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Abstract. This study investigates the use of a vespagram-
based approach as a tool for multi-directional comparison
between simulated microbarom soundscapes and infrasound
data recorded at ground-based array stations. Data recorded
at the IS37 station in northern Norway during 2014-2019
have been processed to generate vespagrams (velocity spec-
tral analysis) for five frequency bands between 0.1 and
0.6 Hz. The back azimuth resolution between the vespagram
and the microbarom model is harmonized by smoothing the
modeled soundscapes along the back azimuth axis with a
kernel corresponding to the frequency-dependent array res-
olution. An estimate of similarity between the output of
the microbarom radiation and propagation model and infra-
sound observations is then generated based on the image-
processing approach of the mean square difference. The anal-
ysis reveals that vespagrams can monitor seasonal variations
in the microbarom azimuthal distribution, amplitude, and
frequency, as well as changes during sudden stratospheric
warming events. The vespagram-based approach is compu-
tationally inexpensive, can uncover microbarom source vari-
ability, and has the potential for near-real-time stratospheric
diagnostics and atmospheric model assessment.

1 Introduction

Microbaroms are infrasound waves with frequencies typi-
cally between 0.1 and 0.6 Hz generated by nonlinear inter-
action between counter-propagating ocean waves. Once gen-

erated, microbaroms penetrate the atmosphere where vertical
wind and temperature gradients are responsible for the pres-
ence of waveguides or sound channels (Brekhovskikh, 1960;
Diamond, 1963). Waveguides duct the infrasound between
the ground and different atmospheric layers and are usually
classified into tropospheric, stratospheric, and thermospheric
(Hedlin et al., 2012; de Groot-Hedlin et al., 2010). Seasonal
variations in the zonal stratospheric wind (eastward — west-
ward) are crucial for the stratospheric waveguide, which is
of particular interest in this study. These variations, com-
bined with an increase in temperature in the stratosphere,
make the effective sound speed higher than at the surface.
This causes the refraction of the infrasound waves back to
the ground. The low-frequency microbaroms can be ducted
over long distances due to the weak attenuation, which is pro-
portional to the frequency squared. Hence, there is a potential
to exploit microbaroms to probe the dynamics of the strato-
sphere, where the representation of the atmospheric dynam-
ics in model products is often poorly constrained (Polavarapu
et al., 2005; Rienecker et al., 2011; Smith, 2012; Amezcua
et al., 2020).

The term “microbarom” was established by Benioff and
Gutenberg (1939), who described quasi-continuous pressure
fluctuations with periods of 0.5-5 s recorded by two electro-
magnetic barographs installed by the Seismological Labo-
ratory, California Institute of Technology, Pasadena, USA.
Following Benioff and Gutenberg (1939), several micro-
barom studies were performed by scientists around the globe.
Joint observation of microbaroms and microseisms (quasi-
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continuous fluctuations of the ground displacement gener-
ated by ocean waves) in California, USA (Gutenberg and Be-
nioff, 1941), Christchurch, New Zealand (Baird and Banwell,
1940), Fribourg, Switzerland (Saxer, 1945, 1954; Dessauer
et al., 1951), and New York, USA (Donn and Posmentier,
1967), demonstrated that the microbarom signals originate
from the ocean.

Thereafter, efforts were made to develop theories to ex-
plain the physical mechanisms of microbarom generation
(Brekhovskikh et al., 1973; Waxler et al., 2007). A recent
model proposed by De Carlo et al. (2020) unifies aforemen-
tioned theories of microbarom generation, taking into con-
sideration both the finite ocean depth and the source radia-
tion dependence on elevation and azimuth angles. This model
can predict the location and intensity of the source when
coupled with an ocean wave spectrum model. However, for
comparison with infrasonic observations at distant ground-
based stations, it is necessary to consider the influence of the
atmospheric structure on the microbarom propagation and
ducting. This can, for example, be estimated using a semi-
empirical, range-dependent attenuation model in a horizon-
tally homogeneous atmosphere (Le Pichon et al., 2012) or a
wave propagation simulation using 3-D ray tracing (Smets
and Evers, 2014). Details on our suggested vespagram-based
comparison approach to microbaroms modeled by a state-of-
the-art microbarom radiation theory (De Carlo et al., 2020)
are presented in Sect. 2.2.

In array signal processing, velocity spectral analysis
(vespa) is an approach which analyzes recorded signals in
terms of signal power as a function of time (Davies et al.,
1971; Rost and Thomas, 2002; Schweitzer et al., 2012). The
power is evaluated either at a fixed slowness, i.e., a constant
apparent velocity with varying back azimuth — corresponding
to a circle in the slowness space — or at a fixed back azimuth
with varying apparent velocity — corresponding to a line in
slowness space. The vespa power estimate can, therefore, be
visualized as an image, called a vespagram, with time on one
axis and either back azimuth (for a fixed apparent velocity)
or apparent velocity (for a fixed back azimuth) as the other
axis.

