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ABSTRACT:

Mainly depending on their lithology, coastal cliffs are prone to changes due to erosion. This erosion could increase due to climate
change leading to potential threats for coastal users, assets, or infrastructure. Thus, it is important to be able to understand and
characterize cliff face changes at fine scale. Usually, monitoring is conducted thanks to distance computation and manual analysis
of each cliff face over 3D point clouds to be able to study 3D dynamics of cliffs. This is time consuming and inclined to each one
judgment in particular when dealing with 3D point clouds data. Indeed, 3D point clouds characteristics (sparsity, impossibility of
working on a classical top view representation, volume of data, ...) make their processing harder than 2D images. Last decades,
an increase of performance of machine learning methods for earth observation purposes has been performed. To the best of our
knowledge, deep learning has never been used for 3D change detection and categorization in coastal cliffs. Lately, Siamese KPConv
brings successful results for change detection and categorization into 3D point clouds in urban area. Although the case study is
different by its more random characteristics and its complex geometry, we demonstrate here that this method also allows to extract
and categorize changes on coastal cliff face. Results over the study area of Petit Ailly cliffs in Varengeville-sur-Mer (France) are
very promising qualitatively as well as quantitatively: erosion is retrieved with an intersection over union score of 83.86 %.

1. INTRODUCTION

The dynamics of cliff erosion is a complex phenomenon triggered
by various factors whose relative contribution is still difficult
to estimate. Since cliff erosion is likely to increase with sea
level rise due to climate change (Slott et al., 2006; Ashton et al.,
2011; Masson-Delmotte et al., 2021), understanding changes in
coastal cliffs in order to better manage them would ensure the
safety of communities and infrastructure threatened by erosion.
In cliff erosion, we distinguish mass movements and debris
falls. According to Varnes (1978), what we call debris falls
refer to tiny rocks falling from the cliff face, while mass move-
ments refer to rock falls corresponding to larger scale move-
ments of part or all of the cliff. To quantify cliff retreat rates
over decades, the simplest way is to measure the distance from
different cliff top locations using aerial photographs or histor-
ical maps (Lee and Clark, 2002; Brooks and Spencer, 2010).
But since changes at the cliff top may not be representative of
changes over the entire cliff face (Young et al., 2009), compar-
isons between cliff face 3D Point Clouds (PCs) are also used.
For this second approach, methods such as terrestrial laser scan-
ning (TLS), airborne laser scanning (ALS), mobile laser scan-
ning, unmanned aerial vehicle photogrammetry (UAVP), or ter-
restrial photogrammetry (TP) are used to monitor the cliff face
(Young et al., 2010; James and Robson, 2012; Michoud et al.,
2014; Letortu et al., 2018). Surveys are taken over time and
PCs are compared using tools such as Cloud to Cloud (C2C)
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(Girardeau-Montaut et al., 2005) in CloudCompare software
(Girardeau-Montaut, 2016). Manual analysis of the differences
is then performed to determine areas of erosion on the cliff face
and accumulation at the cliff foot. PCs differences provide
cliff retreat rates and allow for estimation of eroded volume
(Letortu et al., 2015). Different methods trying to automate
cliff faces changes extraction and cliff top and toe delineation
exist, however most of them do not process 3D data directly
but 2.5D rasterization of PCs and finally use Digital Elevation
Model (DEM) differences (Young and Ashford, 2006; Swirad
and Young, 2021). For example, in Young and Ashford (2006),
the elevation variability is calculated through DEM difference
where negative cells represent erosion and positive cells rep-
resent accumulation, enabling to highlight significant erosion
areas on cliffs with slight slope. In Swirad and Young (2021),
inventories of erosion and deposition objects are retrieved with
a method consisting in four steps: 1) PC processing, 2) cliff face
identification, 3) change object inventories, and 4) object classi-
fication. Erosion rates are calculated using DEM 2.5D analysis
combined with vertical and planimetric detection thresholds,
Normalized Difference Vegetation Index (NDVI), machine learn-
ing processes and manual quality control. These methods, al-
though relevant, are not applicable on vertical or very steep
cliffs. A direct 3D approach allows to study vertical cliffs and to
limit the loss of information generated by the data rasterization.

