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ABSTRACT: Tropical cyclone (TC) internal dynamics have emerged over recent decades as a key to understand their

intensity variations, but they are difficult to observe because they are sporadic, multiscale, and occur in areas of very strong

wind gradients. The present work aims at describing the internal structure of TCs, as observed with newly available satellite

synthetic aperture radar (SAR) wind products, and at evaluating relations between this structure and the TC life cycle.

It is based on a unique dataset of 188 SAR high-resolution (1 km) images, containing 15–47 images by intensity category.

An extraction method is designed to retrieve and characterize the TC radial profile, its azimuthal degree of asymmetry, and

the energy distribution in the eyewall and maximum wind areas. Vortex contraction and sharpening of the eyewall wind

radial gradient with increasing TC intensity are observed, as well as a symmetrization of energy distribution around the

vortex. Eyewall high-wavenumber structures show a dependence on the life-cycle phase, supporting previous findings

discussing the vortex rapid evolution with onset and propagation of eyewall mesovortices and associated vortex Rossby

wave generation. A machine-learning approach highlights that the eye shape and eyewall radial wind gradient fine-scale

dynamics have the potential to improve the statistical prediction of TC intensity variations relative to the sole use of vortex-

averaged parameters and synoptic information. The high-resolution radial and azimuthal coverage provided by SARsmake

these acquisitions a very valuable tool for TC research and operational application.

KEYWORDS: Tropical cyclones; Wind; Statistics; Radars/radar observations; Satellite observations; Classification

1. Introduction

Forecast and understanding of tropical cyclone (TC) life

cycle has been a critical challenge of meteorological science

for decades. The development of dynamical weather forecast

models, and our increasing observational capacity from space

have led to a better resolution of the synoptic steering flow and

to subsequent improvements in TC track and maximum po-

tential intensity forecasts (Miller 1958; Emanuel 1986, 1987;

Elsberry et al. 2013). On the other hand, the forecast of TC

intensity variations has seen much less progress (Cangialosi

and Franklin 2019). TC intensification and mature-phase in-

tensity variations are associated with multiscale interactions

(interactions between very fine- and synoptic-scale processes

(e.g., Elsberry et al. 2013), complex internal and stochastic dy-

namics in the inner core (e.g., Wang andWu 2004; Montgomery

and Smith 2014), and exchanges with the underlying ocean (e.g.,

Bender and Ginis 2000; Wada 2009; Jullien et al. 2014), which

are more difficult to model and predict, and are not necessarily

well understood.

TC intensification theories, developed since the 1960s

(Charney and Eliassen 1964; Ooyama 1964, 1969; Emanuel

1986; Smith et al. 2009), are still debated. They assume that TC

vortex intensification occurs through the spinup of tangential

winds, which mainly takes place above the boundary layer

(BL). There, the flow is assumed to be in gradient wind bal-

ance, and to converge due to eyewall deep convection causing

tangential winds to increase (as angular momentum is con-

served). In the BL, the assumed gradient wind balance is broken

by surface friction, causing convergence of moist air that even-

tually releases latent heat when reaching the eyewall and pro-

vides fuel for deep convection (Emanuel 1986). Intensification

thus occurs through a feedback between spinup above the BL,

moisture inflow in the BL, and convection in the eyewall.

Amore recent study (Smith et al. 2009) also suggests that spinup

could occur inside the BL due to supergradient winds present in

the inner core, with the strongest winds thus located at the top of

the BL and the inner core being partly decoupled from the

outer core. Studying and observing the BL structure is thus

crucial to better understand surface energy transfers and

inner-core dynamics, such as wind spinup, gradient and su-

pergradient balances, and convectively driven inflow, that

drive TC intensification.

Intensity variations of the mature TC have also been thor-

oughly studied: while triggered by external events such as

vertical wind shear or tropospheric troughs (Uhlhorn et al.

2014), they are also tightly connected to several internal pro-

cesses mainly occurring in the inner-core, eye, and eyewall

areas. Eye warming (Stern and Zhang 2013) and observed

midlevel thermodynamic inversions within the eye (Jordan

1961; Willoughby 1998; Franklin et al. 1988) have been related

to intensity variations as eye subsidence interacts with the eyewall

convection and modifies the dynamical balance in the BL. Eye

contraction is described as a supporting mechanism to vortex

intensification and stabilization (Shapiro and Willoughby 1982;
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Lee and Bell 2007). Secondary eyewalls (Holland et al. 2010;

Willoughby et al. 1982) and eyewall replacements (Houze et al.

2007) have been observed as a result of TC vortex destabili-

zation and progressive reestablishment after external events

affecting the TC life cycle. A range of observational studies,

mainly based on coastal (Macdonald 1968; Muramatsu 1986;

Kuo et al. 1999) and airborne (Reasor et al. 2000; Corbosiero

et al. 2006) dual-Doppler radar imagery, has also identified

vortex Rossby waves (VRWs) as a progressive restoration

process.

The VRW theory, first formalized by Montgomery and

Kallenbach (1997), describes internal waves propagating

along potential vorticity gradients that promote vortex

axisymmetrization by propagating energy from the TC

center to its periphery. In this context, a perturbation of

the eyewall convection (most often caused by external

shear) can cause a breaking of the eyewall vorticity ring,

leading to emergence of eyewall mesovortices (Schubert

et al. 1999; Kossin and Schubert 2001) These mesovortices

modify the eye shape, induce mixing within the eye, and even-

tually organize, resulting in VRWs propagating around the eye

and causing eye rotation. Then they propagate outward, gen-

erating inner rainbands of higher vorticity (Macdonald 1968),

and possibly trigger the formation of outer spiral rainbands

when reaching their stagnation radius (Montgomery and

Kallenbach 1997; Chen and Yau 2001). Their propagation is

suggested to allow dissipation of the center instability and

reformation of the eyewall vorticity ring, thus enhancing

eyewall convection and TC intensity. A complete review of

VRW theory and their role in TC intensity variations is

provided by Wang and Wu (2004).

Fast structural changes of TCs, associated with the fine-scale

rapid evolution of the inner part of the eyewall, and subsequent

VRW propagation certainly contribute to the difficulty of

forecasting TC intensity changes. Usual operational statistical–

dynamical forecast models (DeMaria and Kaplan 1994, 1999;

Knaff et al. 2005; Knaff and Sampson 2009) use linear regres-

sion techniques to predict intensity changes from large-scale

climatological fields (temperature, humidity, maximum po-

tential intensity, shear, etc.), TC intensity, and rate of change at

the forecast initial time. The observational limitations with

regard to TC internal small scales (lack of spatial and temporal

resolution) have prevented their use in such statistical models.

Based on a numerical study, Judt et al. (2016) suggested that

forecast errors rapidly grow on small scales, limiting their

predictability. However, the tight relation between meso-

vortices generated in the eyewall inner edge, induced mixing

and spinup within the eyewall (Schubert et al. 1999; Kossin

and Eastin 2001; Nguyen et al. 2011) foresees toward a po-

tential improvement of TC variation predictability with a

better assessment of such fine-scale structures and associated

dynamics.

The wide range of interacting processes that induce TC in-

tensity variations, including external large-scale events, eye

and eyewall instabilities, VRW generation and propagation,

involve synoptic to turbulence scales ranging from days to

seconds temporally, from hundreds of kilometers to meters

spatially, and from the troposphere to the sea surface

vertically. Observing the TC structure evolution associated

with these intensity modulation processes thus requires a

combination of high temporal and spatial resolution, together

with a large coverage, and a cloud-penetrating technology. The

definition of a sensor or a network of complementary sensors

able to achieve comprehensive observations of TCs at global

scale thus remains a challenge.

The most prevalent TC observation source is geostationary

satellite imagery; it provides high-resolution, extended geo-

graphical and temporal coverage and is widely used for TC

intensity monitoring and forecast (Dvorak 1975; Olander and

Velden 2007). However, geostationary observations are lim-

ited to top-of-the-cloud information (as they operate in visible

and infrared wavelength) and cannot directly retrieve the BL

evolution. Other available satellite observations for wind

measurements are those of L-band or multifrequency radi-

ometers and scatterometers (cloud-penetrating microwave

wavelength). They are able to provide a direct estimate of the

wind speed at the ocean surface (Meissner and Wentz 2009;

Zabolotskikh et al. 2015; Katsaros et al. 2002; Reul et al. 2017)

and thus valuable information on the TC structure. However,

they are limited by their spatial resolution (usually 40–50 km)

preventing their use for studying the TC inner-core structure.

Small-scale BL observations are thus usually only obtained

with airborne Doppler radars, dropsondes, and ground-based

radars. These observations provide high-resolution measure-

ments in the BL (Marks 2003), but with limited geographic

extent and sampling capacity: airborne observations have a

very partial coverage of the azimuthal structure (Reasor et al.

2000; Uhlhorn et al. 2014), and time lags between passes

that limit the temporal coverage, and coastal radars do not

have access to the entire TC life cycle due to their limited

radial extent.

The technology of synthetic aperture radars (SARs) pro-

vides an adapted complement to these techniques. It is indeed

the only satellite remote sensing technique that allows probing

the sea surface at very high resolution and can provide esti-

mates of 2D wind fields with kilometer resolution (Katsaros

et al. 2002). However, SARdata are not commonly used for TC

observations for several reasons: 1) over open ocean there is no

systematic SAR acquisition, and some of the acquisitionmodes

do not allow for TC wind retrieval; 2) to date, the planning of

TC acquisitions in the adequate mode is not a priority for SAR

missions’ objectives and is only performed on request and if

other higher-priority acquisitions are not planned; 3) the wind

retrieval from SAR images in TCs requests a dedicated treat-

ment, which has only been recently developed (Zhang et al.

2016; Mouche et al. 2017); and 4) SAR data are currently not

available in real time, limiting their potential use to postevent

reanalysis only. Nevertheless, SAR data have been shown to

allow the retrieval of several TC properties: TC center, eye

shape (Lee et al. 2016; Du and Vachon 2003; Jin et al. 2014; Liu

et al. 2014), rainbands and precipitation (Long and Nie 2017;

Jin et al. 2017; Zhang and Li 2017), convective cells (Zhang and

Li 2017), BL rolls (Foster 2005), and surface wind speed

(Zhang et al. 2016; Zhang and Perrie 2017; Yang et al. 2017).

