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Abstract :   
 
We investigate the impact of several parameters on the lifecycle of an anticyclonic eddy lying in a 
topographic depression (a bowl), similar to the Lofoten Vortex and the Rockall Trough eddy cases. We 
observe that the vortex merger with submesoscale coherent vortices generated at depth allows the eddy 
to grow in size, and intensify at depth. Wintertime convection is also shown to directly intensify the eddy 
by deepening isopycnals. Also, convection indirectly affects the shape of the eddy. It enhances the 
number of merger (1) at the surface, with small vortices generated in the convectively-deepened surface 
mixed-layer, and (2) at depth, because the vertical distance between the main eddy's core and small 
companion vortices is reduced, thus increasing the merging efficiency. These processes altogether 
contribute to the maintaining of the eddy. On the other hand, the bottom drag is the main process 
contributing to the decay of the eddy. Our study thus shows that the sustaining for several years of such 
eddies trapped in a bowl is mainly due to the balance between merger and bottom drag. 
 
 

Highlights 

► Anticyclonic eddies lying in a topographic depression live for several years. ► Small SCVs generated 
nearby the anticyclonic eddy intensify the latter at their depth of generation. ► Wintertime convection is 
efficient in intensifying the anticyclonic eddy. ► The sustaining for several years of such eddies is due to 
the balance between merger, convection, and bottom drag. 
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soscale eddies are a prominent feature of the ocean circulation. They have a stron

ce on biological activity (Chelton et al., 2011), tracer transport (Zhang et al., 2014

hysical and chemical properties of the water column (Dong et al., 2014). In som

s, semi-permanent eddies can be seen throughout the year, at a nearly constant p

Among other examples, two particular cases are the Lofoten Vortex (LV), and t

ll Trough eddy (RT eddy). These two semi-permanent eddies have the peculiarity

ticyclonic, and located above a topographic depression – a bowl. The formation

ortices has recently been examined by Solodoch et al. (2021). Authors showed usin

ed simulations that successive merging events form a permanent anticyclone lying

pographic depression. The dynamics of the resulting vortex depends on the ratio

vorticity to topography’s potential vorticity. However, the mechanisms that susta

ermanent anticyclones in bowl-like topography such as the LV and the RT eddy a

t fully understood.

e LV can be found in the Lofoten Basin in the Nordic Seas. It appears as a lar

clone at the center of the basin. It was first detected by in situ data between 1970 an

Ivanov & Korablev, 1995). The LV is intensified between 700 and 900 m depth and h

us of about 30 km (Yu et al., 2017). Two processes are candidate to explain the lon

e of the LV. First, from observational data, Ivanov & Korablev (1995) and Bosse et a

argued that wintertime intensification resulting from convection plays a determina

sustaining the LV. Second, model studies showed that the LV is sustained by t

r and alignment with smaller vortices generated by unstable boundary currents (Köh

Trodahl et al., 2020). In the current state of knowledge, the relative importance

rocess is not clear. One of the aim of the present study is to give new answers to th

on.

e RT eddy is located in the Rockall Trough, off Ireland in the North Atlantic. It h

signature at the sea surface (Heywood et al., 1994; White & Heywood, 1995; Volko

Xu et al., 2015), but also at depth with high values of eddy available potential ener

et et al., 2014). This eddy is less sampled than the LV and less known. Howeve

s to recent in situ deployments, it has been shown that it is intensified at depth, wi
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radius of approximately 40 km and can reach down to 1500 m. Its lifecycle, as well

echanisms that sustain it are yet poorly documented. However, recent model studi

Corre et al. (2019) and Smilenova et al. (2020) have shown some evidences that

eddy formation is the result of successive mergers of deeply generated submesosca

es along the Porcupine Bank, 2) the merger of the RT eddy with these small vortices

s wintertime convection sustain the RT eddy, and allow it to remain semi-permane

Rockall Trough.

this paper, we investigate the impact of several parameters on the lifecycle of a

clonic eddy lying in a topographic depression. In particular, we discuss the impact

r and convection on the lifetime and shape of the anticyclone. To explore the paramet

we use an idealized approach based on the Rockall Trough Eddy case. This allows

cuss on the general behavior of anticyclonic eddies in a bowl, and 2) give insights

rticular case of the Rockall Trough Eddy that is yet poorly documented. In sectio

present the methods, the numerical simulation setup and the diagnostics perform

tputs. In section 3 we present the results of our study, the impact of the differe

eters on the vortex dynamics. In section 4 we summarize and discuss the results.

ethods

he numerical simulations

this section, we present the idealized simulations performed for this study. The aim

simulations is to simulate schematically the dynamics occurring in the Rockall Troug

a semi-permanent anticyclone (the RT eddy) lying in a bowl-like topography, fed b

clonic Submesoscale Coherent Vortices (SCVs) generated hundreds of kilometers aw

he main eddy (hereafter, the main eddy designates the eddy that lies approximate

center of the bowl-like topography, and merges with smaller SCVs). We detail ea

of the simulation in the following subsections.
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1: a) Rockall Trough bathymetry; dashed contours show isobaths 2500 to 2000 m depth with

interval. b) Scheme of idealized simulation setup; dashed contours show same isobaths as in

atological background temperature (solid) and salinity (dashed) used in idealized simulations.

ological background potential density (solid) and corresponding Brunt-Väisälä frequency (dashe

idealized simulations.

