354700000012
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INTRODUCTION

Vortices are essential features in ocean dynamics [1, 2]. They are ubiquitous at least at the ocean
surface [3] and they contribute substantially to the meridional heat and momentum transfer. Large
oceanic vortices have a moderate Rossby number (the ratio between the Coriolis parameter and
the inertial accelerations) and a finite Burger number (which measures the relative influences
of global rotation and of fluid stratification). Such vortices have been accurately studied using
the quasi-geostrophic (QG) model. In particular, the stability of isolated GQ-vortices, and QG-
vortex interactions have been investigated, see [4–12]. The simplest vortex interaction occurs
between pointwise structures. Point vortex interaction has also been the subject of many studies,
investigating in particular the onset of Hamiltonian chaos [13–19]).

Recent studies of oceanic vortices have shown the importance of taking into account the oceanic
flow in the atmospheric forcing terms for a proper evaluation of the strength and durability of these
vortices [20]. Also, the Gulf Stream latitude of detachment from the coast and its eastward extent,
have been proved sensitive to a wind forcing properly taking into account the presence of vortices
[21].

In the present study, we explore the consequence of taking into account the relative wind stress
on a vortex. We show that a source/sink flow component appears in the vortex flow. We analyse the
interaction of two identical point vortex-sources (or vortex-sinks) in an external deformation flow
mimicking the influence of neighboring vortices. The motion of point-vortex sources has already
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been addressed in previous studies [22, 23]. The first paper lists the integral invariants of the
problem and the cases of integrability of the equations. It then describes the motion of two point
vortex-sources. The second paper lists the fixed points of two vortex-sources in a deformation flow
and briefly addresses the case of a time varying deformation flow.

In section 1, we complement these studies by considering that, due to the interaction of the
wind with the vortex-sources, both the source strength and the vortex circulation vary periodically
in time. In section 2, we look at the dynamical system and compute the equilibrium points and
there stability. In section 3, we follow the method of [14], a multiple time expansion, to obtain an
amplitude equation for the slow time variation of the position of each vortex source and we study
this amplitude equation with respect to this time variation of the vortex source and circulation.
Finally, we model numerically the evolution of the two point vortex-sources and of passive particles
moving around them in section 4. Conclusions, perspectives and physical interpretations are finally
provided in a last section.

1. MODELLING THE RELATIVE ATMOSPHERIC FORCING OF A VORTEX FLOW

1.1. Basic equations

The linearized momentum equations on the f -plane for an ocean, forced by a wind stress ~τ are :{
∂tu− f0v = (−1/ρ0) ∂xp+ (τx/ρ0)− ku
∂tv + f0u = (−1/ρ0) ∂yp+ (τy/ρ0)− kv

(1.1)

where k is a friction coefficient (a necessary loss of energy of this ocean to balance the momentum
input by the wind).

For low frequency, low Rossby number motions, we neglect the relative acceleration and replace
the pressure gradient by a geostrophic velocity.{

−f0v = −f0vg + (τx/ρ0)− ku
f0u = f0ug + (τy/ρ0)− kv.

(1.2)

Using the subscript “a” for the ageostrophic velocity ua = u− ug, we have{
−f0va + ku = (τx/ρ0)

f0ua + kv = (τy/ρ0).
(1.3)

Taking the curl of the system (1.3) we obtain

f0
~∇ · ~ua + k~z · ~∇× ~u = ~z · ~∇× ~τ/ρ0. (1.4)

Thus we see that the wind stress curl ~τ can have an influence on both the vorticity ω = ∇× u and
the velocity divergence ∇ · u (the source-sink term). In particular, if the wind has a steady or a
time-varying component, it will induce steady or time-varying velocity divergence and curl. This
source-sink effect is next explained in more details.

1.2. The relative wind stress curl

Recent work [20] has shown that, for the ocean mesoscales, and in particular for the dynamics of
oceanic vortices, the wind stress should be computed using the relative velocity of the air to the
ocean.

~τ = ρairCD|~uair − ~uocean|(~uair − ~uocean), (1.5)

– hereafter referred to as relative wind stress – rather than the total wind velocity

~τa = ρairCD|~uair|~uair (1.6)

(the absolute wind stress). In these expressions, ρair is the density of the air, CD is the drag
coefficient (about 1.5 10−3 for |~uair| = 15 m/s), ~uair is the wind velocity, and ~uocean is the velocity
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Two unsteady point vortex-sources interactions 3

of the oceanic currents.

In what follows, we estimate the difference induced by taking the relative rather than the absolute
wind stress, using a simple configuration :

• a zonal and horizontally sheared wind ~uair = (U0 − qy)~i.

• a circular vortex oceanic flow ~uocean = Υr~eθ for 0 < r < R (we neglect the vortex deformation
due to the wind, in this simple estimate), where ~eθ is the tangential vector to the circle, R is
the vortex radius and Υ (capital upsilon) is the vortex rotation rate.

From there, we can compute the relative wind stress through

~uair − ~uocean =

U0 − qy + Υr sin(θ)

−Υr cos(θ)

 = U0

1 + Υ−q
U0

y

− Υ
U0
x

 , (1.7)

so

|~uair − ~uocean| = U0

√(
1 +

Υ− q
U0

y

)2

+
Υ2

U2
0

x2. (1.8)

We next assume that qR/U0 ∼ ΥR/U0 ∼ ε (in practice on the order of 10−2). Setting

εα =
Υ− q
U0

y, εγ =
Υ

U0
x, (1.9)

we obtain via a Taylor expansion that

~τ = τ0

1 + 2εα+ ε2(α2 + γ2

2 )

−εγ − ε2αγ

 , (1.10)

where τ0 = ρairCDU
2
0 .

The wind stress curl is evaluated at orders 0, ε, ε2. The first two orders give

∇×

τ0

0

 = 0, ∇×

2εα

−εγ

 = −τ0
2q + Υ

U0
. (1.11)

The effect of the atmosphere-ocean coupling becomes apparent. In the absence of wind shear (q = 0),
the curl of τ at order ε1 would be null for an absolute wind stress.

The presence of a wind stress curl leads to an Ekman vertical velocity (Ekman pumping) :

wE =
1

ρo
∇× ~τ

f0
, (1.12)

where ρo is the seawater density.
It should be noted that, from this expression, one can compare the effect of the relative wind

stress to the effect of the Earth’s curvature on the Ekman vertical velocity. The former is

wE(air− ocean) = − ρair

ρocean
CDU0

Υ + 2q

f0
, (1.13)

while the latter is

wE(β) = −β ρair

ρocean
CD

U2
0

f2
0

. (1.14)

Using Υ ∼ q ∼ 10−5s−1 and U0 = 15 m/s, one obtains that the Ekman vertical velocity due to the
absolute wind stress is about 30% of the one due to the relative wind stress.
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1.3. Ekman pumping and point vortex sources

We next calculate the source/sink magnitude S0 associated with the Ekman vertical velocity. To
compute order of magnitude, we here assume that the source/sink term S0 and the circulation of
the vortex Γ0 are decorrelated. Assuming that the Ekman pumping is uniform over the vortex area,
we can calculate an order of magnitude for S0 = SπR2 wE .

We can also compare the radial velocity thus created vR = S0/(2πRH) to the vortex velocity
vθ = ΥR. With R = 15 km, the radial velocity is on the order of 2.25 10−3 m/s while the azimuthal
velocity is vθ = 0.15 m/s. The source/sink magnitude S0 is therefore about 1.5% that of the
circulation Γ0.

Note that such vortices are not identical to vortices in a stratified ocean with free density
interfaces. Such vortices, in a steady circular configuration, would have no vertical velocity.