Nowadays deep learning is the leading framework in classifica-
tion and even change identification in remote sensing data. Re-
cently, Siamese KPConv network was proposed to highlight and
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categorize changes into urban 3D PCs (de Gélis et al., 2021).
In the following study we also aim to detect and categorize
changes but in cliffs. Although the field of study is very dif-
ferent, last decades show that as long as a training step is pos-
sible, deep learning methods can adapt to very different cases
of study. For instance, the U-Net architecture (Ronneberger et
al., 2015) has been successfully applied to multiple fields from
biomedical to computer vision and remote sensing. Thus in the
following study, we aim to experiment the Siamese KPConv
network for cliff change extraction and classification. To do so,
we base our study on Petit Ailly cliffs in Varengeville-sur-Mer
(France), described in Section 2. In Section 3, materials and the
method are detailed. Then, results are presented and discussed
in Section 4 and 5 respectively, before conclusions in Section 6.

2. STUDY AREA

For this study, we focus on a section of cliffs at Varengeville-
sur-Mer, located in Normandy, Seine-Maritime (NW France),
along the English Channel. Cliffs of Seine-Maritime cover 120
km of coast (from Le Havre to Le Tréport), and are around 60-
70 m high. Geologically, they are part of the sedimentary Paris
Basin and made of Upper Cretaceous chalk interbedded with
flint bands (Pomerol et al., 1987; Costa, 1997; Laignel, 2003;
Mortimore and Duperret, 2004). Along the cap d’Ailly, where
Varengeville-sur-Mer is located, cliffs are specific: the residual
flint formation over Santonian chalk strata has been replaced
by a bed of clay and sandy sediments from the Paleogene age
(Bignot, 1962). The cap d’Ailly is an erosion hotspot where
retreat rates can locally exceed 0.80 m/y (Letortu et al., 2014).
In Varengeville-sur-Mer, the Petit Ailly cliff face (250-350 m
long, 40 m high, slope from 70◦ to overhang) (Letortu et al.,
2018; Jaud et al., 2019) (see Figure 1) is monitored from 2010
every 4-5 months (Letortu et al., 2015, 2019) in the framework
of DYNALIT French Observatory Service by terrestrial laser
scanning and photogrammetry (Letortu et al., 2018) to improve
knowledge on retreat rates and main triggering mechanisms for
rock fall activity. This large dataset highlights that rock fall
activity is intense over 250-350 m, with a retreat rate of 0.36
m/y and 4 rock falls over 1 000 m3 (Letortu et al., 2019).

3. MATERIAL AND METHOD

3.1 Data

PCs used in this study are taken from several sources: TP and
TLS, with various densities (see Table 1). The PC from TP
survey contains a significant larger number of points than PCs
from TLS surveys, hence TP PC has a larger point density than
TLS PCs (9 440 pts/m2 for 2016 TP PC and a maximum of 381
pts/m2 for 2017 TLS PC). Thereby the following study is based
on multi-sensor acquisitions.

Date Type Nb of points
(pts)

Mean surface density
(pts/m2)

2013-09-25 TLS 2 148 462 202
2016-01-28 TP 123 702 868 9 440
2017-11-02 TLS 4 154 905 381
2018-01-16 TLS 4 038 505 334
2020-04-14 TLS 3 293 548 276

Table 1. Varengeville-sur-Mer PCs dataset.

3.1.1 Terrestrial Laser Scanning survey The TLS used for
this study is a Riegl® VZ-400 emitting a laser pulse in the near-
infrared (1 550 nm), using the time-of-flight of laser pulse to
measure the position of a point. Scan data provided by this in-
strument have a theoretical accuracy of 0.005 m and a precision
of 0.003 m at a range of 100 m. The Riegl® VZ-400 is equipped
with a Nikon D800 camera with a fisheye lens providing pho-
tographs that can be used to texturize the 3D point cloud. The
georeferencing of the PCs is performed with the Trimble M3
total station to measure several reflective targets used as ground
control points (GCPs). The advantage of the use of a total sta-
tion is that it allows to measure targets closer to the base of the
cliff without being affected by mask effects as a Differential
Global Positioning System (DGPS) would be. PCs are projec-
ted in RGF 93 – Lambert 93 and IGN69, i.e. official plani-
metric coordinate system and vertical datum in France, respect-
ively. Numerous TLS targets (see Figure 1) are used (redund-
ancy of measurements) and disposed at different distances from
the scanner to limit the alignment error (Letortu et al., 2018).