Numerical setup and domain

e simulations rely on a 3D primitive equation framework. They are performed usin

astal and Regional Ocean COmmunity model CROCO (Shchepetkin & McWilliam

This model solves the hydrostatic primitive equations for the velocity, temperatur

linity, using a full equation of state for seawater (Shchepetkin & McWilliams, 2011

imulations integrate the primitive equations for about 7 and a half years. The n

l settings are similar to previous simulations performed in an idealized context (se

énesguen et al., 2018): horizontal advection terms for tracers and momentum are d

d with fifth-order upwind advection schemes (UP5); the explicit horizontal viscosi

iffusivity are set to zero, since the UP5 scheme damps dispersive errors; the vertic

ion is discretized with a fourth-order centered parabolic spline reconstruction (Splin

e). Further discussion about these parameterizations can be found in Klein et a
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(2008) or Ménesguen et al. (2018). Vertical mixing of tracers and momentum is done using69
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rofile parametrization (KPP, Large et al., 1994), and the effect of bottom friction

eterized through a logarithmic law of the wall (with the same parameters than in e.

t al. (2015) or Le Corre et al. (2020)). Some simulations are run without this botto

o study its impact on the vortex dynamics. Simulations have 64 terrain-following ve

evels, which are stretched such that the resolution increases in the depth range whe

ain eddy lies, giving ∆z ∼ 20 m from surface to 1000 m depth, and 20 < ∆z < 90

. The horizontal resolution is ∆x = 5 km.

e domain is chosen so that it represents schematically the RT area, see Fig. 1(a,b

omain is 2000 km and 1000 km wide zonally and meridionally, respectively. A bow

pography is placed at the center of the domain, to represent the RT topograph

sion. It is modeled by a Gaussian function

h = h0 + h1 exp(−r2/(2R)2),

=
√

(x− x0)2 + (y − y0)2, x0 = 1000 km, y0 = 600 km, R = 100 km, h0 = 2000 m

1 = 500 m, such that the simulation is 2000 m deep everywhere, except in the bo

it reaches 2500 m deep. The background stratification is the average stratificatio

RT area, see Fig. 1(c,d). It is defined as the average stratification in the RT fro

rre et al. (2020)’s simulation. A return to this background stratification is set in t

aries. At these boundaries a 10 km wide sponge layer avoid the generation of spurio

ary dynamics.

The SCV shotgun

the RT, SCVs are generated along the Porcupine Bank (Smilenova et al., 2020). T

te this SCV generation, we designed a ”SCV shotgun”, that continuously generat

at a given depth during the simulation. It is placed at 300 km from the bowl-li

aphy center. This distance is chosen so that it is similar to the one between t

pine Bank and the RT eddy position in reality, see Fig. 1(a,b).

e SCV shotgun is based on the principle fully described in Deremble et al. (2016):

ary singularities such as corners, vorticity is injected into the domain even for free-sl
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2: a) Meridional velocity at the southern boundary for the ”middle” case; black lines indicate isopy

th a 0.5 kg m−3 spacing; hatched area indicate the position of the mask. b) Snapshots of normaliz

vorticity at t=10 and t=500 days, at 750 m depth, showing the SCV generation at the mask corn

middle” case.

ary conditions. We add a land mask forming a corner (i.e. a boundary singularit

south of the domain, with a free-slip condition along this mask. Then, we impose

ional current at depth along the mask (see Fig. 2(a)), of the form:

v = v0 exp(−(x− x0)2/(2L)2) exp(−(z − z0)2/(2H)2),

0 = 0.4 m s−1, L = 30 km, and H = 200 m. As discussed in Deremble et al. (2016

rizontal extension and intensity of generated SCVs are mainly controlled by the su

arameterization and horizontal discretization, such that L and v0 poorly control t

of SCVs. After sensitivity tests, we chose the aforementioned values for v0, L, an

h that the model stability is satisfying, and that the properties and the frequency

tion of SCVs are similar to the one observed in realistic simulations of the Rocka
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Trough (Smilenova et al., 2020), i.e. about 10 SCVs are generated each year. We also vary105
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1250, -1000, -750, -500, -250] m, to discuss the impact of the SCV depth on the mergin

s. They are called ”deep”, ”middle deep”, ”middle”, ”middle surf”, and ”surf” cas

tively in the following. Note that the middle case is the one representative of R

eneration (see e.g. Fig. 11 in Smilenova et al. (2020)). This current is geostrophica

ed with the density field at the southern boundary , see Fig. 2(a). Examples of SC

tion in the middle case are shown in Fig. 2(b,c).