We hereafer assume that the vortex-sources are point vortex-sources. This is a strong assumption
which would, in practice, suppress the effect of the wind stress curl. In fact this point-vortex
assumption means that we only study the vortex motion and not its deformation.

2. INTERACTION OF TWO POINT VORTEX SOURCES

The study of this interaction proceeds in two steps. Firstly, we consider a steady wind and so
constant circulation Γ0 and source/sink magnitude S0. Secondly, we consider a time oscillating
circulation Γ(t) and we address the vortex motion via a multiple time scale method.

2.1. Equations of motion

We consider two similar vortex-sources in the plane (see Fig. 1) on which an external deformation
flow acts. This external flow mimicks the effect of surrounding vortices or currents. This problem is
analytically tractable in particular if we assume central symmetry. Using this symmetry, we derive
the equations for only one of the two vortex-sources. Vortex-source 1 has polar coordinates (r, θ)
and by symmetry, the second vortex-source has (r, θ + π).

Vortex-source 1 is submitted to the influence of :

• vortex-source 2 :  ṙ = S0
2π(2r)

rθ̇ = Γ0
2π(2r)

(2.1)

• the external deformation flow composed of a global rotation and a strain : ṙ = rA cos(2θ)

rθ̇ = rΩ− rA sin(2θ)
(2.2)

The vortex-source motion is therefore governed by : ṙ = S0
4πr + rA cos(2θ)

θ̇ = Γ0
4πr2 + Ω−A sin(2θ)

(2.3)

All the physical parameters (S0,Γ0,Ω, A) are assumed non zero.
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Fig. 1. The two similar point vortex-sources in a deformation flow.

2.2. Equilibrium points and stability

2.2.1. Preliminaries

The equilibrium points (r0, θ0) ∈ R∗+ × [−π
4 ,

3π
4 [ satisfy :

 S0
4πr0

+ r0A cos(2θ0) = 0

Γ0

4πr2
0

+ Ω−A sin(2θ0) = 0
(2.4)

Let (r0, θ0) be an equilibrium. To determine its stability, we calculate the Jacobian matrix D(r0,θ0) u
from the velocity field :

u(r, θ) =

 S0
4πr + rA cos(2θ)

Γ0
4πr2 + Ω−A sin(2θ)

 , (2.5)

D(r0,θ0) u =

− S0

2πr2
0

−Γ0
2πr0
− 2r0Ω

−Γ0

2πr3
0

S0

2πr2
0

 . (2.6)

Its characteristic polynomial is

χ(X) = X2 − S2
0 + Γ2

0 + 4πr2
0Γ0Ω

4π2r4
0

. (2.7)
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Depending on the sign of

∆0 = S2
0 + Γ2

0 + 4πr2
0Γ0Ω, (2.8)

we have a neutral (or center) equilibrium point (if ∆0 < 0) or a saddle equilibrium point if ∆0 > 0.
Since saddle points are unstable, and since we wish to describe the long term evolution of

the weakly perturbed vortex-source system (see the following section), we only consider neutral
equilibria. A necessary condition for the existence of a center then appears :

Γ0Ω < 0. (2.9)

(if Γ0Ω > 0, the vortices diverge to infinity along the x or y axis). Hereafter, we assume that this
condition is satisfied (unless otherwise stated).

Remark 1. Considering the oceanic case, where S0 � Γ0, the condition on ∆0 for the existence
of a center, becomes approximately Γ2

0 + 4πr2
0Γ0Ω < 0.

2.2.2. Existence of an neutral equilibrium point

Firstly, we calculate the position of the equilibria from the system (2.4) : r2
0A cos(2θ0) = −S0

4π

r2
0A sin(2θ0) = Γ0

4π + r2
0Ω

(2.10)

implicates tan(2θ0) = −Γ0+4πr2
0Ω

S0
. Because the function

]
−π

2 ,
π
2

[
−→ R, x 7→ tan(2x) is not injec-

tive, we cannot decide analytically (through this research of necessary conditions method) if we
have

θ0 = −1

2
arctan

[
Γ0 + 4πr2

0Ω

S0

]
, (2.11)

or

θ0 = −1

2
arctan

[
Γ0 + 4πr2

0Ω

S0

]
+
π

2
. (2.12)

But this is not a numerical difficulty since the equilibrium points are clear in a streamfunction plot.
Squaring and summing the two equations in (2.10) gives a biquadratic equation in r0

r4
0(Ω2 −A2) +

Γ0Ω

2π
r2

0 +
S2

0 + Γ2
0

16π2
= 0. (2.13)

From this equation, several equilibria can be found (they are detailed in Appendix A). The only
equilibrium point which is a center is determined by :

r0 =

√
−Γ0Ω +

√
∆′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 − Ω
√

∆′

S0 (Ω2 −A2)

](
+
π

2

)
, (2.14)

where ∆′ = A2
(
S2

0 + Γ2
0

)
− S2

0Ω2 = S2
0

(
A2 − Ω2

)
+A2Γ2

0 and where the additional +π
2 depends on

the sign of S0. This is valid under the conditions

A2 < Ω2 < A2

(
1 +

Γ2
0

S2
0

)
and Γ0Ω < 0. (2.15)

Remark 2. These conditions do not depend on the sign of S0. This will allow us to choose S0 as
a source or a sink with the same intensity.
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Two unsteady point vortex-sources interactions 7

Γ0 = −0.5, S0 = 0.01,Ω = 1, A = 0.8 Γ0 = −0.5, S0 = −0.1,Ω = 1, A = 1.5

Γ0 = −0.5, S0 = −0.3,Ω = 8.5, A = 1.5 Γ0 = 0.5, S0 = −0.3,Ω = 8.5, A = 1.5

Fig. 2. Vortex-source trajectories for different sets of physical parameter values. Neutral equilibrium points
(centers) appear only in the configuration where the conditions (2.15) are fulfilled (see upper left panel). The
upper right panel shows a case with a strong strain field; the lower two cases have fast global rotation with
either like-signed or opposite-signed circulation and source intensity.

The various equilibria and their nature depending on the four physical parameters are shown in
Fig. 2. This figure shows the presence of an attractive or of a repulsive center at the origin of
the plane when the source flow is strong (this equilibrium will not be considered further because
it corresponds to the final position of the two vortex-sources after a merging event). Two saddle
points exist when the source flow is weak and when the strain flow is strong. Finally, two centers
appear for weak external flow and weak source intensity, and when conditions (2.15) are satisfied.

Remark 3. With Γ0 < 0, S0 < 0, Ω > A > 0, the oceanographic limit |S0| � |Γ0| leads to the

following approximation for the center position: θ0 ≈ π/4, r0 ≈
√
−Γ0/[4π(Ω−A)]. Note that

though S0 is not infinitesimal in Fig. 2, the orientation of the centers correspond to this solution
in the upper left case.

3. VORTEX MOTION WITH UNSTEADY CIRCULATION AND SOURCE-SINK
MAGNITUDE

This section is devoted to the motion of a source-sink pair with a periodic circulation and source
magnitude, due to the effect of an equally periodic wind stress. This wind stress is assumed to have
a dominant steady component and a weak periodic component. In this section, we first address the

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 0000
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case of a sub-harmonic time variation of Γ and of S with respect to the period of rotation of a
vortex-source around the neutral equilibrium point.

