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1.  Introduction
Mesoscale eddies are a key component of the global ocean circulation and the Earth's climate as a whole due 
to their influence on mean currents, heat and salt transport, atmosphere-ocean interactions, and biological 
productivity (Ferrari & Wunsch, 2009; Klein et al., 2019). The strong interactions between mesoscale eddies 
constitutes geostrophic turbulence (Charney, 1971), characteristics of which significantly vary depending 
on large-scale ocean currents and the associated local instabilities as reviewed in (Tulloch et al., 2011). Ed-
dies of O (100 km) in size are in near geostrophic balance and hence their surface streamfunction is directly 
proportional to their sea surface height (SSH) signature. In fact, mesoscale eddies explain most of the SSH 
variance in regions with strong baroclinic currents, for example, the Gulf Stream in the North Atlantic, the 
Kuroshio Extension in the North Pacific, and the Antarctic Circumpolar Current (Chelton et al.,  2011). 
Thus, satellite altimeters continue providing crucial SSH observations for monitoring the spatiotemporal 

Abstract  Satellite altimeters provide global observations of sea surface height (SSH) and present a 
unique data set for advancing our theoretical understanding of upper-ocean dynamics and monitoring its 
variability. Considering that mesoscale SSH patterns can evolve on timescales comparable to or shorter 
than satellite return periods, it is challenging to accurately reconstruct the continuous SSH evolution as 
currently available altimetry observations are still spatially and temporally sparse. Here we explore the 
possibility of SSH interpolation via Deep Learning by using synthetic observations from an idealized 
quasigeostrophic model of baroclinic ocean turbulence. We demonstrate that Convolutional Neural 
Networks with Residual Learning are superior in SSH reconstruction to linear and recently developed 
dynamical interpolation techniques. Also, the deep neural networks can provide a skillful state estimate 
of unobserved deep ocean currents at mesoscales. These conspicuous results suggest that SSH patterns of 
eddies might contain substantial information about the underlying deep ocean currents that are necessary 
for SSH prediction. Our training data are focused on highly idealized physics and diversification of 
processes needs to be considered to more accurately represent the real ocean. In addition, methodological 
improvements such as transfer learning and implementation of dynamically aware loss functions might 
be necessary to consider before its ultimate use with real satellite observations. Nonetheless, by providing 
a proof of concept based on synthetic data, our results point to deep learning as a viable alternative to 
existing interpolation and, more generally, state estimation methods for satellite observations of eddying 
currents.

Plain Language Summary  Satellite observations of sea surface height (SSH) are widely 
used to derive surface ocean currents on a global scale. However, due to gaps in SSH observations, it 
remains challenging to retrieve the dynamics of rapidly evolving upper-ocean currents. To overcome 
this limitation, we propose a Deep Learning framework that is based on pattern recognition extracted 
from SSH observations. Using synthetic data generated from a simplified model of ocean turbulence, 
we demonstrate that deep learning can accurately estimate both surface and subsurface ocean currents, 
significantly outperforming the most commonly used techniques. By providing a proof of concept, 
our study highlights the strong potential of deep learning for estimating ocean currents from satellite 
observations.
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evolution of the mesoscale eddy field (Chelton et al., 2011; Fu et al., 2010), although mapping the along-track 
altimetry observations leads to a relatively coarse resolution of gridded SSH products (Ballarotta et al., 2019; 
Chelton & Schlax, 2003). Hence, understanding and monitoring quantities like the oceanic kinetic energy 
spectrum and the associated spectral energy fluxes (Aluie et al., 2018; Scott & Arbic, 2007), understanding 
tracer dispersion (Abernathey & Marshall, 2013) or inferring subsurface flows (Klein et al., 2009) remain 
challenging because these quantities depend on higher-order SSH derivatives that are resolution-sensitive.

To increase the density of SSH observations, several altimeters have been put in orbit but their 10–20 days 
repeat orbits and relatively coarse along-track resolutions allow to view the ocean dynamics only down to 
relatively large mesoscale eddies of O (100) km wavelengths (Ballarotta et al., 2019; Chelton & Schlax, 2003; 
Wunsch, 2010). Thus, the SSH interpolation can be especially challenging in regions with energetic baro-
clinic turbulence where the evolution of small-scale SSH anomalies can be fast compared to the satellite 
return periods. The upcoming Surface Water Ocean Topography (SWOT) altimeter mission promises to 
observe ocean mesoscale eddies and submesoscale fronts (≤50 km) at unprecedented spatial resolutions, 
potentially resolving 15–30 km wavelengths (Fu & Ubelmann, 2014; Morrow et al., 2019). However, with 
its complete repeat cycle of 21 days, the temporal resolution of the altimeter is insufficient to continuously 
capture the evolution of submesoscale eddies. Thus, the mismatch between the high spatial resolution and 
the moderate temporal resolution presents a challenge for reconstructing time-continuous maps of SSH.

The existing gridded SSH products, for example, AVISO (Ducet et al., 2000), are spatially and temporally 
interpolated from along-track data using objective mapping and hence their accuracy and effective reso-
lution are constrained by the density of observations and deficiencies of the interpolation technique. The 
temporal SSH interpolation could be conceptually viewed as reconstructing the phase-space trajectory giv-
en only partial observations of the two endpoints separated in time. A major complication arises due to 
the chaotic nature of ocean turbulence for which there may be multiple plausible phase-space trajectories 
passing within some close vicinity of any given endpoints. Thus, the task of temporal interpolation, that is, 
finding the true (or most likely) trajectory, becomes increasingly more difficult with an increasing time sep-
aration between observations. Most commonly used interpolation techniques, such as objective mapping 
or polynomial interpolation, do not attempt to make use of any potential dynamical constraints present in 
the data and perform well only for autocorrelated data while failing for sparse data. It is thus crucial to de-
velop frameworks to efficiently extract information about the oceanic eddy dynamics from the spatially and 
temporally sparse SSH observations. Note, throughout the study, we use the term information qualitatively 
and do not attempt to quantify it using Shannon's information theory. Below we discuss how the nature of 
baroclinic ocean turbulence provides dynamical limitations for SSH interpolation and why deep learning 
might be a viable alternative to other interpolation techniques.