Lonzaga (2015) used a phase diagram approach to demon-
strate that infrasound arrivals from stratospheric ducts typi-
cally have apparent velocities between 340 and 380 ms~!. In
the current work, the main focus is on microbaroms. These
low-frequency waves have an apparent velocity of around
350ms~!, as found by Rind et al. (1973). As such, time—
back azimuth vespagrams estimated from infrasound array
data at an apparent velocity of 350ms™! are used in the
current study. Histograms of the apparent velocity statistics
for the current data set are provided in Appendix A, which
also support the use of this apparent velocity when generat-
ing the vespagrams. For a given frequency band, such vespa-
grams can be compared in a straightforward manner to mi-
crobarom soundscapes modeled for a station location, after
applying a smoothing kernel which harmonizes the resolu-
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tion given by the array response function main lobe and the
microbarom model output. Both the vespagram and the mi-
crobarom model provide power estimates as a function of
time and back azimuth. These can be displayed as an image,
and we utilize an image comparison approach, based on the
mean square error, to benchmark the model against vespa-
grams. In this study, 6 consecutive years of infrasound obser-
vations between 2014 and 2019 at a ground-based infrasound
array located in Bardufoss, Norway (69.07° N, 18.61° E), de-
noted as IS37 or I37NO (Fyen et al., 2014), are considered.
An overview of the station configuration, data, and analysis
methods is provided in Sect. 2.1.

The proposed vespagram-based approach is computation-
ally low cost and can monitor microbarom source variabil-
ity over a year (Sect. 3.1), as well as detect changes dur-
ing extreme atmospheric events such as sudden stratospheric
warmings (Sect. 3.2). It might be further refined for appli-
cations such as near-real-time diagnostics of ocean wave and
atmospheric models and for a long-term assessment of model
product uncertainties, particularly when applied to data from
a global network of infrasound stations. A key aspect of
this approach is that benchmarking between model and in-
frasound vespagrams considers all back azimuth directions
rather than just the direction of the dominant microbarom
source, as done in several previous studies (Garcés et al.,
2004; Hupe et al., 2019; De Carlo et al., 2019, 2021; Smirnov
et al., 2021). The microbarom soundscape at a station is typ-
ically a sum of components stemming from a wide spatial
distribution of ocean regions, and recently, den Ouden et al.
(2020) demonstrated that an iterative decomposition of the
array spatial covariance matrix, using the CLEAN algorithm
(Hogbom, 1974), can be exploited to resolve the back az-
imuth and trace velocity of the most coherent wavefront ar-
rivals.

A long-term ambition is to exploit microbarom infrasound
data sets to enhance the representation of stratospheric dy-
namics in atmospheric model products and hence increase
the accuracy of both medium-range weather forecasting and
sub-seasonal climate modeling (Biieler et al., 2020; Dor-
rington et al., 2020; Domeisen et al., 2020a, b). In addition
to prospective numerical weather prediction improvements,
the suggested vespagram-based approach may be applied
in multi-technology studies of atmospheric dynamics, for
example initiatives building on the Atmospheric dynamics
Research InfraStructure in Europe (ARISE) projects (Blanc
et al., 2018, 2019). These aim at harvesting from synergies
between ground-based infrasound observations, radar, and
lidar systems, as well as airglow and satellite observations
to monitor the middle atmosphere (Chunchuzov et al., 2015;
Le Pichon et al., 2015; Hupe et al., 2019; Smets et al., 2019;
Hibbins et al., 2019; Assink et al., 2019; Le Pichon et al.,
2019).

The study is organized as follows. The data and methods
are described in Sect. 2. The main results are presented in
Sect. 3, followed by the discussion in Sect. 4.

https://doi.org/10.5194/angeo-39-515-2021
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Figure 1. (a) The IS37 infrasound array location and geometry. (b) Integrated steered array response for 0.1 Hz wide frequency bands,
assuming a plane wave impinging at 225° back azimuth and 350ms~! apparent velocity (indicated with a dashed circle). Here Sx and Sy

denote the horizontal components of the slowness vector.

2 Materials and methods
2.1 Infrasound data set and signal processing

The infrasound array, denoted as IS37 or I37NO, is located
in Bardufoss, Norway (69.07° N, 18.61° E), and is equipped
with 10 MB3-type (MB2005 prior to 2016) microbarome-
ters over an aperture of 2km (Fig. 1a; Fyen et al., 2014).
This station is part of the International Monitoring Sys-
tem (IMS) which verifies compliance with the Comprehen-
sive Nuclear-Test-Ban Treaty (CTBT) (Dahlman et al., 2009;
Marty, 2019). The station was certified by the CTBT Or-

https://doi.org/10.5194/angeo-39-515-2021

ganization on 19 December 2013 and is operated by NOR-
SAR, Kjeller, Norway (Schweitzer et al., 2021). Besides be-
ing included in the IMS, IS37 is also part of a regional
network of European infrasound stations (Gibbons et al.,
2007, 2015, 2019) that resolves significantly smaller events
than the global IMS network (Le Pichon et al., 2008). In the
framework of the regional network, data from IS37 have been
used for multi-station studies characterizing European infra-
sound sources (e.g., Pilger et al., 2018).