3.1. Weakly nonlinear evolution of the vortex pair displaced from a center with a sub-harmonic
variation of circulation and source

We consider a center point defined by Eq. (2.14) that we slightly perturb from its equilibrium
position. Computed from Eq. (2.7), the natural pulsation of the motion around this center is

ω0 =

√
−
[
S2

0 + Γ2
0 + 4πr2

0Γ0Ω
]

2πr2
0

. (3.1)

3.1.1. Multiple time scale development

In this subsection, we assume that the wind stress leads to a sub-harmonic variation of system (2.3)
with circulation and source-sink magnitude :Γ(t) = Γ0

(
1 + ε2 δ cos (2ω0t)

)
S(t) = S0

(
1 + ε2 δ cos (2ω0t)

) (3.2)

The algebra for this sub-harmonic case is detailed here and in Appendix B. To simplify notations,
we introduce the constants


a = S0

2πr2
0

= −2A cos(2θ0)

b = 2
(

Ω + Γ0

4πr2
0

)
= 2A sin(2θ0)

c = Γ0

2πr2
0

(3.3)

such that a2 + bc = −ω2
0.

Remark 4. For an oceanic point vortex-source, |S0| ∼ 1.5%|Γ0| so a� b and a� c. Although
this is not done here, we could use this to make approximations in the following computations. In
the Appendix B, we can see that the quotient rates a/b and a/c appear frequently.

The equation of motion is expanded at higher order in ε than in the previous section. Close to
(r0, θ0), we expand in ε the time t = t0 + εt1 + ε2t2 + ε3t3 and the dynamical variables :r = r0 + εr1 + ε2r2 + ε3r3

θ = θ0 + εθ1 + ε2θ2 + ε3θ3

(3.4)

Once substituted in the equation of motion (2.3) we obtain :

• Equations for r :

∂tr = ε (∂t0r1) + ε2 (∂t0r2 + ∂t1r1) + ε3 (∂t0r3 + ∂t1r2 + ∂t2r1)

=
S0

4πr0
+Ar0 cos(2θ0)︸ ︷︷ ︸

=0

+ε [−ar1 − b (r0θ1)] (3.5)

+ ε2

[
−ar2 − b (r0θ2) +

a δ r0

2
cos(2ω0t0) +

a

2r0
r2

1 +
a

r0
(r0θ1)2 − b

r0
r1 (r0θ1)

]
(3.6)

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 0000
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+ ε3

[
−ar3 − b (r0θ3) +

a

r0
r1r2 −

ar3
1

2r2
0

− a δ

2
r1 cos(2ω0t0)− a δ r0ω0t1 sin(2ω0t0)

(3.7)

− b

r0
(r2 (r0θ1) + r1 (r0θ2)) +

a

r2
0

r1 (r0θ1)2 +
2a

r0
(r0θ1) (r0θ2) +

2b

3r2
0

(r0θ1)3

]
• Equations for θ :

∂t (r0θ) = ε [∂t0 (r0θ1)] + ε2 [∂t0 (r0θ2) + ∂t1 (r0θ1)]

=
Γ0

4πr0
+ r0Ω−Ar0 sin(2θ0)︸ ︷︷ ︸

=0

+ε [−cr1 + a (r0θ1)] (3.8)

+ ε2

[
−cr2 + a (r0θ2) +

c δ r0

2
cos(2ω0t0) +

3c

2r0
r2

1 +
b

r0
(r0θ1)2

]
(3.9)

+ ε3

[
−cr3 + a (r0θ3)− c δ r1 cos(2ω0t0) +

3c

r0
r1r2 +

2b

r0
(r0θ1)(r0θ2)

−2c

r2
0

r3
1 −

2a

3r2
0

(r0θ1)3 − c δ r0ω0t1 sin (2ω0t0)

]
(3.10)

By gathering terms at each order we obtain :

At order ε1 As expected, we recover from Eqs. (3.5) and (3.8) the unforced harmonic oscillator
(the forcing appears only at order ε2). ∂t0r1 = −ar1 − b(r0θ1)

∂t0 (r0θ1) = −cr1 + a(r0θ1)
(3.11)

with solution

r1 = C1,1 (t2, t3) eiω0t0 +C1,1(t2, t3) e−iω0t0 . (3.12)

Hereafter, the second term is denoted c. c for “complex conjugate”.

r0θ1 = D1,1(t2, t3) eiω0t0 + c. c, (3.13)

with

D1,1(t2, t3) = µ1C1,1(t2, t3), (3.14)

where µ1 = −a+iω0
b .

At order ε2 Equations (3.6) and (3.9) contain nonlinear terms. The absence of linear growth
of the solution leads to ∂t1C1,1 = ∂t1r1 = 0 :{

∂t0r2 = −ar2 − b(r0θ2) + f2(t0, t1, t2, t3)

∂t0 (r0θ2) = −cr2 + a(r0θ2) + g2(t0, t1, t2, t3)
(3.15)

with f2 and g2 are two functions defined by :{
f2(t0, t1, t2, t3) = a δ r0

2 cos(2ω0t0) + a
2r0
r2

1 + a
r0

(r0θ1)2 − b
r0
r1 (r0θ1)

g2(t0, t1, t2, t3) = c δ r0
2 cos(2ω0t0) + 3c

2r0
r2

1 + b
r0

(r0θ1)2
(3.16)

This leads to the solution : r2 = C2,0|C1,1|2 + C2,1 eiω0t0 + c. c +
(
C2,2,1 + C2,2,2C

2
1,1

)
e2iω0t0 + c. c

(r0θ2) = D2,0|C1,1|2 +D2,1 eiω0t0 + c. c +
(
D2,2,1 +D2,2,2C

2
1,1

)
e2iω0t0 + c. c

(3.17)
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where C2,0, C2,2,1, C2,2,2, D2,0, D2,2,1, D2,2,2 are complex constants. Their values are computed
and details are given in Appendix B.

At order ε3 Equations (3.7) and (3.10) lead to the following system of equations :{
∂t0r3 = −ar3 − b(r0θ3) + f3(t0, t1, t2, t3)

∂t0(r0θ3) = −cr3 + a(r0θ3) + g3(t0, t1, t2, t3)
(3.18)

where f3 and g3 are the functions :



f3 = −∂t2r1 + ar1r2
r0
− ar3

1

2r2
0
− a δ r1 cos(2ω0t0)

2 − b(r2(r0θ1)+r1(r0θ2))
r0

+ ar1(r0θ1)2

r2
0

+2a(r0θ1)(r0θ2)
r0

+ 2b(r0θ1)3

3r2
0
− a δ r0ω0t1 sin(2ω0t0)

g3 = −∂t2(r0θ1) + 3cr1r2
r0
− 2cr3

1

r2
0
− c δ r1 cos(2ω0t0)− 2a(r0θ1)3

3r2
0

+ 2b(r0θ1)(r0θ2)
r0

−c δ ω0t1 sin(2ω0t0)

(3.19)

This yields (see Appendix B) a differential equation on C1,1(t2), called the amplitude equation. This
equation governs the evolution of the amplitude of a perturbation from the vortex-source around
the neutral equilibrium point :

∂t2C1,1 = (V + iVI) δ C1,1 + (VII + iVIII) |C1,1|2C1,1, (3.20)

where V, VI, VII, VIII are real constants computed in Appendix B. For Γ0 = −0.5, S0 =
±0.01,Ω = 1 and A = 0.8 (two sets of parameters respecting conditions (2.15), corresponding to
the upper left case of Fig. 2, that we generically use in further numerical applications) we have
V ' ∓3.00 · 10−3, VI ' 1.33 · 10−1, VII ' ±3.77 · 10−2 and VIII ' 3.35 · 10−1.