3.1.2 Terrestrial Photogrammetry survey The terrestrial
photogrammetric device used in this study is a Nikon D800 re-
flex camera configured with a 35 mm focal length. The cam-
era positions should be a short distance apart and at least 20
m from the cliff face. Photographs are acquired from mul-
tiple positions at 10-20◦ angular intervals over a wide range of
angles to cover the area (James and Robson, 2012). To ensure a
quality result, an overlap of at least 60 % (80 % is recommen-
ded for SfM photogrammetry) is required between each pho-
tograph, and each scene must be taken from various points of
view (Letortu et al., 2018). In order to georeference the mod-
els, GCPs are also needed for TP survey. We use TP targets
and measure their absolute coordinates with a total station (see
Figure 1). To limit doming effect due to radial distortion and er-
roneous camera model, GCPs should be numerous (James and
Robson, 2014; Jaud et al., 2017). Photographs of the cliff and
target coordinates are used to derive a georeferenced 3D PC
using the Structure-from-Motion Multiview Stereo Photogram-
metry (SfM-MVS) algorithm in Agisoft Metashape. Accuracy
is not measured directly for TP survey because it requires geo-
detic references (surveyor’s nails) that are not visible in the
2016 PC. Comparison between TLS and TP 2016 PCs reveals a
mean error value from 0.013 m to 0.03 m. Further details on the
TP survey method used are described in Letortu et al. (2018).

3.1.3 Point clouds annotation Manual annotation is per-
formed between the PC pairs (see Table 2) using C2C tool (Cloud-
Compare) in order to assign a label to each point of the second
PC of the pair. Four classes are defined: “unchanged”, “erosion”,
“accumulation” and “no data to compare”. The “unchanged”
class designates points whose position is unchanged or almost
unchanged (with a tolerance margin of 20 cm) between the two
surveys of each PC pair. Points of the most recent PC of the
pair are considered as “erosion” when they appear behind the
oldest PC and as “accumulation” when they are located in front
of the oldest PC and rather at the cliff foot or on slight slopes
(below 15◦) (see Figure 2). A “no data to compare” class is
also defined to address the problem of an occlusion (due to dif-
ferent methods of data acquisition) only visible in the oldest PC
of the pair of PCs. Indeed, in this case, the C2C distance com-
puted between the two PCs is inconsistent, thus preventing us
to evaluate whether it is accumulation, erosion or no change.
We recall that the C2C distance has just been used to help the
manual annotation task. To annotate the datasets, with respect
to the distance separating the two PCs of each pair, a threshold
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Figure 1. Panorama and aerial photography of Petit Ailly cliff (Varengeville-sur-Mer) and instrumentation used for the TLS survey
(2016-01-28) (modified from Letortu et al. (2018)).

Class distribution (%)
PC pairs Type Unchanged Erosion Accumulation “No data to compare”

2013-09-25 – 2016-01-28 TLS – TP 51.77 40.57 1.32 6.33
2016-01-28 – 2017-11-02 TP – TLS 66.07 22.43 0.47 11.02
2017-11-02 – 2018-01-16 TLS – TLS 79.65 16.20 3.19 0.96
2018-01-16 – 2020-04-14 TLS – TLS 69.67 29.92 0.00 0.41

Table 2. Varengeville-sur-Mer PC pairs.

of 50 cm is used, and refined to 20 cm for some parts. Thereby
in this study, we mainly focus on extracting movements greater
than 20-50 cm, thus smaller movement like debris falls may be
missed.

3.2 Siamese KPConv network

We propose here to use and assess the recent Siamese KPConv
network for cliff change extraction. This model relies on a deep
Siamese architecture, that has proved its ability to detect and
categorize changes even for remote sensing purposes (Daudt
et al., 2018; Jiang et al., 2020) with 2D satellite images. In
particular Siamese architectures contain an encoder with two
branches. Usually composed of a succession of convolution and
max-pooling operations, each branch extracts features coming
from each input data. To extend the Siamese principle to 3D
PCs, a convolution operation suitable with 3D PCs character-
istics should be used. Indeed, traditional convolution used for
image processing can not be applied here as PCs are not con-
tained into matrices and therefore, the access to neighbors in-
volved in convolutions is less obvious than for structured data
on regular grids as images. Thus, de Gélis et al. (2021) rely
on Kernel Point Convolution (KPConv). These convolutions
are specially designed to extract features from raw 3D PCs by
applying weights thanks to kernel points dispatched into a 3D