1.1.  SSH Interpolation and the Associated Dynamical Limitations

Spatiotemporal interpolation or gridding of SSH data is inherently linked to ocean eddy physics as the suc-
cess of a given technique ultimately should rely on the pertinence of its assumed model (either dynamical 
or statistical) that captures the essence of mesoscale eddy propagation in space and time. To illustrate this 
point, imagine a coherent eddy moving in a turbulent field and several altimeter tracks passing through it at 
different times and directions. If there is an accurate model of eddy propagation, it would allow pinpointing 
the observations taken over this specific eddy and combining this data to better constrain the two-dimen-
sional eddy shape. Thus, to extract the relevant information from various altimetry tracks to the fullest 
extent, it is necessary to have an accurate model of eddy evolution. However, due to the stratified nature 
of geostrophic ocean turbulence, the unobserved deep ocean flows can affect the surface dynamics, and 
hence the SSH observations on their own may not be self-sufficient to infer its evolution. Given the lack of 
subsurface data at eddy scales, constructing a closed system of equations for SSH evolution is challenging.

Another complication for SSH interpolation arises due to the chaotic nature of geostrophic turbulence that 
has an increasingly higher sensitivity to initial conditions as time progresses. Upon the dynamical evolu-
tion, any ordered set of state-space trajectories will become increasingly stretched and filamented over time, 
eventually equidistributing its volume over the entire state space, that is, undergoing measure-theoretic 
and topological mixing. Thus, with increasing time separation between any two observations of a turbulent 
eddy field, the relation between them becomes increasingly more convoluted. For sufficiently large time 
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separations, the two sequential observations would become effectively independent from each other and 
hence interpolating between them would not be plausible. Combined with the fact that satellites only pro-
vide approximate and partial observations of the ocean, the problem of temporal SSH interpolation can be 
underconstrained, that is, it might not have unique solutions as not enough information is given.

Existing methods for spatiotemporal SSH interpolation can be broadly split into two distinct classes: meth-
ods that rely on a postulated dynamical model of SSH evolution and purely data-driven methods. Both 
methods have their advantages and disadvantages. To avoid prescribing a dynamical model, statistical mod-
els like objective interpolation (Davis, 1985; Ducet et al., 2000; Le Traon et al., 1998) rely on data only. Their 
premise is to incorporate spatiotemporal correlations and measurement error into a statistical model and 
provide the most likely estimate of the true continuous field under consideration. However, this method 
does not rely on any dynamical model of the eddy propagation and hence can lead to an unphysical behav-
ior of the interpolated SSH field. Methods involving dynamical ocean models are typically based on data as-
similation, a procedure that minimizes the difference between the observed and modeled fields by adjusting 
unknown variables like boundary and initial conditions or external forcing (see e.g., reanalysis product by 
Carton & Giese, 2008). While resulting in SSH fields that are dynamically constrained, this method suffers 
from a drawback that it requires additional observations to constrain other essential model variables like the 
subsurface flow and/or the density field. Also, data assimilation for complex ocean models at eddy-resolving 
scales is often underdetermined and is computationally demanding.

A recent study by (Ubelmann et al., 2015) demonstrated that representing SSH propagation with a single 
equivalent barotropic mode (that mimics the first baroclinic mode) in a quasigeostrophic (QG) model re-
sults in significant improvements in the spatiotemporal interpolation of sparse SSH observations. In par-
ticular, Ubelmann et al. (2015) considered a fundamental problem of reconstructing the SSH distribution 
that occurred in between two observed SSH fields separated by about 20 days, a characteristic timescale 
required by a set of altimeters to reconstruct a spatial SSH field. They found that integrating the earli-
er SSH observation forward in time (following the assumed dynamics of an equivalent barotropic mode) 
and averaging it with the later observed SSH anomalies that were integrated backward in time resulted in 
an improvement compared to conventional linear interpolation methods. In follow-up work, Ubelmann 
et al. (2016) generalized this temporal interpolation method to the spatiotemporal interpolation of along-
track SSH observations by essentially performing data assimilation on the one-layer QG model. The advan-
tage of the dynamical interpolation method is that it relies on the advection of potential vorticity—a non-
linear process that is inherently present in ocean dynamics and cannot be represented by linear or objective 
interpolation techniques.

A drawback of the dynamical interpolation is that it assumes that SSH evolves independently of deep ocean 
flows, considering the so-called equivalent barotropic mode dynamics (Berloff & Meacham, 1997). Howev-
er, in many energetic regions of the ocean, for example, in Gulf Stream, Kuroshio or Antarctic Circumpolar 
Current, the currents are baroclinically unstable and hence are necessarily composed of at least two dynam-
ically interacting vertical modes, the barotropic and baroclinic modes (see e.g., Chapter 6 in Vallis, 2017). 
To illustrate this point, consider the conservation of a quasigeostrophic potential vorticity q1 in the up-
per-ocean layer as a model of SSH evolution at mesoscales:
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ψ1 and ψ2 are the surface and deep ocean stream functions, ψb.t. is the barotropic streamfunction (depth-av-
eraged transport), Rd is the Rossby baroclinic deformation radius, f0 and β are the Coriolis and beta-plane 
parameters, y is the meridional coordinate, H1 and H2 are the ocean layer depths, g′ is the reduced gravity, 
and D/Dt is the material derivative accounting for advection by the surface flow (see Section 2). Note that 
the surface streamfunction is directly proportional to SSH: ψ1 = (g/f0)SSH, where g is the acceleration due to 
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gravity. On relatively short timescales, sources and dissipation of potential vorticity could be neglected and 
its approximate conservation provides a basic description of the eddy evolution. The terms in the Equation 1 
above have been grouped into those that only depend on the partially observed ψ1 (or equivalently SSH) and 
terms that depend on the unobserved subsurface flow ψ2 (or on the barotropic flow ψb.t.). By considering 
only the equivalent barotropic mode dynamics and taking ψ1 to be equal to the baroclinic mode, the dynam-
ical interpolation method as described in (Ubelmann et al., 2015, 2016) discards the term in the PV-conser-
vation equation that depends on the unobserved barotropic streamfunction, resulting in

         
2 2

1 1 0.d
D R y
Dt

� (3)

Since the discarded term is the only term that depends on the unknown streamfunction ψ2, it is possible to 
integrate the approximate PV-conservation equation forward and backward in time given only ψ1 observa-
tions, as was done in (Ubelmann et al., 2015). Even though in many ocean regions both deep and surface 
geostrophic currents are dynamically active, reconstructing SSH using the dynamical interpolation tech-
nique proved to be superior to linear interpolation methods (Ubelmann et al., 2015) because it relies, at least 
approximately, on the fundamental PV-conservation constraint. Nonetheless, the dynamical interpolation 
method can lead to significant errors (see Section 3), implying that the omitted term, while being relative-
ly small, can substantially impact SSH evolution on timescales comparable to return periods of altimetry 
satellites.

