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Abstract. Despite the close relationship between planetary
science and plasma physics, few advanced numerical tools
allow bridging the two topics. The code Menura proposes a
breakthrough towards the self-consistent modelling of these
overlapping fields, in a novel two-step approach allowing for
the global simulation of the interaction between a fully turbu-
lent solar wind and various bodies of the solar system. This
article introduces the new code and its two-step global algo-
rithm, illustrated by a first example: the interaction between
a turbulent solar wind and a comet.

1 Introduction

For about a century, three main research fields have taken
an interest in the various space plasma environments found
around the Sun. On the one hand, two of them, namely plan-
etary science and solar physics, have been exploring the solar
system, to understand the functioning and history of its cen-
tral star, and of its myriad of orbiting bodies. On the other
hand, the third one, namely fundamental plasma physics, has
been using the solar wind as a handy wind tunnel which al-
lows researchers to study fundamental plasma phenomena
not easily reproducible on the ground, in laboratories. Dur-
ing the last decades, the growing knowledge of these com-
munities has led them to research on ever more overlap-
ping topics. For instance, planetary scientists were initially
studying the interaction between solar system bodies and a
steady, ideally laminar solar wind, but they soon had to con-
sider its eventful and turbulent nature to go further in the

in situ space data analysis, further in their understanding of
the interactions at various obstacles. Similarly, plasma physi-
cists were originally interested in a pristine solar wind unaf-
fected by the presence of obstacles. They however realised
that the environment close to these obstacles could provide
combinations of plasma parameters otherwise not accessible
to their measurements in the unaffected solar wind. For a
while now, we have seen planetary studies focusing on the
effects of solar wind transient effects (such as coronal mass
ejection, CME, or co-rotational interaction region, CIR) on
planetary plasma environments, on Mars (Ramstad et al.,
2017), Mercury (Exner et al., 2018), Venus (Luhmann et al.,
2008) and comet 67P/C-G (Edberg et al., 2016; Hajra et al.,
2018) to only cite a few, the effect of large-scale fluctuations
in the upstream flow on Earth’s magnetosphere (Tsurutani
and Gonzalez, 1987), and more generally the effect of solar
wind turbulence on Earth’s magnetosphere and ionosphere
(D’Amicis et al., 2020; Guio and Pécseli, 2021). Similarly,
plasma physicists have developed comprehensive knowledge
of plasma waves and plasma turbulence in the Earth’s mag-
netosheath, presenting relatively high particle densities and
electromagnetic field strengths, favourable for space instru-
mentation, and in a region more easily accessible to space
probes than regions of unaffected solar wind (Borovsky and
Funsten, 2003; Rakhmanova et al., 2021). More recently, the
same community took an interest in various planetary mag-
netospheres, depicting plasma turbulence in various locations
and of various parameters (Saur, 2021, and all references
therein).
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Various numerical codes have been used for the global
simulation of the interaction between a laminar solar wind
and solar system bodies, using MHD (Gombosi et al., 2004),
hybrid (Bagdonat and Motschmann, 2002), or fully kinetic
(Markidis et al., 2010) solvers. Similarly, solar wind turbu-
lence in the absence of an obstacle has also been simulated
using similar MHD (Boldyrev et al., 2011), hybrid (Franci
et al., 2015), and fully kinetic (Valentini et al., 2007) solvers.
In this context, we identify the lack of a numerical approach
for the study of the interaction between a turbulent plasma
flow (such as the solar wind) and an obstacle (such as a mag-
netosphere, either intrinsic or induced). Such a tool would
provide the first global picture of these complex interactions.
By shedding light on the long-lasting dilemma between in-
trinsic phenomena and phenomena originating from the up-
stream flow, it would allow invaluable comparisons between
self-consistent, global, numerical results, and the worth of
observational results provided by the various past, current
and future exploratory space missions in our solar system.

The main points of interest and main questions motivating
such a model can be organised as such:

– macroscopic effects of turbulence on the obstacle

– shape and position of the plasma boundaries (e.g.
bow shock, magnetopause),

– large-scale magnetic reconnection,

– atmospheric escape,

– dynamical evolution of the magnetosphere.

– microscopic physics and instabilities within the interac-
tion region, induced by upstream turbulence

– energy transport by plasma waves,

– energy conversion by wave–particle interactions,

– energy transfers by instabilities.

