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Abstract :   
 
Numerical wave models are used for a wide range of applications, from the global ocean to coastal scales. 
Here we report on significant improvements compared to the previous hindcast detailed in Part 2 of the 
present study by Rascle and Ardhuin (2013). This result was obtained by updating forcing fields, adjusting 
the spectral discretization and retuning wind wave growth and swell dissipation parameters. Most of the 
model calibration and performance analysis is done using significant wave heights (Hs) from the recent 
re-calibrated and denoised satellite altimeter data set provided by the European Space Agency Climate 
Change Initiative (ESA-CCI), with additional verification using spectral buoy data. We find that, for the 
year 2011, using wind fields from the recent ERA5 reanalysis provides lower scatter against satellite Hs 
data compared to historical ECMWF operational analyses, but still yields a low bias on wave heights that 
can be mitigated by re-scaling wind speeds larger than 20 m/s. Alternative blended wind products can 
provide more accurate forcing in some regions, but were not retained because of larger errors elsewhere. 
We use the shape of the probability density function of Hs around 2 m to fine tune the swell dissipation 
parameterization. The updated model hindcast appears to be generally more accurate than the previous 
version, and can be more accurate than the ERA5 Hs estimates, in particular in strong current regions 
and for Hs > 7 m. 
 
 
Highlights 

► An update on the Rascle and Ardhuin (2013) wave hindcast is presented. ► ERA5 wind forcing gives 
best results but requires a bias correction for high winds. ► Satellite altimeter data was used to adjust 
swell dissipation parameters. 
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1. Introduction11

Spectral wave models are routinely used for many applications in Earth12

sciences and ocean engineering. Global and regional wave datasets gener-13

ated through models such as WAM (WAMDI Group, 1988; Bidlot, 2005) or14

WAVEWATCH III®(The WAVEWATCH III ® Development Group, 2019)15

have helped to improve our understanding of the wind-generated wave dy-16

namics, estimate ocean-atmosphere interactions (e.g. surface drift and air-sea17

fluxes), analyze extreme events occurrences, define operational conditions for18

shipping, offshore and port activities, and assess wave energy resources, just19

to name a few examples. New applications, for example in seismology (e.g.20

Lecocq et al., 2019) or infrasound monitoring (De Carlo et al., 2021) are21

made possible by the ever increasing quality of modeled wave spectra and22

associated parameters.23

The global hindcasts presented in Part 1 (Rascle et al., 2008) and Part 224

(Rascle and Ardhuin, 2013), and the Arctic hindcast of Stopa et al. (2016b)25

are unique in providing wave parameters in an ”Earth System” context, in-26

cluding wave-related fluxes of momentum and energy between the ocean,27

atmosphere and sea ice. These hindcasts have been used in a wide range of28

applications, including as a source of boundary conditions for coastal models29

(Roland and Ardhuin, 2014; Boudière et al., 2013), air-sea fluxes and upper30

ocean mixing (Wunsch and Ferrari, 2009), surface drift of kelp or plastics31

(Fraser et al., 2018; Onink et al., 2019; Dobler et al., 2019), and the investi-32

gation of microseisms (e.g. Nishida and Takagi, 2016; Retailleau et al., 2017).33

For most open ocean regions, the accuracy of significant wave height (Hs) es-34

timates is typically better than 10%, with great benefits for the safety of life35

at sea, but for some regions, in enclosed seas, regions of strong currents, and36

near the sea ice, Hs errors typically exceed 20%, and other parameters can37

be much less accurate, in particular the shape of the frequency spectrum, the38

height of swells or the directional spreading (Stopa et al., 2016b). The rea-39

sons for these errors, and some first steps to reduce them, are the main topic40

of the present paper. In general the quality of numerical wave model out-41

put is a function of at least three factors, in decreasing order of importance.42

First, the accuracy of forcing fields (e.g. Cavaleri and Bertotti, 1997), sec-43

ond, the realism of parameterization of processes representing spectral wave44

evolution (e.g. Ardhuin et al., 2010) and third, the numerical choices made45

to integrate the Wave Action Equation, namely discretization and numerical46

schemes (e.g. Tolman, 1995; Roland and Ardhuin, 2014).47
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The present paper presents the effect of adjustment to model parameter-48

izations in section 2, the impact of forcing field choices in section 3, and the49

influence of model discretization in section 4. We briefly discuss in section 550

alternative parameterizations that can lead to clear improvements for some51

parameters most sensitive to the higher frequencies of the wave spectrum but52

that, so far, have not led to improvements in Hs estimates and will probably53

require further adjustments and have thus not yet been used for the hind-54

cast presented here. The global validation presented in section 6 shows a55

clear improvement on sea state parameters produced by Rascle and Ardhuin56

(2013) and, for specific conditions, also an improvement on the Hs estimates57

in the ERA5 reanalysis. Conclusions follow in section 6.58

2. Model setup59

2.1. Forcing fields60

Because waves are forced by the wind, are damped by sea ice, and are61

strongly modified by currents, any improvement in the knowledge of these62

three forcing fields should result in better wave model results.63

One of the main features in the generation of the wave hindcast analyzed64

in the present study, is the utilization of the wind fields from the fifth genera-65

tion ECMWF atmospheric reanalyses of the global atmosphere, ERA5 (Hers-66

bach et al., 2020), and the introduction of satellite-derived merged surface67

current product that combines geostrophic and Ekman currents, as produced68

by the Copernicus Marine Environment Monitoring System (CMEMS). The69

ERA5 reanalysis was developed using 4D-Var data assimilation from the Inte-70

grated Forecast System (IFS) model cycle 41r2. The number of observations71

assimilated from different measurement sources goes from 0.75 million per72

day in 1979 to approximately 24 million in 2018. The hourly output wind73

fields with a 31 km horizontal grid resolution, represents a clear increase in74

detail compared with some of its predecessors, like ERA-Interim (Dee et al.,75

2011). Still, the limited horizontal resolution makes the ERA5 wind fields76

less well resolved than those of recent ECMWF operational analyses that77

use a T799 Gaussian grid with an equivalent resolution of 25 km. Rivas and78

Stoffelen (2019) showed that ERA5 winds have a root mean square differ-79

ence with the ASCAT winds that is 20% lower compared to ERA-Interim.80

Still, at wind speeds above 20 m/s, ERA5 biases may be as large as -5 m/s81

(Pineau-Guillou et al., 2018), which should have a very important impact on82

waves modeled with ERA5 winds.83
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The surface current fields were taken from the CMEMS-Globcurrent prod-84

uct (Global Ocean Multi Observation Product, MULTIOBS GLO PHY RE-85

P 015 004), with a resolution of 3 hour in time, and 0.25 degrees in latitude86

and longitude. This current field is the sum of geostrophic and Ekman com-87

ponents based on the method of Rio et al. (2014), using an updated mean88

dynamic topography (MDT) from CNES-CLS (Mulet et al., 2021), which is89

key for the reconstruction of the ocean absolute dynamic topography from90

altimetry data. With the geostrophic approximation, the MDT is used to91

estimate surface currents.92

Finally, the ice concentration is taken from the Ifremer SSMI-derived daily93

product (Girard-Ardhuin and Ezraty, 2012). For ice thickness, that matters94

most near the ice edge where it is poorly known, we have used a constant95

1 m ice thickness. Partial blocking of waves by icebergs is represented fol-96

lowing Ardhuin et al. (2011) using the Ifremer-Altiberg icebergs distribution97

database Tournadre et al. (2015).98

2.2. Adjusted parametrizations and parameters99

Atmosphere-wave interactions include both wave generation as parametri-100

zed by Janssen (1991) with modifications by Bidlot et al. (2005, 2007) and101

swell damping caused the air-sea friction effect decribed by Ardhuin et al.102

(2009). The details and adjustments of these parametrizations are described103

in Ardhuin et al. (2010), and Leckler (2013). Here we only recall equations104

where the parameters that we have tuned in the present work are included.105

A more comprehensive description can be found in The WAVEWATCH III®
106

Development Group (2019).107

In particular, the wind input source term was reduced by using a modified108

friction velocity u∗ with a frequency dependent term u′∗, similar to what was109

done by Chen and Belcher (2000). Eqs. (20) in Ardhuin et al. (2010) is110

Satm(f, θ) = Sout(f, θ) +
ρa
ρw

βmax

κ2 exp(Z)Z4
(
u∗
C

)2 (1)