ball (Thomas et al., 2019). Max-pooling operations are here re-
placed by strided KPConv acting as a down-sampler of 3D PCs,
thus features can be extracted at different scales.
Siamese KPconv architecture is presented in Figure 3. Like a
usual encoder-decoder with skip connections, Siamese KPConv
also contains skip links between encoder and decoder. Indeed,
at each scale of the decoding part, the difference of extracted
features associated with the corresponding encoding scale (see
Figure 3) are concatenated in the decoder part. Conversely to
2D images where pixels of both images can be easily associ-
ated, in 3D Siamese KPConv the computation of the feature dif-
ference is not obvious since PCs do not contain the same num-
ber of points and are not defined at the same positions, even in
non-changed areas. Authors of Siamese KPConv suggest here
to compute this difference in each point of the second PC by
retrieving features of the corresponding nearest spatial point in
the first PC. More details can be found in their original paper
(de Gélis et al., 2021). Weights between the two branches of
the encoder are shared as it is done when input data are quite
similar. Moreover, sharing weights forces the network to be less
focused on one type of data. As explained in Section 3.1, our
PCs do not come from the same modality between each acquis-
ition. As finally training, validation and test sets do not come
from the same pair, we would like to avoid that each branch of
the encoder only specializes in extracting information for only
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Unchanged Erosion Accumulation No data to compare

Figure 2. a) Annotation of the PC from 2016-01-28 with the PC from 2013-09-25, b) West part of Ailly cliff and transect position c)
Transect showing erosion of the cliff with accumulation at the cliff base.

one type of PC. Thus, sharing weights in the encoder allows
us to strengthen the generalization capability of our method, to
deal with both TLS and TP data.

4. RESULTS

4.1 Experimental protocol

4.1.1 Dataset configuration In order to conduct our exper-
imentation, we divide our dataset into three parts dedicated to
training, validation and testing. We recall that data are annot-
ated according to the previous acquisition forming 4 pairs of
PCs. As can be seen in Table 2, each class is not equival-
ently represented in each PCs. As a matter of fact, accumula-
tion class is very rare compared to eroded and even unchanged
areas. Thus the division of the dataset is made in such a way
that each split is as representative as possible of each class of
changes. Thereby, the split of pairs of PCs in each training,
validation and testing set is made as indicated in Table 3. Ac-
cumulation class is less represented in point clouds, thus we
divided the 2017-2018 pair into an eastern and a western part at
the dry valley of Petit Ailly (see Figure 1) to have examples of
accumulation in both the training and in the testing set.

Training set Validation set Testing set
2013-2016

2017-2018 West 2016-2017 2017-2018 East
2018-2020

Table 3. Split of the dataset into training, validation and testing
sets. For each pair of PCs, years relates to the year of acquisition
given in Table 1. The annotation is always given for the second

PC of the pair with regards to the first PC.

4.1.2 Experimental set-up To set-up experiments, we have
to choose the initial sub-sampling rate of PCs, called dl0. Thus,
no matter the type of input PC (TLS or TP), the input PC’s res-
olution at the first layer is always the same. Notice that final
results are interpolated back to initial PC resolution given in
Table 1. In our mind, dl0 should be chosen as small as possible
to stick with PC initial density, while in the same time fitting
with available memory in the Graphical Processing Unit (GPU).
Finally, this first sub-sampling rate is directly linked with the