The IS37 station routinely detects microbaroms within
0.1-0.6 Hz originating from the North Atlantic, the Barents

Ann. Geophys., 39, 515-531, 2021
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Sea, and beyond. An analytical expression for a plane wave-
front incident on the IS37 array was used to characterize the
array’s integrated, frequency-dependent response in 0.1 Hz
wide frequency bands from 0.1 to 0.6 Hz. The wavefront
was representative of a microbarom signal from the Atlantic
Ocean, with a back azimuth of 225° and an apparent veloc-
ity of 350ms~!, typical of the stratospheric regime (Gar-
cés et al., 1998; Whitaker and Mutschlecner, 2008; Nippress
etal., 2014; Lonzaga, 2015). The base resolution of the array
was taken to be the 1o beamwidth of the Gaussian fitted to
the array response at a constant velocity of 350 ms~! (dashed
line in Fig. 1b) for each frequency band. The resulting reso-
lution was found to be 35, 23, 16, 13, and 10° for 0.1-0.2,
0.2-0.3, 0.3-0.4, 0.4-0.5, and 0.5-0.6 Hz band, respectively.
It should be noted that this estimate is based on the homo-
geneous medium plane wave time delays between the array
elements only and does not take into account meteorologi-
cal conditions at the station, noise, or other coherence loss
mechanisms that may result in a wider beamwidth.

In array signal processing, the separation of coherent from
incoherent parts of the recorded signal and the separation be-
tween different simultaneous arrivals are important concepts.
When analyzing the wave field in terms of a given horizontal
slowness vector (e.g., described in terms of apparent veloc-
ity and back azimuth), delay-and-sum beamforming (Ingate
et al., 1985) is usually applied in combination with the un-
derlying plane wave model assumption. This method applies
time delays to the array sensor traces to focus on wavefronts
arriving with a specific horizontal apparent velocity and a
specific back azimuth direction, hence amplifying wave field
components with the horizontal slowness of interest, while
suppressing other components. However, the slowness vec-
tor models are not always accurate (Gibbons et al., 2020).
In particular, the actual shape of the wavefront arriving at
infrasound arrays may differ from a theoretical plane wave
due to meteorological conditions and turbulence at the sta-
tion, which make the underlying assumption of a locally ho-
mogeneous effective sound speed invalid. In this case, the
beamforming is less efficient and the reduced array gain re-
sults in lower stack amplitude and signal distortion (Rost and
Thomas, 2002).

To determine an unknown slowness vector component and
to study the spatial structure of the wave field over time, one
can use vespa (velocity spectral analysis) processing. This
not only enhances the signal as the beamforming does but
also allows one to determine either the direction or appar-
ent velocity of the incoming signal. The vespa method es-
timates the power of the signal either for a fixed apparent
velocity with varying back azimuth or for a fixed back az-
imuth with varying apparent velocity. The result of the vespa
processing is usually presented as an image displaying the
power of incoming signal as a function of time and back az-
imuth (or apparent velocity) called a vespagram. Although
the vespa is widely applied in seismological array data stud-
ies (e.g., Davies et al., 1971; Kanasewich et al., 1973; Muir-
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head and Datt, 1976; McFadden et al., 1986), it has not pre-
viously been exploited in peer-reviewed microbarom infra-
sound studies.

The vespa-processing procedure described below is ap-
plied to each analyzed time window and frequency band as
follows:

1. We extract, for each sensor n of an array, the signal
trace x, (¢) for the time window of interest. The analysis
is done for a 1 h moving time window evaluated every
30 min. In general, the time series recorded at sensor n
at the location r,, can be written as follows:

Xy () =yt — 1y - Shor), (D

where y(¢) represents a plane wavefront, and sy, is the
horizontal component of the slowness vector

2. We remove the mean.

3. We apply a Butterworth bandpass filter to recordings.
Calculations are performed for five equally spaced fre-
quency bands that are within the microbarom frequency
range (see Fig. 1b).

4. We compute beam traces or delay-and-sum traces of an
array with N sensors as follows:

1 N
b(t) = 52 3 Xt + 7 - Shor). )
n=1

In this study, classical linear vespa processing (Davies
et al., 1971) is applied, where the noise suppression is
proportional to the square root of N (Rost and Thomas,
2002). A beam is generated at each 1° in back azimuth
for the fixed apparent velocity of 350 ms~!. That allows
us to estimate signals coming from all directions and
from approximately the same height corresponding to
stratospheric altitudes.

5. We calculate the mean squared pressure (power) of
each beam to obtain an estimate of the incoming signal
strength as a function of back azimuth and time.