Based on a set of 83 net radar cross section (NRCS) SAR ac-

quisitions, Li et al. (2013) adopted a statistical approach to link
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TC eye derived morphology to TC intensity. They associated a

reduction of the eye extent and a decrease of the eye shape

wavenumber asymmetry with an increase in intensity, thus

observing the eye contraction and axisymmetrization with in-

tensity. As most wind inversion algorithms under high winds

are new or still under validation, most existing SAR studies

have focused on surface roughness data for the estimation of

TC properties (eye shape, BL rolls, rainbands, or meso-

vortices), and are often limited to weak TCs.

The present study takes advantage of a new consequent

database of TC SAR observations, which has been gathered

from two SAR missions (Sentinel-1 and RADARSAT-2)

over a 4-yr period extending from 2016 to 2019. This database

covers a wide range of TC cases. It has been used to set up a

new wind inversion algorithm (Mouche et al. 2017) and has

been validated against the International Best Track Archive

for Climate Stewardship (IBTrACS), the National Oceanic

and Atmospheric Administration (NOAA) airborne mea-

surements, and the L-band radiometer wind estimations

(Combot et al. 2020; Mouche et al. 2017, 2019). Based on this

new consequent database of SAR wind speed retrievals in

TCs, the present study describes a method developed to

extract TC structural properties (e.g., eye and ring of maximum

wind shapes, surface wind gradients), and energy repartition

within the TC vortex (characterized through surface wind in-

tensity spectral decomposition).

Our analyses then demonstrate the ability to describe and

characterize, with such acquisitions, the TC inner core, through

its radial profile, its azimuthal degree of asymmetry, and the

energy distribution in the eyewall and maximum wind areas.

These results have strong implications for operational and re-

search applications, as the near-real-time estimation of typical

TC characteristics (maximum wind speed, radius of maxi-

mumwinds, inner-core and near-core wind gradients, vortex

asymmetries), which can be used for TC forecasts, high-

wave and storm-surge forecasts, and observational research

on inner-core dynamics and intensity restoration processes.

Our analyses also suggest potential use of our wind profiles for

estimating mean wind profiles, or fitted 2D wind structures,

which could be used as forcing for operational risk assessment

or other research applications. A second objective of our sta-

tistical analyses is to investigate the importance of the fine-

scale variability of the eyewall and area of maximum wind for

understanding the TC intensity fluctuations, and their potential

to improve our ability to dissociate intensification phases. As

SAR acquisitions are snapshots, with a relatively sparse sam-

pling, they do not allow for a continuousmonitoring of each TC

evolution and prevent for an estimate of the short-range dy-

namical changes in the internal structure. However, here we

propose to evaluate their predictability potential by assessing

the relation of TC SAR-extracted parameters (intensity, size,

radial profiles, azimuthal degree of asymmetry and energy

distribution) to the 12-h ongoing TC intensity change. An

evaluation of their added value in an actual statistical forecast

model is beyond the scope of this paper but may be an exciting

perspective.

The paper is organized as follows. Section 2 describes the

dataset and the method of processing of SAR images; section 3

then describes the TC radial and azimuthal structures and in-

vestigates their evolution as a function of TC intensity, with a

focus on the inner-core and the eyewall area and compares

these new SAR observations with previous studies. The benefit

of observing these internal structural properties to depict the

TC life cycle and its predictability is assessed in the last part of

section 3, using a method based on machine-learning classifi-

cation. Section 4 discusses our results and the technical limi-

tations of our dataset, and in section 5 conclusions are drawn.

2. Data and methods

a. SAR dataset

The SAR dataset used in this study is the result of the

Satellite Hurricane Observation Campaign (SHOC) started in

2016 by the European SpaceAgency (ESA). Following the first

promising SARobservations madewithRADARSAT-1 in TCs

(Friedman and Li 2000; Katsaros et al. 2000; Du and Vachon

2003), SHOC aims at programming acquisitions over TCs with

Sentinel-1 and RADARSAT-2 SAR missions based on TC

track forecasts.

SAR is a side-looking microwave active sensor, which mea-

sures the backscatter signal to estimate sea surface roughness.

The synthetic aperture principle consists in processing together

the phase and amplitude of several consecutive acquired signals

to build a synthetic along-track antenna much larger than the

real one. The high sampling frequency and the synthetic aper-

ture therefore provide a spatial resolution that ranges from 10m

to 1 km (depending on the acquisition mode). The drawback of

SARhigh resolution is that the rawdata volume is very high, and

consequently the satellite is not in continuous acquisition mode.

Both Sentinel-1 and RADARSAT-2 are C-band SARs. The

acquisitions are carried out in wide swath mode to encompass

the whole TC structure, and in both co- and cross-polarization

modes, which have been shown to complement one another in

retrieving wind speed and direction. Indeed, as outlined by

Mouche et al. (2017), the cross-polarization implemented on

both Sentinel-1 andRARDARSAT-2 is muchmore sensitive to

high wind gradients, allowing a better resolution of the TC wind

field (characterized by large wind gradients and wind speeds

exceeding 35m s21). On the other hand, cross-polarization is

also more sensitive to noise (due to swath junctions or precipi-

tation in the atmospheric column). The copolarization is thus

used to validate or replace cross-polarized data in the low to

moderate wind regimes and will help retrieving wind streaks for

estimation of the wind direction. This latter capacity is, however,

not fully implemented yet, and therefore, it is not available for

the present study. The geophysical model functions used are

CMod5n for copolarized and MS1A for cross-polarized data, as

described in Mouche et al. (2017).

The validity of the SAR TC wind field database used in the

present study was thoroughly evaluated against the NOAA air-

borne measurements using the Stepped Frequency Microwave

Radiometer (SFMR), L-band radiometer wind estimations, and

the IBTrACS by Mouche et al. (2017, 2019) and Combot et al.

(2020). Mouche et al. (2017, 2019) described and validated the

wind inversion algorithm against L-band radiometer data, and

SFMR data. Combot et al. (2020) examined and validate the
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SAR database [TCmaximum wind intensity (VMAX), radius of

maximum winds (RMW), and characteristic 34-, 50-, and 64-kt

(1 kt ’ 0.51m s21) wind radii (R34, R50, and R64)] against

IBTrACS and SFMR data. Overall, these three papers showed

an excellent agreement of the wind intensity retrieved from

SAR with all compared datasets (IBTrACS, SFMR, and

L-band radiometers). Combot et al. (2020) found a 0.87 cor-

relation between SAR and best-track (BT) VMAX, with an

8.76m s21 RMSE, and an even higher agreement with SFMR

data (correlation of 0.9, RMSE of 4.85m s21, and bias lower

than 0.5m s21). They associated the better agreement found

with SFMR to BT estimate errors in cases of rapid intensifi-

cations (not well captured), or to eyewall replacements cycles.

Some differences were also spotted as a consequence of rain

artifacts in SAR data, which can cause inconsistent wind peaks.

Fourteen percent of the cases were found to be significantly

affected by rain. These cases were compared with Integrated

Multisatellite Retrievals for GPM (IMERG) precipitation esti-

mates, and maximum intensity was adjusted taking the maxi-

mum wind value only in low-rain-rate areas (,30mmh21),

yielding a mean difference of 6.2m s21 before and after VMAX

adjustment. Rain impacts on SAR wind retrievals are thus

challenging issues and have to be kept in mind when analyzing

the SAR wind field. However, they usually cause very localized

anomalies, and the method that we developed in the present

study was designed to minimize their potential impact on the

results (see the appendix).

Combot et al. (2020) further evaluated the spatial structure

of SAR retrieved wind fields by comparing the retrieved

characteristic wind radii (RMW, R34, R50, and R64). RMW

comparisons with SFMR revealed excellent agreement [cor-

relation of 0.95 and bias of 3.5 km, except for the case of TC

Florence (North Atlantic 2018)], and comparisons with BT

showed larger discrepancies (0.47 correlation and RMSE of

25 km, improving to 11.6 km when discarding the cases of

double eyewalls). BT RMW retrievals are, however, notori-

ously bad in the absence of aircraft data, as they are derived

from indirect methods or low-orbit satellite missions using

medium- to low-resolution observations. Additionally, radii

associated with higher winds might have a higher temporal

variability possibly not captured by the 6 hourly BT analysis.

R34 andR50 comparisonwith BTs showed a correlation higher

than 0.85, and a low normalized bias of;3%, and of;10% for

R64 (larger differences in R64 being due to the same reasons as

for RMW). Overall, Combot et al. (2020) showed the good

performance of SAR in the retrieval of TC maximum intensity

and structure parameters (RMW and characteristic radii) and

advocated for their use as real-time and reanalysis observa-

tions for the improvement of best-track estimates. The present

SAR dataset is thus considered to satisfactorily allow for

TC surface wind field characterization, and will be shown, in

this study, to offer a unique opportunity to capture inner- and

near-core wind structure of the TC vortex, thanks to its high-

resolution and spatial extent.

From the beginning of the SHOC campaign in 2016, 279 eye-

matching TC acquisitions were gathered; 188 of these acqui-

sitions successfully passed our parameter extraction procedure

(described in the following section 2c) and were used in the

present study. Other cases that were withdrawn are usually

because of partially covered vortex structure, a too-large

portion covered by land, or weak distorted TCs preventing

parameter estimation. Figure 1 shows a wide range of TC

characteristics (intensity, basin, position, size, intensification

rate, and translation speed) represented in the 188-case

dataset. These characteristics are computed from the images

themselves, except for intensification rate and translation

speed, which are computed from best-track data described in

the following paragraph.

b. BT data

We use the IBTrACS (Knapp et al. 2010) that combines the

BT data from various meteorological centers (regional spe-

cialized meteorological centers responsible for TC forecast in

the different basins, and country agencies) into one common

format. In a few cases, IBTrACS database does not completely

cover the extent of an event. In these cases, the Automated

Tropical Cyclone Forecast System (ATCF;Miller et al. 1990) is

used to retrieve BT parameters. It may be noted that the most

recent tracks from IBTrACS and ATCF are provisional,

meaning that they have not been reprocessed with all available

observations.