3.1.2. Study of the amplitude equation

To study the slow-time variation of C1,1, we set C1,1 = u eiβ or C1,1 = X + iY such that ∂t2C1,1 =

(∂t2u+ iu∂t2β) eiβ = ∂t2X + i∂t2Y (the polar form is of interest for determine the equilibria; the
Cartesian form is simpler to analyse the stability of these equilibria). Using the polar form and
separating the real and imaginary parts yields{

∂t2u cosβ − u∂t2β sinβ = u
[(
δ V + u2VII

)
cosβ +

(
δ VI + u2VIII

)
sinβ

]
∂t2u sinβ + u∂t2β cosβ = u

[(
δ VI + u2VIII

)
cosβ +

(
− δ V + u2VII

)
sinβ

] (3.21)

equivalent to :  ∂t2u

u∂t2β

 = u δ

 cos(2β) sin(2β)

− sin(2β) cos(2β)

 V

VI

+ u3

 VII

VIII

 . (3.22)

The equilibria u0 eiβ0 of this amplitude equation (see Fig. 3) are, from Eq. (3.22) either u0 = 0 or
they are given by

δ

 cos(2β0) sin(2β0)

− sin(2β0) cos(2β0)

 V

VI

+ u2
0

 VII

VIII

 = 0, (3.23)

leading to

β0 =
1

2
arctan

[
VII VI − V VIII

VIII VI + V VII

]
± π

2
' 3.86◦ ± 90◦, (3.24)
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u0 =
√
δ

(
V2 + VI2

VII2 + VIII2

) 1
4

' 0.6293
√
δ. (3.25)

(where the numerical applications are done for our choice of physical parameters Γ0 = −0.5, S0 =
±0.01,Ω = 1 and A = 0.8).

Fig. 3. Slow time evolution of C1,1(t2) = X(t2) + iY (t2) for different values of δ. The blue dashed lines indicate
the eigen-directions of stability of the saddle equilibrium point (0, 0). Here S0 = +0.01, the other equilibrium
points are repulsive.

The stability analysis of these equilibria is easier calculated in cartesian coordinates :

{
∂t2X =

(
Vδ + VII

(
X2 + Y 2

))
X +

(
VIδ − VIII

(
X2 + Y 2

))
Y

∂t2Y =
(
VIδ + VIII

(
X2 + Y 2

))
X +

(
−Vδ + VII

(
X2 + Y 2

))
Y

(3.26)

The Jacobian matrix of this system at the equilibrium point (X0, Y0) = (u0 cos(β0), u0 sin(β0)) is

M =

 δV + VII
(
3X2

0 + Y 2
0

)
− 2X0Y0VIII δVI − VIII

(
X2

0 + 3Y 2
0

)
+ 2X0Y0VII

δVI + VIII
(
3X2

0 + Y 2
0

)
+ 2X0Y0VII −δV + VII

(
X2

0 + 3Y 2
0

)
+ 2X0Y0VIII

 . (3.27)

For the equilibrium point (0, 0), the computation of the eigenvalues is straightforward :± δ
√

V2 + VI2

and the eigen-directions of this saddle point are represented in Fig. 3. As δ grows, two attractive or
repulsive points appear and separate from each other in the plane. The nature of the centers depends
of the sign of S0. For this equilibrium, the numerical study of the real parts of the eigenvalues of the

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 0000



12 Vic Armand, Carton Xavier, Gula Jonathan

matrix M gives a linear and positive (resp. negative) value when S0 = +0.01 (resp. S0 = −0.01)
with 0.02987 (resp. −0.02987) slope with respect to δ . This corresponds to the repulsive (resp.
attractive) nature of the two equilibria.

3.2. Harmonic forcing

In this subsection, the time variation of the circulation and source-sink magnitude isΓ(t0, t2) = Γ0

(
1 + δ ε3 cos (ω0t0 + ω2t2)

)
S(t0, t2) = S0

(
1 + δ ε3 cos (ω0t0 + ω2t2)

) (3.28)

The multiple time scale expansion leads to the amplitude equation :

∂t2C1,1 = (VII + iVIII) |C1,1|2C1,1 +
(a− iω0) r0 δ

8
eiω2t2 , (3.29)

which is equivalent in polar coordinates (C1,1 = u eiβ) to : ∂t2u

u∂t2β

 = u3

 VII

VIII

− r0 δ

8

− cos(β − ω2t2) sin(β − ω2t2)

− sin(β − ω2t2) cos(β − ω2t2)

 a

ω0

 , (3.30)

or in Cartesian coordinates (C1,1 = X + iY ) to∂t2X
∂t2Y

 = (X2 + Y 2)

 VII −VIII

VIII VII

X
Y

+
r0 δ

8

cos(ω2t2) sin(ω2t2)

sin(ω2t2) − cos(ω2t2)

 a

ω0

 . (3.31)

For ω2 = 0, finding the equilibrium point (X0, Y0) = (u0 cos(β0), u0 sin(β0)) is straightforward (see
Figs. 4 and 5) and we have

X0 =
r0 δ (−aVII + ω0VIII)

8u2
0

(
VII2 + VIII2

) , Y0 =
r0 δ (aVIII + ω0VII)

8u2
0

(
VII2 + VIII2

) , (3.32)

where

u3
0 =

r0 δ

8

√
a2 + ω2

0

VII2 + VIII2 . (3.33)

Numerical evaluation gives

u0 ' 0.510 δ
1
3 , X0 ' 0.506 δ

1
3 , Y0 ' ±0.062 δ

1
3 , (3.34)

for Γ0 = −0.5, S0 = ±0.01,Ω = 1 and A = 0.8.
Analysing the stability of this equilibrium point, we find two complex conjugate eigenvalues of

the following matrix

M =

VII(3X2
0 + Y 2

0 )− 2VIIIX0Y0 −VIII(X2
0 + 3Y 2

0 ) + 2VIIX0Y0

VIII(3X2
0 + Y 2

0 ) + 2VIIX0Y0 VII(X2
0 + 3Y 2

0 ) + 2VIIIX0Y0

 , (3.35)

which are (X2
0 + Y 2

0 )
(

2VII ± i
√

3VIII2 − VII2
)

. Again, the real parts are positive or negative

depending on the sign of S0. For the set of parameters we have chosen, it is a repulsive equilibrium
point if S0 = +0.01, and it is an attractive equilibrium point if S0 = −0.01, as we can see on Figs.
4 and 5. Around those points, the oscillation pulsation is

ω̃2 = (X2
0 + Y 2

0 )
√

3VIII2 − VII2 = (r0 δ)
2
3

(
a2 + ω2

0

VII2 + VIII2

) 1
3

√
3VIII2 − VII2

4
' 0.150 δ

2
3 (3.36)
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Fig. 4. Slow time evolution of C1,1(t2) = X(t2) + iY (t2) for the harmonic forcing in the case ω2 = 0 and for
S0 = +0.01.

for the set of parameters we chose, independently of the sign of S0.
When ω2 6= 0, the behaviour of the system changes radically if we are in a source system (S0 > 0)

or a sink system (S0 < 0), as we can see on the following figures Figs. 6 and 7 :

4. IMPACT OF THE SOURCE/CIRCULATION VARIABILITY ON THE TRAJECTORIES
OF THE VORTEX-SOURCES AND OF PASSIVE TRACERS

In this section, we compute numerically the evolution of the point vortex-sources (or vortex-
sinks) and of passive tracers, advected by the total velocity field, when we vary ε. The results
are quite similar for the subharmonic or the harmonic case so we will only present the results for
the subharmonic variability.