Steps (1)—(5) are applied to all years of data analyzed. Af-
ter the vespa processing, we apply a quality check based on
the vespagram spectrum properties to exclude noisy data. At
time windows when the vespa processing yields a directional
spectrum with the power almost equal in all directions (the
minimum exceeds 70 % of the maximum), data are ignored
in our further analysis.

2.2 Microbarom source and propagation modeling

In this section, we summarize the approach applied to ob-
tain the directional spectra of microbarom soundscapes as a
function of time.

https://doi.org/10.5194/angeo-39-515-2021
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Ocean wave model. Hasselmann (1963) demonstrated
that the nonlinear interactions between counter-propagating
ocean waves can be presented as follows:

2

H(f)=/E(fw,9)E(fw,9+ﬂ)d9, 3

0

where H(f) is the interaction term spectrum known as the
Hasselmann integral, E(fy,0) is the power spectral den-
sity of the surface elevation, 6 is the direction of the ocean
wave propagation, fy, is the wave frequency, and f is the
acoustic frequency (fy = f/2). Ocean wave models estimate
E(fw,0) and its variations in space and time based on the
surface wind fields. In this study, the WAVEWATCH III®
(The WAVEWATCH III ® Development Group, 2016) ocean
wave model is considered (hereafter WWIII). The model grid
resolution is 0.5° in latitude and longitude and 3 h in time.
Among the WWIII output parameters is the p2I( fy,) that rep-
resents the spectral density of the equivalent surface pressure
that forces microbaroms as follows:

1 2.2
P2U(fw) = P78 H(f), 4

where p is the water density, and g is the gravity accel-
eration. Hence, the Hasselmann integral needed for further
calculations can be obtained from the WWIII model using
Eq. (4). Studies on microseisms (e.g., Hillers et al., 2012)
have demonstrated the limitations of a model that does not
account for coastal reflection. These limitations have been
accordingly raised in the context of microbaroms (Landes
et al., 2014). Therefore, in this study, the parametrization
used to run the WWIII model accounts for fixed reflection
coefficients of 10 % for the continents, 20 % for the islands,
and 40 % for ice sheets (Ardhuin et al., 2011).

Microbarom source model. A microbarom source model is
basically a model transforming an ocean wave model output
into acoustic radiation spectrum in the atmosphere. Here, cal-
culations are based on the model by De Carlo et al. (2020),
taking into consideration both the finite ocean depth and the
source radiation, depending on elevation and azimuth angles.
This microbarom model allows the prediction of the location
and intensity of the microbarom sources when applied to the
Hasselmann integral. The output of this step is an acoustic
spectrum for each cell of the wave model.

Microbarom propagation in the atmosphere. The next step
is to account for the atmospheric influence on the micro-
barom propagation and ducting. For example, 3-D ray tracing
or full-waveform approaches would provide an accurate sim-
ulation of the infrasound propagation; however, these meth-
ods involve a large computational burden (De Carlo et al.,
2021). Instead, the semi-empirical attenuation law by Le Pi-
chon et al. (2012) is used in the current study. The law is
applied to the microbarom source spectra obtained in the
previous step. This law accounts for the distance between
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the source and the station, as well as for the frequency, but
assumes a horizontally homogeneous atmosphere. The at-
mospheric conditions at the station location are taken into
account via Veffrato, Which is the ratio of the effective
sound speed in the propagation direction at 50km altitude
and the effective sound speed in the same direction on the
ground. The atmospheric wind and temperature needed to
determine the Viffrato are derived from the European Cen-
ter for Medium-range Weather Forecasts (ECMWF) High-
Resolution (HRES) forecast model (http://www.ecmwf.int,
last access: 7 June 2021, Integrated Forecasting System —
IFS; cycle 38r2). The atmospheric wind and temperature at
the station location are extracted from a 0.5° x 0.5° model
grid using bilinear interpolation. The temporal resolution of
the ECMWF HRES forecast model is 6 h, and the assumption
of the constant atmospheric wind and temperature over this
time period is made to avoid a possible discrepancy caused
by interpolation in time. The output of this step is an acous-
tic spectra attenuated to reflect what would be seen by the
station.

Summation of sources. To obtain the directional spectrum
at the station, all attenuated spectra from model cells within
1° azimuth band and less than 5000 km away from the station
are summed. The distance limitation comes from the attenu-
ation law definition. Although this attenuation law is widely
used for propagation over very long distances (Smirnov et al.,
2021; Pilger et al., 2019; Hupe et al., 2019; De Carlo et al.,
2019), it was designed for distances up to 3000 km only.
The choice of the maximum distance depends on the loca-
tion of the station and the main sources, as well as on how
realistic spectrum is needed for a specific task. Recently,
De Carlo et al. (2021) provided a multi-station compari-
son between progressive multi-channel correlation (PMCC)-
processed microbarom data and the microbarom model by
De Carlo et al. (2020), which is also used in the current study.
Results for 45 IMS stations in (De Carlo et al., 2021) demon-
strate that integrating microbarom sources at distances up to
5000 km provides realistic spectra. Thus, all sources that are
more than 5000 km away from the IS37 station are excluded
from this study.