The Rockall Trough anticyclone

3: a) Snapshot of normalized relative vorticity at 750 m depth in the Rockall Trough area, fro

listic simulation (Le Corre et al., 2020) in which the composite anticyclone was extracted; dash

rs show isobaths from 3500 to 2000 m depth with a 250 m interval. (b,c,d,e) Temperature anoma

anomaly, density anomaly, and azimuthal velocity of the composite anticyclone; dashed contou

olines of temperature (b), salinity (c), and density (d,e).

discussed in the introduction, a semi-permanent anticyclonic eddy is present in t

roughout the whole year: the RT eddy. To simulate this presence, we add in som

tions, at initialization, a composite anticyclone representative of the RT eddy abo
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the center of the bowl-like topography (at x = x0 and y = y0, the blue cross position in Fig.116

1(b)).117
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is composite was extracted from a realistic simulation representing the Subpolar Nor

ic gyre. It is fully described in Le Corre et al. (2020). The 2011 vertical properties

ulated RT eddy being close to ship-board Conductivity-Temperature-Depth (CTD

ollected in January 2011 (see the supplementary material of Smilenova et al. (2020)

mulation is assumed to represent well the RT eddy dynamics. An example of RT edd

ence in the simulation is shown in Fig. 3(a). We tracked the RT eddy by followin

aximum SSH value in the area. After isolating the eddy, we took its temporal ma

ure and azimuthally averaged it to obtain the main composite structure of the R

Fig. 3(b,c,d,e)).

Add convection

e wintertime convection may play an important role in the intensification and t

enance of anticyclonic eddies (Gelderloos et al., 2011; Bosse et al., 2016, 2019),

ular in high latitude areas such as the RT. To discuss the impact of the convectio

intensity of the RT eddy, we ran simulations with a surface net heat flux (SNH

entative of the RT area. It is calculated as an average of the SNHF (from Carto

2018) in the area of latitude and longitude comprised respectively between 53◦N an

and 15◦W and 11◦W. The annual variation of SNHF imposed in the simulations wi

tion is shown in Fig. 4.

Figure 4: Surface net heat flux imposed in idealized simulations with convection.
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total of 16 simulations have been run and analyzed, to study the impact of the d

parameters (presence and depth of the SCV shotgun, presence of the RT eddy

ization, convection, bottom drag) on the RT eddy intensity and dynamics. The diffe

ulations are summarized in Table 1.

Name SCV shotgun RT eddy at initialization Bottom Drag Convection

dD deep — yes —

mD middle — yes —

m middle — — —

sD surf — yes —

RTD — yes yes —

RT — yes — —

RTDC — yes yes yes

dRTD deep yes yes —

dRTDC deep yes yes yes

mdRTD middle deep yes yes —

mRTD middle yes yes —

mRT middle yes — —

RTDC middle yes yes yes

msRTD middle surf yes yes —

sRTD surf yes yes —

DC — — yes yes

Table 1: Parameters of the analyzed simulations

TDC is the simulation closest to the reality, as it includes all features and forcin

ing in the RT area: SCVs generated at a realistic depth, convection, bottom drag, an

cyclonic eddy at the center of the bowl-like topography.

iagnostics

describe in this section the diagnostics performed on the simulation outputs.
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each simulation, we detect the main eddy using the Angular Momentum Eddy Dete

nd tracking Algorithm (AMEDA, Le Vu et al., 2018). One of the benefits of AMED

t it does not depend on arbitrary thresholding, which would require a fine-tuning

trical parameters. Also, the algorithm is robust with respect to the grid resolutio

n thus be applied to a wide variety of velocity fields (experimental, numerical, deriv

altimetry). This algorithm has been used and validated in previous –observation

umerical– studies (Ioannou et al., 2017; Le Vu et al., 2018; Garreau et al., 201

rez et al., 2019; de Marez et al., 2020), see also an example of application of AMEDA

://www1.lmd.polytechnique.fr/dyned/. This algorithm works as follows: (a) fro

locity fields, it computes the local normalized angular momentum (LNAM, Mkhini

2014) and the local Okubo-Weiss parameter (LOW) at each point; (b) then, it see

local maxima where LOW<0; (c) if these maxima are surrounded by a closed stream

hey are flagged as eddy centers. A full description of the algorithm is presented

of Le Vu et al. (2018). In this study, the detection is done using daily velocity field

0, -500, -750, -1000, and -1250 m depth for surf, middle surf, middle, middle dee

eep cases respectively. Choosing the depth of detection as equal to the depth of SC

tion ensures an accurate estimation of the radius increase of the main eddy when

s with SCVs. The main eddy’s edge is defined as its contour of maximal velocity. T

radius of this contour at a given time is Rmax. We use this contour to compute volum

ated quantities, assuming that the eddy is roughly cylindrical.

simulations with a composite anticyclonic eddy at initialization, the main eddy

the initial eddy, that we follow in time. For simulations with no eddy at t=0, t

eddy is defined as the first SCV that reaches the center of the bowl-like topograph

en grow in size due to merging with other SCVs.