4.1. Point vortex trajectories

Firstly we study the trajectory of the point vortex-sources before considering the evolution of
the passive tracers. Figures 8 and 9 are built using a 4th order Runge-Kutta scheme and show the
evolution of one of the two point vortex-sources (or vortex-sinks) around the center of the stationary
problem, as ε is increased. When ε = 0, we observe the rotation of the point vortex around the
neutral equilibrium (the center). When increasing slightly ε, the vortex spirals outwards from
its initial position. This is another illustration of the result previously shown (in Fig. 3) : as ε is
increased, the neutral point evolves into two repulsive centers. The slow time evolution is an increase
of the modulus of C11. Still, our analytical model holds only for weakly nonlinear evolutions and for
small ε. The point vortex-source evolution for finite values of ε can only be described numerically.
In particular, for ε = 0.5, vortex-sinks leave the vicinity of the neutral point to drift towards the
plane center. For large ε (ε ≥ 0.4), the point vortex trajectories intersect and the dynamical system
becomes irregular. Furthermore, these trajectories are noticeably different for a vortex-source and
for a vortex-sink. In the latter case, the trajectory spirals around the plane center.
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Fig. 5. Slow time evolution of C1,1(t2) = X(t2) + iY (t2) for the harmonic forcing in the case ω2 = 0 and for
S0 = −0.01.

4.2. Passive tracer trajectories

After determining the vortex-source trajectories, we obtain those of passive tracers using also a
4th order Runge Kutta scheme. As a first indication for the possible trajectories of a passive tracer
embedded in the time-varying flow, we compute the streamlines of the total flow, for vortex sources
at the steady neutral points in Fig. 10. This figure helps position tracers initially. In particular,
we see that the topology of the flow is comprised by 6 regions, five of them being compact and
symmetric around the plane center, and the external trajectories circling these five regions. These
regions enclose five centers and four hyperbolic (saddle) points.

Remark 5. The evolution of a passive tracer (in blue in Figs. 11 and 12) is not that of a vortex-
source. The tracer is advected by the two vortex sources simultaneously.

Using Fig. 10, we place passive tracers either near the plane center, or near a neutral point, or in the
external region, far away from the plane center, see Figs. 11 and 12. In these figures, the evolution
of point vortex-source 1 is plotted in black; this vortex lies initially at the neutral point (which is
no more an equilibrium point for ε > 0). For ε = 0, the tracer follows a closed curve around the
plane center. For the point-vortex source, we can clearly see that the tracers trajectories move out
of the closed regions indicated by Fig. 10 when ε = 0.5. Such a finite amplitude variation of the
source strength can be attained when induced by wind variability. It is clear that the tracers is
mixed between the various regions. For an oceanographic application, this indicates that finite-area
vortices would exchange their water masses in this case.

For a vortex-sink, as mentioned previously, passive particles initially located around a neutral
center can drift towards the center of the plane (for ε = 0.4); this indicates that mixing will be even
more efficient in this case.

To measure the mixing of the tracers, we compute the trajectories of 100 passive particles initially
close to each other and we calculate the time evolution of their RMS (root-mean square) relative
distance. Figure 13 shows the motion and the growth in time of a patch of tracers. It indicates
that the standard deviation grows initially exponentially fast, with a characteristic time T=25. The
subsequent growth (at t=75) is even faster. A more detailed view of the growth of the patches is
provided on Fig. 14. The initial position of the four patches of particles is indicated on Fig. 10. At
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Fig. 6. Trajectories of C1,1 for the harmonic forcing in function of ω2 for δ = 0.1 (then ω̃2 = 0.016). The
starting point is at the equilibrium point when ω2 = 0. The source is S0 = +0.01. The straight lines indicate
a numerical divergence of the trajectories. The equilibrium point is highly unstable. The calculation time is
Tf = 500.

Fig. 7. Trajectories of C1,1 for the harmonic forcing in function of ω2 for δ = 0.1 (then ω̃2 ∼ 0.016). The
starting point is at the equilibrium point when ω2 = 0. The source is a sink S0 = −0.01 and we can see a
stabilisation of C1,1 with time. The equilibrium point is stable. The calculation time is Tf = 2000. For large
ω2, it is likely from numerical simulations, that C1,1 → 0 as t→∞.
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Fig. 8. Trajectories of the vortex-source 1 for Γ0 = −0.5, S0 = 0.01,Ω = 1 and A = 0.8. The red point is the
center equilibrium point, the orange one is the initial position of the vortex and the blue one the position of
the vortex at the calculation time Tf = 300.

Fig. 9. Trajectories of the vortex-sink 1 for Γ0 = −0.5, S0 = −0.01,Ω = 1 and A = 0.8. The red point is the
center equilibrium point, the orange one is the initial position of the vortex and the blue one the position of
the vortex at the calculation time Tf = 300.
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Fig. 10. Streamlines of the total flow when the two vortex-sinks are placed at their equilibrium point (black
points), for ε = 0 and for the usual parameters (here we take S0 = −0.01 but it is really similar for the source
case). We can see three center equilibrium points (one at the origin and two symmetric), four saddle points and
two attractive equilibrium points (the center of the vortex-sinks, they becomes repulsive equilibrium points if
we take S0 > 0). The four colored points are the starting points of the patch of tracers we used in the study.

long time, the growth of the tracer patch is similar for ε = 0 and for ε = 0.2 but at shorter time
the patch shown on Fig. 13 grows exponentially fast for ε = 0.2.

5. CONCLUSIONS, PERSPECTIVES AND PHYSICAL INTERPRETATIONS

In this paper, we have addressed the problem of two vortex-sources in an external deformation field.
Compared with previous studies we have not considered a time-varying external flow but circulation
and strength of the source/sink-vortices. We adressed the problem of point vortices analytically.
This idealized situation, added to geometrical symmetry in the plane, allows the derivation and
analysis of a simple dynamical system. For several values of the physical parameters, we have
shown the existence of a center point of equilibrium around which oscillation of the perturbed
vortex occurs in a steady configuration.

We then have shown that a periodic variation of circulation or of the source flow, with a sub-
harmonic or a harmonic frequency, could be caused by an unsteady wind. With such a variation
of Γ or of S, we have calculated the slow evolution of the vortex trajectories from the steady
orbit around the center point. The slow variation of the amplitude of the perturbation shows the
destabilization of the center point into attractive or repulsive equilibria, for both the harmonic and
sub-harmonic variations. The difference between these two cases is the number of equilibria (1 or
2). In both cases, the amplitude of the perturbation in the vicinity of these equilibria is bounded in
time for small amplitudes of the time variation of Γ or of S. For larger amplitude variations (larger
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Fig. 11. Tracer evolution in the plane for a vortex-source system as ε is increased; in black : vortex-sources
trajectory; in blue : passive tracer trajectories. The red points are the initial position of the vortex-sources
at their center equilibrium points for ε = 0 and the blue, orange and green points are initial positions of the
passive tracers. Here the calculation time is Tf = 100.

Fig. 12. Tracer evolution in the plane for a vortex-sink system as ε is increased. The colors are the same as
in Fig. 11 and Tf = 100.
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Fig. 13. Evolution of the vortex-sink number 1 (black dot) close to its stable point. Evolution of 100 passive
tracers (blue dots), of their global center (red dot) and of the standard deviation of the patch (represented by
the red circle). For this experiment, ε = 0.2.

Fig. 14. Evolution of the standard deviation of the patch of tracers for different initial positions (those
described in Fig. 10). The last one is for the initial position close to the saddle equilibrium point.
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ε), trajectories are allowed between the previous fixed points. This indicates a transition to chaos
when ε grows.

We have also computed the evolution and spreading of patches of passive particles. We have
shown that the spreading can grow exponentially fast when the time variation of Γ or S is present.
This indicates that the effect of an unsteady wind, taken into account via a relative wind stress, can
increase the mixing of the fluid (here the oceanic fluid of the two vortices, or in their periphery).
From this analysis only, and considering previous studies, it is difficult to predict the exact influence
of using the relative wind stress curl to force two interacting finite-area vortices. This will require
numerical modelling with a detailed survey in the space of physical parameters as was done by
Perrot and Carton [24]. In particular, the orientation of the background flow has been shown to
have a crucial importance in facilitating or in reducing the vortex tendency to merge.