– the way incoming turbulence is processed by planetary
plasma boundaries

– sudden change of spatial and temporal scales,

– change of spectral properties,

– existence of a memory of turbulence downstream
magnetospheric boundaries.

Indirectly, because of the high numerical resolution re-
quired to properly simulate plasma turbulence, this numeri-
cal experiment will provide an exploration of the various ob-
stacles with the same high resolution in both turbulent and
laminar runs, resolutions that have rarely been reached for
planetary simulations, except for Earth’s magnetosphere.

Menura, the new code presented in this publication, splits
the numerical modelling of the interaction into two steps.
Step 1 is a decaying turbulence simulation, in which electro-
magnetic energies initially injected at the large spatial scales

of the simulation box cascades towards smaller scales. Step
2 uses the output of Step 1 to introduce an obstacle moving
through this turbulent solar wind.

The code is written in C++ and uses CUDA APIs for
running its solver exclusively on multiple graphics pro-
cessing units (GPUs) in parallel. Section 2 introduces the
solver, which is tested against classical plasma phenomena
in Sect. 3. Sections 4 and 5 tackle the first and second step of
the new numerical modelling approach, illustrating the de-
caying turbulence phase, and introducing the algorithm for
combining the output of Step 1 together with the modelling
of an obstacle (Step 2). Section 6 presents the first global re-
sult of Menura, providing a glimpse of the potential of this
numerical approach, and introducing the forthcoming stud-
ies.

Menura source code is open source, available under the
GNU General Public License.

2 The solver

In order to (i) achieve global simulations of the interac-
tions while (ii) modelling the plasma kinetic behaviour, with
regard to the computation capabilities currently available,
a hybrid particle-in-cell (PIC) solver has been chosen for
Menura. This well-established type of model resolves the
Vlasov equation for the ions by discretising the ion distri-
bution function as macroparticles characterised by discrete
positions in phase space, and electrons as a fluid, with char-
acteristics evaluated at the nodes of a grid, together with ion
moments and electromagnetic fields. The fundamental com-
putational steps of a hybrid PIC solver are the following:

– particles’ position advancement, or “push”;

– particles’ moments mapping, or “gathering”: density,
current, eventually higher order, as required by the cho-
sen Ohm’s law;

– electromagnetic field advancement, using either an
ideal, resistive or generalised Ohm’s law and Faraday’s
law;

– Particles’ velocity advancement, or “push”.

These steps are summarised in Fig. 1. Details about these
classical principles can be found in Tskhakaya (2008) and
references therein. The bottleneck of PIC solvers is the par-
ticles’ treatment, especially the velocity advancement and
the moments computation (namely density and current). The
simulation of plasma turbulence especially requires large
numbers of macroparticles per grid node. We therefore want
to minimise both the number of operations done on the par-
ticles and the number of particles itself. A popular method
which minimises the number of these computational passes
through all particles is the current advance method (CAM)
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(Matthews, 1994), for instance used for the hybrid mod-
elling of turbulence by Franci et al. (2015). Figure 1 presents
Menura’s solver algorithm, built around the CAM, similar to
the implementation of Bagdonat and Motschmann (2002). In
this scheme, only four passes through all particles are per-
formed, one position and one velocity pushes and two par-
ticle moments mappings. The second moment mapping in
Fig. 1, i.e. Step 2, also produces the two pseudo-moments 3
and 0 used to advance the current as follows:

3=
∑
p

q2

m
W (rn+1) , (1)

0 =
∑
p

q2

m
vn+1/2W (rn+1) , (2)

Jn+1 = Jn+1/2+
1t

2

(
3E∗+0×B

)
, (3)

with E∗ the estimated electric field after the magnetic field
advancement of Step 4. W(rn+1) is the shape function,
which attributes different weights for each node surrounding
the macroparticle (Tskhakaya, 2008).

Central finite differences using a five-point stencil for eval-
uating derivatives as well as second-order interpolations are
used throughout the solver. The algorithm evaluates all fields
values at the nodes (or equivalently cell centres in this pre-
cise case) of the grid. In Appendix B, we discuss how such
a scheme actually conserves ∇ ·B= 0, as initially shown by
Tóth (2000). Additionally, Appendix B illustrates the evolu-
tion of the total energy of the system.