The BT position, radius of maximum wind (RMWBT), and

34 kt radius (R34) are used for image processing (in particular

for retrieving the TC eye and maximum wind areas). BT data

[position and intensity (VmaxBT)] are also used to characterize

the TC life cycle, in particular the intensification rate, as no

linear and continuous temporal dimension exists in SAR data

due to a temporally sparse sampling of acquisitions. To provide

the closest BT temporal parameter estimates for each SAR

acquisition, the BT data are linearly interpolated at the ac-

quisition time. The temporal resolution of BTs is limited to 3 h

for IBTrACS and 6 h for ATCF, and the resolution in VmaxBT
is respectively 1m s21 for IBTrACS and 5m s21 for ATCF

data, yielding a limited precision of the interpolated tracks.We

will show in the next section that a first important step in SAR

image processing is to retrieve the TC center on the image it-

self, because the BT interpolated TC-center positions can be

far from the true center. The intensification rate is defined as

the time derivative of VmaxBT between t 2 6 h and t 1 6 h,

t being the acquisition time.

In the next sections, parameters extracted from BTs are

noted with a BT subscript (e.g., RMWBT) to differentiate them

from those retrieved from SAR.

c. Method of TC parameters extraction from SAR images

We designed a method to extract, from SAR-retrieved sur-

face wind field, four characteristic azimuthal signals describing

the TC: the maximum surface wind ring intensity and its shape,

the eyewall surface wind gradient, and the eye shape. To do so,

several steps are performed to ensure their best estimate, and

to circumvent most of the errors in SAR measurements. The

first step consists in masking potential areas of erroneous SAR

wind speed, such as subswath intensity jumps (see blue lines in

Fig. 2a) or local high heterogeneity not associated to wind but

for instance to rain signatures (see gray contours in Fig. 2a).

These masking steps are detailed in the appendix. The second

3654 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Unauthenticated | Downloaded 04/14/23 02:14 PM UTC



step consists in detecting the TC center. This is performed

using an iterative method that gradually approaches the TC

center, first identifying the highest wind area (red contours in

Fig. 2b), and then searching for a nearby low-wind-area cen-

troid (light blue dot in Fig. 2b). The center position is finally

defined as the centroid (yellow dot in Fig. 2b) of the maximum

wind gradient contour around the low-wind centroid (black

contour in Fig. 2b). The details of this iterative procedure are

provided in the appendix.

1) EXTRACTING AZIMUTHAL SIGNALS

The SAR image is then projected and interpolated on a

polar grid centered on the extracted TC center. The azimuthal

resolution of the polar grid is set to 18, and the radial vector is

defined between 0 and 10 3 RMWSAR with a resolution

matching the one from the original Cartesian grid of the image.

The polar grid is geographically oriented with an easterly zero

azimuth (the extracted signals are thus not oriented to the TC

direction of motion).

Four characteristic azimuthal signals are extracted: two

characterizing the TC intensity distribution, the eyewall wind

gradient, and the maximum wind azimuthal distributions; and

two characterizing the TC shape, the eye shape, and the max-

imum wind contour shape. The first signal is maximum wind

distribution (VmaxAZ). The azimuthal distribution of maxi-

mum wind intensity is retrieved by extracting for each azi-

muth the maximum wind value. To avoid local outliers in the

distribution, these maximum wind values are computed

using a sliding average algorithm: for each azimuth, the pro-

file used to compute maximum wind is averaged with its six

closest neighbors. The retrieved signal is hereinafter denoted

VmaxAZ. The second signal is maximumwind shape (RMWAZ).

The contour of maximum winds is defined by the distance be-

tween the TC center and the maximum wind location for each

azimuth. This azimuthal distribution of RMW is hereinafter

referred to as RMWAZ.

The third signal is eyewall wind gradient (dV/dRAZ). We

define the eyewall as the region located between the minimum

and the maximum of the second derivative of the radial profile

between the TC center and RMWAZ (see Figs. 3b,f) so that the

eyewall does not include the ‘‘flat’’ wind areas located in the

eye and near the peak of the wind profile. The azimuthal

eyewall wind gradient, dV/dRAZ, is then defined at each azi-

muth u as the gradient dV/dRAZ(u)5 (DVru/Dru)rumin/rumax
,

whereVru is the radial wind speed profile for each azimuth, ru is

the radius, and rumin and rumax are the values corresponding to

the minimum and the maximum of the wind profile second

derivative.We also define dV/dREW as themean value of radial

gradient in the eyewall computed on the azimuthally averaged

wind profile. This parameter is thus a single value (instead of a

1D signal) estimating the average radial wind gradient in the

eyewall.

The fourth signal, eye shape (hereinafter denoted ESAZ), is

defined as a closed contour of wind located between the

maximum radial wind gradient and the TC center. The maxi-

mum radial wind gradient is computed for a subset of radial

profiles located at high-wind azimuths (corresponding to wind

values between 99.5% and 99.9% of the image, denoted by

black dots in Fig. 3). For each of these profiles, the wind value

matching the maximum wind gradient is retrieved. These

values are averaged and a wind contour matching this average

value is extracted, along with nine other contours matching

FIG. 1. Overview of the SAR TC database (number of samples) in terms of TC category, basin, absolute latitude, radius of maximum

wind (km), intensification rate (m s21 day21), and translation speed. The two latter are retrieved from best-track data, and the other

parameters are retrieved from SAR images. Basin codes are the following: northern Atlantic (NA), northern eastern Pacific (NEP),

northern western Pacific (NWP), southern Pacific (SP), southern Indian Ocean (SIO), and northern Indian Ocean (NIO).
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lower wind values (for cases with incomplete contours, see blue

contours inside the eye in Fig. 3). The most exterior contour

encompassing more than 70% of all azimuths is taken as the

final shape.

These four previously extracted azimuthal signals are then

smoothed by applying a third-order Butterworth filter with a

critical frequency of 0.03 (an example is shown in Fig. 3b).

A signal completion is also performed when the signals are

partially cut by image border, by linearly interpolating the

azimuthal signal.

2) COMPUTING VARIANCE AND SPECTRAL

DECOMPOSITION

After normalizing the signals by their mean value, their

variance is computed to characterize the overall asymmetry of

the TC shape (relatively to a circle), and the distribution of

energy (relatively to a homogeneous ring of wind). Then a

wavenumber spectral decomposition is performed to assess the

power level of each wavenumber composing the signal (Fig. 3).

A recentering around the respective polygon centroid is ap-

plied to the two spatial signals (ESAZ and RMWAZ) prior to

the spectral decomposition, as our purpose is to characterize

the relative azimuthal distribution and not the decentering of

the structure, which would strongly sign in wavenumber 1.

The relative power levels therefore describe the shape char-

acteristics (for instance, a relatively elliptical eye is charac-

terized by the predominance of wavenumber 2 as shown in

Figs. 3a,c, while a more polygonal eye is characterized by a

broader spectrum with strong wavenumbers 3 and 5 as shown

on the example of Figs. 3d,f). For the intensity signals

(VmaxAZ and dV/dRAZ), the spectral decomposition charac-

terizes the energy distribution: the predominance of low

wavenumbers indicates local maxima, while a broader spec-

trum with higher relative importance of high wavenumbers

represents a more distributed energy.

The variance, being the sum of the spectral components, a

large value can be associated either with a large amplitude of

only one wavenumber (a distortion of the shape, or local en-

ergy maxima), or with a smaller amplitude but a larger number

of components (which could describe a shape with more noise

but closer to a circle in average). In practice though, the

smoothing applied to azimuthal signals and the structure of the

TC vortex causes the variance to bemore likely associated with

the predominance of large wavenumber amplitudes than to a

broader spectrum as displayed in Fig. 3, where the upper eye

shape is more elongated and has a higher variance than the

lower one, which is more polygonal but is closer to a circle on

average.

3) VORTEX-AVERAGED PROPERTIES

ThemaximumTC intensity (VMAX) extracted from the SAR

images is estimated as the maximum of the azimuthal maxi-

mum wind distribution, VMAX 5 max(VmaxAZ). A mean ra-

dial profile is also computed for each image by performing an

azimuthal average. A vortex-averaged RMW, as well as an

averaged eyewall wind gradient, dV/dREW, and an averaged

near-core radial gradient, dV/dRNC 5 (DVr/Dr)RMW/3RMW,

are computed from this averaged radial profile. The three

FIG. 2. (a) Illustration of the TC-center research algorithm for the case of TCLionrock (western Pacific) observed

with Sentinel-1 SAR on the 27 Aug 2016. (b) A zoom over the TC eye. The TC wind field (m s21) as retrieved from

the SAR is shaded in (a) and (b). In (a) the heterogeneity mask (masking high gradient values of the backscatter

signal) is represented with gray contours, the black-dashed circle denotes the radius at which the heterogeneity

mask is removed, the subswath signatures are identified with dark-blue lines, and the red dot locates the inter-

polated BT TC center. The red-dashed circle in (a) and (b) denotes the first research area for theTC center.

In (b) the detected high-wind points are contoured in red, their centroid is located with themagenta dot, the second

research circle is featured by the purple-dashed line, the low-wind points are contoured in light gray, and their

centroid is located with the cyan dot. The raw eye-shape signal is depicted by the black contour, and the final TC

center is located with the yellow dot.
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distinct areas of the radial profile, used to describe the inner

core region of the vortex in the following, are thus

1) the eyewall area (green shading in Figs. 3b,f), which in-

cludes all points where the local radial gradient is higher

than 20% of the distribution of radial gradient values for

R,RMW; this ensures that one considers the linear part of

the eyewall and avoids the flat areas in the eye and near the

maximum wind;

2) the eye area (blue shading in Figs. 3b,f), defined as the re-

gion between the TC center and the inner edge of the

eyewall; and

3) the near-core area (red shading in Figs. 3b,f), which extends

between the RMW and 3RMW; this definition of the near-

core area is also used by Mallen et al. (2005) because it

usually contains a critical radius used for the estimation of

vortex resiliency.