1.2.  The Rationale for a Deep Learning Approach.

A clear way of improving the dynamical interpolation algorithm would be to take into account the contri-
bution of the barotropic mode to SSH evolution. However, comprehensive measurements of deep ocean 
currents at eddy scales are missing, posing a significant challenge of inferring them from only SSH observa-
tions. Without taking into consideration the physical processes that have led to the generation of any given 
SSH snapshot, there is a wide range of plausible ways in which ψ1 could be decomposed into baroclinic and 
barotropic modes, each corresponding to the distinct configuration of PV anomalies in the deep and sur-
face layers. However, considering that PV anomalies are specifically due to baroclinic instabilities obeying 
specific conservation laws (Equation 1), the corresponding barotropic and baroclinic modes are inherently 
entangled, providing at least partial constraints on how any specific SSH pattern could be partitioned into 
modes.

Since the QG model exhibits a highly nonlinear and chaotic behavior, an analytical approach to disentan-
gle the modes has not been found but the evidence that data-driven approach might be relevant has been 
presented in the literature. In particular, the surface and subsurface flows from mooring observations are 
significantly correlated such that a single Empirical Orthogonal Function can explain a significant amount 
of variance of the overall vertical velocity profile (de La Lama et al., 2016; Wunsch, 1997). Furthermore, 
machine learning techniques such as self-organizing maps (Chapman & Charantonis,  2017), as well as 
convolutional neural networks (CNNs) (Bolton & Zanna, 2019), have been successfully used to estimate 
the subsurface flows from SSH data. However, the unknown term       /bt t btD Dt 1u  in Equa-
tion 1 can only provide a substantial contribution to the PV budget if ψbt has a substantial component that 
is decorrelated from ψ1 because u1⋅∇ψ1≡0, and ∂tψbt ≪ ∂tψ1 for surface-amplified flows. Thus the key for 
a more accurate SSH interpolation lies in estimating the component of ψ2 that is decorrelated from ψ1—a 
problem that is tightly linked to estimating eddy heat fluxes in baroclinically unstable flows. Using residual 
neural networks, (George et al., 2021) demonstrated that ψ1 indeed contains substantial information about 
the decorrelated part of the subsurface streamfunction ψ2, allowing to estimate about 60% of the variance in 
eddy heat fluxes only from SSH snapshots. Given that machine learning methods can utilize SSH patterns 
to estimate the component of ψbt that is uncorrelated with ψ1 for estimation of the eddy heat fluxes, it is 
plausible that they could be used for SSH interpolation as well.

While ocean turbulence is chaotic and appears to be random and unpredictable, it does not prohibit charac-
teristics that are particularly beneficial for deep learning: the emergence of underlying repeating patterns, 
self-similarities, and self-organization. We thus hypothesize that deep learning techniques could outper-
form conventional interpolation methods including linear and dynamical interpolation. In this manuscript, 
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we use synthetic model observations related to the QG turbulence in the Gulf Stream, typically forced by 
the baroclinic instability of a westerly sheared flow (Tulloch et al., 2011). These model observations only 
involve mesoscale eddies and no submesoscales (resulting for example from mixed-layer instabilities) and 
do not include other processes, such as Ekman pumping or incoherent internal tides, known to impact SSH. 
These model observations are used to present a first proof of concept for using deep learning to shortcut 
the formal process of data assimilation and reconstruct not only the interpolated SSH field but also the 
corresponding unobserved deep ocean currents, thus providing a complete state estimate of the baroclinic 
ocean turbulence.

The manuscript is organized in the following way. In Section 2, we present a range of neural network (NN) 
architectures, outline a set of training experiments, and describe the synthetic model of ocean turbulence 
that we used to evaluate the efficacy of deep learning in SSH interpolation and state estimation of both 
surface and deep ocean streamfunctions. In Section 3, we present examples of SSH estimates using deep 
NNs and compare their skills to linear and dynamical interpolation techniques. In Section 4, we discuss the 
broader implications of our results, outline the deficiencies and advantages of our deep learning method-
ology, and propose possible improvements to generalize our method for its ultimate use with real satellite 
observations.

2.  Methods
We implement a range of deep NN architectures to address a basic question of interpolating SSH fields in 
baroclinic ocean turbulence. To exclude potential limitations of real-world data, our study is entirely based 
upon synthetic data that we generate using the QG model of baroclinic ocean turbulence. We find the QG 
model to be optimal for our goals as it is pertinent to many energetic regions in the ocean while being rel-
atively simple such that a large volume of data can be generated for training and testing; furthermore, the 
model allows us to directly benchmark deep learning against the dynamical interpolation technique that 
also utilizes QG dynamics. Below we describe our NN architectures, the QG model used for the generation 
of training and testing data sets, and the details of the dynamical interpolation that we implemented for 
direct skill comparisons with deep learning and linear interpolation.

2.1.  Deep Learning Framework: Residual Convolutional Neural Networks

Artificial NNs are based on the idea of approximating the “output” by taking the “input” variable and 
performing a large number of matrix additions and multiplications, applying nonlinearity functions, and 
either condensing or expanding the variable dimension as it passes from layer to layer. The resulting net-
work contains a large number of free parameters that are later adjusted to optimize a given loss function, 
commonly taken as a measure of difference between the prediction and the truth. Because we are trying 
to extract information from the eddy patterns expressed in SSH fields, the choice of CNNs is rationalized. 
In passing the data from layer to layer, CNNs use a set of convolutional filters (kernel matrices with pre-
scribed dimensions) to produce increasingly more abstract levels of data representation that are passed on 
to the next layer. Here we implement the ResNet architecture—a CNN with Residual Learning blocks (He 
et al., 2016). The Residual Learning is a process by which the data are not only transferred sequentially from 
one layer to another but is also transferred by skipping several layers via the so-called skip connections (blue 
arrows in Figure 1). The presence of skip connections can result in better performances for a wide range of 
computer vision problems (Targ et al., 2016).