After applying these steps, and integrating over the fre-
quency bands, we obtain an estimate of the microbarom
power spectral density as a function of time and back az-
imuth, just as vespagrams. However, vespagrams cannot be
directly compared to the modeled microbarom soundscapes
since the latter do not take into account the frequency-
dependent array resolution. Therefore, we smooth the mod-
eled microbarom soundscapes by convolving with a Gaus-
sian kernel at each time step, taking into account cyclical na-
ture of back azimuth when smoothing near 360°/0°. Kernels
are normalized to the unit area, and their standard deviations
(width) decrease with frequency (see Sect. 2.1).

Ann. Geophys., 39, 515-531, 2021
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2.3 Similarity index

This section introduces an approach to benchmark the mi-
crobarom model against the infrasound data. Both data sets
need to be of the same temporal resolution to assess a simi-
larity at each time step. In the current study, in order to avoid
interpolating the model output in time, the vespa processing
output is sub-sampled to match the 3 h microbarom model
grid. Hereinafter, all results are presented with a temporal
resolution of 3 h.

Figure 2 presents differences in the direction of the maxi-
mum power between the vespagram and either the model or
the smoothed model. Both medians and uncertainty ranges
are estimated based on the back azimuth difference at the
maximum power only. Uncertainty values falling into the 25
to 75 percentile range are an objective assessment of the dis-
crepancy between the model and vespagrams. These values
originate from the wintertime when atmospheric conditions
are favorable for the eastward ducting (Sect. 3.1). In sum-
mer, atmospheric conditions are not so stable (due to, e.g.,
increased cyclonic activity), and there are several factors that
can cause model-vespagram discrepancies (Sect. 3.1) ac-
companied by an increase in the uncertainty range. Note that,
after the smoothing (Sect. 2.2), there is a better agreement be-
tween the model and the vespagram, leading to a decrease in
the median and the uncertainty ranges (Fig. 2).

A similarity index (SI), inspired by comparison ap-
proaches in image processing, is introduced as follows:

SI(t) = 1 — MSE()

1
=1- FZ[Pmodel(t,Q) - Pvespa(tve)]z’ ©)
7%

where MSE is the mean squared error (or difference) between
the normalized smoothed model output, Ppyogel (£, 0), and the
normalized vespagram, Pyespa(t, ), calculated at each time
step, where 6 is back azimuth, and ¢ is time. This SI metric
is, hence, insensitive to the total microbarom power but in-
stead provides information on how accurate the model repro-
duces the directional pressure spectrum in the recorded data.
A SI equal to one indicates a full match between model and
infrasound vespagram in terms of the back azimuthal power
distribution.

3 Results
3.1 Comparison for full seasons

This section presents a multi-year model-vespagram com-
parison, focusing on microbarom characteristics over differ-
ent seasons. We start with a detailed look at 2016 results,
followed by an analysis of all 6 years.

Figures 3 and 4 present benchmarking microbarom model
and vespa-processing images (vespagrams) for two fre-
quency bands, namely 0.1-0.2 and 0.5-0.6 Hz, for 2016.
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These figures contain eight panels each, which are discussed
in more detail below. Figures 3a and 4a show the maximum
amplitude per time step over 1 year, i.e., the dominant signals
in the azimuthal spectra. Enhanced ocean source activity dur-
ing winter is accompanied by the eastward stratospheric wind
favorable for ducting infrasound over long distances (Le Pi-
chon et al., 2006). This results in a maximum of microbarom
pressure amplitude both in model and vespagrams, regard-
less of the frequency band. The microbarom radiation model
by De Carlo et al. (2020), combined with the semi-empirical
wave attenuation law (Le Pichon et al., 2012), generally re-
produces infrasound amplitudes accurately. An exception is
between days 200 and 210 in 2016 (Fig. 3a), when the mod-
eled amplitude is much lower than the amplitude obtained
via the vespa processing. This discrepancy may indicate an
overestimation of the attenuation caused by errors in the at-
mospheric model wind or due to the range-independent sim-
plification.

Figures 3b—d and 4b—d display microbarom soundscapes
as predicted by the model, smoothed model and vespa pro-
cessed recordings, respectively. Here the soundscapes are
plotted in terms of the base 10 logarithm of the amplitude,
in order to allow the showing of the weaker summertime mi-
crobarom amplitudes in the same display as the stronger win-
tertime signals. Note that the vespagrams are noisier during
summer (gray fields in Figs. 3g and 4g), especially for the
0.1-0.2 Hz band.