×max{cos(θ − θu), 0}pσF (f, θ) (2)

where: Sout is the energy flux from the ocean to the atmosphere (swell dissi-111

pation term), Z= log(µ), with µ the dimensionless critical height as given by112

Janssen (1991, eq. 16). ρa is the air density, ρw the water density and κ is113

von Kármán’s constant. C is the wave phase speed, θ the wave direction, θu114
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the wind direction, and σ the wave relative frequency (2π/fr, observed from115

a reference frame moving with the mean current).116

In eq. (1) βmax is a non-dimensional wind-wave growth coefficient that117

has been used as a tuning parameter to calibrate for wind strength biases118

(e.g. Stopa et al., 2019). We will revisit this tuning for ERA5 winds in the119

present paper.120

The swell dissipation parameterization is based on observations of ocean121

swell evolution from satellite data (Ardhuin et al., 2009). It includes expres-122

sions to take into account the effects of the transitions from (linear) viscous123

boundary layer to (non-linear) turbulent boundary layer. The smoothing124

between these two regimes accounts for the Rayleigh distribution of wave125

heights (Perignon et al., 2014). The negative part of the wave-atmosphere126

interaction, is thus parameterized as follows,127

Sout(k, θ) = rvisSout,vis(k, θ) + rturSout,tur(k, θ), (3)

where the two weights give the relative importance of viscous and turbu-128

lent attenuation, and are controlled by the ratio of the significant Reynolds129

number Re = 2uorb,sHs/νa and its critical value Rec.130

rvis = 0.5 [1− tanh ((Re− Rec)/s7)] (4)

rtur = 0.5 [1 + tanh ((Re− Rec)/s7)] . (5)

Based on the analogy with oscillatory bottom boundary layers, Rec was ini-131

tially set to 1.5× 105.132

Wave energy loss to the ocean is dominated by wave breaking, and param-133

eterized following the saturation-based breaking ideas of Phillips (1985). An134

ad hoc ”cumulative term” was added to enhance the dissipation of relatively135

short waves (Banner and Morison, 2006; Ardhuin et al., 2010). Alternatives136

are discussed in section 5.137

Finally, to reduce computational costs, we have used the Discrete Interac-138

tion Approximation (DIA Hasselmann and Hasselmann, 1985), to represent139

the 4-wave nonlinear interactions. This rather crude parameterization in-140

duces errors that are partly corrected by the other adjusted source terms in141

the Wave Action Equation (Banner and Young, 1994).142
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2.3. Spectral and spatial discretization143

The wave spectrum is discretized in 24 directions, equivalent to a 15°144

directional resolution, and 36 exponentially spaced frequencies from 0.034 to145

0.95 Hz, with a 1.1 increment factor from one frequency to the next. The146

selected frequency range represents a departure from our previous hindcasts147

(Rascle and Ardhuin, 2013), in which a narrower frequency range was em-148

ployed, from 0.037 to 0.71 Hz. Although the parameterizations used here149

are not very accurate for frequencies above 3 times the wind sea peak (e.g.150

Peureux et al., 2018), the extension to higher frequencies allows to better151

capture the variability of the wave spectrum for very low wind speeds or152

very short fetches. The lower frequencies are there to let the spectrum de-153

velop for the most severe storm cases (Hanafin et al., 2012). We have used154

the third order Upwind Quickest advection schemes (Leonard, 1991) for both155

spatial and spectral advection, and the correction for the Garden Sprinkler156

Effect proposed by Tolman (2002).157

All the model testing and tuning presented in section 2 was performed158

over a near-global grid with a spatial resolution of 0.5◦, from 78◦ S to 83◦ N159

in latitude. However, all the other results, including the final hindcast, use160

a multi-grid system (Tolman, 2008; Chawla et al., 2013) in which regional161

grids provide a refinement near the coasts, the ice edge, and in regions of162

strong currents. A total of 7 nested grids were placed within the global163

grid, 6 regular grids and 1 curvilinear grid for the Arctic region. Details of164

the nested grids are provided in table 1 and Fig. 1. As shown in Fig. 1,165

the boundaries of the high resolution domains (in color) generally follow the166

coast at 500 km distance, including regions around Hawaii and the Tuamotus167

for the East Pacific grid, and the Azores for the North-East Atlantic grid.168

The regions in white are only covered with the global 0.5 degree resolution.169

The boundary conditions from a lower rank grid are taken at the edges of170

the colored regions in Fig. 1, and the higher rank grid results are spatially171

averaged to give the lower rank grid solution where these overlap (Tolman,172

2008).173

The benefits of the multi-grid system are particularly discussed in section174

4.1. Compared to Rascle and Ardhuin (2013), including the Arctic grid175

allowed to provide a truly global wave hindcast.176

2.4. Model tuning177

The value of βmax in eq. (1), s7 and Rec in eqs. (4) and (5) have been178

adjusted to minimize the model differences against satellite altimeter mea-179
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Sub-Grid Region Grid Spatial Rank
Name type resolution

ATNE-10M North-East Atlantic regular 1/6° 2
ATNW-10M North-West Pacific regular 1/6° 3

AFRICA-10M Africa regular 1/6° 3
PACE-10M East Pacific regular 1/6° 2
CRB-3M Carribean Sea regular 1/20° 3
NC-3M New Caledonia and Vanuatu regular 1/20° 3

ARC-12K Arctic Ocean curvilinear 12 km 4

Table 1: Nested grids characteristics. Global grid is defined as rank 1.

Figure 1: Sub-Grids nesting layout for multi-grid tests. Colors indicate areas where com-
putations are performed and grids’ rank in the nesting scheme: Blue is rank 2, Green is
rank 3, and Red is rank 4.

surements of Hs by the Jason-2 mission for the year 2011, using the European180

Space Agency Climate Change Initiative data set (Dodet et al., 2020). We181

use a full year for calibration to properly sample all types of sea states in182

all seasons, and the year 2011 has been chosen because it had the highest183

wave heights ever recorded Hanafin et al. (2012), and this allows a sampling184

of the most extreme conditions. The variable used is the ”denoised” signifi-185

cant wave height, at 1 Hz (approximately 7 km) resolution. The model tests186

performed and associated parameter values are listed in table 2. All test sim-187

ulations are 1-year hindcasts with data output frequency of 3 hours. These188

tests also include some wind bias correction. This correction is defined as a189
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piece-wise linear correction, with modeled wind speeds above Uc multiplied190

by a factor xc as follows,191

U10,corr = U10,raw + xc max {U10,raw − Uc, 0} . (6)

Name for set of parameters βmax s7 Rec Uc (m/s) xc

T471f 1.33 3.60× 105 1.50× 105 – –
T471 1.43 3.60× 105 1.50× 105 – –

Bm1.5 1.50 3.60× 105 1.50× 105 – –
Bm1.65 1.65 3.60× 105 1.50× 105 – –
Bm1.7 1.70 3.60× 105 1.50× 105 – –

Bm1.75 1.75 3.60× 105 1.50× 105 – –
Bm1.65-W01 1.65 3.60× 105 1.50× 105 20 1.05
Bm1.65-W02 1.65 3.60× 105 1.50× 105 21 1.05
Bm1.65-W03 1.65 3.60× 105 1.50× 105 23 1.08
Bm1.65-W04 1.65 3.60× 105 1.50× 105 22 1.05
Bm1.7-W02 1.70 3.60× 105 1.50× 105 21 1.05
Bm1.7-W03 1.70 3.60× 105 1.50× 105 23 1.08
Bm1.7-W04 1.70 3.60× 105 1.50× 105 22 1.05