The orientation of the wind in our problem is related to the polarity of the source (source or
sink) and it would be interesting to study its influence on vortex merger. This can achieved with
a fully coupled ocan-atmosphere quasi-geostrophic model, as a second step of this study. Another
important aspect to be studied with a coupled model is the stability of individual, finite-area
vortices. Indeed, both vortex interaction which allows their growth (against the ambient shear of
the surrounding flows which erode them), and the stability of isolated vortices, are key mechanisms
for the durability of these structures. Moreover, they make up the bulk of eddy kinetic energy in the
ocean. Understanding eddy kinetic energy variations in coupled ocean-atmosphere models, requires
the knowledge of vortex processes in such models.

Ocean-atmosphere coupling create an asymmetric Ekman pumping in the vortex and so the
resultant of this pumping is not null and corresponds to a not divergent free flow. The measure of
this divergent component is impossible using altimetry because the speed computed from altimetry
is geostrophic so divergence free. Surface buoys, ship drifts, or other satellite sensors able to give
complete speed are then needed. Future research will compared the total surface velocity field and
the one deduced from altimetry and related to wind. This will allow us to better evaluate the
impact on the divergence component of the flow on the interactions vortex – vortex.

APPENDIX A. EQUILIBRIUM POINTS AND STABILITY

This section is a reminder of the fixed points of the problem; it was addressed slightly differently in
[22] and in [23]. Recall the various cases for equilibria here with our notations and in our specific
cases. This is necessary to further study the vortex source evolution with unsteady circulation or
source strength.

Recall we have the following condition : Γ0Ω < 0 and formulas :

θ0 = −1

2
arctan

[
Γ0 + 4πr2

0Ω

S0

]
, (A.1)

or

θ0 = −1

2
arctan

[
Γ0 + 4πr2

0Ω

S0

]
+
π

2
, (A.2)

and

r4
0(Ω2 −A2) +

Γ0Ω

2π
r2

0 +
S2

0 + Γ2
0

16π2
= 0. (A.3)

1. For Ω2 = A2 :

Equilibrium Starting from Eq. (A.3) with Ω2 = A2 and Γ0Ω < 0, we have r2
0 = −S2

0+Γ2
0

8πΓ0Ω > 0

and thanks to Eq. (A.1), we have

r0 =

√
S2

0 + Γ2
0

8π(−Γ0Ω)
and θ0 =

1

2
arctan

[
S2

0 − Γ2
0

2S0Γ0

]
. (A.4)
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Stability Is the equilibrium (A.4) stable ? From the characteristic polynomial (2.7) of the

differential matrix χ(X) = X2 − S2
0+Γ2

0+4πr2
0Γ0Ω

4π2r4
0

, we need to determine the sign of ∆0 :

∆0 = S2
0 + Γ2

0 + 4πr2
0Γ0Ω =

S2
0 + Γ2

0

2
> 0. (A.5)

So χ has two real roots : one positive and one negative. Then the equilibrium (A.4) is a saddle
equilibrium point. We are not interested in this type of equilibrium.

2. For Ω2 6= A2 :

From the polynomial equation Eq. (A.3) in r2
0 :(

Ω2 −A2
)
X2 +

Γ0Ω

2π
X +

S2
0 + Γ2

0

16π2
= 0, (A.6)

we compute the discriminant

∆ =
1

4π2

[
Γ2

0Ω2 −
(
S2

0 + Γ2
0

) (
Ω2 −A2

)]
, (A.7)

and look at the sign of

∆′ = A2
(
S2

0 + Γ2
0

)
− S2

0Ω2, (A.8)

∆′ = S2
0

(
A2 − Ω2

)
+A2Γ2

0. (A.9)

We want ∆′ to be positive because we want real (positive) solutions to Eq. (A.6). This brings three
situations (we have already study the situation Ω2 = A2) :

• If A2 > Ω2, then ∆′ > 0 clearly from Eq. (A.9).

• If Ω2 > A2, then ∆′ > 0 ⇐⇒ Ω2 < A2
(

1 +
Γ2

0

S2
0

)
.

• If Ω2 = A2
(

1 +
Γ2

0

S2
0

)
, then ∆′ = 0.

a. For A2 > Ω2 :

Because A2 > Ω2, we have ∆′ > 0 without any more condition, and we have two solutions to the
polynomial equation Eq. (A.6) :

X± =
Γ0Ω±

√
∆′

4π (A2 − Ω2)
. (A.10)

Recall we want only non-negative solution (r2
0 > 0). Because we have supposed the condition

Γ0Ω < 0, this constraint removes X−. The root X+ is a non-negative solution if and only if√
∆′ > −Γ0Ω > 0. This condition is valid because

(
A2 − Ω2

) (
S2

0 + Γ2
0

)
> 0 so ∆′ > Γ2

0Ω2.

Equilibrium for X+ We have the following equilibrium point (with θ0 computed from Eq.
(A.1)) :

r0 =

√
Γ0Ω +

√
∆′

4π (A2 − Ω2)
and θ0 = −1

2
arctan

[
Γ0A

2 + Ω
√

∆′

S0 (A2 − Ω2)

]
. (A.11)
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Stability for X+ How the equilibrium (A.11) is stable ? We need to know the sign of ∆0.

Proposition 1. Under all the conditions of this subsection, we have

∆0 = S2
0 + Γ2

0 + 4πr2
0Γ0Ω > 0

and the equilibrium point (A.11) is a saddle equilibrium point.

Proof. Remember we work under the assumption A2 > Ω2 and Γ0Ω < 0. Then, put r2
0 in ∆0 and :

∆0 > 0 ⇐⇒
(
S2

0 + Γ2
0

) (
A2 − Ω2

)
+ Γ2

0Ω2 > −Γ0Ω
√

∆′

⇐⇒
[
S2

0

(
A2 − Ω2

)
+ Γ2

0A
2
]2
> Γ2

0Ω2S2
0

(
A2 − Ω2

)
+ Γ4

0Ω2A2

⇐⇒ S4
0

(
A2 − Ω2

)
+ S2

0Γ2
0

(
2A2 − Ω2

)
+ Γ4

0A
2 > 0

The right hand side of the equivalence is true under the assumption A2 > Ω2. This conclude the
proof of the proposition.

b. For A2 < Ω2 < A2
(

1 +
Γ2
0

S2
0

)
:

We also have two roots of the polynomial (A.6) :

X± =
−Γ0Ω±

√
∆′

4π (Ω2 −A2)
. (A.12)

X+ is clearly non-negative. X− is also non-negative because we have −Γ0Ω >
√

∆′ > 0 (deduced
from the hypothesis). So we have two situations to analyse :

Equilibrium and stability for X+ We have the following equilibrium point (with θ0

computed from Eq. (A.1)) :

r0 =

√
−Γ0Ω +

√
∆′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 − Ω
√

∆′

S0 (Ω2 −A2)

]
. (A.13)

How this equilibrium (A.13) is stable ? We need to know the sign of ∆0.

Proposition 2. Whatever the set of parameters we choose, if they satisfy the assumptions we made

: A2 < Ω2 < A2
(

1 +
Γ2

0

S2
0

)
and Γ0Ω < 0, then we have

∆0 = S2
0 + Γ2

0 + 4πr2
0Γ0Ω < 0, (A.14)

and the equilibrium point (A.13) is a neutral equilibrium point.

Proof. Consider ∆0 for the value r0 we have in Eq. (A.13) :

∆0 = S2
0 + Γ2

0 + Γ0Ω

(
−Γ0Ω +

√
∆′

Ω2 −A2

)
.