Due to the strong seasonal variability in the microbarom
amplitude, it is difficult to compare the direction of winter to
summer detections on an absolute amplitude scale. Thus, we
normalize Figs. 3b—d and 4b—d by the maximum amplitude at
each time step (see Figs. 3e—g and 4e—g; right) and estimate
the directional distribution of the dominant signal in 10° bins
(see Figs. 3e—g and 4e—g; left). For the frequency band of
0.1-0.2 Hz, the North Atlantic is the dominant source direc-
tion throughout the year (the main peak in Fig. 3e—g; left).
However, the maximum power is sometimes also observed
from northeasterly and southeasterly directions in summer.
To generate infrasound at such low frequencies, the source
needs to be of a substantial spatial extent, and therefore,
there is a limited number of possible oceanic sources. After
comparison with the model maps, we interpret these arrivals
as microbaroms generated in the Pacific and Indian oceans,
respectively. The stratospheric summertime westward wind
could guide the infrasound waves towards the IS37 station.
Unlike what is seen in the vespa-processed recordings, the
model does not predict microbaroms originating from the In-
dian Ocean direction. A plausible reason for this is that the
distance between the station and the Indian Ocean source
region is ~ 7000-8000 km, which is much greater than the
maximum distance of 5000 km included in the modeling (see
Sect. 2.2). Looking at higher frequencies, there is a pro-
nounced change in the dominant direction of the source from
the Atlantic in winter to the Barents Sea and the Greenland
Sea in summer (peaks in Fig. 4e—g; left). This is associated
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Figure 2. Difference in the direction of the maximum power between (i) model and vespagram (indicated with a frequency band name on the
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blue boxes indicate the 25 to 75 percentile range, and whiskers correspond to + 3 standard deviations.

with the change in wind direction in the stratosphere from
eastward to westward. An analysis of a 6-year data set in
terms of the dominant source direction indicates three pre-
vailing microbarom source regions associated with the North
Atlantic, the Greenland Sea, and the Barents Sea. These ap-
pear at the vespagram (model) back azimuths of 266 £ 14°
(265 +£16°), 339 £ 14° (345 £ 8°) and 26 + 6° (34 £ 7°).
Figures 3h and 4h present values of SI obtained over a
year. In winter, SI for lower frequencies is stable and has val-
ues close to one, with exceptions corresponding to increased
noise level in vespagrams or to sudden stratospheric warm-
ing (SSW) events that are discussed in Sect. 3.2. Relatively
low SI for higher frequencies can be explained either by spu-
rious apparent sources corresponding to array response func-
tion side lobes (Fig. 1b) or by the presence of local sources
in the vespagram that are missed or not well reproduced in
the model. In summer, SI values are quite variable and unsta-
ble but never fall below 0.5. Such behavior is typical regard-
less of the year or frequency band (see Fig. 5 for a multi-
year comparison). One possible explanation is the chang-
ing weather conditions present at the station throughout the
year. For example, Orsolini and Sorteberg (2009) have shown
an enhancement in the number and intensity of summer cy-
clones in the Arctic and northern Eurasia. This would result
in additional wind and rain noise in the infrasound recordings
that would especially be enhanced at the lower frequencies.
Another possible contribution would be the poor resolution
of the array at low frequencies that can mix stratospheric sig-

https://doi.org/10.5194/angeo-39-515-2021

nals with those from higher altitudes. These sometimes dom-
inate at IS37 in summer (Nidsholm et al., 2020) but are not
included in the model. The relative stability of the model’s
results in Fig. 4e and f relative to the vespagram would in-
dicate that there are additional sources of variability, either
atmospheric, source region, or propagation path, that are not
well characterized in the model.

As indicated by high SI values, especially in winter, the
infrasound data processed in the framework of the vespa ap-
proach are in a good agreement with modeled microbarom
soundscapes in both time (seasonal variations) and space (di-
rectional distribution). The similarity estimation proposed
allows the detection of inconsistencies between the micro-
barom model and the vespa processing, which might be used
for identifying biases in atmospheric models. This is espe-
cially promising for low frequencies where side lobes of the
array response do not appreciably affect the analysis.

3.2 Examination of major sudden stratospheric
warmings

Although this is not the main objective of the current study, in
this section we examine the ability of the vespagrams to de-
tect extreme atmospheric events, such as SSWs, and compare
the model and the vespa processing for six selected events.
SSWs usually occur in wintertime and are, in general, as-
sociated with a sudden and short increase in stratospheric
temperature and mesospheric cooling at high and middle lati-
tudes (Shepherd et al., 2014; Butler et al., 2015; Limpasuvan

Ann. Geophys., 39, 515-531, 2021
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Figure 3. Benchmarking microbarom model and infrasound vespagram for 0.1-0.2 Hz in 2016 for the IS37 station. (a) Amplitude of the
dominant signal (blue — vespa processing; red — model). (b) The base 10 logarithm of the model amplitude. (¢) The base 10 logarithm of the
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where infrasound data are disregarded due to noise and an indistinct directional spectrum. Panels (b—g) are visualized using the Turbo color

map (Mikhailov, 2019).