size of input given to the network. Indeed, as for satellite im-
ages divided into patches, PCs are also sub-divided to feed the
network. Conversely to urban change detection experiments
made with Siamese KPConv, we choose here to divide PCs into
spheres and not vertical cylinders. Indeed, in urban areas, the
motivation of considering cylinders instead of spheres is to be
sure to always include ground in vertical cylinders (de Gélis
et al., 2021). The case of study here is quite different, and
spheres appear more suited than cylinders because they con-
tain less points, allowing to choose a larger radius. We recall
that considering too many points as input for the network leads
to memory capacity issues. Spheres are centered on a point
of the second date PC, thus the radius should not be chosen to
small to ensure to give also points of the first PC in case of
large changes as well as providing enough context. In Thomas
et al. (2019), the authors chose the radius of input sphere of
50 times dl0. However according to our own experiments, best
results were obtained with spheres of 10 m in diameter and dl0
set to 0.15 m. As far as other network hyper-parameters are
concerned, we use the same configuration as in de Gélis et al.
(2021): a Stochastic Gradient Descent (SGD) with momentum
to minimize a point-wise negative log-likelihood loss, with a
batch size of 10, a momentum of 0.98 and an initial learning
rate of 10−2. The learning rate is scheduled to decrease expo-
nentially. A probability dropout of 0.5 in the last classification
layers is set. Also, in order to prevent from over-fitting, we set
a L2 loss regularization with a factor of 10−6. As the dataset is
largely imbalanced, the loss is weighted according to training
set class distribution.
In the following experiment, we decided to normalize input
spheres along X and Y axis by retrieving the minimum value
into the sphere of X and Y axis respectively. As for the ver-
tical Z axis, we do not perform a normalization with regards to
the minimum value in the whole cliff, so to keep information
related to elevation. Indeed, this may help for change classi-
fication, in particular for accumulation class since it is mainly
located at the cliff foot.
We provide a comparison with a popular distance-based method,
Multiscale Model to Model Cloud Comparison (M3C2), giving
a mean surface change along a normal direction (Lague et al.,
2013). Based on this distance, we apply an empirical threshold-
ing at -0.2 m and 0.2 m to extract accumulation, unchanged and
erosion aeras. Even though M3C2 is not specifically designed
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Figure 3. Siamese KPConv network architecture (de Gélis et al., 2021).

to categorize surface changes, this allows to compare Siamese
KPConv quantitative results to another method, it is discussed
in Section 5.1.

4.1.3 Metrics Finally, in order to provide quantitative as-
sessment, we measure the Intersection over Union (IoU) for
each classes as well as the mean IoU (mIoU). The IoU is given
by the following equation:

IoU =
TP

TP + FP + FN
(1)

where TP, TN, FP and FN respectively stand for True Positive,
True Negative, False Positive and False Negative.

4.2 Qualitative and quantitative results

Qualitative results are presented in Figures 4, 5 and 6 corres-
ponding to each part of the testing dataset. As we can see, the
predictions provided by Siamese KPConv prediction are close
to the ground truth. Erosion great structures are well recog-
nized, and even smaller parts of erosion seem to be highlighted
as it can be seen on the right side of Figure 5. Quantitative res-
ults are shown in Table 4. We report results for the three classes
of interest: unchanged, erosion and accumulation. We remind
that the class “no data to compare” is not a class of change and
is a bit subjective as it depends on annotator confidence in ex-
isting surrounding points in an area. In particular, per class IoU
indicates that unchanged area and erosion are mainly well clas-
sified as already shown on qualitative results. Main differences
with the ground truth appear at boundaries of erosion parts and
in some more intricate areas like in the top middle left side of
the Figure 5 where erosion, unchanged and “no data to com-
pare” classes are almost mixed up and cliff structure is more
complex. Accumulation class obtains a lower score in compar-
ison to erosion, surely explained by the only few accumulation
examples available in the whole dataset. Indeed training set
contains only 1.51 % of points for accumulation whereas the
erosion represents 33.83 % of points. Worth noting that testing
set follows the same trend (see Figure 4(a), 5(a) and 6(a)). How-
ever, and as shown in Figure 4, it remains quite well retrieved.
Main confusions for this class appear also at the boundary of
accumulation zone and in “no data to compare” areas where
there are some isolated points predicted as accumulation.
Concerning the “no data to compare” class, main parts classi-
fied as “no data to compare” in the ground truth are also clas-
sified like this by Siamese KPConv. However there seem to be
more areas identified as “no data to compare” by the network.
Indeed, in some parts, only a few points allow the annotator to

be sure that there is or not a change whereas in some other parts,
the identification of change is trickier, or even impossible, so it
has been marked as “no data to compare”. Thereby, ground
truth and prediction should not be strictly compared. Finally, in
Table 4 we also report the mean of IoU over classes of interest
(mIoUint) so the mIoU without the subjective “no data to com-
pare” class.