Bm1.75-W02 1.75 3.60× 105 1.50× 105 21 1.05
Bm1.75-W03 1.75 3.60× 105 1.50× 105 23 1.08
Bm1.75-W04 1.75 3.60× 105 1.50× 105 22 1.05

Bm1.75-W02-s7-01 1.75 3.96× 105 1.50× 105 21 1.05
Bm1.75-W02-s7-02 1.75 4.14× 105 1.50× 105 21 1.05
Bm1.75-W02-s7-03 1.75 4.32× 105 1.50× 105 21 1.05

Bm1.75-W02-s7-03-s4-01 1.75 4.32× 105 1.35× 105 21 1.05
Bm1.75-W02-s7-03-s4-02 1.75 4.32× 105 1.20× 105 21 1.05

T475 1.75 4.32× 105 1.15× 105 21 1.05

Table 2: Models parameters and their adjustments, in bold, leading to run T475. All
parameters not specified here correspond to the default T471 parameterization (Rascle
and Ardhuin, 2013; The WAVEWATCH III ® Development Group, 2019). Variables
βmax, s7 Rec, Uc and xc correspond to namelist parameters BETAMAX, SWELLF7,
SWELLF4, WCOR1 and WCOR2 in the WW3 input files (see Appendix A for the full
set of parameters).

The normalized root mean square difference (NRMSD), scatter index (SI)192

and normalized mean difference (NMD) were employed to assess the model193

- satellite discrepancy and its change when model parameterizations, forcing194

or discretization are modified. These statistical parameters were calculated195

for the entire domain and over a set of specific ocean regions (defined in table196
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3), for each 1-year test in table 2. They are defined as follows,197

NRMSD(X) =

√∑
(Xmod −Xobs)2∑

X2
obs

(7)

SI(X) =

√∑[
(Xmod −Xmod)− (Xobs −Xobs)

]2
∑
X2

obs

(8)

NMD(X) =

∑
(Xmod −Xobs)∑

Xobs

(9)

where Xobs and Xmod are the altimeter significant wave heights (denoised) and198

the modelled Hs respectively. In particular for the tuning process, Xobs is the199

along-track data from the altimeter, and Xmod is obtained by interpolating200

the model output in space and time from the closest 4 grid points, into the201

position of the altimeter measurement.202

We note that other normalizations could be used (Mentaschi et al., 2015),203

and in particular a larger scatter index is not always the indication of a204

poorer model performance, in particular in the presence of large biases or205

large fluctuations.206

We particularly looked at differences for different ranges of observed val-207

ues of Hs, binning all the model output as a function of the satellite values.208

In general, for the model’s performance assessment, attention was only paid209

to Hs larger than 1.0 m because Hs smaller than 0.75 m is not very accurate210

due to limited sampling of the signal associated with the radar bandwidth211

(Smith and Scharroo, 2015; Ardhuin et al., 2019).212

Previous parameter settings defined as “T471” were used as a starting213

point. After gradual increases of βmax without changing the other parameters214

(sets T471f to Bm1.75 as defined in table 2), a persistent negative NMD for215

Hs values larger than 7 m is found, as illustrated in Fig. 2.216

This behavior is expected to be related to an underestimation of wind217

speeds in excess of 25 m/s in ECMWF IFS model results, including the218

ERA5 data set, as analyzed by Pineau-Guillou et al. (2018). This wind-219

speed dependent bias, which is not found with CFSR winds, was the main220

motivation for introducing the wind speed correction in eq. (6).221

After setting βmax = 1.75, wind speed corrections with the parameters222

Bm1.75-W02 helped to reduce the wave heights underestimation in the 8–223

14 m range (Fig. 3).224
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Figure 2: Error statistics for Hs for the βmax sensitivity runs (a) Normalized mean differ-
ence between model runs – with parameters given in Table 2 – and the Jason-2 altimeter
data, (b) normalized root mean square difference.
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Figure 3: Error statistics for Hs for the wind correction sensitivity runs (a) Normalized
mean difference between model runs – with parameters given in Table 2 – and the Jason-2
altimeter data, and (b) scatter index.
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The wind speed Uc at which the correction kicks in is consistent with the225

analysis of models and in situ wind data by Pineau-Guillou et al. (2018),226

where it was demonstrated that typically strong winds above 20 m s−1 are227

underestimated by the ECMWF models.228

Figure 4: (a) Histogram of Hs values in the Jason-2 and co-located model simulations.
(b) Differences between the model and altimeter histograms. Plots shown are from wind
correction tests only. (c) Same as (a) but with a logarithmic scale. (d) Difference of
logarithm of the modeled and measured Hs histograms.

Once the NMD and NRMSD were reduced, particular attention was paid229

to the distribution of Hs. The applied changes in βmax and wind correction230

lead to more intense waves in storms and swells radiated from these storms.231

As a result the swell dissipation necessarily needs further tuning, which is232

done here by adjusting s7 and Rec. This adjustment can be done using233

wave spectra measurements from buoys, but also using the distribution of234

Hs. Indeed, the smoothing of swell dissipation was introduced in eq. (3) by235
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Figure 5: (a) Histogram of Hs values in the Jason-2 and model simulations absolute
frequency of occurrence difference (WW3 - alitmetry data). (b) Normalized mean bias.
Plots shown are from s7 and Rec sensitivity tests.

Leckler et al. (2013) to correct the sharp jump around 2 m in the distribution236

of modeled Hs that was first noted by D. Vandemark (personal communi-237

cation, 2012). It was only later rationalized as an effect of the Rayleigh238

distribution of wave heights with turbulent boundary layers over the largest239

waves in a group and viscous boundary layers over the lowest waves in a240

group (Perignon et al., 2014; Stopa et al., 2016b). Fig. 4 shows the dis-241

tribution of Hs in the model and observations. With panel b showing the242

difference between model and observation to make the differences more visi-243

ble for wave heights smaller than 8 m, and in panel d the difference of the log244

of frequency of occurrence to see the deviations for larger Hs. Augmenting245

s7 from 3.6× 105 with the parameters s7-01 to 4.32× 105 with s7-03 spreads246

the transition from viscous to turbulent dissipation over a wider range of247

Hs and tends to smooth the histogram of Hs. This corrects the bias in the248

distribution around Hs = 2.0 m but makes things worse around 1.5 m. To249

correct those errors requires also shifting the transition Reynolds number Rec250

to lower values in runs s4-01, s4-02 and s4-03 as shown in Fig. 5.a. These251

later adjustments made it possible to match the occurrence of the highest252

values of Hs, up to 14 m, as shown in Fig. 5.b.253

Although Hs gives a very limited description of the sea state, the great254

benefit of Hs altimeter data is their global coverage, and the differences255

between model and observation over different regions of the world ocean can256
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also be revealing due to the different types of sea states found in these regions257

(Chen et al., 2002), but also due to different forcing by winds, currents and258

sea ice. Table 3 defines the different ocean regions for which we have looked259

at regional Hs statistics. Further analyses on effects over the directional260

spreading and other wave parameters based on in-situ measurements, are261

presented in section 5 and 6.3 respectively.

Region Minimum Maximum Minimum Maximum
(basin) Longitude Longitude Latitude Latitude

[°] [°] [°] [°]
North Atlantic -80 -5 10 50
South Atlantic -68 20 -54 -2
North Pacific 125 -100 5 60
South Pacific 150 -73 -54 -2
Indian Ocean 50 100 -30 25
Southern Ocean -179.98 180 -70 -55
NO SOUTH -179.98 180 -55 66

Table 3: Regions definition for performance analysis.