Kinetic energy budget

the primitive equation framework, the kinetic energy (KE) equation can be obtain

ing the inner product of the horizontal velocities with the momentum equations.

s:
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2
∂tui + uj∂j(

2
ui ) + w∂z(

2
ui ) =

ρ0
∂iP + Viui +Diui + Siui, (

ummation convention, i = 1, 2, and j = 1, 2, ui are the horizontal component

y, ∂i the components of the vector differential operator, Vi the components of t

eterized vertical mixing, Di the components of the horizontal diffusion, and Si oth

s and sinks (due to restoring, nudging, boundary conditions...). This equation is th

lly integrated, and we define:

hadv =
∫
dz uj∂j(

1
2
u2i ),

vadv =
∫
dz w∂z(

1
2
u2i ),

Prsgrd =
∫
dz ui

ρ0
∂iP ,

vmix =
∫
dz Viui,

hmix = explicit part of
∫
dzDiui,

hdiff = implicit part of
∫
dzDiui,

nudg =
∫
dz Siui,

cor =
∫
dz (fuv − fvu),

vol = the depth integrated KE variations due to the grid breezing,

Drag = contribution of the bottom drag parameterization in the vmix term.

ese terms are computed online (Gula et al., 2016). The closed KE budget is:

∂t

∫
dz

1

2
u2i = hadv + vadv + Prsgrd + vmix + hmix + hdiff + nudg + cor + vol. (

egrate these terms in time, such that for instance
∫ t
0
dtDrag represents the contributio

bottom drag for the KE at a given time t. Finally, we horizontally integrate the resul

main eddy’s contour S (calculated by AMEDA). This allows to follow in detail whi

al mechanism is responsible for the evolution of the main eddy’s KE.

11

Jo
ur

na
l P

re
-p

ro
of
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this section, we describe the results of our study. We first explain qualitatively t

of a simulation representative of the RT, i.e., the mRTD simulation. Then we discu

pact of the different parameters on the evolution of the main eddy.
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3.1. Qualitative evolution of the simulations199
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5: Snapshots of normalized relative vorticity at 750 m depth, in the mRTD simulation. Each panel

large, and is centered around the main eddy. Bold dashed contours indicate the contour of maximu

of the main eddy. Thin dashed contours show isobath from 2500 to 2000 m depth with a 100

l.

the mRTD simulation, the main eddy is present from t =0 at the center of the bo

aphy (see Fig. 5 for the time evolution of the mRTD simulation). Because it

clonic, it is stuck in the center of the bowl to conserve its potential vorticity (Carneva

13

Jo
ur

na
l P

re
-p

ro
of
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simulation, the main eddy does not move from the center of the bowl. Its volum

y increases because of a azimuthal mode 2 and mode 4 destabilization, similar to t

served in de Marez et al. (2020a) (a vorticity tripole can be seen at t = 5 months

).

ultaneously, SCVs are generated at the corner of the land mask. As shown in Derem

al. (2016), such boundary singularities generate dipolar structures. In our case, abo

oles are generated each year. The anticyclonic pole is attracted by the bowl, wh

clonic pole tends to step aside. Indeed, on a slope, the topographic β-drift mak

clones (resp. cyclones) drift downhill (resp. uphill) (LaCasce, 1998; Lam & Dritsch

This leads to the separation of about all dipoles in two monopoles of opposite vo

s. Also, in some cases, the positive pole is rolled up around the anticyclone, leadin

ielded anticyclonic SCV. In both cases, this results into anticyclonic SCVs attract

bowl. However, they do not all reach the bowl (i.e., the places where the floor

than 2000 m): only about ten anticyclonic SCVs per year manage to reach it. Th

nly due to the fact that just after generation, SCVs merge between each other, an

uently converge to the center of the bowl.

the start of the second year of simulation, SCVs start to interact with the main edd

SCVs have two effects.

st, the SCVs’ velocity field slightly disturb the main eddy, resulting in small displac

of the main eddy in the bowl. From this date, the main eddy can thus be found

f kilometers from the center of the bowl, see e.g. t = 15, 25, or 55 months, in Fig. 5

cond, SCVs merge with the main eddy. In this simulation —i.e., during about 7 yea

half— 41 merging events between SCVs and the main eddy are observed. Two kin

ger occur. On the one hand, small SCVs that have experienced a few merging wi

SCVs before reaching the bowl, are attracted by the main eddy and steered around

are finally absorbed by the main eddy which eventually grows by aggregating vortici

zimuthal velocity outside of its core (Sutyrin & Radko, 2019; Sutyrin, 2019). Th

nism is referred to as Vortex Thinning in the literature. A vortex thinning eve

in a small increase of the eddy volume; examples can be seen at t = 15 or 70 mont
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in Fig. 5. On the other hand, the main eddy can merge with SCVs that have grown in size233
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successive merging with other SCVs. This results in situations where the main edd

er of the same size of the vortex it merges with, or smaller than it. In both cases, t

g is roughly symmetric, and it results in an abrupt increase of volume of the ma

An example can be seen between t = 30 and 35 months in Fig. 5.