The grid covering the physical simulation domain has an
additional two-node wide band, the guard or ghost nodes,
allowing one to solve derivatives using (central) finite differ-
ences at the very edge of the physical domain. For periodic
boundary conditions, as used along all directions during Step
1 of the simulation, the values at the opposite edge of the
physical domain are copied to the guard nodes. Other bound-
ary conditions will be discussed later when introduced.

The mapping of the particle moments is done using an
order-two, triangular shape function: one macroparticle con-
tributes to 9 grid nodes in 2D space (respectively 27 in 3D
space), using 9 (respectively 27) different weights. The inter-
polation of the field values from the nodes to the macropar-
ticles’ positions uses the exact same weights, with 9 (respec-
tively 27) neighbouring nodes contributing to the fields val-
ues at a particle position.

As illustrated in Fig. 1, the position and velocity advance-
ments are done at interleaved times, similarly as a classical
second-order leap-frog scheme. However, since the positions
of the particles are needed to evaluate their acceleration, the
CAM scheme is not strictly speaking a leap-frog integration
scheme. Another difference in this implementation is that ve-
locities are advanced using the Boris method (Boris, 1970).

Ohm’s law is at the heart of the hybrid modelling of plas-
mas. Menura uses the following form of the law, here given

in SI units. In this formulation, the electron inertia is ne-
glected, and the quasi-neutral approximation n∼ ni ∼ ne is
used (Valentini et al., 2007). Additionally, neglecting the
time derivative of the electric field in Ampere–Maxwell’s law
(Darwin’s hypothesis), one gets the total current through the
curl of the magnetic field. This formulation highlights the
need for only three types of variables to be followed through
time, namely the magnetic field, and the particles position
and velocity, while all other variables can be reconstructed
from these three.

E=−ui×B+
1
en

J×B−
1
en
∇ ·pe− ηh∇

2J (4)

Faraday’s law is used for advancing the magnetic field in
time:

∂B
∂t
=−∇×E. (5)

The electron pressure is obtained assuming it results from
a polytropic process, with an arbitrary index κ , to be chosen
by the user. In all the results presented below, an index of 1
was used, corresponding to an isothermal process.

pe = pe0

(
ne

ne0

)κ
(6)

Using much less memory than the particles’ variables, the
fields can be advanced in time using a smaller time step and
another leap-frog-like approach, as illustrated in Fig. 1, Step
4 (Matthews, 1994).

Additional spurious high-frequency oscillations are the de-
fault behaviour of finite differences schemes. Two main fam-
ilies of methods are used to filter out these features, the first
being an additional step of field smoothing, the second us-
ing the direct inclusion of a diffusive term in the differen-
tial equation of the system, acting as a filter (Maron et al.,
2008). For Menura, we have retained the second approach,
implementing a term of hyper-resistivity in Ohm’s law, in-
troducing the Laplacian of the total current and the hyper-
resistivity coefficient, ηh∇

2J. The dissipative scale Ldis of
such a term is characterised by the physical time of the
simulation T = nb. iterations×dt and the resistivity, such as
Ldis = (ηh · T )

1/4.
The stability of hybrid solvers is sensitive to low ion den-

sities. We use a threshold value equal to a few percent of the
background density, 5 % in the following examples, thresh-
old below which a node is considered as a vacuum node,
and only the resistive terms of the generalised Ohm’s law of
Eq. (4) are solved using a higher value of resistivity ηh vacuum
(Holmström, 2013). This way, terms proportional to 1/n do
not exhibit nonphysical values where the density may get lo-
cally very low, due to the thermal noise of the PIC macropar-
ticle discretisation.

All variables in the code are normalised using the back-
ground magnetic field amplitude B0 and the background

https://doi.org/10.5194/angeo-40-281-2022 Ann. Geophys., 40, 281–297, 2022
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Figure 1. Algorithm of Menura’s solver, with its main operations numbered from 0 to 8, as organised in the main file of the code. r and v

are the position and velocity vectors of the macroparticles. Together with the magnetic field B, they are the only variables necessary for the
time advancement. The electric field E, the current J, and the charge density ρ, as well as the CAM pseudo-moments 3 and 0, are obtained
from r , v and B.

plasma density n0. All variables are then expressed in terms
of either these two background values, or equivalently in
terms of the proton gyrofrequency ωci0 and the Alfvén ve-
locity vA0. We define normalised variables ã as obtained by
dividing its physical value by its “background” value:

ã =
a

a0
. (7)

All background values are given in Table 1, and the nor-
malised equations of the solver are given in Appendix A.