A brief description of the ResNet architecture as shown schematically in Figure 1 follows. The input con-
sists of two SSH snapshots represented by a (32,32,2) matrix. The very first convolutional layer takes the 
input and applies a set of 32 convolutional filters of size (5,5) with a stride of (1,1), followed by the batch 
normalization, the nonlinearity function taken to be the Leaky Rectified Linear Unit (Leaky ReLU), and the 
maximum 2D pooling of size (2,2) with a stride of (2,2). Next, a series of residual learning blocks follow, 
each consisting of two convolutional layers that take the input with M channels and apply N filters, each 
followed by batch normalization and Leaky ReLu, and at the very end of the residual block, its initial input 
matrix is added to its output (see Figure 1). The architecture has a total of 16 residual blocks containing 52 
convolutional layers. The first series of residual blocks consist of three blocks that transform the input from 
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M = 32 to M = 64 channels while reducing the matrix rows and columns by a factor of two using the (2,2) 
max pooling. Next, a set of four blocks transform the input to 128 channels, a set of six blocks to 256, and a 
set of three blocks to 512 channels, and the matrix dimension becomes (2,2,512). Then, a global two-dimen-
sional average pooling is applied to have a vector of length 512, which is in some experiments subjected to a 
dropout rate of 20%. The resulting vector is then densely connected to a vector of size 1024, which is finally 
reshaped to represent the output SSH snapshot of size (32,32). For our state estimation experiments with 
four separate fields appearing as the output matrix, the ResNet architecture remains the same except for the 
final dense layer being of length 4,096 and reshaped to the appropriate output size of (32,32,4).

We have explored more complex ResNets (going up to 161 convolutional layers) but also simpler CNN archi-
tectures without residual learning as well as shallow feed-forward networks (see Table 1). A brief description 
of the NN architectures follows. FC: feed-forward NN with 2 hidden layers (254 and 512 neurons correspond-
ingly), batch normalization, and leaky ReLU as an activation function after each hidden layer. FC_Large: 
same as FC but with 512 and 1024 neurons in the hidden layers. VGG: CNN with 32 (4 × 4) filters in the first 
layer, 64 (3 × 3) in the second, 128 (3 × 3) in the third, 256 (2 × 2) in the fourth, with batch normalization and 
leaky ReLU used after each layer and the two-dimensional global average pooling before connecting to the 
dense layer. VGG_Large: same as VGG but using a four times larger number of filters in each convolutional 
layer. VGG_Deep: same as VGG but repeating each convolutional layer three times before proceeding to the 
next one. ResNet_Small, ResNet, and ResNet_Large are residual NNs with architectures as depicted in 
Figure 1 but with a total of 31,52, and 161 convolutional layers correspondingly; _Dropout denotes the use of 
20% dropout rate in the last layer. We have implemented the architectures in Tensorflow/Keras and provided 
the Python scripts along with the training data in the Zenodo data repository (Manucharyan, 2020).
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Figure 1.  The ResNet architecture of a deep CNN with residual learning that was used for SSH interpolation and state estimation. The input consists of two 
SSH snapshots separated by 20 days. A set of convolutional layers are then applied to create an abstract representation of the input patterns in a bottleneck 
fashion: when image sizes decrease by a factor of two, the number of filters increases by a factor of two. Each convolutional layer is followed by the batch 
normalization and the application of the nonlinear function (Leaky Rectified Linear Unit). Residual learning blocks are saving the output from one layer and 
adding its identity to the output several layers ahead (blue arrows). The output from the final convolutional layer is subject to a global average pooling and 
flattening into a vector that is densely connected to the output of the appropriate dimension to represent either a single or multiple fields. CNN, convolutional 
neural network; SSH, sea surface height.
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As a performance metric, we define the model skill that is proportional 
to the loss function and normalized by the standard deviation of the SSH 
signal in the following way:

      
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| |
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| |
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For reference, the maximum skill  =  1 is achieved when the predicted 
and true images are identical; the skill = 0 corresponds to a prediction 
that makes the same error as assuming a spatially homogeneous SSH 
field, and negative skill implies an even worst fit. This definition of skill 
is more conservative than the correlation coefficient or the R-squared 
value; for example, ψ2 is correlated to ψ1 with an average correlation co-
efficient of 0.74 and the linear regression model has the R-squared of 
about 0.55 but the skill is only 0.33 if defined as in Equation 4 above. 
It is thus important to compare the results from different publications 
using consistent metrics. Here we use the skill metric that is based on the 
RMS-error normalized by the standard deviation (Equation 4) and, for 
consistency, we use the Mean Square Error (L2 norm) as the loss function 
for a NN to minimize during training.

Coefficients of filter matrices, along with all other weights and biases 
involved in the NN architecture are then iteratively optimized using the 
Adam optimizer (Kingma & Ba, 2015) to minimize the loss function that 
is the root-mean-square difference between the predicted and true SSH 
images (or equivalently to maximize the skill). The parameter optimi-
zation procedure requires evaluating NN predictions for a large volume 
of training data and hence the final optimized state of a particular NN 
depends only on the training data itself. To ensure that no overfitting has 
occurred, the NN skill is evaluated for a group of three independent data 
sets: training, validation, and testing. The training data are used only for 
the training purposes, the validation data are used to evaluate the skill 
of the NN and to identify a stoppage criterion for the training, while the 
testing data are used at the very last step to define the skill of a trained 
NN. All three data sets are generated from different numerical simula-
tions to ensure that overfitting did not occur.

2.2.  Synthetic Training Data: QG Model

In the absence of high-quality and/or large volumes of data, NNs are 
likely to overfit the training data and have poor skills when evaluated on the test data. To avoid these issues, 
we choose to train NNs on synthetic data generated using an idealized model of ocean turbulence—the 
two-layer QG model (Phillips, 1951; Vallis, 2017). The QG model is pertinent to baroclinically unstable flow 
and contains the propagation dynamics of large-scale ocean eddies, including advection by the mean flow, 
the beta drift, and the eddy interactions with the mean flow. Our choice of using the two-layer model is ra-
tionalized because (i) ocean currents are predominantly composed of the barotropic and the first baroclinic 
mode (Smith & Vallis, 2001; Wunsch, 1997) and (ii) it is the minimal model demonstrating the difficulty of 
predicting SSH evolution without direct observations of subsurface flows because both layers are necessari-
ly dynamically active during baroclinic instabilities, and (iii) the dynamical interpolation method also relies 
on QG dynamics, allowing us to make a straight-forward performance comparison.