The TC parameters extracted from SAR images are summa-

rized in Table 1.

d. Statistical classification of intensification rates

The potential of SAR-extracted parameters to statistically

predict TC intensification rate is assessed in the last part of our

results [section 3c(2)] by using a statistical classification, the

predictor being the intensification phase: intensification or

decay. Two groups of intensification rates are identified: in-

tensification rates above 5m s21 day21 and decay rates under

25m s21 day21. The number of images used for this statistical

classification is therefore 100 (over the 188 available images)

because medium values of intensification rate (88 images

between 25 and 5m s21 day21 are ignored.

The SAR-extracted variables used as predictors for the

classifications are the TC center absolute latitude, VMAX,

RMW, dV/dREW, and variance and percentages of explained

variance of the five first wavenumbers of the four azimuthal

signals (ESAZ, RMWAZ, dV/dRAZ, and VmaxAZ). All of these

variables have a correlation factor lower than 0.7, ensuring their

independency. Only the near-core wind gradient, dV/dRNC, was

discarded from the analysis, due to its too large correlation with

the eyewall gradient. Given the limited amount of samples (100)

and the elevated number of variables (28) composing our

dataset, an evaluation of the incremental added value of each

variable was not possible. We thus designed a method to esti-

mate the relative contribution of each variable to discriminate

intensifications versus decays. Figure 4 illustrates the flowchart

of this method.

The first step consists in reducing the number of variables

(initially 28) by dividing the dataset into four groups based on

FIG. 3. Illustration of the azimuthal signal processing detailed in sections 2c(1) and 2c(2) (here for the eye shape) for two acquisitions on

(top) Lionrock (western Pacific; 27 Aug 2016) and (bottom) Trami (western Pacific; 28 Sep 2018). (a),(e) The SAR 2D wind field and

contour of the extracted eye shape (dark green line), and the smoothed eye shape (thick light-green line), with highlighted high-wind

azimuths (black dots) used to compute the maximum radial gradient; the TC center is indicated with a yellow dot. (b),(f) Azimuthal-mean

wind profiles with shaded characteristic wind areas (eye area in blue, eyewall in green, and near-core in red) and highlighted eyewall

(green) and near-core (red) profiles used to compute mean gradient values. (c),(g) The azimuthal distribution of the eye shape, i.e., the

radius between the eye-shape contour and the TC center. (d),(h) The spectral decomposition of the normalized smoothed eye-shape

radius (the first 15 components are represented).
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the four azimuthal signals: ESAZ, RMWAZ, dV/dRAZ, and

VmaxAZ. Each subgroup contains the variance and the five first

wavenumbers explained variance percentages of the given

azimuthal signal, as well as the vortex-averaged properties

(TC-center absolute latitude, VMAX, RMW, and dV/dREW). A

random variable is added to each group as a control variable,

yielding four groups of 11 variables. Then, to further reduce the

number of variables for the classification (number of samples

versus variables issue), random combinations of 5 variables

among the 11 in each group are classified separately; 330 ran-

dom combinations and associated classifications are performed

for each group.

The classification itself is performed using 10 usual machine-

learning models (they are detailed in the fourth column of

Fig. 4). Thesemodels feature a wide range of differentmethods

of machine learning, including regression methods, tree clas-

sifiers or neural nets. These different models allow one to

take into account a wide range of possible relations between

variables, including nonlinear relations. The classification is

performed with a bootstrap method (learning on 80% of the

dataset and testing the remaining 20%, then iterating five times

with an exclusive 20% each time).

The average prediction score is obtained for each combi-

nation of variables by averaging the 10 models’ prediction

scores. Combinations are then sorted by order of performance,

and the best combinations are detailed.

3. Results

a. TC vortex parameters and radial profile as observed
with SAR

The kilometer-resolution SAR surface wind retrieval

allows a detailed 2D characterization of the TC inner-core

region, the most intense area of the TC vortex. First, maximum

wind speed (VMAX) and averaged RMW, extracted from the

SAR images, are analyzed and compared with previously

TABLE 1. Table summarizing the TC parameters extracted from the SAR images, as described in section 2c.

SAR-extracted parameters abbreviation Brief description

VmaxAZ Max wind intensity at each azimuth

RMWAZ Radius of max wind speed at each azimuth

dV/dRAZ Eyewall wind gradient at each azimuth: dV/dRAZ(u)5 (DVru/Dru)rumin/rumax

ESAZ Eye shape, defined as outermost closed contour of wind located between the max radial

wind gradient and the TC center

VMAX Vortex max wind intensity: VMAX 5 max(VmaxAZ)

RMWSAR or RMW RMW of the mean vortex (i.e., averaged azimuthally)

dV/dREW Vortex eyewall wind gradient: Eyewall gradient of the azimuthally averaged wind

profile: dV/dREW 5 (DVr/Dr)rmin/rmax

dV/dRNC Vortex-averaged near-core radial gradient: dV/dRNC 5 (DVr/Dr)RMW/3RMW

FIG. 4. Flowchart detailing the different steps of the statistical classificationmethod. Red boxes depict the steps, and underlying gray boxes

detail the dataset composition at each of these steps.
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published results, and then a detailed description of the radial

and azimuthal wind structures is assessed.

1) MAXIMUM WIND SPEED (VMAX) AND RMW

The relationship between SAR-derived VMAX and SAR-

derived RMW is illustrated in Fig. 5a. In agreement with pre-

vious results from airborne and SARmeasurements (e.g., Shea

and Gray 1973; Weatherford and Gray 1988; Li et al. 2013;

Combot et al. 2020), the RMW shows a decreasing trend, along

with a decreasing variability as intensity increases: RMW ex-

tends from 10 to 100 km for TCs weaker than category 3

(50m s21), while it is restricted to values lower than 50 km for

stronger TCs (above category 3). This RMW decreasing trend

with intensity can be associated with the eye contraction pro-

cess described as contributing to TC intensification (e.g.,

Shapiro and Willoughby 1982; Stern et al. 2015).

The variability of RMW values observed for moderate

(,category 3) TCs is very large whereas that for intense

($category 3) TCs is smaller, and therefore we separate the

following analyses into three TC groups: moderate and large

TCs (VMAX, category 3; RMW$ 50 km), moderate and small

TCs (VMAX , category 3; RMW , 50 km), and intense and

small TCs (VMAX $ category 3; RMW , 50km). The RMW

histograms of these three categories are shown in Fig. 5b. The

moderate TC distribution features a relatively clear distinction

between the moderate small and moderate large categories at

50km, whereas intense TCs display RMWs distributed between

10 and 50km with more numerous TCs in the lowest RMW

categories. The standard deviations for both small moderate and

intense TCs are similar (;13km), and large moderate TCs

have a larger spreading (standard deviation 5 31.5 km), partly

explained by the lower number of events in this category.

The events lying outside the overall standard deviation in

Fig. 5a mostly belong to this moderate large category and are

usually associated with highly asymmetrical TCs (see the on-

line supplemental material), for which high winds are mostly

confined to one sector of the TC vortex. It can be noted that

these cases are particularly challenging for RMW retrieval in

BT data, which often provide erroneous too low estimates of

the RMW (see the online supplemental material), whereas our

SAR retrieved RMW seems to be more faithfully estimated.

2) RADIAL WIND PROFILE

From the 188 SAR images of our dataset, we compute the

average radial wind profile for each TC category (Fig. 6a). It

shows a strong dependence on TC intensity, with tropical

storms (TS, blue curve) having an almost linear profile between

the center and the RMW, and strongest TCs (orange and red

curves) having a so-called U-shape profile separated in two

regions, the eye with a constant low wind value and the eyewall

with a sharp wind gradient. The eyewall area, denoted by

square (inner) and diamond (outer) markers in Fig. 6a, tends to

move toward themaximumwind area with increasing category.

More intense TCs thus have a maximum gradient closer to

their RMW, and a wider eye. These observations are consistent

with theoretical results that suggest that the eye formation and

sharpening of the eyewall radial wind profile act as stabilizing

processes to the TC, favoring its intensification to high

categories. The theoretical results of Schubert andHack (1982)

indeed showed that the sharper the eyewall wind profile is, the

stronger are the convective heating in the eyewall, the subsi-

dence in the eye, and the inertial stability of the vortex.

To further characterize the eyewall wind gradient and its

sharpening, it is compared with the Rankine vortex approxi-

mation, which assumes a solid-body rotation and a linear

profile between V 5 0m s21 at R 5 0 and V 5 VMAX at R 5
RMW. As detailed in section 2c(3), the eyewall wind gradient,

dV/dREW, is computed over the quasi-linear region of the

eyewall (delimited by the green shading in Figs. 3b,f) avoiding

the flattened areas in the eye and close to the wind peak.

Figure 6b shows that dV/dREW progressively departs from the

Rankine vortex approximation as intensity increases, with a

superlinear rate in binned average values. The spreading de-

noted by the interquartile range also increases with intensity

and is the highest for category 5 TCs (though partly explained

by the lower number of samples). As previously suggested

(Fig. 5), moderate TC categories can be separated into two

subcategories depending on their RMW. Large TCs show a

gentler eyewall radial wind gradient (purple curve) in average

relative to smaller TCs (orange curve) for a given intensity.