3 Physical tests

In this section, the code is tested against well-known, colli-
sionless plasma processes, and their solutions are given by
the linear full kinetic solver WHAMP (Rönnmark, 1982). A
polytropic index of 1 is used here, with no resistivity. We
first explore MHD scales, simulating Alfvénic and magne-
tosonic modes. We use a 2-dimensional spatial domain with

Table 1. Background values used to normalise all variables in the
solver (cf. Eq. 7).

B0 B0
n0 n0
v0 vA0 = B0/

√
µ0min0

ω0 ωci0 = eB0/mi
x0 di0 = vA0/ωci0
t0 1/ωci0
E0 vA0 ·B0
p0 B2

0/(2µ0)

m0 min0x
3
0

q0 en0x
3
0

one preferential dimension chosen as x. A sum of six co-
sine modes in the component of the magnetic field along the
x direction are initialised, corresponding to the first six har-
monics of this periodic box. The amplitude of these modes
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is 0.05 times the background magnetic field B0, which is
taken either along (Alfvén mode) or across (magnetosonic
mode) the propagation direction x. Data are recorded along
time and along the main spatial dimension x (saving one cut,
given by one single index along the y direction), resulting in
the 2D field B(x, t). The 2-dimensional Fourier transform of
this field is given in Fig. 2 (Alfvénic fluctuations to the left,
magnetosonic to the right). On this (ω,k) plane, each mode
can be identified as a point of higher power, six points for
six initial modes. The solutions given by WHAMP for the
same plasma parameters are shown by the solid lines, and a
perfect match is found between the two models. Close to the
ion scale k ·di0 = 1, WHAMP and Menura display two differ-
ent branches that originate from the Alfvén mode, splitting
for higher frequencies into the whistler and the ion cyclotron
branches. The magnetosonic modes were also tested using a
different polytropic index of 5/3 instead of 1, resulting in a
shift of the dispersion relation along the ω axis. Changing the
polytropic index in both Menura and WHAMP resulted in the
same agreement.

With the MHD scales down to ion inertial scales now vali-
dated, we explore the ability of the solver to account for fur-
ther ion kinetic phenomena, first with the classical case of
the two-stream instability (also known as the ion-beam insta-
bility, given the following configuration). Two Maxwellian
ion beams are initialised propagating with opposite velocities
along the main dimension x. A velocity separation of 15vth
(the ion thermal speed) is used in order to excite only one
unstable mode. The linear kinetic solver WHAMP is used to
identify the expected growth rate associated with the linear
phase of the instability, before both beams get strongly dis-
torted and mixed in phase space during the nonlinear phase
of the instability (not captured by WHAMP). During this lin-
ear phase, Menura results in a growing circularly polarised
wave, and the amplitude’s growth of the wave is shown in
Fig. 3. Both growth rates match perfectly.

Finally, we push the capacities of the model to the case of
the damping of an ion acoustic wave through Landau reso-
nance. A very high number of macroparticles per grid node
is required to resolve this phenomenon, so enough resonant
particles take part in the interaction with the wave. The am-
plitude of the initial, single acoustic mode is taken as 0.01
times the background density, taken along the main spatial
dimension of the box. This low amplitude, allowing for com-
parison with the linear solver, further increases the need for
a high number of particle per node, so the 1 % oscillation in
number density can be resolved by the finite number of par-
ticles. For this run, 32 768 (215) particles per grid node were
used. The decrease in the density fluctuation through time,
spatially averaged, is shown in Fig. 3, with again the corre-
sponding solution from WHAMP. A satisfying agreement is
found during the first six oscillations, before the noise in the
hybrid solver output (likely associated with the macroparti-
cle thermal noise) takes over. Admittedly, the number of par-
ticles per node necessary to well resolve this phenomenon is

not practical for the global simulations which Menura (to-
gether with all global PIC simulations) aims for.

For the classical tests presented above, spanning over
MHD and ion kinetic scales tests, Menura agrees with the-
oretical and linear results. In the next section, the simulation
of a decaying turbulent cascade provides one final physical
validation of the solver, through all these scales at once.