The QG model relies on the conservation of potential vorticity and simulates the mesoscale turbulence 
driven by baroclinic instabilities associated with the vertical shear of the mean flow, requiring a minimum 
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# Architecture Parameters
Data 

samples
ΔT 

(days) Skill

1 FC 1.2 × 106 2 × 105 20 0.53

2 FC_Large 6.3 × 106 2 × 105 20 0.54

3 VGG 0.5 × 106 2 × 105 20 0.63

4 VGG_Large 4.6 × 106 2 × 105 20 0.64

5 VGG_Deep 1.4 × 106 2 × 105 20 0.61

6 ResNet_Small 0.9 × 106 2 × 105 20 0.69

7 ResNet_Large 7 × 106 2 × 105 20 0.72

8 ResNet_Large_Dropout 7 × 106 2 × 105 20 0.72

9 ResNet_Dropout 4.7 × 106 2 × 105 20 0.73

10 ResNet 4.7 × 106 2 × 105 20 0.75

11 ResNet 4.7 × 106 2 × 105 40 0.44

12 ResNet 4.7 × 106 2 × 105 60 0.18

13 ResNet 4.7 × 106 1 × 105 20 0.71

14 ResNet 4.7 × 106 4 × 104 20 0.65

15 ResNet 4.7 × 106 2 × 104 20 0.58

16 ResNet 4.7 × 106 8 × 103 20 0.55

17 ResNet 4.7 × 106 4 × 103 20 0.44

18 ResNet 4.7 × 106 1 × 103 20 0.39

19 ResNet 4.7 × 106 5 × 102 20 0.33

Notes. Experiments 1–10 explore various architectures, 11–12 explore 
the skill deterioration with increasing time separation between the input 
images, and 13–19 explore skill dependence on the number of training 
examples. The architecture names correspond to function names in the 
provided NetworkArchitectures.py script that encodes their graphs using 
TensorFlow/Keras. The parameters column represents the number of 
trainable NN parameters for corresponding architectures. The Data 
Samples column denotes the number of input-output examples that 
were used in NN training. The ΔT column denotes the time separation 
between the two input snapshots of SSH, and the skill column denotes the 
maximum achieved skill on validation data.
Abbreviations: NN, neural network; SSH, sea surface height.

Table 1 
List of NN Training Experiments Demonstrating the Achieved Prediction 
Skill for Temporal Interpolation of SSH Snapshots
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of two vertically stacked shallow layers. The conservation laws for the top and bottom layer potential vortic-
ities, q1,2, are written in the following way:
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where ψ1,2 is the top and bottom layer streamfunctions, f0 is the Coriolis parameter and β is its derivative in 
the meridional y-direction, g′ is the reduced gravity, D/Dt = ∂/∂t + u∇ is the material derivative using cor-
responding layer' geostrophic velocity u, and rEk is the bottom drag coefficient. The relative importance of 
the discarded term in the PV-conservation budget in Equation 1, Dψbt/Dt, could be estimated by comparing 
its magnitude to Dψ1/Dt, where both material derivatives use the velocity in the top layer. The ratio of these 
terms would scale roughly as the ratio of the characteristic amplitudes of the barotropic and surface stream-
functions, which we find from numerical simulations to scale as the ratio of layer depths in QG simulations 

of the baroclinic instabilities, that is,   
1

2 2 2
. . 1 1 2[ / ] ( / )b t O H H . Since in most ocean regions, the pycnocline 

is relatively shallow compared to the full depth of the ocean, the flows are surface-amplified and the dis-
carded term is relatively small but nonnegligible and can substantially impact the SSH evolution leading to 
significant errors of the dynamical interpolation (see Section 3).

The QG model has been configured to represent baroclinically unstable currents that characterize the Gulf 
Stream mesoscale turbulence. Model parameters are as follows: the Rossby deformation radius is 40 km, the 
ratio of mean layer depths is 0.2, there is a steady uniform mean vertical shear of 0.2 m/s, beta plain param-
eter corresponds to a latitude of 40 degrees, linear Ekman friction was prescribed in the bottom layer for 
dissipation, and high-wavenumber motions are being filtered in Fourier space for all variables (more details 
could be found in [Arbic et al., 2012; Flierl, 1978]). The model domain is 1,000 km by 1,000 km and periodic 
boundary conditions are used. We have explored various resolutions and find that it is sufficient to use a rel-
atively coarse grid of 32 × 32 to simulate baroclinic instabilities and the chaotic evolution of relatively large 
mesoscale eddies. While the QG model is aimed at simulating the low-dimensional evolution of the ocean, 
reconstructing our simulated SSH variability with a significant skill nonetheless requires over 30 principle 
component modes (Empirical Orthogonal Functions), implying the existence of a vast range of eddy field 
configurations. The QG model is integrated forward in time managing an ensemble of noisy initial condi-
tions to produce a large volume of data: about 200,000 SSH snapshots separated by 10 days (Figure 2). Over 
a timescale of 20 days, the correlation between SSH fields drops to about 0.4 and it is hard to identify any 
persisting eddies because their shapes and intensities have dramatically changed due to interactions with 
other eddies (Figure 2).

We ensure that the data for training, validation, and testing come from distinct simulations to accurately 
access the NN generalization skill. Nonetheless, it is plausible that the use of multiple model simulations 
still does not lead to independent data and that analogous states might exist between the testing and train-
ing data sets. To quantify the similarity between the testing and training data, we compared each testing 
sample to all samples in the training data set (200K samples) and identified the training image that is closest 
to the testing one using skill (Equation 4) as a quantitative metric of similarity. For our testing and training 
sets that come from separate QG model simulations starting with different initial conditions, the similarity 
skill does not exceed about 0.2 and its average value is about 0.1 (Figure 3, gray curve), dramatically lower 
than the prediction skill achieved via NN interpolation (see Section 3). Given such low similarity skills, the 
existence of analog states in our training/testing data sets can be ruled out. The lack of analogs between the 
different QG simulations is expected as considering just a handful of the its principle component modes 
(out of about 30 modes that have significant energy) as independent degrees of freedom would already 
amount to astronomically low probabilities of encountering true analogs (Van den Dool, 1994).

To evaluate the efficacy of the NN approach, we consider the tasks of (i) temporal interpolation where the 
input consists of two SSH snapshots separated by 20 days, (ii) spatiotemporal interpolation with the same 
input as for the temporal interpolation but with SSH images having missing data, and (iii) the state estima-
tion of unobserved deep ocean flows from SSH snapshots. For the temporal separation of SSH images, we 
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choose 20 days because it is of the order of the return periods for existing altimeters and to be consistent 
with (Ubelmann et al., 2015), and we explore how the skill varies with increasing this timescale to 40 and 
60 days (Table 1). For the spatiotemporal interpolation, we choose the area of missing data to roughly cor-
respond to that of the SWOT observations over its return period. For a 1,000 km domain, SWOT would have 
about four crossings (each having a swath of 120 km) with one inclination angle and another four with an 
opposite angle (see e.g., Figure 1 in Gaultier et al., 2016). While SWOT would have missing data areas in the 
shape of a rhombus, here for simplicity we have prescribed square shapes as there is no reason to assume 
this would lose generality.