The progressive increase of the difference between the

eyewall wind gradient and the Rankine approximation, as well

as the separation between the two RMW subcategories and

outward displacement of the eyewall area, highlight the fact

that small and intense TCs have on average a relatively wider

eye with respect to their RMW (e.g., the eye external border

and RMW are relatively closer to each other), and a sharper

FIG. 5. (a) Distribution of SAR-extracted radius of maximum

wind (RMW) as a function of maximum wind value VMAX. Dots

represent individual images, the black line features the binned

median value by category (with horizontal lines indicating the bin

extent), and the gray shading gives the corresponding standard

deviation. Dot colors denote the division in three groups: moderate

and large TCs (VMAX, category 3; RMW$ 50 km), moderate and

small TCs (VMAX , category 3; RMW , 50 km), and intense and

small TCs (VMAX $ category 3; RMW, 50 km). (b) Histogram of

RMW values for the three aforementioned groups.
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radially normalized eyewall wind profile than weaker and

larger TCs. However, the large spreading of the data at strong

intensity (Fig. 6b) also denotes a diversity of inner-core situa-

tions with a few very intense TCs not having the typical U

shape with a strong eyewall radial gradient and a clearly sep-

arated eye. Kossin and Eastin (2001) also observed, in two

aircraft sampled TCs, the existence of two distinct regimes of

eyewall dynamics, one being characterized by a well-formed

eyewall with a clear eye, and the second more similar to a

Rankine-like vortex with increased horizontal mixing within

the eye. They showed that the TC vortex can alternate between

these two regimes in very short time ranges (1 h) and linked

these transitions to important thermodynamic changes within

the vortex structure. Nguyen et al. (2011) also documented

such transitions modeling Hurricane Katrina and showed

that U-shape profile phases were associated with faster in-

tensifications. These two latter studies, as well as Schubert

et al. (1999) and Kossin and Schubert (2001) further dis-

cussed how these profile transitions are related to the for-

mation of eyewall mesovortices and subsequent vorticity

mixing within the eye and VRW generation. The shape of

the radial wind profile thus also depends on evolution of

eyewall mesovortices. These aspects will be further exam-

ined in the next section, which describes the azimuthal

structure and repartition of energy within the observed TCs.

To complement the study of the radial structure, the near-

core radial gradient, (dV/dR)NC, in the outer vicinity of the

RMW (gray shaded area in Fig. 6a), is also computed (Fig. 6c).

This near-core area is directly linked to the broadness of the

primary circulation, also associated with the strength of the TC

(Weatherford and Gray 1988), and has also been shown to

characterize the vortex resiliency to external forcing (Mallen et al.

2005). The near-core radial gradient in our database is found to

increase with TC intensity (Fig. 6c). A stronger increase is ob-

served for TC categories 2–5 than for lower TC categories. As for

the eyewall wind gradient, at a given intensity, the larger TCs

(RMW $ 40km) have a weaker near-core radial wind gradient.

Overall, both eyewall and near-core wind gradient analyses il-

lustrate an increased contraction of the high-wind area toward the

RMWformore intenseTCs. The fact that both gradients increase

superlinearly on average with intensity shows that these trends of

sharpening and contraction are accentuated in stronger TCs.

b. Azimuthal TC structure and distribution of energy:
Insights from SAR

The radial profile analysis has provided an azimuthally av-

eraged view of the TCs showing that stronger TCs tend to

have a wider eye, a sharper eyewall radial wind profile, and a

smaller, more contracted vortex. However, vortex asym-

metry and azimuthal repartition of energy have been shown

to be important components of the intensification mecha-

nisms [cf. asymmetric theories of intensification reviewed by

Montgomery and Smith (2014)]. We therefore extract the TC

eye and RMW shapes to describe the spatial asymmetry (in

comparison with a circle), and the eyewall wind gradient and

maximum wind for each azimuth to describe the intensity

distribution around the vortex.

Figures 7a and 7b show decreasing variances of ESAZ and

RMWAZ for increasing TC categories, denoting an axisymmet-

rization of TCs with increasing intensity. The large TCs (purple

in Fig. 7) feature higher mean values and larger spreading of

variances than smaller TCs. These results suggest that ax-

isymmetrization is a condition for TCs to reach category 4 or

above, in addition to contraction of the structure, and sharpen-

ing of the eyewall radial wind profile.

The variances of eyewall wind gradient and maximum wind

speed found around the vortex (Figs. 7c,d) also show de-

creasing trends with TC intensity, illustrating that in addition

to the vortex axisymmetrization, the amplitude distribution is

homogenized when intensity increases. To further describe

this energy distribution, a wavenumber spectral decomposi-

tion is performed on the azimuthal eyewall wind gradient and

FIG. 6. (a) Mean radial wind profiles computed by TC category (Saffir–Simpson). Colored shading indicates the upper and lower

quartiles for each profile, and the number of samples by category (‘‘#’’) is indicated in the legend. The x axis is normalized by the RMW.

Symbols on the profiles denotemean positions of the eye inner and outer edge by category. (b)Difference between the eyewall radial wind

gradient and the Rankine vortex wind gradient approximation: (dV/dR)EW 2 VMAX/RMW, as a function of VMAX (m s21). Small open

circles represent individual images, thick lines with large dark dots and shaded areas respectively denote the binned median and quartiles

by category. Colors represent two subcategories of RMW:RMW, 50 km in orange andRMW$ 50 km in purple. (c)As in (b), but for the

near-core radial wind gradient (dV/dR)NC.
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maximum wind signals [see methods section 2c(2)]. The wave-

numbers (WNs) are gathered into three groups: low WNs

(1 and 2), which represent the main components of TC

asymmetry including signature of translation speed and

planetary vorticity; medium WNs (3–5), which represent

smaller-scale asymmetries not necessarily related to large-

scale interactions; and high WNs (6–180), which describe

the spreading of energy toward the tail of the spectrum but

have been much less studied, as they are more difficult to

observe and may be impacted by noise in the observations

(in our case in SAR wind speed estimates).

Figure 8 shows a distinct evolution of the eyewall wind

gradient and the maximum wind decompositions with TC in-

tensity. On one hand, the maximum winds (green curves)

feature a transfer of energy between low and highWNs, withWNs

1–2 explaining 65%of the variance at low intensity and decreasing

to 55% at category 5, while medium and high WNs explained

variances respectively increase from23%to25%and from12%to

18%.On the other hand, the eyewall radial wind profile sharpness

(blue curves), although showing a small transfer of energy from

WNs 1–2 to WNs 3–5 between category,1 and category 3, has a

much more balanced distribution with similar WN levels at weak

and strong TC intensity. The energy distribution thus appears less

related to the TC intensity in the eyewall than in the maximum

wind area. The energy in the maximum wind area tends to be

localized in one or two maxima for weak TCs and to ho-

mogenize for stronger TCs, while the eyewall sharpness is

already more homogeneously distributed for weak TCs. The

broader energy spectrum of the eyewall could also indicate

the presence of mesovortices that may locally modify the

vorticity mixing between the eye and the eyewall and thus the

energy distribution, as discussed in the studies of Schubert

et al. (1999), Kossin and Schubert (2001), and Nguyen et al.

(2011). This highlights that the dynamics of the eyewall are

not directly coupled with the maximum wind area and may

have a separate behavior.

c. Linking SAR-extracted characteristics to TC
intensification

In the previous section, we have depicted the TC radial

surface wind profile, as well as the azimuthal characteristics of

the eye and maximum wind ring shapes, and the azimuthal

distribution of energy around the vortex. We have in particular

highlighted that very intense TCs feature specific properties

(sharper eyewall, more contracted and axisymmetric vortex,

broader energy spectrum), which we have suggested could

promote or constrain TC intensification. However, we have not

yet assessed their direct relation with the intensification rate.

This is the purpose of the next sections. As SAR acquisitions

are snapshots, with a relatively sparse sampling, they do not

allow for a continuous monitoring of each TC evolution, and

the fine-scale structures observed in SAR images are certainly

related to high-frequency intensity changes. We, however,

here try to evaluate if SAR-extracted TC parameters allow

to better characterize the TC life cycle and its intensity

changes on relatively large time scales (12 h), in the view of

assessing the potential use of SAR images for TC forecast

issues and statistical models. The intensification rates are

here computed from BT data and over a 12 h time window

(from 6 h before to 6 h after the TC SAR acquisition), and are

separated into three classes or phases: intensifying

(.5 m s21 day21), stable (between25 and15 m s21 day21),

and declining (,25 m s21 day21).

1) LIFE-CYCLE VARIATIONS

Figure 9 shows the distribution of the eyewall radial gradient

in comparison with that of a Rankine vortex (Fig. 9a), and of

the near-core radial gradient (Fig. 9) with respect to both

VMAX (x axis) and intensification rate (y axis). Both gradients

show a strong dependence on intensity, as already illustrated in

Fig. 6. In addition, a dependence on intensification rate is also

notable. At a given intensity, higher gradients tend to be as-

sociated with higher intensification rates. Although the de-

pendence is clearly lower than with intensity (eyewall and

near-core gradient cross correlation with intensity are respec-

tively 0.65 and 0.76, and with intensification rate 0.27 and 0.21),

this mean trend indicates that, the faster a TC intensifies, the

sharper its eyewall and near-core profiles. This is consistent

with previous findings from Schubert et al. (1999) and Nguyen

et al. (2011) showing that more U-shaped eyewall profiles as-

sociated with ring-like vorticity distribution favor rapid inten-

sification. The trend to a sharper near-core and eyewall for

intensifying TCs also indicates a reduced broadness of the

primary circulation, which has been suggested to confer lower

resiliency of the vortex to wind shear events (Reasor et al.

2004; Mallen et al. 2005).

The TC asymmetry, characterized by the azimuthal nor-

malized variances of shape (eye and RMW) and energy dis-

tribution around the vortex (eyewall sharpness and maximum

wind), does not show any direct relationship with the intensi-

fication rate (IR; not shown). However, a separation into dif-

ferent life-cycle phases reveals several noticeable features

(Fig. 10). Intensity troughs (IR negative before, and positive

after acquisition time, cyan bars) are notably more symmetric

and homogeneous than other life phases, while the most asym-

metric and heterogeneous phases are decline (negative IR be-

fore and after acquisition time, green bars) and intensification

(positive IR before and after acquisition time, violet bars). An

analysis of stronger TCs only ($category 3) highlights a higher

asymmetry of declining TCs over intensifying ones (not shown).