So

∆0 < 0 ⇐⇒
(
S2

0 + Γ2
0

) (
Ω2 −A2

)
− Γ2

0Ω2 + Γ0Ω
√

∆′ < 0

⇐⇒ S2
0

(
Ω2 −A2

)
+ Γ2

0A
2 + Γ0Ω

√
∆′ < 0.

The right hand side of the equivalence is true because Γ0Ω < 0 and Ω2−A2 < A2 Γ2
0

S2
0

so S2
0

(
Ω2 −A2

)
+

Γ2
0A

2 < 0. This conclude the proof of the proposition.
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Equilibrium and stability for X− We have the following equilibrium point (with θ0

computed from Eq. (A.1)) :

r0 =

√
−Γ0Ω−

√
∆′

4π (Ω2 −A2)
and θ0 =

1

2
arctan

[
Γ0A

2 + Ω
√

∆′

S0 (Ω2 −A2)

]
. (A.15)

Proposition 3. For the equilibrium (A.15), ∆0 is non-negative for every set of parameters such

that A2 < Ω2 < A2
(

1 +
Γ2

0

S2
0

)
and Γ0Ω < 0. So the equilibrium (A.15) is a saddle equilibrium point.

Proof. Look at the expression of ∆0 :

∆0 = S2
0 + Γ2

0 + 4πr2
0Γ0Ω = S2

0 + Γ2
0 +
−Γ2

0Ω2 − Γ0Ω
√

∆′

Ω2 −A2
, (A.16)

which the sign is the same as the sign of

(
S2

0 + Γ2
0

) (
Ω2 −A2

)
− Γ2

0Ω2 − Γ0Ω
√

∆′ = S2
0

(
Ω2 −A2

)
− Γ2

0A
2︸ ︷︷ ︸

<0 because Ω2−A2<A2
Γ2

0
S2

0

+
(
−Γ0Ω

√
∆′
)

︸ ︷︷ ︸
>0

(A.17)

So we have the following equivalences :

∆0 > 0 ⇐⇒ −Γ0Ω
√

∆′ > Γ2
0A

2 − S2
0

(
Ω2 −A2

)
⇐⇒ Γ2

0Ω2∆′ >
(
Γ2

0A
2 − S2

0

(
Ω2 −A2

))2
⇐⇒ Γ2

0Ω2S2
0

(
A2 − Ω2

)
+ Γ4

0A
2
(
Ω2 −A2

)
> −2Γ2

0A
2S2

0

(
Ω2 −A2

)
+ S4

0

(
Ω2 −A2

)2
⇐⇒ S4

0

(
Ω2 −A2

)
+ S2

0Γ2
0

(
Ω2 − 2A2

)
− Γ4

0A
2 < 0.

We have to study the sign of a second degree polynomial in S2
0 for which the discriminant is

δ = Γ4
0

(
Ω2 − 2A2

)2
+ 4Γ4

0A
2
(
Ω2 −A2

)
= Γ4

0Ω4 > 0. (A.18)

The two roots are

−Γ2
0

(
Ω2 − 2A2

)
+ Γ2

0Ω2

2 (Ω2 −A2)
=

A2Γ2
0

Ω2 −A2
> 0, (A.19)

and

−Γ2
0

(
Ω2 − 2A2

)
− Γ2

0Ω2

2 (Ω2 −A2)
= −Γ2

0 < 0. (A.20)

Because S2
0 > 0, to have ∆0 > 0, we need S2

0 to be smaller than the largest root, but this is not an
additional constraint because :

S2
0 <

A2Γ2
0

Ω2 −A2
⇐⇒

(
Ω2 −A2

)
S2

0 < A2Γ2
0

⇐⇒ Ω2 < A2

(
1 +

Γ2
0

S2
0

)
.

So the polynomial
(
Ω2 −A2

)
X2 + Γ2

0

(
Ω2 − 2A2

)
X −Γ4

0A
2 is non-positive for every values between

0 and
A2Γ2

0
Ω2−A2 . Because S2

0 is in this interval, we have ∆0 > 0 for every set of parameters such that

A2 < Ω2 < A2
(

1 +
Γ2

0

S2
0

)
and Γ0Ω < 0.

REGULAR AND CHAOTIC DYNAMICS Vol. 26 No. 6 0000



24 Vic Armand, Carton Xavier, Gula Jonathan

c. For Ω2 = A2
(

1 +
Γ2
0

S2
0

)
In this section, we have ∆′ = 0. Then there is only one solution of Eq. (A.6) :

X =
−Γ0Ω

4π (Ω2 −A2)
=

Γ2
0 + S2

0

4π (−Γ0Ω)
> 0. (A.21)

This gives the following equilibrium point :

r0 =

√
Γ2

0 + S2
0

4π (−Γ0Ω)
and θ0 =

1

2
arctan

(
S0

Γ0

)
. (A.22)

To know the type of stability, we compute ∆0 :

∆0 = S2
0 + Γ2

0 + 4πr2
0Γ0Ω = S2

0 + Γ2
0 + Γ0Ω

Γ2
0 + S2

0

(−Γ0Ω)
= 0. (A.23)

So we cannot conclude about the stability of the equilibrium (A.22).

APPENDIX B. MULTIPLE TIME SCALE DEVELOPMENT

The multiple time scale method is here expanded for the subharmonic case. The harmonic case is
similar.

1. Order ε1

We have the following system at order ε1, computed from Eqs. (3.5) and (3.8) : ∂t0r1 = −ar1 − b(r0θ1)

∂t0 (r0θ1) = −cr1 + a(r0θ1)
(B.1)

So {
r1 = C1,1 (t2, t3) eiω0t0 + c. c

r0θ1 = D1,1(t2, t3) eiω0t0 + c. c
(B.2)

with

D1,1(t2, t3) = µ1C1,1(t2, t3), (B.3)

and µ1 = −a+iω0
b .

2. Order ε2

With Eqs. (3.6) and (3.9) and because ∂t1r1 = ∂t1 (r0θ1) = 0, we have the following system in
(r2, r0θ2) : {

∂t0r2 = −ar2 − b(r0θ2) + f2(t0, t1, t2, t3)

∂t0 (r0θ2) = −cr2 + a(r0θ2) + g2(t0, t1, t2, t3)
(B.4)

where : {
f2(t0, t1, t2, t3) = a δ r0

2 cos(2ω0t0) + a
2r0
r2

1 + a
r0

(r0θ1)2 − b
r0
r1 (r0θ1)

g2(t0, t1, t2, t3) = c δ r0
2 cos(2ω0t0) + 3c

2r0
r2

1 + b
r0

(r0θ1)2
(B.5)

The system (B.4) gives :
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• For r2 :

∂2
t0r2 = −a (−ar2 − b (r0θ2) + f2)− b (−cr2 + a (r0θ2) + g2) + ∂t0f2

=
(
a2 + bc

)
r2 + h2(t0, t1, t2, t3). (B.6)

• For r0θ2 :

∂2
t0 (r0θ2) = −c (−ar2 − b (r0θ2) + f2) + a (−cr2 + a (r0θ2) + g2) + ∂t0g2

=
(
bc+ a2

)
(r0θ2) + k2(t0, t1, t2, t3). (B.7)

where : {
h2(t0, t1, t2, t3) = (−af2 − bg2 + ∂t0f2) (t0, t1, t2, t3)

k2(t0, t1, t2, t3) = (−cf2 + ag2 + ∂t0g2) (t0, t1, t2, t3)
(B.8)