262

The adjustments of βmax and wind intensities corrections showed particu-263

larly good improvements in the North and South Pacific. By only augmenting264

the βmax value (for example in tests R11-Bm1.7 and R11-Bm1.75), an im-265

portant decrease of the Hs occurrences is obtained around 2 m, especially in266

the South Pacific, but this comes at the price of an excess of Hs values in267

the 1–1.5 m range (Fig. 6).268

Higher values of βmax also reduced the overall negative bias in wave heights269

within the range of 1.5–7 m, with a further reduction of the negative NMD270

when the selected wind correction is applied. This specially improves the271

NMD for Hs of 7 to 11 m in the North Atlantic and South Pacific (Fig. 7).272

The South Pacific stands out as a region of high positive bias (Fig. 8).273

Although it is possible that winds in the Southern Ocean may have spe-274

cific biases due to a limited set of data used for assimilation, the state of the275

atmosphere is very much controlled by remote sensing data, including ra-276

diometers and scatterometers that are assimilated globally (Hersbach et al.,277

2020).278

Another peculiarity of the Southern Ocean is the importance of the cir-279

cumpolar current that generally flows from West to East. Not taking it into280

account is known to produce a large positive bias of the order of 20 cm281
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Figure 6: Hs absolute frequency of occurrence difference (WW3 - altimetry data) from
Atlantic and Pacific basins.

in wave heights due to the relative wind effect (Rascle et al., 2008; Rapizo282

et al., 2018), and large gradients in Hs associated to refraction (Quilfen and283

Chapron, 2019). Indeed, the relevant wind speed for wave generation is the284

wind velocity minus the surface current velocity. However, these previous285

estimates use numerical models that are not very reliable for surface current286

estimates (ESA, 2019). Another effect specific to the Southern Ocean is the287

presence of both sea ice and icebergs, with a very large impact on wave heights288

(Ardhuin et al., 2011). The year 2011 has a rather large anomaly in iceberg289

numbers, although not as large as in 2009 (Tournadre et al., 2016). Finally,290

the details in sea ice concentration near the ice edge and the parameteriza-291

tions of wave-ice interactions are another important source of uncertainties292

at latitudes south of 55◦S (Doble and Bidlot, 2013; Ardhuin et al., 2020).293
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Figure 7: Hs NMD within Atlantic and Pacific basins as a function of observed wave
heights. Hs bins’ range is 0.25 m.

For these reasons, we now investigate alternative forcing fields for winds, ice294

and currents, and their impact on the model results.295
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Figure 8: NMB for 1-year averaged Hs using ERA5 winds. Modelled year: 2011. Param-
eter settings from test T475. Colorbar indicates NMD values in %. Black lines represent
positive 10 % contours.

3. Influence of forcing field choices296

As we did for the choice of model parameters, forcing set-up and model297

adjustment was done over the year 2011, with a complete validation on other298

years described in section 6. Whereas we had used Jason-2 data only for299

the model calibration, we now use the full ESA Sea State Climate Change300

Initiative merged altimeter data set, using the denoised 1-Hz data for the301

significant wave height (Dodet et al., 2020). For the year 2011 this includes302

data from the following satellite missions: Jason-1, Envisat, Jason-2 and303

Cryosat-2. Using the model with parameters T475, our baseline model run304

uses ERA5 winds, Ifremer sea ice and iceberg concentrations, and CMES-305

Globcurrent surface currents.306

3.1. Choice of forcing wind field307

We now look at three alternative wind fields. These include the opera-308

tional ECMWF IFS winds which, for the year 2011, was obtained with IFS309

cycle 37r2, an earlier and less accurate version of IFS compared to the 41r2310

used for ERA5. We also considered the CFSR winds (Saha et al., 2010) that311

were used by Rascle and Ardhuin (2013). Finally we tested the Ifremer CER-312

SAT Global Blended Mean Wind Fields (Bentamy et al., 2018), from here313

on just named ”Ifremer”. Other wind fileds like ERA-Interim and MERRA2314
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(Gelaro et al., 2017) have also been considered in other hindcasts such as315

Sharmar et al. (2021), with analyses focused on inconsistencies and trends of316

the different atmospheric forcing.317

Figure 9: Scatter plot of wind speed for the months of January to July 2011. ERA5
intensity bins along x-axis. Top panels: ECMWF operational product vs ERA5, Middle
panels: Ifremer vs ERA5. Bottom panels: CFSR vs ERA5. Colors give the logarithm of
the number of data points in each 0.25 m/s×0.25 m/s wind speed bin.

The main difference between the Ifremer winds and the 2 other data sets,318

is that the Ifremer 6-hourly surface wind fields are estimated mainly from319

scatterometer wind vector observations, merged with wind magnitude mea-320

surements from radiometer data (SSM/I, SSMIS, WindSat) and the ERA-321

Interim atmospheric wind reanalyzes. Further details on the product and322

methods can be found in Bentamy et al. (2012, 2013).323

As discussed by Rascle and Ardhuin (2013) and Stopa et al. (2019), dif-324

ferent wind fields are biased relative to one another. This is true for the325

average values around 7 m/s, and biases are even larger for high speeds over326

20 m/s (Pineau-Guillou et al., 2018). This is shown again here in Fig. 9.327

The NCEP operational GFS model (not shown here) and CFSR hindcast328

both have wind speeds higher than those produced by the ECMWF models329

(operational IFS results and ERA5 results), leading to higher wave heights330
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when using NCEP winds. Because the Ifremer blended wind product uses331

ERA-Interim as a background ”filler” when and where observations are too332

far in space or time, these data sets where homogenized to have the same low333

bias for average conditions (slope of 0.91 for the Ifremer wind vs the ERA5334

winds in the South Atlantic) but higher values for wind speeds above 20 m/s335

that are more frequent in the North Atlantic.336

There is also a clear indication that ECMWF operational winds give337

higher values for wind speeds above 20 m/s compared to ERA5, probably338

due to the higher resolution of the operational IFS model (25 km approx. and339

hourly output for 2011). The consequences of these wind field properties on340

the wave height biases are shown in Fig. 10.

Figure 10: Normalized Mean Difference of modelled Hs minus Sea State CCI Altimeter
data, averaged over the year 2011, using (a) ERA5, (b) CFSR, (c) ECMWF operational
deterministic products and (d) Ifremer winds. The model was run with the set of parame-
ters T475 as given in Table 2. Colorbar indicates NMD in percent. Black and yelow lines
mark the +10 and +20 % contours.

341

Given the relative biases of the different wind datasets, it is not surprising342

that, without any retuning, the T475 set of parameters gives large Hs biases343

when used with other wind forcing than ERA-5. In particular the CFSR344
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winds give positive biases larger than 15% over most of the oceans.345

Figure 11: Scatter Index of modelled Hs minus Sea State CCI Altimeter data, averaged
over the year 2011, using (a) ERA5, (b) CFSR, (c) ECMWF operational deterministic
products and (d) Ifremer winds. The model was run with the set of parameters T475 as
given in Table 2. Colorbar indicates SI in percent. Black and yelow lines mark the +10
and +20 % contours.