ese mergers can also be called alignment, because the main eddy’s core density is n

arily the same than its companion’s one (see e.g. Nof & Dewar (1994), and sectio

nd 7.2.4 of Lilly et al. (2003) that discuss cases of vortex alignment in the Labrad

It can be mentioned that, in a stratified fluid, mergers must manifest as alignme

se there will always be small differences in the core density of the two eddies. T

t of this three-dimensional view is discussed in the next sections. Also, we detail

llowing the physical mechanism that occur in the simulations, and lead to changes

e for the main eddy.

echanisms of eddy growth

all simulations, as in e.g., mRTD (see Fig. 5), the main eddy growth is intermitte

ccurs at specific moments of the simulation. As discussed in the introduction, th

rowth can be attributed to two mechanisms: merging with vortex companions, an

tion. We detail in this section these physical mechanisms.
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3.2.1. Merging with SCVs251
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6: Evolution of Rmax during simulations, for different initialization depth of the SCV shotgun (

d (b) without the RT composite at the center of the bowl. All simulations include bottom dr

terization.

7: Vertical sections of normalized relative vorticity passing through the center of the main eddy af

d a half years of simulation, for simulations shown in Fig. 6. Thin contours in the top row show t

rs of normalized vorticity through the center of the RT composite at initialization; note that line a

ntours are shown for the same vorticity values.
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To discuss the impact of merger on the main eddy, we analyze the time evolution of Rmax252
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erent simulations, see Fig. 6. Both kinds of merging events discussed in the previo

for mRTD simulation –vortex thinning and symmetric merger– can be seen in Fi

They appear as steps in the time evolution of Rmax, at e.g., t =35 or 75 months (

RTD simulation, see arrows in Fig. 6(a)). In all simulations, symmetric mergers ha

ter impact on Rmax, as it can double the radius of the main eddy in a few days.

all simulations with the RT composite at initialization (Fig. 6(a)), the radius of t

eddy oscillates around about 30 km. After periods of radius decrease, the mergin

tly increases the radius. The horizontal extension of the main eddy is thus similar

tial one after 7 years of simulation. It can be noticed that in the sRTD simulatio

ain eddy appears to have a larger radius than in other simulations. Even with th

nce, the purely horizontal view described by the time evolution of Rmax is qualitative

r in dRTD, mdRTD, mRTD, msRTD, and sRTD.

e main difference between the simulations is the final vertical shape of the main edd

fter 66 months (Fig. 7). In the dRTD simulation, the main eddy has a 3D sha

r to the initial RT composite. This is due to the fact that SCVs have difficulty

with the main eddy. Oppositely, in the sRTD and msRTD simulations, SCVs easi

with the main eddy, and thus drastically modify its 3D shape. The final shape of t

ddy differs from the RT composite because it is intensified at the surface, with a larg

ntal extension due to the numerous mergers it experienced. In the mRTD and mdRT

tions, the merging events lead to an important intensification of the eddy intensity

. In the mdRTD simulation, the final shape of the main eddy is a double-core edd

wo vorticity maxima, at ∼ 500 m depth and ∼ 1300 m depth.
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8: Vertical section of (a) normalized relative vorticity and (b) associated PV anomaly, at times ju

a merger of the main eddy with a companion eddy, in dRTD, mdRTD, mRTD, msRTD, and sRT

ions. All sections pass through the center of both eddies.

e merging efficiency is not the same in all simulations because of (1) the backgroun

cation, and (2) the vertical structures of the main eddy and the SCVs it merg

Indeed, Verron et al. (1990); Verron & Valcke (1994); Corréard & Carton (199

ther showed, using 2-layer numerical simulations, that the merger (or alignment)

e-signed vortices depends on their shape before the merging. Vortices can be separat

o kinds: PVI (potential vorticity initialization) vortices and RVI (relative vortici

ization) vortices. PVI vortices are represented by a patch of constant potential vortici

ngle layer –and in some cases a vertical dipole of potential vorticity–, associated wi

barotropic relative vorticity. RVI vortices have a constant relative vorticity in a sing

Corréard & Carton (1999) showed that PVI vortices easily align together while RV

es do not. Verron et al. (1990); Verron & Valcke (1994) showed that the ambie

cation plays a different role in the merging depending on the vortex shape: RV

merger strongly depends on the stratification while PVI vortex merger does not.

ratification is weak, RVI vortices form a pair of heton-like structures, that repel ea

If the stratification is stronger, the ambient flow is more barotropic, and merger