et al., 2016; Ziilicke et al., 2018). SSWs are often classified
into minor and major warmings, depending on whether there
was a weakening or reversal of the zonal wind (Butler et al.,
2015). During the period of our consideration, three major
and three minor SSWs occurred. Major SSWs took place
with onsets on 5-6 March 2016 (Manney and Lawrence,
2016), 11 February 2018 (Rao et al., 2018; Lii et al., 2020),
and 1 January 2019 (Rao et al., 2019, 2020), while the mi-
nor events occurred with onsets on 4 January 2015 (Manney
et al., 2015; Mitnik et al., 2018) and 1 and 26 February 2017
(Eswaraiah et al., 2020). Note that there can be an error of

Ann. Geophys., 39, 515-531, 2021

up to several days in determining the SSW onset day, since
there is no single way to define the onset, and different au-
thors use different definitions. A prime example is the first
SSW in 2017. According to the definition of the World Mete-
orological Organization, this event is classified as minor, but
in a number of studies, it is referred to as major (Xiong et al.,
2018; Conte et al., 2019). Vertical dashed lines in Figs. 5-6
correspond to the onset days listed above when SSW criteria
were met.

The infrasound signature reported by Donn and Rind
(1971) and Evers and Siegmund (2009), which showed a sig-
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Figure 4. Same as Fig. 3 but for 0.5-0.6 Hz.

nificant change in direction of the infrasound arrival due to
a change in favorable stratospheric waveguide, can be seen
in Fig. 6 for all SSWs under consideration and in Figs. 3e—g
and 4e—g for the 2016 SSW. The change in direction from
the North Atlantic to the Barents Sea is clearly pronounced
in both model and vespagrams around SSWs onset days. Fig-
ure 3f and g demonstrate that the signature appears late in the
model data, and its duration is much shorter than in the ves-
pagram, analogous to the study by Smets et al. (2016). For
higher frequencies (Fig. 4f and g), the duration of a change
from an eastward to a westward pattern is longer and con-
tinues until late March or early April, which corresponds to
reanalysis data (Manney and Lawrence, 2016).

Another feature revealed is a significant decrease in simi-
larity index between the model and vespagrams during SSWs
(Fig. 5), which is characteristic for all events under consider-
ation. The smallest discrepancies in the direction of the dom-
inant wavefront between the model and infrasound data dur-
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ing SSWs reach about 5-7°, but the largest reach as much as
90-100° (Fig. 6). This may be caused by the following fac-
tors. In most cases, the back azimuth change around SSWs
onsets appears earlier in the vespagrams than in the model,
with the difference of 3 to 24 h. Note that this also depends
on the frequency band. Similar results were previously ob-
tained by Smets and Evers (2014) and can be explained by
the presence of an error in determining a SSW onset day
from (re-)analysis data because of a scarcity of observations
at stratospheric altitudes (Charlton-Perez et al., 2013) or by
inadequate stratospheric analysis and forecast during SSWs,
as addressed by Diamantakis (2014) and Smets et al. (2016).
Sometimes the SSW signature does not appear in the vespa-
gram while appearing in the model (see Fig. 6 around SSW
2018 onset day, for example). This can arise when employ-
ing a horizontally homogeneous atmosphere and overly con-
straining the model with the ECMWF wind and tempera-
ture at 5S0km altitude. Such an approach does not allow a

Ann. Geophys., 39, 515-531, 2021
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Figure 5. Multi-year comparison between vespagrams and smoothed modeled microbarom soundscapes at the IS37 station. The similarity
index is color-coded, depending on the frequency band, as follows: 0.1-0.2 Hz — red; 0.2-0.3 Hz — blue; 0.3-0.4 Hz — gray; 0.4-0.5Hz —
green; 0.5-0.6 Hz — orange. Data are presented as a discrete set with a time step of 3d (day 1 — 00:00 UTC, day 4 — 00:00 UTC, etc.). Black
dashed lines present SSW onsets. Medians over frequency bands in the last panel are color-coded, depending on the year, as follows: 2014 —
red; 2015 — orange; 2016 — black; 2017 — green; 2018 — blue; 2019 — magenta.

full, altitude-dependent description of infrasonic waves in
the atmosphere and causes discrepancies between model and
vespagrams. Considering long propagation path for micro-
baroms, net wind effect along the propagation path can be
equal to zero in the vespagram, in contrast to the model,
which estimates the probability of the signal arrival at the
final point of the path. It has been demonstrated by Evers
and Siegmund (2009) and Smets and Evers (2014) that the
ECMWF wind direction does not always characterize the ac-
tual infrasound path, resulting in the abovementioned model—
vespagram discrepancies.

Despite slight differences in the dominant direction of the
wavefront arrival during SSW events, both model and vespa-
grams reproduce changes in the infrasound pattern correctly
in time. Moreover, since vespagrams can detect changes in
the stratospheric dynamics during extreme events, there is a
potential for using it for near-real-time stratospheric diagnos-
tics.