The significant difference between declines and troughs shows

the importance of vortex symmetry in the intensification pro-

cess: both phases correspond to a negative intensification rate

before acquisition, but TCs that reintensify are much more

symmetric than TCs that continue to decline. The asym-

metry associated with intensity peaks (IR positive before

acquisition time and negative after, yellow bars) is higher

than that of intensity troughs, which might be quite sur-

prising at a first glance, as peaks are usually more intense

phases than troughs, and as more intense TCs have been

shown to have a higher symmetry (see Fig. 7). However, this

result is interesting as it might suggest that the observed

asymmetry could be a predictor of the subsequent decline

after a peak. Intensity peaks are often perturbed and un-

stable life-cycle phases, where interactions of the vortex

with its environment (shear, SST, islands) would result in
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their following decline. These interactions may conse-

quently enhance the internal activity.

2) MACHINE-LEARNING CLASSIFICATION:
CONTRIBUTION OF FINE-SCALE EXTRACTED WIND

STRUCTURES

From a predictability perspective, we assess the potential con-

tribution of SAR-extracted TC parameters to a machine-learning

statistical classification of positive (.15ms21 day21) and negative

(,25ms21 day21) intensification rates. The method described in

section 2d and Fig. 4 is applied to evaluate the prediction score of

different combinations of extracted variables. The 10 best combi-

nations are shown in Fig. 11. For each combination, the score is an

average over the 10 different machine-learning algorithms.

Interestingly, only a few subsets of the 28 variables used as

predictors appear in these 10 best combinations: the latitude of

the TC center, the RMW, two components of the eye-shape

decomposition (WNs 4 and 5), and several parameters char-

acterizing the eyewall wind gradient (its mean value dV/dR, its

azimuthal variance, and its WNs 1, 2, and 5). The latitude of

the TC center is the most prominent parameter, appearing in

each of the 10 best combinations. The typical life cycle of TCs

with an intensification in the tropical latitudes and a decay in

the midlatitudes explains this prominence. The RMW is the

second most frequent parameter appearing in 8 or the 10 best

combinations. RMW may also be associated with the typical

life cycle as it is influenced by the planetary vorticity, but

we also showed in section 3a(1) that the RMW is strongly as-

sociated with the intensity of the cyclone, and we suggested

that this might be related to vortex contraction processes

during intensification. This seems to be also supported by the

strong contribution of the eyewall radial wind profile sharpness

FIG. 7. Lognormal distribution of normalized variance of four azimuthal signals as a function of maximum wind:

(a) eye shape, (b) RMWAZ, (c) dV/dRAZ, and (d) VmaxAZ. Small open circles represent individual images; thick

lines with large dark dots and shaded areas respectively feature the binned median and quartiles. Colors represent

two subcategories of RMW: RMW , 50 km in orange and RMW $ 50 km in purple.
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(dV/dR) in the classification, which appears in numerous

combinations through its different components (mean value,

azimuthal variance, WN decomposition). Notably, high WNs

of the eyewall wind gradient and of the eye shape are majorly

represented in the best combinations (e.g., WN 5 is present in

respectively six and four combinations for the eyewall gradient

and the eye shape). These wavenumbers correspond to small-

scale dynamic processes in the eyewall such as convective

bursts and mesovortices (Schubert et al. 1999; Kossin and

Schubert 2001). Signals characterizing the ring of maximum

winds (RMWAZ and VmaxAZ), on the other hand, do not ap-

pear in these 10 best combinations.

More generally, the scores associated with these 10 combi-

nations range between 63% and almost 65%. In comparison,

the score associated with the combination of vortex-averaged

parameters (i.e., latitude, RMW, VMAX, and dV/dREW), fea-

tured by the horizontal black line in Fig. 11), is 60%, and the

score of the worst combination is around 43%. Note again here

that the method is not designed to bring the best possible pre-

diction score (because a limited number of variable is used in

FIG. 8. Percentage of variance explained by wavenumbers (a) 1 and 2, (b) 3–5, and (c) 6–180 for dV/dRAZ (blue) and VmaxAZ (green)

azimuthal signals as a function of TC category. Thick lines and shaded areas respectively denote the binned median and quartiles.

FIG. 9. Distribution as a function of maximum wind (x axis) and intensification rate (y axis) of (a) eyewall wind

gradient in comparison with Rankine vortex (dV/dREW 2 VMAX/RMW; m s21 km21) and (b) near-core radial

gradient (dV/dRNC; m s21 km21). Titles indicate the cross correlations between radial gradients and both intensity

(X/Z) and intensification rate (Y/Z).
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each combination) but rather to assess the potential contribution

of our SAR-extracted parameters. In addition, while these score

variations might seem small, they can be considered as true in-

dicators of an improvement in the classification as they are av-

eraged over 10 models, performing bootstrap methods for each

model, and iterated 10 times each with a different random

control variable, ensuring to take into account the variability

associated with the machine-learning approach.

The prevalence of high wavenumbers describing ESAZ and

dV/dRAZ, the two signals estimated in the eyewall area (while

RMWAZ and VmaxAZ describe the maximum wind ring),

indicates a contribution of inner-core internal dynamics to the

classification. Indeed, these wavenumbers correspond to small-

scale dynamic processes: eyewall processes such as convective

bursts and mesovortices, for instance, sign on such small scales

(Schubert et al. 1999; Kossin and Schubert 2001), while smaller

wavenumbers represent a more general measure of asymmetry

at the vortex scale. It can also be noted that the lowest score is

associatedwith combinations containing dV/dRAZwavenumbers

1 and 2 (these lowest combinations are not shown on the figure).

Thus, a true scale separation occurs between this vortex scale and

the smaller scale describing localized structures in the eyewall.

We thus show with this machine-learning approach that

eyewall small-scale dynamics (characterized through the eye

shape and eyewall radial gradient spectral decomposition) has

the potential to improve a statistical prediction of TC intensity

variations relative to the sole use of vortex-averaged parame-

ters and synoptic information.

4. Summary and discussion

In this study, we have analyzed 188 high-resolution (1 km)

SAR images of TCs. In addition to their outstanding resolution,

these images present the advantage of having a large spatial

extent allowing for a characterization of the whole 2D TC

wind structure at the sea surface. The wind retrieval is per-

formed using the dual-polarization capacity of Sentinel-1 and

RADARSAT-2 SARs, which has been shown to faithfully re-

trieve TC high wind speeds (Mouche et al. 2017). Taking ad-

vantage of this newly available dataset, which contains at least

15 images for each TC intensity category, our study demon-

strates the ability to describe and characterize, with such ac-

quisitions, the TC inner core, through its radial profile, its

azimuthal degree of asymmetry, and the energy distribution in

the eyewall and maximum wind areas.

a. SAR observations and TC internal dynamics

The statistical analysis evidences a TC size reduction, and a

sharpening of the eyewall radial wind profile with intensity,

consistent with previous studies (Shea and Gray 1973; Shapiro

andWilloughby 1982;Willoughby et al. 1982;Willoughby 1990).

FIG. 10. Normalized variance of the four azimuthal signals (dV/dR,

eye shape, RMW, and VMAX) for four life-cycle phases: stable in-

tensification (purple), stable decline (green), intensity peak (yellow),

and intensity trough (cyan). Bars and error bars respectively denote

the median and the quartiles.

FIG. 11. Average prediction scores (%) obtained over 10 machine-learning models for the 10 best random

combinations of four SAR-extracted parameters. The x axis features the variables composing each combination.

The black horizontal line denotes the score obtained for the combination containing only mean vortex-averaged

parameters (latitude, VMAX, RMW, and dV/dREW).
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Willoughby et al. (1982), Willoughby (1990), and Schubert and

Hack (1982) described TC contraction as resulting from the in-

creased wind gradient in the inner edge of the maximum wind

area (this increased gradient itself associated with latent heat

release and isobaric height fall in the inner side of the convective

ring). Studies by Schubert et al. (1999), Kossin andEastin (2001),

and Nguyen et al. (2011) further discussed the role played by

mesovortices generated in the eyewall inner edge, which induce

mixing and consequently spinup within the eye, and then in-

creased convective available potential energy in the vicinity of

the ring of maximum winds when these mesovortices dissipate

and move outwards as VRWs. During this process, the vortex

transitions fromU-shape to aRankine-like vortex, and back to a

U-shape vortex. Our observations support these previous re-

sults. We show a variety of observed wind profiles and shapes,

even at high intensity. In average, a relationship between eye-

wall gradients and both intensity and intensification rates is

evidenced, and inner-core wind gradients are shown to increase

superlinearly with intensity, as illustrated by the gradually in-

creased departure from the likely solid-body rotation profile.

Such sharper gradients may also be seen as a consequence of the

BL spinup process (Smith et al. 2008; Bryan and Rotunno 2009),

as supergradient winds near the RMW would increase the

radial gradient. This process, supposed to increase with in-

tensity (Stern and Nolan 2011), could explain the increased

departure from the solid-body rotation that we observe. In a

recent analytical model development, Chavas et al. (2015)

proposed to adjust their inner-core profile toward a slightly

superlinear solution to avoid an overestimation of the wind in

the eye, and better fit observations. Our results suggest that

such an adjustment should depend on TC intensity, and that

SAR observations could help further constraining TC para-

metric wind models.

The near-core wind gradient profile (computed from RMW

to 3 RMW) is also of interest, as it characterizes the broadness

of the azimuthal-mean wind peak, and the decay rate of the

outer profile, which are useful for risk assessment (Croxford

and Barnes 2002) and related to the vortex resiliency to ex-

ternal shear (Reasor et al. 2004). The analysis of Mallen et al.

(2005), from flight-level aircraft observations, linked the vortex

resiliency to the near-core profile shapes. Our analysis of near-

core gradients, showing on average their superlinear increase

with intensity, seems to indicate in this context that stronger

TCs (especially above category 4) are comparatively less re-

silient to wind shear, as their sharper profile is more likely to

cause a radial distribution of potential vorticity favorable to tilt

instability (Reasor et al. 2004). Further analyses could certainly

help in evaluating the primary circulation broadness and sub-

sequent vortex resiliency to shear events, possibly providing

new guidance for TC forecasters.

Our analyses also revealed a lower sensitivity of the near-

core gradient to the intensification rate relative to the eyewall

gradient, suggesting a partial decoupling between these two

areas. The generation of mesovortices in the eyewall area,

observed in several of our images, and also discussed in pre-

vious studies (Schubert et al. 1999; Nguyen et al. 2011; Li et al.