4 Step 1: decaying turbulence

We use Menura to simulate plasma turbulence using a decay-
ing turbulent cascade approach: at initial time t = 0, a sum
of sine modes with various wave vectors k, spanning over
the largest spatial scales of the simulation domain, are added
to both the homogeneous background magnetic field B0 and
the ion bulk velocity ui. Particle velocities are initialised ac-
cording to a Maxwellian distribution, with a thermal speed
equal to one Alfvén speed, and a bulk velocity given by the
initial fluctuation. Without any other forcing later on, this ini-
tial energy cascades, as time advances, towards lower spatial
and temporal scales, forming vortices and reconnecting cur-
rent sheets (Franci et al., 2015). Using such Alfvénic pertur-
bation is motivated by the predominantly Alfvénic nature of
the solar wind turbulence measured at 1 au (Bruno and Car-
bone, 2013).

In this 2-dimensional set-up, B0 is taken along the z direc-
tion, perpendicular to the simulated spatial domain (x,y),
whereas all initial perturbations are defined within the sim-
ulation plane. Their amplitude is 0.5 B0, while their wave
vectors are taken with values between kinj, min = 0.01 d−1

i0
and kinj, max = 0.1 d−1

i0 , so energy is only injected in MHD
scales, in the inertial range (Kiyani et al., 2015). Because
we need these perturbation fields to be periodic along both
directions, the kx and ky of each mode corresponds to har-
monics of the simulation box dimensions. Therefore, a finite
number of wave vector directions is initialised. Along these
constrained directions, each mode in both fields has two dif-
ferent, random phases. The magnetic field is initialised such
that is it divergence-free.

For this example, the box is chosen to be 500 di0 wide
on both dimensions, subdivided by a grid 10002 nodes wide.
The corresponding 1x is 0.5 di0, and spatial frequencies are
resolved over the range [0.0062, 6.2] d−1

i0 . The time step is
0.05 ω−1

ci0; 2000 particles per grid node are initialised with
a thermal speed of 1 vA. The temperature is isotropic and a
plasma beta of 1 is chosen for both the ion macroparticles
and the electronic massless fluid. The polytropic index is 1
and a normalised hyper-resistivity of ηh = 2 · 10−3 is used,
corresponding to a dissipative scale at time t = 500ω−1

ci0 of 1.
di0, i.e. the scale of the smallest fluctuations simulated with
a node spacing of 1x = 0.5di0.

At time t = 500ω−1
ci0, the perpendicular (in-plane) fluctu-

ations of the magnetic field reached the state displayed in
Fig. 4, left-hand panel. Vortices and current sheets give a

https://doi.org/10.5194/angeo-40-281-2022 Ann. Geophys., 40, 281–297, 2022
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Figure 2. MHD modes dispersion relations, as solved by WHAMP and Menura. B0 = 1.8 nT, n0 = 1.0 cm−3, Ti0 = 104 K, Te0 = 105 K.
(a) Alfvénic modes, B0 taken along the main spatial dimension. (b) Magnetosonic modes, B0 taken perpendicular to the main spatial
dimension.

Figure 3. (a) Growth during the linear phase of the ion–ion two-stream instability; (b) Landau damping of an ion acoustic mode. Two-
stream instability:B0 = 1.8 nT, n0 = 1.0 cm−3, Ti0 = 102 K, Te0 = 103 K. Landau damping:B0 = 1.8 nT, n0 = 5.0 cm−3, Ti0 = 1.5×104 K,
Te0 = 105 K

maximum B⊥/B0 of about 1, a result consistent with so-
lar wind turbulence observed at 1 au (Bruno and Carbone,
2013). The omni-directional power spectra of both the in-
plane magnetic field fluctuations and the in-plane ion bulk
velocity fluctuations are shown in the right-hand panel of the
same figure. Omni-directional spectra are computed as fol-

lows, with f̂ the (2D) Fourier transform of f :

Pf
(
kx,ky

)
= |f̂ |2. (8)

These spectra are not further normalised and are given in
arbitrary units. We then compute a binned statistics over this
2-dimensional array to sum up its values within the chosen
bins of k⊥, which correspond to rings in the (kx,ky) plane.
The width of the rings, constant through all scales, is arbitrar-
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Table 2. Initial parameters of the decaying turbulence run.

B0 2.5 nT
n0 1 cm−3

ωci0 0.24 s
di0 228 km
vA0 55 km s−1

vthi0 55 km s−1

βi0 = βe0 1
B⊥0/B0 0.7

ily chosen so the resulting 1-dimensional spectrum is well
resolved (not too few bins), and not too noisy (not too many
bins).