The Ifremer winds have interesting properties and are probably more346

realistic in some regions, where they give lower scatter index (Fig 11.d),347

including the southern ocean where the bias is also lower and significantly348

different (Fig. 10.d). This difference between Ifremer and ERA5 winds is349

possibly due to the fact that the remote sensing data used in the Ifremer350

product generally measures a wind that is relative to the current and not an351

absolute wind (Quilfen et al., 2004). There is also probably a contribution352

to the generally low bias of the ERA-Iterim product that is used to fill in353

between the different satellite passes.354

3.2. Effects of wave-ice parametrizations and forcing fields355

Much work has been done on the interactions of waves and sea ice in the356

recent years, with a large emphasis on pancake ice (Thomson et al., 2018),357
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that is particularly relevant near the ice edge and during the freeze-up period358

(Doble et al., 2003). Here we have rather used a parameterization associated359

to the presence of larger floes and their possible break-up induced by waves.360

In particular the formulation we have used in our baseline simulation was361

developed by Boutin et al. (2018) and adjusted by Ardhuin et al. (2020) to362

2 months of waves measured in the sea ice of the Ross sea. That parame-363

terization combines both wave scattering in sea ice with a wave-induced ice364

break-up (IS2) and dissipation below ice plates including a smooth laminar365

to rough turbulent flow as a function of the boundary layer Reynolds number366

(IC2, Stopa et al., 2016b). Given uncertainties on ice thickness, in partic-367

ular in the Southern Ocean (Williams et al., 2014) and around the ice edge368

where it matters for wave-ice interactions, we have chosen a crude and sim-369

ple constant thickness of 1 m. This parameterization is compared to the old370

default WW3 parameterization that is a 40 km exponential decay of wave371

energy proportional to the ice concentration (IC0 parameterization). The372

new IC2+IS2 parameterization gives a much weaker attenuation near the ice373

edge, and thus a larger value of Hs in the open ocean where we have data374

for validation (Fig. 12a,b). We have not attempted to validate the predicted375

wave parameter and maximum floe size in the ice-covered regions. We note376

that the scatter index is generally reduced around the ice, especially around377

Greenland and in the Ross sea. These areas typically require more valida-378

tion, and the model resolution (0.5◦) is probably marginal for the Southern379

Ocean, whereas the 12 km resolution in the Arctic allows a more detailed380

investigation of wave-ice interactions.381

Much less work has been devoted to the effect of icebergs, so we use382

here the parameterization proposed by Ardhuin et al. (2011). We verify that383

including icebergs has a very positive effect on reducing the bias and scatter384

index where the icebergs are present. For the year 2011, a large concentration385

of icebergs was found in both the South-East of the Pacific and the South386

of the Indian ocean, giving a bias reduction up to 10 percentage points and,387

locally, a very large reduction in scatter index up to 6 percentage points388

(Fig. 12c,d). The concentration of icebergs in the South Pacific in 2011 is389

associated with two large icebergs, C19a and B15j, that drifted northward390

and eastward within the Antarctic Circumpolar Current (Tournadre et al.,391

2015, 2016), later breaking up into hundreds of smaller icebergs. These small392

icebergs are much more effective in reducing the wave energy flux, compared393

to a single parent iceberg, as they have a much larger cross section.394
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Figure 12: (a,b) using dissipation, scattering and ice break-up (IC2, IS2) or partial ice
blocking (IC0) Differences in NMB and SI in percentage points for the T475 parameteri-
zation variations when using: (c,d) iceberg forcing or no iceberg forcing.

3.3. Effect of currents395

Ocean surface currents can have large influences on the wave field ei-396

ther locally through the relative wind effect and advection, or down-wave of397

current gradients, due to refraction, with larger effects associated to larger398

current magnitude (Ardhuin et al., 2012). An important difficulty for prop-399

erly taking currents into account at global scales is that there are no global400

observations of the Total Surface Current Velocity (TSCV) that matters401

for wind waves, and the only proper surface measurements are made with402

High Frequency radar near the coasts (Barrick et al., 1974; Roarty et al.,403

2019). Instead, the closest global proxy is given by the drift velocity around404

15 m depth provided by instruments of the Surface Velocity Program (Elipot405

et al., 2016; Lumpkin et al., 2017), with only about 1500 drifters globally406

giving a 500 km resolution. We note that at the Equator and a few other407

places of interest, the 15-m depth drift is often in the opposite direction of408

the surface drift. Most importantly, finer spatial resolution is needed, typ-409

ically down to 30 km, to represent most of the refraction effects (Ardhuin410

et al., 2017a; Marechal and Ardhuin, 2020). As a result, surface current411

estimates are often taken from numerical models, or, which is the case of412

the CMEMS Globcurrent product used here, derived from combined obser-413
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vations of sea surface height anomaly, mean dynamic topography and surface414

winds, assuming a quasi-geostrophic equilibrium of the Coriolis force asso-415

ciated to the surface current with the combination of the wind stress and416

the pressure gradient associated to sea surface height. Except possibly for417

western boundary currents such as the Gulf Stream or the Agulhas, this ap-418

proach does not work very well, in particular around the equator and in mid-419

latitudes where currents are dominated by near-inertial currents as illustrated420

in Fig. 13. The CMEMS Global Ocean Multi Observation Products (MUL-

1.00 m/s 

0.91

0.82

0.73

0.64

0.55

0.46

0.37

0.28

0.19

0.10
(a) SVP drifter climatology

(b) GLORYS reanalysis

(c) Globcurrent for 2011

RMS of TSCV

Figure 13: Root mean square current velocity (a) at 15 m depth using in situ drifter
data from the Surface Velocity Program (SVP) processed by Elipot et al. (2016) with
rms velocity computed over 30-day long trajectories and attributed to the center of that
trajectory and white ocean pixels corresponding to 1 by 1 degree squares in which no
data was available, (b) as given by the CMEMS GLORYS reanalysis, (c) as given by
the CMEMS-Globcurrent product based on altimeter sea level anomalies, mean dynamic
topography inferred from satellite gravimeters and ocean drifters, and ”Ekman currents”
estimated from ECMWF wind analyses.

421

TIOBS GLO PHY REP 015 004) has an average current that is closer to the422

SVP drifter climatology than the CMEMS Global Ocean Reanalysis (GLO-423

RYS) product GLOBAL-REANALYSIS-PHY-001-031, in particular around424

the Equator, which is why we have chosen to use the former product as our425

TSCV forcing.426

Given all these limitations it is not specially surprising that the TSCV is427
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seldom used at global scale. Including the TSCV forcing can indeed increase428

errors in some regions due to errors in the forcing field, but it generally cor-429

rects part of the bias and gives lower scatter index for wave heights compared430

to altimeter data, as illustrated in Fig. 14. Comparing our simulation with431

parameters T475 with and without currents, we find a clear lower bias along432

the Equator and in the Southern ocean when currents are used, as already433

reported by Rascle et al. (2008). This is probably associated with the relative434

wind effect, with wave generation given by the difference between the wind435

vector and the TSCV and not the wind vector alone. We know that this436

approach can overestimate the current effect when the atmosphere model is437

not coupled with an ocean model (Hersbach and Bidlot, 2008; Renault et al.,438

2016), however, we also expect that the TSCV is generally underestimated439

by the CMEMS-Globcurrent product.440

Figure 14: Left: Change in Normalized Mean Difference (NMD in percentage points)
for Hs with currents and the T475 parameterization versus the same simulation without
current. For both simulatons the reference is the Sea State CCI Hs for the year 2011.
Right: same for difference in SI, with the dark blue corresponding to a reduction of 4
percentage points (e.g. from 14% to 10%) when TSCV forcing is used.