Ann. Geophys., 39, 515-531, 2021

4 Discussion and conclusions

In this study, we compare observed and predicted micro-
baroms soundscapes using a vespagram-based approach.
Analysis is performed based on the calculation of micro-
baroms power as a function of time and back azimuth at
a constant apparent velocity of 350ms~!. Note, however,
that the vespagram family of time-dependent microbarom
data visualizations can also be constructed using other array-
processing techniques that estimate power as a function of
the slowness of the wavefront, e.g., using robust estimators as
explored by Bishop et al. (2020) or adaptive high-resolution
approaches like Capon’s method (Capon, 1969). An advan-
tage of the vespagram approach is that microbarom radia-
tion and propagation models can be benchmarked against
recorded infrasound data for all directions simultaneously, as
opposed to methods where only the back azimuth direction
of maximum power is considered (e.g., Hupe et al., 2019;

https://doi.org/10.5194/angeo-39-515-2021
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Smirnov et al., 2021). Since the vespa processing is compu-
tationally low cost and able to track variations in microbarom
parameters over extended periods spanning 1 year or several
years, it can be utilized for a near-real-time assessment of
atmospheric model products and for developing infrasound-
based stratospheric diagnostics. It can also be used when as-
sessing changes in infrasound signatures over shorter time
windows, e.g., during extreme atmospheric events.
Limitations in this study are predominantly related to mi-
crobarom propagation modeling. In addition to the scarcity
of observations at the stratospheric altitudes (Charlton-Perez
et al., 2013), which affect the accuracy of the directional dis-
tribution of predicted microbarom soundscapes, the horizon-
tally homogeneous atmospheric approximation used in the
study creates substantial limitations. In fact, the atmosphere
is not homogeneous. It has horizontal and vertical inhomo-
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geneities in the atmospheric wind and temperature fields
caused, for example, by gravity waves, tides, and SSWs.
These atmospheric disturbances significantly affect the long-
distance infrasound propagation and, as a result, the direc-
tional spectra detected at the reception point. Moreover, the
modeling would benefit from applying a full-waveform sim-
ulation code for the propagation of the radiated microbaroms
to the station (e.g., Assink et al., 2014; Kim and Rodgers,
2017; Brissaud et al., 2017; Petersson and Sjogreen, 2018;
Sabatini et al., 2019). This would provide a more refined
modeling of the atmospheric ducting compared to the semi-
empirical approach (Le Pichon et al., 2012) applied in the
current study. An alternative, which is less computationally
expensive, is (3-D) ray tracing, which can account for both
range-dependent atmospheric models and cross-wind effects
(e.g., Smets and Evers, 2014; Smets et al., 2016). However,

Ann. Geophys., 39, 515-531, 2021
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the inherent high-frequency approximation of the ray theory
can limit the modeling of diffraction and scattering effects
(Chunchuzov et al., 2015) that can be important for the low-
frequency microbaroms. Also note that more advanced sim-
ulations of infrasound propagation would require wind and
temperature profiles with a high vertical resolution (or an ap-
propriate stochastic parametrization) to account for the ef-
fect of small-scale atmospheric disturbances on microbarom
scattering. Resolving small-scale structures in atmospheric
models, reanalysis, and forecasting systems remains a topic
of active research. Several research efforts were made to de-
velop methods exploiting infrasound observations to improve
the representation of wind and temperature in atmospheric
model products (e.g., Chunchuzov et al., 2015; Assink et al.,
2019; Amezcua et al., 2020; Vera Rodriguez et al., 2020).

A more elaborate microbarom propagation model could
also allow for an estimate of the full microbarom wave field
impinging an infrasound station and, hence, provide an esti-
mate of its power within the full horizontal slowness space of
plane wavefront directions (or a selected relevant region). In
this way, we could benchmark modeled and recorded micro-
barom fields at an infrasound array for each sliding time win-
dow in the full horizontal slowness domain, without restrict-
ing the analysis to the region around a fixed apparent velocity
as carried out in the current study. Notably, such “slowness
plots” of modeled and recorded microbarom power are also
(time-varying) images, which can be assessed and compared
using the versatile ecosystem of image-processing and image
comparison algorithms.

Future developments can include a compilation of long-
term, time-dependent statistics of the similarities between
model and infrasound recordings for multiple stations on
global and regional scales. This would allow the definition
of anomaly flag criteria, which would indicate unexpected
inconsistencies between model and observations due to, for
example, biases in atmospheric model products. Moreover,
we suggest applying the approach presented here to global
assessment and comparisons of ocean wave action model
products, as well as to validate and further refine microbarom
radiation estimation algorithms.

Ann. Geophys., 39, 515-531, 2021
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Appendix A: Apparent velocity statistics

Figure A1 displays histograms of the apparent velocity detec-
tion statistics calculated using progressive multi-channel cor-
relation (PMCC) processing (Cansi, 1995) for all frequency
bands and years. These support the choice of 350ms™! as
apparent velocity in the vespagram calculations for the anal-
ysis of microbaroms ducted through the stratosphere.
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