Per class IoU(%)
Unchanged Erosion Acc. mIoUint

Siam. KPConv 91.94 83.86 70.28 82.03
M3C2 + threshold 95.06 87.23 48.20 68.12

Table 4. Quantitative results for Siamese KPConv and M3C2
methods for change detection and categorization. Acc. stands

for accumulation.

(a)

(b)
Unchanged Erosion
Accumulation No data to compare

Figure 4. Results on east part of the cliffs between 2017 and
2018 acquisition. Points of the ground truth (a) and in Siamese

KPConv results (b) are colorized according to the change.

5. DISCUSSION

5.1 Comparison with M3C2 results

In Table 4, a comparison with the distance-based method M3C2
is made. To distinguish between types of changes, a threshold
is applied on this distance. According to Table 4, even if quant-
itative results for unchanged and erosion classes are higher for

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2022-649-2022 | © Author(s) 2022. CC BY 4.0 License.

 
653



(a)

(b)
Unchanged Erosion
Accumulation No data to compare

Figure 5. Results on east part of the cliffs between 2018 and
2020 acquisition. Points of the ground truth (a) and in Siamese

KPConv results (b) are colorized according to the change.

(a)

(b)
Unchanged Erosion
Accumulation No data to compare

Figure 6. Results on west part of the cliffs between 2018 and
2020 acquisition. Points of the ground truth (a) and in Siamese

KPConv results (b) are colorized according to the change.

M3C2 method, general results given by mIoUint and score of
accumulation class are better for Siamese KPConv method. Let
us note that M3C2 results are only based on a measure of dis-
tance between two PCs (quantitative evaluation) whereas Sia-
mese KPConv also gives an interpretation of changes by giving
directly a categorization. Siamese KPConv automatically ex-
tracts features based on points neighborhood at different scales
(with Kernel Point convolution operations). For example, for
accumulation class, the morphology and position with regards
to the cliffs should be taken into account. Indeed the accumu-
lation can appear “behind” the first PC, and therefore not be
highlighted as accumulation by M3C2 method (negative dis-
tance), when the stock of debris accumulated at the foot of the
cliff decreases from one survey to the next. Finally, Siamese
KPConv gives a categorization of changes based on surround-
ings of points. For a generalization on various types of cliffs,
other classes of change (e.g. on vegetation) could be added us-
ing Siamese KPConv method which would not be possible with
a threshold applied on a distance-based method such as M3C2.

5.2 Class representativity

The method developed here can be applied on cliffs with vari-
ous slope degrees with satisfactory results but it should be noted
that the results are dependent to the annotation quality. Notice
that the same protocol for the cleaning of 3D PCs and annota-
tion should be applied for each pair of PCs. Despite encour-
aging results obtained by this method, supervised deep learn-
ing still requires a dataset both large and representative of each
class during the training phase. Thus, the accumulation class
that is under-represented might obtain better results if our data-
set contained more examples. The same remarks stand for the
“no data to compare” class, which is also (as mentioned in Sec-
tion 4.2) more subjective. Conversely to urban applications,
cliff variability is important (especially in cavity) so inform-
ation from missing data at the first PC of the pair cannot be
interpolated as it is done for hidden building facade in urban
environment (de Gélis et al., 2021). Hence the necessity of cre-
ating this class in areas where no conclusion about cliff dynam-
ics can be drawn.

5.3 Artifact robustness

Then, it is worth noting that input data are registered together.
However after the experimentation, we noticed a Z off-set error
on the eastern part of the 2013-2016 pair, probably due to a tar-
get movement during the survey or the depression of the TLS
during acquisition on a wet sandy foreshore, leading to misla-
beling of erosion parts. Although this pair is in the training set,
we saw that erosion identification is satisfactory, showing ro-
bustness of the method to acquisition artifacts and mislabeled
data during the training.
Because of their verticality, Normandy chalk cliffs and more
precisely Varengeville-sur-Mer cliffs have a very scarce veget-
ation cover limiting the training on vegetation growth and re-
treat. Hence, these classes are ignored. Nevertheless, these
classes should be considered if applying the method on veget-
alized cliffs.