The reduction of the scatter index against altimeter Hs that is brought441

by the current (blue regions in Fig. 14.b) clearly corresponds to the regions442

of strong currents where the variability of incoming waves can cause a large443

variability of the wave heights around the current: this is the case in the Ag-444

ulhas current, in the Gulf Stream, the Kuroshio, the Mozambique channel,445

the Somali current. However, as shown in Fig. 11, these regions are still446

places where the models error are relatively large, possibly due to a combi-447

nation of factors, including errors in the TSCV fields, insufficient directional448

resolution of our wave model (Marechal and Ardhuin, 2020), and insufficient449

spatial resolution in the TSCV field and/or the wave model. We note that450
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the scatter index is generally increased for latitudes above 50◦ N, probably451

due to an insufficient resolution of the altimetry where the Rossby radius452

of deformation is less than 50 km (Ballarotta et al., 2019). Given the im-453

portance of the spectral and spatial discretizations, we now discuss theses454

aspects.455

4. Model discretization456

The choice of spatial and spectral discretizations can have a large impact457

on the model solutions, and it also has a direct and clear impact on the cost458

of the model, the time needed to perform the simulations. As a result, the459

particular choices we made for the discretizations are a compromise between460

the computational cost and the accuracy benefits. The 28-years hindcast461

used around 500,000 cpu hours distributed over 504 processors, distributed462

in 18 nodes that each hold 28 CPUs and 75Gb of memory.463

4.1. Spatial resolution464

Using higher resolution grids is critical for resolving smaller scale varia-465

tions in the sea state that are caused by the time-varying forcing fields (wind,466

current, sea ice) or fixed features (shoreline, water depth, bottom sediment467

type and grain size). In practice, small scale gradients in wave heights are468

dominated by the distance to the coast and the presence of strong currents469

(Quilfen and Chapron, 2019). Because some important current system are470

located close to coasts, we have chosen to define nested grids that cover the471

relatively shallow waters of the coastal regions and, where possible, extend472

over strong current regions (Fig. 1). As a result, our North-West Atlantic473

grid covers the Grand Banks and the Gulf Stream, as well as the entire gulf474

of Mexico. In a similar fashion, the Africa grid was extended to the south to475

cover the Agulhas current retroflexion. Using different grids also allows to476

tune the model parameters locally.477

Because the wind-wave growth tuning that corresponds to T475 is very478

similar to T471, it tends to give an underestimation of the wave height for479

short fetches (Stopa et al., 2016a). This effect is more pronounced with higher480

resolution grids, which explains the general reduction in wave height for481

enclosed seas and eastern coasts (stronger negative bias, in blue in Fig. 15.a).482

We also find that the explicit higher resolution of shorelines and islands gives483

larger Hs values compared to the subgrid treatment of complex shorelines and484

islands in a coarser grid (Chawla and Tolman, 2008), explaining the more485
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Figure 15: NMD and SI variations in percentage points for the year 2011: values for Multi-
grid minus values for Single grid setup, both using the same T475 parameters. Left panel:
Difference in NMD values, in this case red values represent a reduction of the negative
NMD.

positive bias around 140E 10S, downwave of the Tuamotus, or around the486

Galapagos, Azores etc. The presence of the full Arctic ocean thanks to the487

Arctic grid also adds wave energy that was otherwise missing in the near-488

global grid that stopped at 83◦N.489

Overall, the scatter index is reduced over most of the ocean with the490

strongest reduction in regions of strong currents like the Agulhas current, or491

along complex coastlines such as the Baja California peninsula (blue regions492

in Fig. 15.b).493

4.2. Spectral grid and resolution494

However, to converge to the true solution of the wave action equation,495

increasing only the spatial resolution is not enough, and a finer spectral res-496

olution is also needed, in particular for parameters sensitive to numerical497

diffusion like the directional spread (Ardhuin and Herbers, 2005). Although498

we know that current effects on wave heights would be better resolved with 48499

directions instead of only 24 (Ardhuin et al., 2017b; Marechal and Ardhuin,500

2020), we have stuck to 24 directions only because of the much lower CPU501

cost, and because differences in wave heights when using 24 or 36 directions502

were fairly limited. Fig. 16.b shows a change in the Normalized Mean Differ-503

ence that is mostly limited to the tropical regions, especially around coasts504

and islands for which the finer directional resolution must have an impact505

on swell propagation, but the change in scatter index is typically much less506

than 1 percentage point (Fig. 16.d).507

Compared to the costly increase of directional resolution, we found a508

higher benefit in terms of Hs accuracy in increasing the spectral range with509
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a maximum frequency of 0.95 Hz instead of the 0.72 Hz used by Rascle and510

Ardhuin (2013). This higher frequency gives a better response, in particular511

for the short fetch and low wind conditions in which the peak of the wind512

sea would otherwise not be well resolved.513

NMD, 36 dir.
(a)

SI,  36 dir.
(c)

NMD 36 dir. 
- NMD 24 dir.

(b)

SI 36 dir. 
- SI 24 dir.

(d)
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Figure 16: (a)NMD for 1 year averaged Hs using T475 with 36 directions and (b) differ-
ences in NMD for T475 with 36 directions with respect to 24 directions (Fig. 10a). Black
lines mark the positive 10 % contours. (c) SI for 1 year averaged Hs using T475 with 36
directions and (d) SI difference for T475 with 36 directions with respect to 24 directions.
Analyzed year: 2011. Black and yellow lines mark the positive 10 and 20 % contours
respectively

5. Wave directionality and alternative dissipation parameteriza-514

tions515

As noted by Stopa et al. (2016b), the directional spread (Kuik et al.,516

1988) is the least well predicted parameter among the most common metrics517

used to define the shape of the wave spectrum. Whereas the mean direction518

is well controlled by the wind evolution and the time scale of adjustment519

of the wave field, the directional spread is probably influenced by details520

of the wave generation and dissipation parameterizations. Here we use 3-521

hour averaged data from WMO buoy 46436 in the North East Pacific as an522

example (see table 4 and Fig. 17), which is the station 166 of the Coastal523
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Data Information Program and is maintained by Thomson et al. (2013). The524

correlation coefficient for σθ(f) falls below 0.7 for frequency above 0.3 Hz.525

Indeed, the model has no skill in predicting σθ(f) for f > 0.5 Hz, and the526

shape of the modeled spectral tail is given by the shape at frequency fm with527

an energy level decreasing like (fm/f)5, where fm is a dynamically adjusted528

maximum prognostic frequency, set to 2.5 times the mean frequency of the529

wind sea part of the spectrum.530

We note that the directional spread at low frequencies is, close to coasts,531

very sensitive to shoreline reflections (Ardhuin and Roland, 2012). Whereas532

this has a limited impact on most wave parameters, it is a critical contribution533

to microseism and microbarom sources (Stutzmann et al., 2012; De Carlo534

et al., 2021). In the present hindcast we have not used the slope-based535

reflection coefficient proposed by Ardhuin and Roland (2012) because of the536

difficulty of defining the proper slope and mixed results when validating537

modeled microseisms. Instead, we have used constant reflexion coefficients of538

5%, 10% and 20% for the resolved shorelines, subgrid shorelines and icebergs,539

respectively. Clearly that parameterization will have to be tested and futher540

improved upon using buoy directional spreads together with microseism and541

microbarom data.542

The T475 parameterization is thus still fairly poor for the frequency range543

0.4 to 1 Hz when the waves are developed (when the wind sea peak frequency544

is below 0.15 Hz), in particular for the directional distribution (Fig. 17.d),545

which is critical for the ratio of crosswind to downwind mean square slope546

(Munk, 2009), wave breaking statistics (Romero et al., 2017) and the sources547

of microseisms and microbaroms at seismic or acoustic frequencies above548

0.8 Hz (Farrell and Munk, 2010; Peureux and Ardhuin, 2016; De Carlo et al.,549

2020). Recent work have suggested that the shape of the dissipation func-550

tion could be better described by Romero (2019), giving the T700 set of551

parameters in the WAVEWATCH III model, available in versions 7.0 and552

above. In T700, the ad hoc and not very effective cumulative term of Ard-553

huin et al. (2010) is replaced with a cumulative term that could be explained554

by the straining of short waves caused by long waves (Peureux et al., 2020).555

Preliminary tests reveal an interesting behavior for the shape of the high fre-556

quency spectrum (Fig. 18), which allows to remove the imposed diagnostic557

tail for f > fm thanks to a completely local (in the spectral sense) parame-558

terization of the breaking probability, and the added cosine-squared angular559

dependence in the parameterization of the cumulative effect. Possibly this560

imposed shape of the cumulative term will have to be revised, as for example561
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Figure 17: Modeled spread and mean direction for low frequencies (f < 0.4 Hz) and high
frequencies (f > 0.4 Hz) at buoy 46246 for the year 2018. Colors show the number of 3
hour records for which the model-buoy pair falls in one bin, as normalized by the maximum
value nmax. The solid lines gives the mean modeled value for each observation bin.