2.3.  Dynamical Interpolation

We reproduce the dynamical interpolation methodology as outlined in (Ubelmann et al., 2015) and evaluate 
its skill distribution. The method consists of initializing the surface streamfunction ψ1=(g/f0)SSH and inte-
grating a single-layer quasigeostrophic equation, that is, Equation 3. The domain size, boundary conditions, 
stratification parameters, and all other parameters of the single-layer model are consistent with those of 
the two-layer model that was used to generate the validation data. The model integration is performed for 
10 days forward in time starting from the SSH snapshot on day 0 and also backward in time starting from 
the SSH snapshot on day 20. The backward in time integration is performed by reversing the direction of 
the velocity field and changing the time variable to be negative. The estimate of the SSH field on day 10 is 
then taken to be the arithmetic mean between the SSH fields resulting from the forward and the backward 
integration. The skill of the dynamical interpolation is evaluated on the testing data from the two-layer QG 
model and used for comparison with linear and deep learning interpolation.

3.  Results
We have explored various NN architectures for the task of temporal SSH interpolation, ranging from single 
hidden layer networks (FC) to convolutional networks (VGG), to a more complex residual neural networks 
(ResNet)—all achieving skills comparable to or higher than the linear and dynamical interpolation meth-
ods (Table 1). Substantially decreasing NN complexity leads to an only slight decrease in the skill (e.g., 
compare experiment pairs [1, 2] or [6,10] in Table 1), while substantially increasing the complexity does not 
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Figure 2.  An example of the eddy field evolution over 20 days as generated by the QG model of a baroclinically unstable current. Top panels show surface 
streamfunction ψ1 (or SSH) and bottom panels show the corresponding deep ocean streamfunction, ψ2, both being normalized by their respective standard 
deviations; the domain size is 1000 × 1000 km and rows correspond to streamfunction snapshots taken 5 days apart. Note that the eddy field dramatically 
changes over 20 days (SSH decorrelation time scale is about 10–20 days), implying that conventional linear or optimal interpolation methods would lead to 
significant errors if available observations are separated by more than the decorrelation timescale. QG, quasigeostrophic; SSH, sea surface height.
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significantly improve the skill (e.g., compare experiment pairs [3,4] or [7,10] in Table 1). The highest skill of 
0.75 is achieved by the ResNet architecture (Figure 1) with a total of 52 convolutional layers and about five 
million adjustable parameters, taking about 1 h to train on a Tesla T4 GPU on 200K data samples. We thus 
find the ResNet architecture to be optimal for our tasks and we use it throughout the paper to present our 
deep learning results, although we note that other superior architectures may exist. Below we use ResNet to 
demonstrate the deep learning skill in spatiotemporal SSH interpolation and state estimation.

3.1.  Spatiotemporal SSH Interpolation

Upon training separate ResNets to perform temporal and spatiotemporal interpolation of SSH data, a sig-
nificant performance skill is achieved with networks generating realistic SSH images with small errors (see 
Figure 4). The average prediction skill for both simulations plateaus at about 0.75 and it is not significantly 
smaller when evaluated on the test data set (Figure 3a). A few illustrative examples of eddy field evolution 
are shown in Figure 4a, demonstrating the nontrivial SSH evolution that occurs in a chaotic QG model of 
baroclinically unstable flow. In the top-raw example of Figure 4a, the strong positive SSH anomaly in the 
center of the domain almost completely disappears after 20 days, yet the NN is still capable to reconstruct 
the SSH state at day 10. For such examples when the eddy field changes dramatically with time, linear or 
objective interpolation techniques perform poorly as they do not rely on any dynamical model of SSH evolu-
tion and only make use of autocorrelation as a statistical model. Evaluated on a large number of testing data 
(10K samples), the deep learning model outperforms the linear and dynamical interpolation techniques, 
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Figure 3.  Performance comparison of the deep learning NN (ResNet) with linear and dynamical interpolation techniques. (a) The evolution of the ResNet 
model validation and training skill during its training on temporal and spatiotemporal SSH interpolation (b) The dependence of the ResNet skill on the 
number of data samples used in training for the temporal SSH interpolation. (c) Comparison of skill distributions of the linear interpolation (LI), dynamical 
interpolation (DI), and the deep learning method evaluated on the testing data set. Gray curve shows the similarity between the validation and training data 
sets, quantified as a probability density function of the skill for comparing a validation input (SSH pair) to the most alike input from the training data set. NN, 
neural network; SSH, sea surface height.
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having not only a better average skill but also much more infrequent occurrence of low-skill interpolations, 
that is, much narrower skill-distribution tail in the direction of small skills (Figure 3c). Noticeably, the 
linear interpolation skills can be so low as to approach zero and even negative values, that is, its prediction 
is no better than assuming that SSH = 0 everywhere in the domain. The dynamical interpolation is much 
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Figure 4.  Examples of temporal (a) and spatiotemporal (b) interpolation of SSH data using the deep learning framework. Each row represents a randomly 
chosen interpolation example from the testing data set. All panels share the same color bar and display streamfunction magnitudes normalized by the standard 
deviation of the entire data set. The first and third column show panels with input SSH fields ψ1(t) and ψ1 (t + 20d), second column shows the interpolated field 
ψ1 (t + 10d), and the fourth column shows the interpolation error. White regions in the case of spatiotemporal interpolation denote areas of obstructed input 
data. SSH, sea surface height.
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better than the linear interpolation but still has a significant probability of poor interpolations in the skill 
range of about 0.4–0.6.

While the deep learning technique is superior to other methods, it is important to note that it still does not 
provide a perfect reconstruction and has a limit in skill bounded by about 0.85 (Figure 3c). The dynamical 
evolution of the ocean flow considered in our study is inherently chaotic, that is, the phase-space trajecto-
ries undergo topological mixing to the extent that the sensitivity to initial conditions increases exponentially 
with time. Thus, if SSH snapshots of a turbulent eddy field are separated by sufficiently large time (greater 
than the characteristic Lyapunov exponent timescale), there should be no physical or statistical relationship 
between these snapshots and hence no interpolation technique could achieve a skill significantly above 
zero. Indeed, given the same NN architecture and the same volume of training data, the interpolation skill 
deteriorates dramatically from 0.75 to 0.44 and 0.18 as the time separation between the input SSH snapshots 
increases from 20 to 40 and 60 days correspondingly (Table 1).