In a configuration more realistic than the 2-layer quasi-geostrophic model, like in o

the distinction between RVI or PVI vortices can be tricky because of the Gaussia

l shape that eddies often take (McWilliams, 1985).
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nion eddies can be categorized as PVI-like vortices (they appear as –roughly constan

tches confined in a single layer, see Fig. 8), but also RVI-like vortices (the maximu

tive vorticity is confined in ∼ 1000 m deep layers, around which the relative vortici

changes sign or is close to zero). Merging vortices are thus PVI/RVI hybrids. T

round stratification should thus play a role in the merger efficiency. Our backgroun

cation is similar to the RT case (Fig. 1(d)) and it has Brunt-Väisälä frequency maxim

surface and near 750 m depth. Thus for RVI vortices, the merger is facilitated at the

ular depths, while it is harder to merge for deeper eddies. This could explain in pa

CVs have more difficulties to merge with the main eddy in the dRTD simulation tha

other simulations.

e can observe a critical depth for the SCV shotgun, between 1000 and 750 m dept

ich the merging/alignment of eddies do not lead to the intensification of the ma

core. If SCVs are close enough (in both vertical and horizontal directions), th

ally align with the main eddy, but this only results in a deepening of the eddy and/

le-core eddy, with no influence on the original eddy core. Because of the complicat

f eddies and ambient stratification, it is here difficult to be more quantitative abo

y parameters that influence the merging. A more extensive study in the paramet

would be necessary to discuss in details the alignment of vortices in a 3D primiti

on framework.

no initial RT composite is present, the time evolution of Rmax (Fig. 6(b)) is rough

r to cases described above. However, the main eddy vertical structure near the en

simulation is strongly influenced by the SCVs generation depth (Fig. 7). In t

ulation, SCVs hardly merge, because of the weak stratification below 1000 m dept

g to a weak resulting eddy, intensified at depth. In the sD simulation, SCVs are n

ntense, but they easily merge, leading to a weak surface-intensified anticyclone, th

ot resemble the RT eddy either. In the mD simulation, the final shape of the ma

s roughly similar to the mRTD simulation’s one. This show that the merging of SCV

en each other produces an eddy similar to the RT eddy only if SCVs are generated

stic depth, where merger is easier because of the strong stratification. This suppor
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sion of merging events between SCVs generated at ∼ 750 m depth.

n the importance of convection

9: (a,b) (resp. (c,d)) Time evolution of Rmax (resp. ratio between PV and initial PV integrated ov

in eddy) for some simulations without (a,c, solid line) or with (b,d, dashed lines) convection; the th

e shows the time evolution of the SNHF applied at the surface in the simulations with convecti

g. 4 for the values it reaches). (e) Same as Fig. 7 for the 6 simulations shown in (a,b).

we add a negative heat flux at the surface (as in RTDC, mRTDC, dRTDC or D

tions), convection appears. As a result, isopycnals deepen during about 6 mont

ear, following the imposed seasonal cycle (Fig. 4). The Ertel potential vorticity

d as

Q = (f0 + ζ)∂zb− (∂zv)(∂xb) + (∂zu)(∂yb), (

0 the Coriolis frequency, b the buoyancy, and ζ the relative vorticity, undergoes

al increase in the main eddy’s core (see Fig. 9(b)). The shallower the SCV shotgun

rger this intensification. This mechanism of intensification by wintertimle convectio
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uently increases the azimuthal velocity of the eddy. During these convective perio

ain eddy is thus intensified, and its radius increases (see Fig. 9(a)). On the oth

when density gradients are increased the eddy is no longer in thermal wind balanc

erefore an adjustment meditated by a secondary circulation is required. We refer t

to Legg et al. (1998); Legg & McWilliams (2001) for a full explanation of this proces

we compare the RTD and the RTDC simulations, one can see that even if no SC

n is present, the evolution of the main eddy’s radius experiences sharp increases

esence of convection. This is due to the fact that during convective periods, t

e mixed-layer deepens in the whole domain, and SCVs are spontaneously generat

xed-layer baroclinic instabilities (Callies et al., 2015). This leads to vortex thinnin

between convectively-generated SCVs and the main eddy, that subsequently increa

ain eddy’s radius (Schubert et al., 2020). These events appear throughout the who

tion involving convection, and they are difficult to characterize because they can

ted above the main eddy and merge with it within a few days. However, it ca

ticed that in the simulation with both a SCV shotgun at mid-depth and convectio

DC), we observe that the main eddy’s radius continuously oscillates between a mea

of about 30 km. In this simulation, the SCVs are more numerous than in the mRT

tion. The number of merging events of small SCVs with the main eddy is larger wh

tion is present. This leads to a lot of small increases of radius rather than decrea

s followed by a large increase.

nvection and merging events with convectively-generated SCVs act together to i

the horizontal shape of the main eddy, but also its intensity at depth. Indeed, wi

tion, the main eddy is more intensified at depth than in simulation without convectio

., Fig. 9(c) for the dRTDC simulation. The main eddy is intensified at a depth whe

rging with neither the convectively-generated SCVs in the mixed-layer nor the SC

n SCVs occurs. This reflects the importance of the direct convectively driven mod

ntioned in the previous section, if the SCVs are generated below a critical depth (e.