Pf (k⊥)=
∑

k⊥∈[k⊥0, k⊥0+δk⊥]

|f̂ |2 (9)

For a vector field such as B⊥ = (Bx,By), the spectrum is
computed as the sum of the spectra of each field component:

PB⊥(k⊥)= PBx (k⊥)+PBy (k⊥). (10)

The perpendicular magnetic and kinetic energy spectra
exhibit power laws over the inertial (MHD) range consis-
tent with spectral indexes −5/3 and −3/2, respectively, be-
tween kinj max = 0.1 d−1

i0 and break points around 0.5 d−1
i0 .

We remind that a spectral index −5/3 is consistent with the
Goldreich–Sridhar strong turbulence phenomenology (Gol-
dreich and Sridhar, 1997) that leads to a Kolmogorov-like
scaling in the plane perpendicular to the background mag-
netic field, while a spectral index −3/2 is consistent with
the Iroshnikov–Kraichnan scaling (Kraichnan, 1965). These
spectral slopes are themselves consistent with observations
of magnetic and kinetic energy spectra associated with solar
wind turbulence (Podesta et al., 2007; Chapman and Hnat,
2007). For higher wavenumbers, both spectral slopes get
much steeper, and after a transition region within [0.5, 1.0]
d−1

i0 get to a value of about −3.2 and −4.5 when reaching
the proton kinetic scales for respectively the perpendicular
magnetic and kinetic energies, consistent with spectral index
found at sub-ion scales by previous authors (Franci et al.,
2015; Sahraoui et al., 2010, e.g.). Additionally, the initial
spectra of the magnetic field and bulk velocity perturbations
are over-plotted, to show where the energy is injected in the
lower spatial frequencies (using the magnetic field fluctua-
tions), and the level of noise introduced by the finite number
of particles per node used, at high frequencies (using the bulk
velocity field).

5 Step 2: obstacle

Menura has shown satisfactory results on plasma turbu-
lence, over 3 orders of magnitude in wavenumbers. We now
start the second phase of the simulation, resuming it at

t = 500ω−1
ci0 , corresponding to the snapshot studied in the

previous section. We keep all parameters unchanged (in-
cluding the polytropic index of 1 and the hyper-resistivity
of 1.5× 10−3) but add an obstacle with a relative velocity
with regard to the frame used in the first phase, evolving
through this developed turbulence. Particles and fields are
advanced with the exact same time and spatial resolutions
as previously, so the interaction between this obstacle and
the already-present turbulence is solved with the same self-
consistency as in the first phase, with only one ingredient
added: the obstacle.

5.1 A comet

This obstacle is chosen here to be an intermediate activity
comet, meaning that its neutral outgassing rate is typical of
an icy nucleus at a distance of about 2 au from the Sun. A
comet nucleus is from a few to a few tens of kilometres large,
with a gravitational pull not strong enough to overcome the
kinetic energy gained by the molecules during sublimation.
Comprehensive knowledge on this particular orbital phase of
comets has recently been generated by the European Rosetta
mission, which orbited its host comet for 2 years (Glassmeier
et al., 2007). The first and foremost interest of such an object
for this study is the size of its plasma environment, which
can be evaluated using the gyroradius of water ions in the
solar wind at 2 au. The expected size of the interaction region
is about 4 times this gyro-radius (Behar et al., 2018), and
with the characteristic physical parameters of Table 2, the
estimated size of the interaction region is 480 di0. In other
words, the interaction region spans exactly over the range of
spatial scales probed during the first phase of the simulation,
including MHD and ion kinetic scales.

The second interest of a comet is its relatively simple nu-
merical implementation. Considering the spatial resolution
of the simulation, the solid nucleus can be neglected. By
also neglecting the gravitational force on molecules as well
as any intrinsic magnetic field, the obstacle is only made of
cometary neutral particles being photo-ionised within the so-
lar wind. Over the scales of interest for this study, the neutral
atmosphere can be modelled by a 1/r2 radial density pro-
file, and considering the coma to be optically thin, ions are
injected in the system with a rate following the same pro-
file. This is the Haser model (Haser, 1957), and simulating a
comet over scales of hundreds of di0 only requires injecting
cold cometary ions at each time step with the rate

qi(r)= νi · n0(r)=
νiQ

4πu0r2 , (11)

with r the distance from the comet nucleus of negligible size,
νi the ionisation rate of cometary neutral molecules, n0 the
neutral cometary density, Q the neutral outgassing rate, and
u0 the radial expansion speed of the neutral atmosphere.