The sensitivity to the number of data samples used in training demonstrates that for the ResNet architec-
ture, about 20–30K data samples are needed to achieve a skill comparable to the dynamical interpolation 
skill, and using a larger number of training samples leads to a significant skill improvement (Figure 3b). 
However, the skill continues to increase slowly with the number of samples (Figure 3b), with the best pow-
er-law fit for the case of 20-day SSH separation being skill ∼N0.09, where N is the number of training samples. 
Extrapolating the power-law would imply that achieving the perfect skill = 1 would require O (107) training 
samples—a number beyond what the author's computing capabilities, though not impossible to reach on 
modern supercomputers. Nonetheless, estimating the necessary number of samples is only a hypothetical 
consideration as it is not clear if the power-law would remain the same with the increasing volume of data. 
In addition, it is not possible to exclude the existence of superior NN architectures that could lead to faster 
convergence.

3.2.  State Estimation of the Unobserved Deep Ocean Flows at Mesoscales

Here we assess the efficacy of the deep learning framework in addressing the state estimation problem, that 
is, estimating all dynamical variables in the ocean turbulence model, which in our case of a two-layer QG 
model implies estimating both the surface stream function ψ1 (or equivalently SSH) and the deep ocean 
streamfunction ψ2. Conventionally, for state estimation, one needs to postulate the dynamical model and 
only then implement the techniques, for example, variational data assimilation or the ensemble Kalman fil-
ter techniques to estimate the unknown variables and parameters in the model at all times and everywhere 
within the model domain. However, we demonstrate here that the deep learning framework can provide 
an alternative to conventional data assimilation methods. The NN is capable of skillful reconstruction of 2 
based on two SSH snapshots separated by 20 days, with an average skill of 0.7 for day 0 and a skill of 0.8 for 
day 20 (Figure 5). While the NN provides skillful predictions for all state variables with skills ranging from 
0.65 to 0.85, the best prediction skill is achieved for the deep flow at day 20 while the worst prediction is for 
deep flow at day 0 (compare orange and red curves in Figure 5c). This temporal asymmetry is expected in 
chaotic and dissipative QG dynamics, making it more difficult to estimate the past state by observing the fu-
ture as opposed to estimating the future by observing the past. Thus, the two SSH snapshots must indeed be 
ordered in time as the PV-evolution equations allow time reversal only for sufficiently small time intervals 
at which the dissipation effects can be neglected.

It is important to note that only the component of ψ2 that is uncorrelated with ψ1 can affect the SSH evolu-
tion because the tendency due to the advection of the surface streamfunction by the surface flow is identi-
cally zero (see Equation 5). However, ψ2 is highly correlated with ψ1, with an average correlation coefficient 
is about 0.84, which is why reconstructing its full amplitude is a relatively trivial exercise. To evaluate the 
network ability to predict the decorrelated component, we define it as    2 2 1A , where the constant 
A is the average linear regression coefficient between ψ1 and ψ2. Indeed, using two SSH snapshots as the 
input, the NN does provide a skillful estimate of 2 with a relatively small error (Figure 5a). However, fur-
ther exploring the limits of NNs, we identify that they are capable of reconstructing an instantaneous rela-
tion between the SSH field and deep ocean streamfunction. We train the ResNet model using a single SSH 
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snapshot as the input and the decorrelated component 2 of the corresponding deep ocean streamfunction 
as the output to achieve a prediction skill of 0.56, while a skill of 0.7 is achieved if using ψ2 as the output.

MANUCHARYAN ET AL.

10.1029/2019MS001965

13 of 17

Figure 5.  Examples of state estimation using deep learning (a) and its statistical skill distribution for surface and subsurface variables at different times (b). 
As in the case of SSH interpolation, the NN receives as input two SSH snapshots separated by 20 days, ψ1(t) and ψ1 (t + 20d) (top row, first and third columns), 
but reconstructs not only the surface streamfunction at the intermediate time, ψ1 (t + 10d) (top row, second column), but also the subsurface flow at all three 
times: t, t + 10d, and t + 20d. Note that ψ1 and ψ2 are linearly correlated with a correlation coefficient of 0.8, which is why the bottom rows in panel (a) show 
2, the component of the reconstructed deep flow that is not linearly correlated with the surface flow. The errors for reconstructing the day 10 surface and deep 
streamfunctions are shown in the last column. The probability density function of the NN skill distribution is plotted in panel (b) for all predicted variables. NN, 
neural network; SSH, sea surface height.
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4.  Discussion
Our study explored the efficacy of deep learning in reconstructing the unobserved state variables of the cha-
otic ocean turbulence. The motivation for addressing the specific problem of SSH interpolation came from 
the present-day use of relatively rudimentary techniques of reconstructing continuous fields from sparse 
satellite data. Using synthetic data from an idealized model of baroclinic ocean turbulence, we presented 
the proof of concept for using deep neural networks as an efficient technique to extract nontrivial informa-
tion from sparse SSH observations. Specifically, we demonstrated that residual CNNs can reconstruct SSH 
snapshots at the intermediate time between the 20 days separated observations with an average skill of 0.75, 
significantly outperforming the commonly used linear interpolation (skill = 0.35) and dynamical interpo-
lation (skill = 0.6) techniques. We also demonstrated that the deep learning technique is flexible enough 
to address a more general problem of state estimation that includes reconstruction of the unobserved deep 
ocean streamfunction using only SSH snapshots. Nonetheless, there is an inherent lack of information in 
SSH-only observations that prevents any interpolation or state estimation methodology from achieving a 
perfect skill. After all, if SSH snapshots are separated by a sufficiently long time, there should not be any 
relation between them due to the chaotic nature of baroclinic ocean turbulence. Indeed, the ResNet could 
only achieve a maximum skill of about 0.85 for interpolation between SSH snapshots separated by 20 days, 
and the skill dramatically decreased to about 0.2 for the snapshots separated by 60 days. The lack of the 
perfect interpolation skill suggests the existence of a dynamical barrier associated with the inherent lack of 
information in SSH data, although it is not possible to deduce this with certainty due to potential deficien-
cies of the NN architecture and the limited volume of training data.

While it is challenging to interpret the SSH interpolation algorithm that was ultimately learned by the 
deep NN, its superiority over other methods could be associated with its ability to estimate the unobserved 
deep currents because they directly affect the SSH evolution (Equation 5). Taking only a surface stream-
function snapshot as the input, we demonstrated that the ResNet can estimate the underlying deep ocean 
streamfunction with an average skill of 0.7, which is high enough for a skillful estimate of the component 
of the deep streamfunction that is not linearly correlated with the surface streamfunction. Apart from deep 
learning, no other methods have been reported in the literature that can skillfully estimate the uncorrelated 
component of the deep ocean currents at mesoscales. The success of those NN architectures that rely spe-
cifically on 2D convolutions for pattern extraction implies that it may be the eddy shapes that contain the 
information necessary to infer deep ocean currents.