D simulation), little merging events are observed. If we add the convection (dRTD

tion), the main eddy’s core deepens. Subsequently, the vertical distance between t
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ification of the main eddy, see Fig. 9(c). Convection thus allows to intensify the ma

core by 1) deepening the core during wintertime, 2) generating small SCVs –by mixe

nstabilities– that can eventually merge with the main eddy, and 3) helping alignme

ucing the distance between the main eddy’s core and deeply-generated SCVs. It shou

iced however that from our analysis, the relative importance of these three mechanism

t be precisely gauged. This quantification should be the aim of further investigation

a sensitivity test, we also ran a simulation with only convection (DC simulation, n

). In this simulation, anticyclonic convectively-generated SCVs are attracted by t

haped topography. They subsequently merge between each other, and eventually for

km radius anticyclone in the bowl, i.e., a main eddy. This eddy appears after abo

nths of simulation and is intensified between 1000 and 1500 m depth. This test furth

that the convection by itself is sufficient to lead to a single long-lived anticyclon

n a bowl topography.

echanisms of eddy decay

can be seen in the time evolution of Rmax (see e.g., Fig. 6), after the main eddy

increases due to either merging or convection, periods of decay that can last f

l years are observed. During these periods, little merging occur, and some physic

nisms lead to the erosion of the eddy. We describe those in the following section.
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3.4.1. Bottom drag382
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10: (a) Evolution of Rmax during simulations, with (solid) and without (dashed) bottom drag p

rization. (b) Evolution of kinetic energy terms in the mRTD simulation. Each term is integrated

d in the contour of the main eddy. Note that the superposition of blue crosses with the black so

ows that the KE energy budget is closed, with respect to eq. (2).

e principal mechanism responsible for the eddy decay in our simulations is the botto

We observe that no radius decay period are seen in simulations without bottom dr

eterization (Fig. 10(a)). This leads to a main eddy being too intense, and too lar

parison with the RT eddy. Also, without drag, the main eddy becomes anomalous

opic (see for instance Fig. 11(c)). It thus has a 3D shape very different from the R

e bottom drag seems to be the major limiting factor for the eddy growth due to mergin

CVs. In the KE equation budget (Fig. 10(b)) the pressure gradient, the advectio

e Coriolis terms dominate the main eddy’s KE gain (C in Fig. 10(b)). They are t
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energy (not shown). The horizontal diffusion and mixing, as well as volume chan

dging have a neglectable contribution to the KE budget (B). The bottom drag (A2

ed in the vertical mixing (A1), appears to dominate the main eddy’s KE loss.

nsates the other terms, and increases in amplitude each time the eddy gains KE b

g with other vortices. The bottom drag contribution is intensified when the main edd

away from the center of the bowl, because the water depth is smaller. It is thus great

efore symmetric merger events, because the main eddy co-rotates with its companio

bsequently drifts away from the center of the bowl. This can be seen in Fig. 10(b

rag KE term peaking just before merging related steps (see at e.g. t = 35 months)
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3.4.2. Centrifugal instability402
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11: (a) Time evolution of Rmax (black line) and % of eddy’s volume with negative PV (dashed re

mRT simulation. The size of black dots indicates the amplitude (in absolute value) of the minimu

the eddy’s contour. (b) Horizontal sections of normalized relative vorticity at 750 m depth; gre

rs indicate the places where the PV is negative. (c) Vertical sections of normalized relative vortic

through the center of the main eddy; the thin dashed lines indicate the depth of horizontal sectio

in (b).

cases without drag, it can be seen that the main eddy still experiences abrupt radi

se events, see e.g., between t = 1500 and 1700 days in mRT simulation (Fig. 11(a)

s time, a rapid radius decrease is seen just after a vortex thinning event with a sma

Horizontal sections of relative vorticity (Fig. 11(b)) show that after the main edd

s the SCV, a spiral-like pattern appears in the eddy’s core. This pattern is seen

ole water column. There, the normalized relative vorticity reaches ζ/f0 ∼ −1.

is pattern is typical of centrifugal instability (Cushman-Roisin & Beckers, 2011). Th

stic is confirmed by the following facts. (1) The PV in the eddy’s core is negati
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near its center (green contours in Fig. 11(b)), which is the necessary condition (fQ < 0)411
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ntrifugal instability. (2) The horizontal shear terms are responsible for the extrem

se of PV in the eddy’s core (not shown).

gative PV patches are strongly unstable, and the nearly materially conserved natu

implies that negative PV does not occur spontaneously inside the fluid. Thus, t

tion of negative PV in the fluid must be forced, for instance by appropriate friction

ctions with nearby boundaries or interactions with the wind. Here, no such mechanis

ent. The decrease of PV is due to the abrupt change of horizontal velocity gradien

ng from the vortex thinning of a small SCV around the main eddy (Fig. 11(b)). T

e of PV occurs where density fronts are sharp and parameterized diapycnal mixin

(see Appendix C in de Marez et al. (2020a)). The centrifugal instability is th

red by the interaction of the main eddy with the SCV, and eventually leads to a

t erosion of the eddy. About five major centrifugal instability events occur at t > 10

see the peaks of red dashed curve in Fig. 11(a), that show times when negative PV

the eddy’s core. Note that before t =1000 days, negative PV is found in the eddy

ut with values very close to zero. The eddy is thus at this moment not intense enoug

subject to the instability.