5.4 Training configurations

In order to select the best training configuration, several settings
of input data have been tested. As explained in Section 4.1, in-
put geometry (sphere or cylindrical) as well as first sub-sampling
rate dl0 have an influence on results. Indeed, considering a
too large sphere radius implies a higher sub-sampling rate, thus
avoiding change extraction. Similarly, choosing a too thin sub-
sampling rate requires to diminish input sphere radius imply-
ing that not enough context can be taken into account for fea-
ture extraction. Furthermore, we noticed that with spheres of
a fixed 10 m in diameter, diminishing the sub-sampling rate fi-
nally does not improve results: this may be explained by the
fact that setting dl0 to 0.15 m is enough accurate compared to
ground truth precision. Thereby, the sub-sampling rate and the
size of input sphere should be chosen according to the level of
details of the ground truth.
We have reported results with spherical sub-PCs, conversely to
the vertical cylindrical inputs used in original Siamese KPConv
(de Gélis et al., 2021) that were motivated by the verticality of
changes and the need for including ground in PCs. In our cliff
context, changes are more likely to happen on horizontal axis,
so we also conducted an experiment by taking some cylindrical
inputs oriented according to north-south axis as the cliff is ori-
ented along eastern-western axis (see Figure 1). Results were
quite similar to those obtained with spherical inputs. Another
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idea would have been to select cylinder oriented according to
the normal of the cliff face to be more precise in the orientation
of cylinder.
Finally, for presented experiments, the training time was about
20 hours on a single GPU (Titan RTX), while the prediction for
the whole testing set (see Table 3) takes about 8 minutes.

5.5 Erosion detection scale

The method developed here presents an interest for the long-
term monitoring of cliffs since it allows the detection of mass
movements of rocks. In order to detect debris falls, more time
should be spend to annotate data very accurately and adjust-
ment of the first sub-sampling rate (dl0) is required. This rate
should be chosen equal or thinner than debris size, worth noting
that the minimum threshold for detecting erosion and accumu-
lation would be the Ground Sampling Distance (GSD) of the
sparser PC of the initial dataset. Thus, initial clouds resolution
should be homogeneous and adequate regarding to the size of
the minimal debris falls to detect. Indeed, without homogen-
eity between the resolutions of the different datasets, detection
artifacts could appear.

6. CONCLUSIONS

In this study, we tackle erosion detection on cliff faces thanks
to a recent deep learning network for change detection and cat-
egorization: Siamese KPConv (de Gélis et al., 2021). To the
best of our knowledge, this is the first study where changes in
cliff faces are extracted and classified thanks to a deep learn-
ing method processing raw 3D point clouds (PCs). Despite the
limited training set, we have reported very encouraging results,
with a mean of Intersection over Union (mIoU) over classes of
interest (unchanged area, erosion and accumulation) of 82.03
%. More particularly, erosion detection results (with an IoU
of 83.86 %) seems enough for future applications, as discussed
further. Indeed, once eroded points have been identified, one
can try to determine the eroded volume. To do so, a stand-
ard technique consists in using a 3D Convex Hull method (Pre-
parata and Hong, 1977; Johansen and Gram, 1983) to extract
eroded area in both PCs of each pair, before estimating the
volume between the two dates. Given the promises of deep
learning, one can also try to tackle erosion detection and quan-
tification with an end-to-end trainable model.
The results presented in this study are obtained from point clouds
produced by Terrestrial Laser Scanning (TLS) or Terrestrial Pho-
togrammetric (TP) methods. Even if densities and resolutions
of the PCs resulting from these methods are very different, we
have reported promising results, demonstrating the robustness
to point density variations and encouraging us to integrate PCs
from other sources. However, a “measurement bias” class should
be added in order to use PCs from new sensors and methods
such as satellite imagery. Indeed, density of PCs retrieved from
satellite stereo-restitution (Letortu et al., 2020, 2021) is lower
(about 2.7 pts/m2 for satellite stereo-restitution using Pléiades
images) and more irregular than PCs from TLS or TP surveys.
Therefore, annotation is more difficult and less accurate since
only sufficiently large changes will be visible to the human eye.
Thus, the network should be better trained with PCs coming
from a large panel of various resolutions. However, integrating
satellite photogrammetric PCs in the network would allow to i)
work on a data set with heterogeneous resolution and precision
and ii) analyze dynamics at a larger scale. Finally, these results
would allow to automate the monitoring of coastal changes, ad-

vocated in particular by governments and coastal observatories
in order to improve the management of the associated risks.
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