A possible physical interpretation in terms of the eddy shapes could be drawn from considering the ocean 
dynamics in terms of the barotropic and baroclinic modes that are nonlinearly coupled and continuously 
exchange energy (Larichev & Held, 1995). The surface streamfunction (or SSH) is simply the weighted sum 
of the barotropic and baroclinic modes while the lower layer streamfunction is their difference. The key 
question here is: are instantaneous observations of only surface streamfunction sufficient enough to re-
construct the corresponding barotropic and baroclinic modes? This presents an underconstrained problem 
as there are two unknown modes while there is only one equation connecting their sum to the SSH field 
and there are no analytical laws that could be inferred from the QG dynamics to provide any additional 
constraints on the instantaneous relationship between the modes. Nonetheless, the distinct dynamical evo-
lution of each mode can lead to differences in their characteristic spatial patterns that could be discerned by 
deep learning algorithms. The baroclinic mode experiences a direct energy cascade and its spatial structures 
should appear more elliptical or elongated because it is stirred by the barotropic flow, especially at scales of 
the order of or smaller than the Rossby deformation radius. On the contrary, the barotropic mode experienc-
es an inverse kinetic energy cascade manifested in eddy merging and a tendency toward axisymmetrization 
(Melander et al., 1987). While the two modes continuously interact by exchanging energy, the barotropic 
mode ends up strongly dominating the baroclinic mode at large scales and their amplitudes become compa-
rable at scales of the order of the Rossby deformation radius (see Figure 4a in Larichev & Held, 1995). This 
implies that the barotropic mode should dominate large-scale relatively axisymmetric eddy patterns, the 
baroclinic mode dominates smaller-scale relatively more elliptical patterns, while both modes are present at 
the deformation scale. Thus, our tentative rationalization of the deep learning success is that by using con-
volutional filters, the NNs are effectively extracting SSH patterns at different length scales and classifying 
them into barotropic and baroclinic modes. After estimating the mode amplitudes based on individual SSH 
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snapshots and learning from many synthetic examples of SSH evolution in time, the NNs are then capable 
to effectively integrate the QG equations forward or backward in time for a skillful temporal interpolation 
between the two SSH snapshots. While the complexity of deep learning algorithms makes it impossible to 
interpret them, our hypothetical two-step process of the mode decomposition followed by the forward and 
backward integration provides a plausible dynamical rationalization for the superiority of deep learning 
over methods that ignore the influence of deep ocean flows on SSH evolution.

We chose to use the QG simulations of baroclinic turbulence as the synthetic training data set because it 
presents a hard test for the temporal SSH interpolation due to its chaotic nature and an a priori unknown 
impact of the dynamically active bottom layer on SSH evolution. However, for the case of submesoscale 
turbulence (length scales smaller than about 100 km), the question remains open as to how SWOT's 2D 
high-resolution swath measurements could be used to enhance the resolution of SSH data. While we expect 
the deep learning framework to perform well in reconstructing both large and small mesoscale eddies, 
its limitations still need to be understood when considering mesoscale and submesoscale turbulence as 
a continuum. It is thus necessary to develop more general training data sets that are representative of the 
SSH dynamics for any given region or process of interest. Including satellite observations from Synthetic 
Aperture Radars or of sea surface temperatures in addition to the SSH observations could provide additional 
information for improved reconstruction of SSH. The training data sets could be assembled ranging from 
more realistic submesoscale-resolving general circulation models to simplified stochastic models in various 
parameter regimes (Samelson et al., 2019). While diversifying the training data sets should increase the 
versatility of NN interpolation methods, the crucial constraint of their performance would likely come from 
the chaotic evolution of submesoscale eddies that occurs on substantially shorter timescales compared to 
mesoscale eddies.

While we have demonstrated the efficacy of supervised deep learning using synthetic data, its practical 
utility in interpolating real-world SSH observations remains to be tested. The drawback of deep learning is 
that it requires a large volume of training data, although there are continuously improving methods aimed 
at addressing this practical issue, for example, transfer learning (Pan & Yang, 2009), data augmentation 
(Perez & Wang,  2017), one-shot learning (Fei-Fei et  al.,  2006). A way toward ultimately developing the 
gridded SSH product using deep learning could be through training networks on a wide range of idealized 
and realistic models and then fine-tuning a much smaller number of NN parameters using existing satellite 
data. However, since the true two-dimensional SSH state is not known at any particular time, the fine-tun-
ing of a NN cannot be achieved by defining a simple loss function as was done with synthetic data. Thus, 
the NN ultimately would need to use a loss function that is based purely on observations, without invoking 
a dynamical model to provide a true state. This issue could be addressed for example using reinforcement 
learning, where two-dimensional SSH fields generated by the NN would be rewarded or penalized based 
on the accuracy of their projection on the observed altimetry tracks that were left out from the input set of 
tracks. Developing deep learning SSH interpolation techniques that would steer away from solely relying on 
dynamical models to provide training data is a necessary next step toward practical implementation with 
real satellite observations. Nonetheless, our work presents an important proof of concept that SSH obser-
vations do contain dynamically relevant information about subsurface flows, and hence with deep learning 
it should be possible to build a skillful model of SSH evolution and as a consequence improve the existing 
SSH estimates.

Finally, we note another potentially important application of deep learning for state estimation at eddy-re-
solving scales. Since mesoscale-resolving data assimilation methods require large computations, providing 
an accurate initial guess would substantially reduce the number of iterations necessary for optimization. 
Thus, it might be possible to accelerate data assimilation methods by providing a deep learning estimate as 
a first guess that is already close to reality. Note that data assimilation and NNs are similar approaches in 
that they both use iterative procedures to find the optimal set of unknown parameters to minimize the error 
between the predicted and true fields. The critical difference is that data assimilation methods are based on 
a concrete physical model or its linearization, and hence the predicted fields conform to the desired physical 
constraints but the reconstruction skill relies on the accuracy of the model. Contrarily, the deep learning 
approach does not rely on a physical model as it is optimizing a complex nonlinear mapping function that 
is general enough to map the input to the output. Hence, the deep learning predictions do not have to obey 
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any dynamical constraints unless those have been explicitly incorporated in the loss function. Thus, we see 
the synergy between deep learning and conventional state estimation methods as a potential framework 
for constructing improved state estimates, combining the best of the two paradigms: fast data-driven state 
estimation via deep learning and fine-tuning by conventional data assimilation methods to ensure the strict 
consistency with an assumed dynamical model.

Data Availability Statement
The neural network architectures coded in Tensorflow/Keras and the training data sets are published in the 
following Zenodo repository: https://doi.org/10.5281/zenodo.3757524.
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