an isotropic spectrum of long waves should produce an isotropic effect unless562

it is a joint effect of the long and short waves. However, Romero (2019) has563

produced the first parameterization that is able to produce larger cross-wind564
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Figure 18: Differences in model results for an academic case considering a uniform ocean
and a constant wind speed of 10 m/s starting from no waves. The WAM4.5 parameteri-
zation is close to the one used in the ERA5 reanalysis, and the T700NL2 corresponds to
the parameterization of Romero (2019) with the non-linear interactions computed with
the exact Webb-Resio-Tracy method van Vledder (2006).

slopes than down-wind slopes for wavelengths around 1 m (after 7 hours in565

Fig. 18.d, the dominant direction for mss1 in T700NL2 is indeed the cross-566

wind direction), which are critical to explain the first of the inconvenient sea567

truths highlighted by Munk (2009).568

Taken ”out of the box” without the present retuning, the Romero (2019)569

parameterization performs similarly to T471 in terms of scatter index but570

has a 2 to 6% higher value of wave height (Fig. 19) that will also require an571

adjustment of the swell dissipation. The benefits of such a parameterization572

will probably be most important for the model parameters that are most573

sensitive to the high frequencies, including the mean square slope, and will574

require an important upgrade of the wave model in the way these shorter575

wave components are treated, so that the wave model result can be validated576

with radar back-scatter data (e.g. Nouguier et al., 2016). This effort is beyond577

the scope of the present paper and will be discussed in Part 4.578
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(a) Change in Normalized Mean Bias : T700 - T471 (b) Change in Scatter Index : T700 - T471

Figure 19: Change in NB and SI from the T471 to T700 change in parameterization for
the year 2018. These simulations did not include ocean currents.

6. Validation579

6.1. Validation with altimeter data580

An important concern about numerical wave model hindcasts for all ap-581

plications is their consistency in time which can be compromised by the582

time-evolving error statistics of the forcing fields (winds, currents, sea ice)583

and/or of the assimilated data which may both introduce time varying biases584

and jumps, possibly requiring the statistical adjustment of the forcing fields585

(e.g. Stopa et al., 2019) or the correction of the model results. It is thus nec-586

essary to verify the consistency of the model output over time. This requires587

validation data that are stable in time. Here we use the satellite altimeter588

Hs measurements of Dodet et al. (2020) that were especially designed for589

this purpose, and we look at the evolution of the NMB and SI over the years590

1997 to 2018 (Fig. 20). We find a general agreement over the years, with591

lower variations of the mean difference than was found by Rascle and Ard-592

huin (2013) when using CFSR winds, and which had to be corrected in later593

hindcasts (Stopa et al., 2019). Still, the changes from -1 to 2% for the bulk594

of the data (1.5 < Hs < 4 m) suggest a systematic drift in either the ERA5595

wind speeds or the altimeter data, with relatively flatter biases as a function596

of Hs for the years 2011-2018 (but still a decrease in the mean model val-597

ues or an increase in the altimeter values), and steeper Hs-dependent biases598

for the years 1997-2010. The scatter index shows a general reduction of the599

random differences that can be caused by a reduction in the random noise600

of satellite altimeter data for the more recent missions and an improvement601

in the quality of the ERA5 wind fields thanks to the assimilation of a richer602

set of data (Hersbach et al., 2020).603

30Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Figure 20: Performance parameters for 22 years hindcast using T475. (a) Hs NMD curves
and (b) SI curves, the reference year (2011) used for model tuning has been highlighted
with a black star. (c) and (d) are the NMD and SI time series of 1.5 to 10 m Hs bins. Bin
size is 0.25 m. Altimeters used for validation: Topex (1997-2002), Envisat (2003-2010),
Jason-2 (2011-2012), Saral (2013-2018).

6.2. Comparison to ERA5 wave heights604

Because the ERA5 reanalysis also included a wave model it is questionable605

that our efforts have any added value, especially because the ERA5 wave606

model assimilates altimeter wave heights and uses a wind forcing at the 10607

minutes time step of the atmospheric circulation model to which it is coupled.608

However, we know (J.R. Bidlot, personal communication) that the same609
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Figure 21: Performance parameters curves for test T475 and ERA5 wave product with
respect to Jason-3 altimeter data. (a) Hs NMD, and (b) NRMSD. Analyzed year: 2018.
Hs bin size is 0.25 m.

ECMWF wave model that uses improved wave generation and dissipation610

parameterization in the IFS cycle 46R1 that is operational as of June 6, 2019611

(ECMWF, 2019) and is similar to T471, already gives better results than the612

ERA5 wave heights at buoy locations. It is thus interesting to look at the613

differences between the ERA5 wave heights and the results of the present614

hindcast. We note that our model uses different forcing, in particular for615

currents, sea ice and icebergs, includes some shoreline and iceberg reflexion616

and produces different output parameters, including fluxes of energy between617

the ocean and atmosphere, in addition to the parameters that can be derived618

from the wave spectrum. Here we only compare the two simulations using619

the Jason-3 data for 2018, which has not been assimilated in ERA5.620

Fig. 21 shows a very strong negative bias in the ERA5 wave heights that,621

combined with a much lower random errors, gives larger rms differences for622

Hs > 7 m. Looking at the spatial distribution of these errors we typically find623

larger random errors in the Southern ocean with T475 compared to ERA5624

wave heights (Fig. 22), possibly a benefit of the assimilation of the other625

satellite missions where the satellite tracks are most dense, and we find lower626

random error in a few specific areas with T475, including in the Agulhas627

current, which shows again the benefit of properly including ocean surface628

currents in a wave model.629
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Figure 22: (a) Scatter Index for 1 year (2018) averaged ERA-5 Hs with respect to Jason-3
altimeter data. (b) Difference in scatter index between T475 and ERA-5 waves product.

6.3. Validation with buoy data630

So far all of our analysis, except for a brief discussion of mean direc-631

tion and directional spread, has been based on wave heights alone, whereas632

our model hindcast is based on the simulation of ocean wave spectra and633

produces a wide range of spatially gridded parameters as well as spectra at634

selected locations: around 10,000 points all along the world coastline plus the635

locations of moored buoys and a few additional offshore points. Even though636

the model was only marginally changed compared to the version validated637

by Stopa et al. (2016a), it is interesting to look at errors on the shape of638

spectra and wave period and directions parameters.639

These comparisons are not simple because of the large response differ-640

ences of different buoy types for wavelengths shorter than 10 m (f ' 0.4 Hz)641

in particular 3 m diameter discus buoys tend to filter frequencies above 0.4 Hz642

which are well reproduced, up to 0.6 Hz by 0.8 m diameter Waverider buoys643

(e.g. Ardhuin et al., 2019). We thus focus on the 0.05 to 0.4 Hz frequency644

band. Another difficulty is that most Waverider buoys are located in coastal645

areas. We have particularly selected 5 buoys that are representative of differ-646

ent wave climates, as listed in Table 4. The buoy heave spectra were averaged647

over 3 h intervals.648

Fig. 23 shows different validations of the spectral content of the wave649

spectrum. Away from the coasts, at station Papa (buoy 46246), the average650

wave spectra in Fig. 23.a reveal a general good behavior of the model com-651

pared to Datawell buoy measurements with mean differences under 10% in652

the frequency range 0.05 to 0.4 Hz. The deviation at low frequencies can be653

due to the presence of infragravity waves in the buoy measurements which654

were not included in our model simulation, but could have been added and655

have a typical height of 1 cm in the open ocean (Ardhuin et al., 2014). That656
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WMO code latitude longitude depth shore distance buoy type
46246 50.0N 145.2 W 4252 m 900 km Datawell WR
51208 22.285 N 159.574 W 200 m 5 km Datawell WR
51004 17.53 N 152.25 W 5183 m 300 km 3-m discus
42097 25.7 N 83.65 W 81 m 130 km Datawell WR
44098 42.8 N 70.17 W 77 m 37 km Datawell WR