2013), indicate a very reactive dynamics of the inner eyewall

area, therefore, more correlated to intensity variations. The

observed decoupling may also advocate for the dual spinup

theory proposed by Smith et al. (2009), which suggests that

inner-core and outer-core dynamics are monitored by two

distinct kinds of spinup, the former occurring in the BL with

supergradient winds, and the latter occurring above the BL in

classical gradient wind balance.

The investigation of spectral energy distributions in the

eyewall and in the maximum wind area further reveals this

decoupling. While the azimuthal distribution of the eyewall

radial wind gradient shows no notable sensitivity to intensity,

the maximum wind contour is found to homogenize (broad-

ening of its energy spectrum toward large wavenumbers) with

intensity. In addition, the analysis of both ESAZ and RMWAZ

variance shows an axisymmetrization of the TC shape. These

two features seem in agreement with the VRWs theory. By

propagating energy from the vortex center to its upper and

outer boundaries, VRWs act to restore the TC structure from

interactions of the main vortex with inner-core mesovortices

(Nolan and Montgomery 2002) or external events such as

vertical wind shear (Montgomery and Kallenbach 1997), that

may prevent TC intensification by tilting the vortex (Reasor

et al. 2004). VRWs generate asymmetries in the eyewall and

high-wind area (Schubert et al. 1999), causing barotropic in-

stabilities that can limit the TC intensity while reducing the

eyewall tilt (Yang et al. 2007). Our analyses show that intense

TCs have a more symmetric structure and distributed energy

spectrum, indicating less intense VRW activity. The assess-

ment of VRWs propagation from our database is, however,

limited by the instantaneous nature of SAR images and the

lack of continuity in TC sampling.

Overall, SAR provides unique high-resolution estimates of

the ocean surface wind speed, with applications for the study of

eyewall dynamics (inner-core BL spinup, mesovortices gen-

eration and associated vorticity mixing, and their relationship

to intensity changes), vortex strength and resiliency, and in-

tensity restoration processes in the inner core such as VRWs.

They allow a statistical characterization of these properties

on a relatively large range of cases. Although their temporal

sampling limits the analyses to snapshots and surface mea-

surements, SAR acquisitions shall be seen as a complement to

other sources for the observation of the TC’s internal structure

and dynamics.

b. SAR observations and TC life-cycle variations

Our study finally assessed the potential of TC inner-core

SAR-extracted parameters (radial profile, azimuthal and ener-

getic distributions) in characterizing the ongoing TC intensity

variations in a future perspective of predictability improvement.

We observed sharper eyewall and near-core gradients with

both increasing intensity and intensification rate. This indicates

a trend toward a U-shape profile, and a reduced broadness of

the primary circulation for intensifying TCs. These results are

consistent with the modeling studies of Nguyen et al. (2011)

and Kossin and Eastin (2001), which found ‘‘symmetric’’

phases of lower mesovortical activity (phase A for Kossin and

Eastin 2001) to be more favorable to fast intensifications.

The observed increase of the near-core gradient with intensi-

fication rate also suggests a reduced broadness of the primary
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circulation, and a lower resiliency to external events as sug-

gested by Mallen et al. (2005).

The evolution of TC shape or energetic azimuthal signals

with intensification rate and TC life phases reveals that TCs

in a transition phase toward reintensification (after a decline

phase) are the most symmetric. To further estimate the con-

tribution of all SAR-extracted parameters in TC life-cycle

prediction, we designed a machine-learning approach, which

classifies intensifying and decaying TC phases. The contri-

bution of the various extracted parameters was then assessed

by sorting the prediction scores obtained from different

combinations of variables. The best combinations revealed a

notable contribution of the eye shape and eyewall wind gra-

dient high wavenumbers (WNs 4 and 5), improving by 4.5%

(from 60% to 64.5%) the score obtained with vortex-averaged

parameters only.

This improvement highlights the importance of small-scale

processes in the prediction of intensity variations. Indeed,

wavenumbers 4 and 5 in the eye shape correspond to localized

structures with a reduced spatial scale, such as convective

asymmetries and rainbands perturbing the eyewall. Judt et al.

(2016) referred to wavenumbers 2–5 as the ‘‘rainband scale,’’

and Schubert and Hack (1982) modeled a wavenumber 4 dis-

turbance and related it to the formation of mesovortices. These

small-scale features may also be linked to the propagation of

VRWs (Schubert et al. 1999; Wang 2002a). In the literature,

only low wavenumbers (1 and 2) are usually studied (Reasor

et al. 2000; Wang 2002b) due to observational limitations (lack

of azimuthal resolution from aircraft sampling, lack of spatial res-

olution for satellite radiometers and scatterometers). Numerical

studies suggest that these wavenumbers are themost influential for

vortex evolution (Wang 2001, 2002a) as they are directly related to

the environmental forcing.

However, rapid intensity variations are still a challenge to

forecast, and may be related to these fine-scale dynamics. Our

first assessment of the predictability potential of the inner-core

fine-scale properties shows that including high-wavenumber

signals improves the characterization and classification of in-

tensity changes. Usual operational statistical–dynamical fore-

cast models (DeMaria andKaplan 1994, 1999; Knaff et al. 2005;

Knaff and Sampson 2009) use linear regression techniques to

predict intensity changes from large-scale climatological fields

(temperature, humidity, maximumpotential intensity, shear. . .),

TC intensity, and rate of change at the forecast initial time.

Neetu et al. (2017) showed that themost important predictors of

these statistical–dynamical models are the intensity and its rate

of change. An accurate estimation of both of these parameters is

therefore required (and SAR proves useful for TC intensity

retrieval), but our classification suggests that including other

finer-scale internal structure parameters (in particular the eye

shape and eyewall gradient high wavenumbers) might eventu-

ally improve this type of statistical forecast, especially on short

time scales. Our dataset is limited, though, to a relatively low

number of events and a large number of descriptors for a sta-

tistical classification. We therefore could not assess the true

added value of each extracted parameter, but rather the more-

likely best parameters to consider for predicting TC life cycle. In

addition, our machine-learning approach was not designed to

actually work as an operational statistical forecast model, which

would require to include all available parameters including

large-scale environmental fields (temperature, humidity, shear,

etc.) along with our fine-scale observations to fully assess fore-

cast issues and effectiveness.

c. SAR observation limitations

Besides the potential of new high-resolution SAR wind re-

trievals, they still have several limitations.

Our description of the TC inner core does not include the

eye area (but only the eyewall, maximum wind, and near-core

areas), while it could be of interest as the eye dynamics and the

degree of convection in the eye are closely related to TC in-

tensification (see Emanuel 2018, part 3e). Limitations in the

inversion algorithm used for ocean surface wind retrieval from

SAR observations acquired in dual-polarizations may arise in

the eye region. They are associated with discrepancies between

co- and cross-polarization signals due to the low backscatter

signal in this area, and the particularly low signal to noise ratio

of the cross-polarization. To compensate for those discrep-

ancies, wind values from the European Centre for Medium-

Range Weather Forecasts (ECMWF) model are combined

with the dual-polarization data (Mouche et al. 2017). However,

ECMWF winds may not be perfectly collocated with the ob-

served TC. In such cases, the eye wind retrieval may therefore

be polluted by higher wind values from the model in the eye,

yielding to overestimated wind values. The eyewall and the

surrounding high-wind area are not subject to this limitation,

because the weight of the model is almost zero in these areas

(the algorithm taking benefit of the dual polarization). This

limit of the inversion algorithm prevents us from studying the

wind distribution inside the eye. It can be noted that high

values of radar backscattered intensities can actually be mea-

sured in the eye of a TC (Li et al. 2013). They have been in-

terpreted as a signature of abnormally high rain or wind, or

wind sea–swell interaction in the eye. The inversion algorithm

might thus not be the only cause of this inconsistency.

The understanding of rain impacts on ocean scenes acquired

by SAR systems is a particularly active subject of debate and

investigation in the SAR community (Melsheimer et al. 1998;

Atlas 1994a,b) and more specifically for TCs (Katsaros et al.

2000;Mouche et al. 2019; Combot et al. 2020). These signatures

can significantly impact the wind field, but their characteristics

vary a lot depending on rain and wind field properties.

Backscattered signal can be affected through modifications of

the surface roughness (waves damping by raindrop-induced

turbulence in the water or increased roughness by rain droplets

impinging the surface) or contributions from the atmosphere

(attenuation and scattering from hydrometeors).

The result on the wind field can take several forms. Themost

common is an underestimation of the wind speed surrounding

the maximum wind area, where the rains are the heaviest. This

‘‘eyebrows-like’’ signature is typical of major TCs [seeMouche

et al. (2019) or the example of TC Lionrock in Fig. 3a]. These

signatures are, however, usually located outward from the ring

of maximum wind (Figs. 3a,b), and have a small radial extent.

Their impact on the retrieved inner-core signals is thus very

limited and no impacted case was identified. On the contrary,
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for weaker TCs or in outer rainbands, one can have overesti-

mation of the wind speed (see the example shown in Fig. S1f in

the online supplemental material). Such cases may impact our

estimates of the maximum wind speed distribution and radial

gradients, but they are very rare (only 2 were identified in our

dataset).

Moreover, these individual impacts were either attenuated

or removed by our preliminary smoothing and masking steps,

and by the definition of vortex-averaged and integrated vari-

ables such as azimuthal variances and radial mean gradients.

They are thus assumed to not noticeably impact our statistical

analysis. The study of rain impact on SARwind retrieval is still,

however, a question to be addressed. To date, this field of re-

search still lacks coincident high-resolution measurements of

wind and rain collocated with SAR data to fully quantify the

rain impact on a statistical basis and yield a more reliable wind

inversion algorithm.

Overall, the use of SAR acquisitions in dual-polarization is

recent and further work is certainly required to improve the

signal quality (especially in cross-polarization and at subswath

limits), the relationship between ocean surface wind and

backscattered intensity, the possible rain and waves signatures

that can coexist, the wind direction estimation, and more

generally, the inversion scheme.