• Development of f2 :

f2 =
a

r0

[
3− 2c

b

]
|C1,1|2

+

[
ar0

4
+
C2

1,1

r0

(
3a

2
+
a (a+ iω0)2

b2
+ iω0

)]
e2iω0t0 + c. c

f2 = F2,0|C1,1|2 +
[
F2,2,1 + F2,2,2C

2
1,1

]
e2iω0t0 + c. c . (B.9)

• Development of g2 :

g2 =
c

r0
|C1,1|2 +

[
cr0

4
+
C2

1,1

r0

(
3c

2
+

(a+ iω0)2

b

)]
e2iω0t0 + c. c

g2 = G2,0|C1,1|2 +
[
G2,2,1 +G2,2,2C

2
1,1

]
e2iω0t0 + c. c . (B.10)

• Development of h2 :

h2 = [−aF2,0 − bG2,0] |C1,1|2 + [(−bG2,2,1 + (−a+ 2iω0)F2,2,1)

+ (−bG2,2,2 + (−a+ 2iω0)F2,2,2)C2
1,1

]
e2iω0t0 + c. c

h2 = H2,0|C1,1|2 +
[
H2,2,1 +H2,2,2C

2
1,1

]
e2iω0t0 + c. c . (B.11)

• Development of k2 :

k2 = [−cF2,0 + aG2,0] |C1,1|2 + [(−cF2,2,1 + (a+ 2iω0)G2,2,1)

+ (−cF2,2,2 + (a+ 2iω0)G2,2,2)C2
1,1

]
e2iω0t0 + c. c

k2 = K2,0|C1,1|2 +
[
K2,2,1 +K2,2,2C

2
1,1

]
e2iω0t0 + c. c . (B.12)

Then from Eqs. (B.6) and (B.7), we have

• The homogeneous solutions : {
r2 = C2,1 eiω0t0 + c. c

(r0θ2) = D2,1 eiω0t0 + c. c
(B.13)
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• The particular solutions for the constant terms :r2 =
H2,0

ω2
0
|C1,1|2

(r0θ2) =
K2,0

ω2
0
|C1,1|2

(B.14)

• The particular solutions for e2iω0t0 + c. c :r2 = −H2,2,1+H2,2,2C2
1,1

3ω2
0

e2iω0t0 + c. c

(r0θ2) = −K2,2,1+K2,2,2C2
1,1

3ω2
0

e2iω0t0 + c. c
(B.15)

So the total solution of Eqs. (B.6) and (B.7) is :

 r2 = C2,0|C1,1|2 + C2,1 eiω0t0 + c. c +
(
C2,2,1 + C2,2,2C

2
1,1

)
e2iω0t0 + c. c

(r0θ2) = D2,0|C1,1|2 +D2,1 eiω0t0 + c. c +
(
D2,2,1 +D2,2,2C

2
1,1

)
e2iω0t0 + c. c

(B.16)

with (for i = 1, 2)

C2,0 =
H2,0

ω2
0

, C2,2,i = −H2,2,i

3ω2
0

, D2,0 =
K2,0

ω2
0

, D2,2,i = −K2,2,i

3ω2
0

. (B.17)

3. Order ε3

With Eqs. (3.7) and (3.10), we have the following system at the order ε3 :{
∂t0r3 = −ar3 − b(r0θ3) + f3(t0, t1, t2, t3)

∂t0(r0θ3) = −cr3 + a(r0θ3) + g3(t0, t1, t2, t3)
(B.18)

where f3 and g3 are the following given functions :



f3 = −∂t2r1 + ar1r2
r0
− ar3

1

2r2
0
− ar1 cos(2ω0t0)

2 − b(r2(r0θ1)+r1(r0θ2))
r0

+ ar1(r0θ1)2

r2
0

+2a(r0θ1)(r0θ2)
r0

+ 2b(r0θ1)3

3r2
0
− ar0ω0t1 sin(2ω0t0)

g3 = −∂t2(r0θ1) + 3cr1r2
r0
− 2cr3

1

r2
0
− cr1 cos(2ω0t0)− 2a(r0θ1)3

3r2
0

+ 2b(r0θ1)(r0θ2)
r0

−cω0t1 sin(2ω0t0)

(B.19)

The system (B.18) gives :

• For r3 :

∂2
t0r3 = −a (−ar3 − b (r0θ3) + f3)− b (−cr3 + a (r0θ3) + g3) + ∂t0f3

=
(
a2 + bc

)
r3 + h3. (B.20)

• For r0θ3 :

∂2
t0 (r0θ3) = −c (−ar3 − b (r0θ3) + f3) + a (−cr3 + a (r0θ3) + g3) + ∂t0g3

=
(
bc+ a2

)
(r0θ3) + k3. (B.21)
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We do not develop f3, g3, h3 and k3 like we did for the order ε2. We only introduce the following
notations : 

f3 = F3,0 + F3,1 eiω0t0 +F3,2 e2iω0t0 +F3,3 e3iω0t0 + c. c

g3 = G3,0 +G3,1 eiω0t0 +G3,2 e2iω0t0 +G3,3 e3iω0t0 + c. c

h3 = H3,0 +H3,1 eiω0t0 +H3,2 e2iω0t0 +H3,3 e3iω0t0 + c. c

k3 = K3,0 +K3,1 eiω0t0 +K3,2 e2iω0t0 +K3,3 e3iω0t0 + c. c

(B.22)

Then if we denote by L the self-adjoint linear operator ∂2
t0 + ω2

0, we have r?1Lr3 = r?1h3 = r?1L
?r3 =

0 = 〈r1, h3〉. But 〈einω0t0 , eipω0t0〉 = δn,p (Kronecker symbol) for n, p ∈ Z and because r1 = C1,1 eiω0t0 + c. c,
we have

〈r1, h3〉 = C1,1H3,1 + c. c = 0. (B.23)

Because H3,1 = (−a+ iω0)F3,1 − bG3,1, we deduce the amplitude equation :

(−a+ iω0)F3,1 − bG3,1 = 0. (B.24)

So we only have to compute F3,1 and G3,1 from Eq. (B.19) : writing{
F3,1 = −∂t2C1,1 + IC1,1 + II |C1,1|2C1,1

G3,1 = a+iω0
b ∂t2C1,1 + IIIC1,1 + IV |C1,1|2C1,1

(B.25)

we have :

I = −a
4

+
C2,2,1

r0
(2a− iω0) +

D2,2,1

r0

(
−b− 2a2

b
+

2aiω0

b

)
, (B.26)

II =
1

r2
0

[
a

(
−3

2
+ 2

a2

b2
+
c

b

)
+ 2iω0

(
a2

b2
+
c

b

)]
+
C2,0

r0
(2a+ iω0) +

D2,0

r0

(
−b− 2a2

b
− 2aiω0

b

)
+
C2,2,2

r0
(2a− iω0) +

D2,2,2

r0

(
−b− 2a2

b
+

2aiω0

b

)
, (B.27)

III = − c
2

+
3c

r0
C2,2,1 +

2D2,2,1

r0
(−a+ iω0) , (B.28)

IV = −6c

r2
0

− 2ac

r2
0b

2
(a+ iω0) +

3c

r0
(C2,0 + C2,2,2)

− 2

r0
((a+ iω0)D2,0 + (a− iω0)D2,2,2) . (B.29)

From Eq. (B.24) we obtain the amplitude equation

∂t2C1,1 = (V + iVI)C1,1 + (VII + iVIII) |C1,1|2C1,1, (B.30)

with 

V = Re
(
− (a−iω0)I+bIII

2iω0

)
VI = Im

(
− (a−iω0)I+bIII

2iω0

)
VII = Re

(
− (a−iω0)II+bIV

2iω0

)
VIII = Im

(
− (a−iω0)II+bIV

2iω0

) (B.31)
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