ch centrifugal instabilities are preferly seen in simulations without drag. In thos

ain eddy is more intense, and it reaches very low PV values that are suitable f

ilities. Nevertheless, such instabilities can still be seen in e.g., mRTD simulation, wi

ller signature than in mRT (not shown).

mmary and discussion

studied the lifecycle of an anticyclonic eddy trapped in a bowl-like topography, whi

ject to the interaction with like-signed SCVs and/or convection. From the analys

simulations with varying parameters, we show that the balance between merger an

drag allows the eddy to have a roughly constant 3D shape throughout several year

e one hand the vortex merger with small SCVs allows the eddy to grow in size, an

ify at depth. As merger events occur at the SCV generation depth, the final main edd

nsified at this particular depth. These mergers are enhanced when SCVs are generat
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at a depth where the stratification is large, and when convection is at work. Indeed, the440
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tion (1) deepens the main eddy and increases the merger efficiency at depth, and (

tes other SCVs in the mixed-layer that eventually merge with the main eddy. On t

hand the bottom drag erodes the eddy. The bottom drag is the main contribution

dy’s KE loss. When it is not included in simulation, the eddy becomes barotropic, an

ugal instabilities triggered by the merger with SCVs erode the eddy over the who

column.

rging and convection both contribute to the maintaining of anticyclonic eddies trapp

l-shaped topographies. Our study thus show that it is difficult to disentangle the tw

nisms, in particular if we replace this in a more realistic context. However, the fin

of the main eddy can give keys about the mechanisms responsible for the long lifetim

h eddies. If the main eddy is intensified at multiple depth (it has e.g., a double-co

the eddy has certainly experienced one or several merging with other vortices. Also,

pth of intensification of the main eddy is correlated with the depth of a SCV generatio

arby, merger between these vortices probably happened. One can therefore state th

se cases, merging played a major role in the maintaining of the eddy.

the real ocean, other processes can affect the shape of such an eddy. For instanc

al waves and fine-scale (O(1) m) processes can lead to the dissipation of long-liv

cale eddies. In the LV case, Fer et al. (2018) showed through high-resolution turb

easurements that the background shear as well as near-inertial waves trapped by t

ve vorticity of the LV are the dominant sources of kinetic energy loss. More general

al waves are suspected to drain a significant part of the energy of such mesoscale eddi

n et al., 2021). These mechanisms are hardly resolved in the simulations discuss

present paper, and are mainly controlled by the numerical parameterization (i.e., t

l mixing induced by the KPP scheme). Furthermore, the simulation lacks realistic le

internal waves. Simulations with higher resolution and fully realistic atmospheric an

orcings should thus be required in order to determine the relative importance of the

processes compared to the bottom drag. At larger scales opposite-signed mesosca

nt structures can travel to the eddy’s location. This could modify the behavior

dy by dipolar effect, and affect the merging efficiency with SCVs (Rodŕıguez-Marro

27

Jo
ur

na
l P

re
-p

ro
of
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oastal current can erode the eddy because of the presence of an ambient horizont

(Perrot & Carton, 2010). If the eddy moves toward the coast, the interaction wi

l Kelvin waves can also affect its trajectory and shape (Dewar & Hogg, 2010; Gula

, 2010; Hogg et al., 2011; de Marez et al., 2020b).

spite this, in the Rockall Trough (as well as in e.g., the Lofoten Basin) the sem

nent anticyclonic eddies are rather isolated from the coast and other currents. O

can thus support the view of Smilenova et al. (2020) or Trodahl et al. (2020) that su

ermanent anticyclonic eddies are mainly maintained by the merger (or alignment) wi

r-scale vortices. In this high latitude regions, convection is large, and indeed deepe

nal and subsequently increases the eddy’s core potential vorticity, as discussed

osse et al. (2019). However, we show here that convection principally enhances t

r of merger with small eddies, either at the surface or at depth with SCVs. T

g/alignment with SCVs is thus likely to be the more important mechanism to susta

cale anticyclones trapped in a bowl, as stated in the LV case by Trodahl et al. (202

Smilenova et al. (2020) in the RT eddy case.
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Highlights for ‘The inflenne of merger and nonventon on an antncnlonin eddc trapped in a
bowl’:







 ,
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Antncnlonin eddies lcing in a topographin depression live for several cears 
Small SCVs generated nearbc the antncnlonin eddc intensifc the later at their depth
of generaton
Wintertme nonventon is efnient in intensifcing the antncnlonin eddc
The slstaining for several cears of slnh eddies is dle to the balanne between merger
nonventon, and botom drag
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