Another limiting factor of our study concerns the intensity

variation assessment is the absence of temporal continuity in

SAR acquisitions. This prevents an estimate of the short-range

changes in the internal structure, and of the dynamics of

extracted small-scale properties directly from the SAR data. In

this study, the temporal variation of TC along with its life cycle

is thus given by the BT data. Linear interpolation is performed

to align in time the two sources of data, but this does not

prevent inconsistency between the two datasets and may de-

grade the relationship between the SAR-derived parameters

and TC intensity variations.

The recently published SATCON database (Velden and

Herndon 2020) provides hourly TC intensity estimates based

on a combination of infrared and microwave satellite mea-

surements with an objective algorithm. Such a dataset could

allow further analysis of the relationship between TC temporal

variability and SAR small-scale variability within short inter-

vals to possibly evaluate the benefit of this complementary

temporal information for TC intensity variation predictability.

Such an objective would require a prior in-depth validation of

wind estimates from the two data sources, and thus a dedicated

study which is beyond the scope of this paper.

Our dataset, although it is very consistent and covering all

TC categories, is still insufficient to fully describe the TC

evolution. Additional observations would certainly allow

one to refine the characterization of life-cycle phases and

strengthen the statistical analyses.

5. Conclusions

The present work aimed at describing the internal structure

of TCs as observed from SAR imagery, and at evaluating re-

lationships between this structure and the TC life cycle. It took

advantage of acquisitions performed with two satellite SARs

(Sentinel-1 and RADARSAT-2), which were targeting TC

events. These two instruments are C-band SARs operating in

both co- and cross-polarization modes, which have been shown

to complement one another in retrieving high wind speeds

(Mouche et al. 2017), particularly as the cross-polarization

implemented on both Sentinel-1 and RARDARSAT-2 is much

more sensitive to high wind gradients. Other SAR missions

such as Advanced Land Observing Satellite 2 (ALOS-2),

TerraSAR-X, or Gaofen-3 that are currently operating, do not

provide, to our knowledge, the facilities and supporting pro-

grams to order TC acquisitions on short notice (which is a

constrain due to relatively short time range in TC forecast), but

could contribute to the TC monitoring at high resolution.

Several space agencies also plan the launch of other SAR

missions in the coming years [e.g., Sentinel-1 Next-Generation

and Radar Observation System for Europe in L-band (ROSE-

L) at ESA, ALOS-3 at JAXA, and NASA–Indian Space

Research Organisation (ISRO) SAR (NISAR)], and the TC

community would certainly benefit from them, if TC moni-

toring could become one of their targeted applications. Some

of these missions are using SAR operated in other acquisition

bands (L band or X band). This would require additional re-

search to develop robust high-wind retrieval algorithms but

could also bring new insights for radar image interpretation,

certainly contributing to improve our understanding of the

various components impacting the imaging mechanisms.

Our study shows how its large coverage, together with its

ability to measure the sea surface at a very high resolution,

makes SAR very valuable for TC research, as well as for op-

erational applications and risk assessment. This urges the need

for moving toward an operational SAR acquisition strategy,

and for further developments on wind retrieval algorithm

over TCs.

The interpretations and results provided in the present study

reveal the importance of radial resolution for the description of

the eyewall and near-core areas, with possible implications for

the understanding of TC intensity fluctuations and future im-

provement of parametric vortex models such as the one de-

veloped by Chavas et al. (2015), as SAR-extracted statistical

properties (notably the relationship between inner eyewall

profile and maximum wind) could be used to fit and improve

existing idealized radial profiles. They also highlight links be-

tween TC asymmetry, size and intensity, and the importance of

azimuthal resolution in resolving high wavenumbers to im-

prove our ability to dissociate intensification phases. Including

some of the SAR-extracted parameters (in particular the eye

shape and eyewall gradient high wavenumbers) into statisti-

cal forecast models may have a potential of predictability

improvement. The statistical analysis of intensity variations

could also be refined by extracting smaller-scale parameters

such as the properties of BL rolls (i.e., their size, wavelength,

amount. . .). Recent attempts to measure these properties

from SAR data are promising (Foster 2005; Huang et al.

2018) and could help characterize the distribution of the

convection in the BL. The inclusion of such features in the

present statistical dataset could certainly provide further in-

sights on the links between TC life cycle and convection

in the BL.
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Future work will focus on dynamical models to include the

temporal evolution of TC small-scale structure and relate it to

intensity changes. Analysis of future SAR observations will

also continue to improve our understanding of this new mea-

surement technique and further assess its potential.
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APPENDIX

Details on SAR Image Processing

The following sections detail the procedures of image pro-

cessing mentioned in section 2c and shown in Fig. 2.

a. Masking: Subswaths, outliers, and rain signatures

First, we address subswaths and outliers: Subswath signatures

can be identified in the SAR wind speed retrievals, indicating

that wind values in their vicinity are probably erroneous. We

therefore detect these subswath signatures based on their high

value of column-wise average wind gradient, and mask them

(Fig. 2a, blue lines). Subswaths and issues with the acquisition

can sometimes cause larger signatures in the wind field, for which

this filtering stepmay not be sufficient, but it overall removesmost

of the subswath signatures, which could hamper our azimuthal

signals extraction. A second masking procedure is applied con-

sisting of a pixel-wise mask to remove any pixel outlier (e.g., spike

pixel values in the wind field not corresponding to a realistic wind

structure).

We then turn to heterogeneity mask and rain signatures. The

SAR wind product additionally includes a heterogeneity mask

designed to remove non-wind-related features associated with

high local gradient values (Fig. 2a, gray contours). Such

structures are often due to heavy rain impacting the SAR

NRCS signal. Rain impact on SAR measurements is indeed a

preoccupying feature of SAR inversion algorithms. Mouche

et al. (2019) showed, in the case of Hurricane Irma, that heavy

rain can either attenuate or enhance the NRCS signal but

concluded that ‘‘at this stage, there is not enough evidence to

conclude if these overall signal changes are solely due to rain

impacts, to wind changes, or to their combined effects.’’

Combot et al. (2020) also conducted a statistical assessment of

rain impact on the SAR estimation of VMAX and RMW using

rain-rate estimates inferred from IMERG product collocated

with SAR acquisitions in time and space (610 km around the

SAR-derived RMW). They showed that VMAX SAR estimates

can be significantly affected by rain, whereas RMW is less

sensitive.

Automated removal of rain artifacts is, however, very diffi-

cult, and in-depth dedicated research is requested to address

this issue. The heterogeneity mask, used in the present study,

removes part of the rain-induced artifacts of the SAR wind

field, and remaining rain artifacts are considered to not sig-

nificantly impact our analyses. Indeed, visual inspection of

several case studies has shown that remaining rain signatures

are mostly external to the maximum wind ring, and addition-

ally the smoothing step applied on our extracted signals, and

the statistical analyses performed on numerous cases limit the

impact of local anomalies in SAR wind fields. A complemen-

tary discussion of rain impacts is provided in section 4c.

b. Locating the TC center

The second step of SAR image processing is to detect the TC

center. Indeed, even though the TC center derived from BT

has been interpolated, it is not always collocated with the

center of the TC eye, as illustrated in Fig. 2a. The step of TC-

center positioning is crucial for our study because all TC

properties are then described in a polar grid referenced on the

TC center. Its retrieval is designed to be generic and automatic,

working on level-2 data. The procedure consists of the fol-

lowing steps and is illustrated in Fig. 2 for a Sentinel-1 SAR

acquisition performed on 27 August 2016 on TC Lionrock

(western Pacific).

Because the TC eye is a region of strong wind gradient, it is

often partially masked by the heterogeneity mask described in

the previous paragraph (see gray contours in Fig. 2a). For this

step of TC-center research, we thus temporarily remove the

heterogeneity mask around the BT interpolated TC center, in a

radius defined as the maximum between 4RMWBT and R34BT
(Fig. 2a, black dashed line). The heterogeneity mask is later

reapplied on the polar-projected data out of 1.5 3 RMWSAR.

Several TC-center extraction algorithms have been devel-

oped for SAR images. Most of them rely on a wavelet analysis

of the level-1 surface roughness images to find the TC center

(Zheng et al. 2017). In the present study, as we use level-2 wind

speed data, a new method is designed based on several wind

speed thresholds to gradually approach the TC center. First,

the pixels corresponding to the highest wind speed values,

defined as the upper 80% of the wind range in a radius defined

as the maximum between 2RMWBT and R34BT/2 around the

BT center (Figs. 2a,b, red dashed line), are identified (Fig. 2b,

red contour), and their centroid is located (magenta dot).

Then, in a similar way, the centroid (cyan dot) of the low-wind

area (lower 20% of the wind speed range, gray contour) in a

radius of 2RMWBT around the high-wind centroid (magenta

dashed line) is located. This low-wind centroid is then itera-

tively recomputed, in a radius of 2RMWBT around the last

estimated low-wind centroid to ensure finding a stable location.

Indeed, in some cases, the first low-wind centroid guess might

fall outside the eye, in the high-wind vicinity. In such cases, the

iterative procedure locates the centroid farther from the high-

wind area and no stability is found. If so, the low-wind centroid

research is reprocessed within a smaller radius of research
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around the high-wind centroid until finding a stable low-wind

centroid. This procedure manages to find the TC center in a

vast majority of cases, although some exceptions can occur. To

prevent errors in the polar projection in cases in which the low-

wind centroid is offset with respect to the vortex structure

(mostly when the eye is large and distorted or when the wind

distribution in the eye is not uniform), a recentering step is

carried out. This last step consists in locating the centroid

(yellow dot) of the eye shape, defined as the maximal radial

wind gradient for each azimuth (black line in Fig. 2b) around

the low-wind centroid. In cases in which the eye-shape centroid

falls outside the polygon (when the eye is distorted and the

polygon is concave), the final TC center is defined as the pole of

inaccessibility of the polygon, i.e., the ‘‘most distant internal

point from the polygon outline.’’ The final TC center is thus

defined as the eye-shape polygon centroid (or pole of inac-

cessibility in concave eye configuration).
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