Table 4: List of buoys selected for detailed validation over the years 2018 and 2019. Note
that data was missing before July 6, 2019 for buoy 46246.

deviation could also be the result of mooring line effects. At high frequen-657

cies, the model understimation for f > 0.5 Hz may be due to the buoy heave658

resonance (Datawell, 2014).659

The variability of the energy content at different frequencies is generally660

well captured by the parameters Hs and mean periods Tm0,2 (which is more661

sensitive to the high frequencies) and Tm−1,0 (more sensitive to the low fre-662

quencies). With a bias for the mean periods at buoy 46246 under 1% and a663

scatter index around 5%, the model is particularly accurate for the shape of664

the wave spectrum.665

For other buoys, differences between the model and the observations can666

reveal errors in buoy measurements (e.g. the spectrum roll-off for f > 0.52 Hz667

at 51004 is typical of 3-m discus buoys) and difficulties for the model to re-668

solve coastal sea state variability and growth for relatively short fetches. In669

particular, the energy for low frequencies (f < 0.06 Hz) is strongly underes-670

timated in the Gulf of Mexico and the Gulf of Maine.671
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Figure 23: Modeled and measured mean spectra, scatter plots for Hs, and mean periods
Tm−1,0, Tm0,2 at selected buoys listed in Table 4.
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7. Conclusions672

The present paper discusses the influence of forcing fields (winds, sur-673

face current, sea ice concentration, iceberg concentration), parameterizations674

(wind-wave generation and swell damping) and resolution (in physical and675

spectral space) on the wave heights produced by a wave model hindcast, us-676

ing the WAVEWATCH III modelling framework and satellite-derived wave677

heights. It is unfortunately not practical to test all the possible combina-678

tions of model settings, but we expect that the choice of forcing fields and679

adjustment of parameters is generally robust, and the measurements shows680

that the present hindcast, in the context of the Integrated Ocean Waves for681

Geophysical and other Applications (IOWAGA) project, is generally supe-682

rior to the previous version described by Rascle and Ardhuin (2013), and in683

some regions, for large wave heights, is superior to the ERA5 reanalysis wave684

product.685

For the forcing, we found that ERA5 winds, once corrected for a low bias686

at wind speeds above 21 m/s, gave more accurate results than operational687

ECMWF analyses or the CFSR reanalysis. Alternative merged satellite-688

model products (Bentamy et al., 2018) gave interesting results. We also689

found that the use of currents provided by CMEMS-Globcurrent generally690

improved the model results. Probably because these current estimates are691

missing a significant part of the Total Surface Current Velocity, they degraded692

the model results at latitudes larger than 50◦ N. Finally, we confirmed the693

importance of both sea ice and icebergs for Southern Ocean and Arctic wave694

heights.695

For the model parameterizations of air-sea interactions, we have shown696

that the distribution of Hs around the global maximum of 2 m, could be697

used to adjust the transition from a laminar to a turbulent boundary layers698

above the waves, that is very important for the attenuation of swells, and is699

probably the most sensitive part of the model parameterizations.700

Regarding model discretizations, we have found a great benefit in includ-701

ing the 0.7 to 1 Hz frequency range, even though the directionality in that702

range is not yet well described by the model when waves are developed.703

For all these tests, we have only performed limited validation for other704

parameters besides the significant wave height. We expect that future adjust-705

ments will particularly focus on the high frequencies (f > 0.4 Hz) with more706

validation of the variables that are most sensitive to that frequency range,707

starting with the mean square slope and its directional components. In this708
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respect, we expect to produce a Part 4 update on the present work based on709

the parameterizations of Romero (2019) and a much better treatment of the710

model high frequencies that would make it consistent with remote sensing711

data, as analyzed by Nouguier et al. (2016) or Yueh et al. (2006), following712

the work of Elfouhaily et al. (1997).713
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Data availability725

The generated hindcast using test T475, will be available in the following726

web site: https://www.umr-lops.fr/Donnees/Vagues/sextant727

At the moment of the generation of the present study, the wave data728

set covers 28 years, from 1993 to 2020 with 3-hourly outputted data. The729

extension of the hindcast to prior and more recent years is an ongoing work.730

Appendix A. Detailed model implementation731

The wave model hindcast and tests presented here all use version 7.0 of732

WAVEWATCH III. The hindcast uses a list of switches, which appears in all733

NetCDF file products,734

• physical parameterizations : LN1 ST4 STAB0 NL1 BT4 DB1 MLIM735

TR0 BS0 IC2 IS2 REF1 RWND WCOR736

• advection and GSE correction: PR3 UQ737
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• other numerical aspects: F90 NOGRB NC4 SCRIP SCRIPNC DIST738

MPI FLX0 XX0 WNT2 WNX1 CRT1 CRX1 TIDE TRKNC O0 O1739

O2 O2a O2b O2c O3 O4 O5 O6 O7740

The model parameters are adjusted with the same parameters for all741

model grids, and except for default parameter values the T475 parameters742

use these adjustments743

• air-sea interaction parameters (SIN4 namelist) BETAMAX = 1.75,744

SWELLF = 0.66, TAUWSHELTER = 0.3, SWELLF3 = 0.022, SWELL-745

F4 = 115000.0, SWELLF7 = 432000.00746

• wave-ice dissipation parameters (SIC2 namelist) IC2DISPER = F, IC2-747

TURB = 1.0, IC2ROUGH = 0.001, IC2DMAX = 0.3, IC2REYNOLDS748

= 150000, IC2SMOOTH = 200000., IC2VISC = 2.749

• wave-ice scattering and floe size effects including break-up and in-750

elastic dissipation (SIS2 namelist): ISC1 = 0.2, IS2C2 = 0., IS2C3751

= 0., IS2BACKSCAT = 1., IS2BREAK = T, IS2DUPDATE = F,752

IS2CREEPB = 0.2E8, IS2CREEPD = 0.5, IS2CREEPN = 3.0, IS2-753

BREAKF = 3.6, IS2WIM1 = 1.0, IS2FLEXSTR = 2.7414E+05, IS2-754

CREEPC = 0.4, IS2ANDISE = 0.55755

• reflexion parameters (REF1 namelist): REFCOAST = 0.05, REF-756

COSP STRAIGHT = 4, REFFREQ = 1., REFICEBERG = 0.2, REF-757

MAP = 0., REFSLOPE=0., REFSUBGRID = 0.1, REFRMAX = 0.5758

• other parameterizations (MISC namelist) ICEHINIT = 1., ICEHMIN759

= 0.1, CICE0 = 0.25, CICEN = 2.00, LICE = 40000., FLAGTR = 4,760

FACBERG = 0.2, NOSW = 6, WCOR1 = 21., WCOR2 = 1.05 /761

• activation of 3D output fields (full spectra and seismic sources, OUTS762

namelist) P2SF = 1, E3D = 1, I1P2SF = 3, I2P2SF = 24763
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2012. The era-interim reanalysis: configuration and performance of the816

data assimilation system. J. Geophys. Res. 117, C02011.817

Bentamy, A., Grodsky, S. A., Chapron, B., Carton, J. A., 2013. Compatibility818

of C- and Ku-band scatterometer winds: ERS-2 and QuikSCAT. J. Mar.819

Sys. 117–118, 72–80.820
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- An update on the Rascle and Ardhuin (2013) wave hindcast is presented

- ERA5 wind forcing gives best results but requires a bias correction for high winds

- Satellite altimeter data was used to adjust swell dissipation parameters
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