One additional simplification is to limit the physico-
chemistry of the cometary environment to photo-ionisation,
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Figure 4. Decaying turbulence at time 500ω−1
ci0. (a) shows the squared in-plane (perpendicular) magnetic field amplitude, while (b) presents

the omnidirectional power density spectra of the same perpendicular magnetic field as well as the perpendicular velocity field.

thus neglecting charge exchanges between the solar wind and
the coma, as well as electron impact ionisation. Both pro-
cesses can significantly increase the ionisation of the neutral
coma (Simon Wedlund et al., 2019). A global increase or a
local change in the production profile is not expected to im-
pact the initial main goal of the model, which is to simulate
the turbulent nature of the solar wind during its interaction
with an obstacle. We note however that the influence of up-
stream turbulence on the physico-chemistry of an obstacle is
yet another promising prospect for the code.

5.2 Reference frame

The first phase of the simulation, the decaying turbulence
phase, was done in the plasma frame, in which the average
ion bulk velocity is 0. Classically, planetary plasma simu-
lations are done in the planet reference frame: the obstacle
is static and the wind flows through the simulation domain.
In this case, a global plasma reference frame is most of the
time not defined. In Menura, we have implemented the sec-
ond phase of the simulation – the interaction phase – in the
exact same frame as the first phase, which then corresponds
to the plasma frame of the upstream solar wind, before inter-
action. In other words, the turbulent solar wind plasma is kept
“static”, and the obstacle is moving through this plasma. The
reason motivating this choice is to keep the turbulent solar
wind “pristine”, by continuing its resolution over the exact
same grid as in phase one. Another motivation for working
in the solar wind reference frame is illustrated in Fig. 5, in
which we compare the exact same simulation done in each
frame, using a laminar upstream flow. If the macroscopic

result remains unchanged between the two frames, we find
strong small-scale numerical artifacts propagating upstream
of the interaction in the comet reference frame, absent in the
solar wind reference frame. Small-scale oscillations are com-
mon in hybrid PIC simulations and are usually filtered with
either resistivity and/or hyper-resistivity, or with an ad hoc
smoothing method. Note that none of these methods are used
in the present example. We demonstrate here the role of the
reference frame in the production of one type of small-scale
oscillations and ensure that their influence over the spectral
content of upstream turbulence is minimised, already without
the implemented hyper-resistivity.

To summarise, by keeping the same reference frame dur-
ing Step 1 and 2, the only effective difference between the
two phases is the addition of sunward moving cometary
macroparticles.

Another major advantage of working in the solar wind ref-
erence frame is the possibility to simulate magnetic field vari-
ations in all directions, including the relative plasma-object
direction. For studying the interaction between co-rotating
interaction regions and an object for instance, one needs to
vary the direction of the magnetic field upstream of the ob-
ject of interest. In the object reference frame, such a tempo-
ral variation of the magnetic field is frozen in the flow and
advected downstream through the simulation domain by the
convective electric field. Considering the ideal Ohm’s law
E=−ui×B and Faraday’s law ∂tB=−∇ ×E, and consid-
ering a plasma flowing along the x axis ui = uix̂, we get the
time evolution of each magnetic field component as

∂tBx = ∂y(uiBy)− ∂z(uiBz)
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Figure 5. The interaction between a comet and a laminar flow, in the object rest frame (a) and the upstream solar wind reference frame (b).
The magnetic field amplitude is shown.

∂tBy =−∂x(uiBy)

∂tBz = ∂z(uiBz).

The direct implication of this system is that any tempo-
ral variation we may force on the upstream Bx cannot have
a self-consistent influence on the time evolution of the mag-
netic field elsewhere: only variations forced along magnetic
field components perpendicular to the flow direction can be
advected downstream, through this ideal frozen-in condi-
tion. In contrast, when working in the solar wind reference
frame, we can impose spatial fluctuations of the magnetic
field (equivalently temporal in the object frame) in all direc-
tions: in this frame these fluctuations are not being advected;
it is rather the object itself moving through the fluctuations.
This effectively removes the constraint on flow-aligned varia-
tion of the magnetic field, opening up promising possibilities
for the simulation of various solar wind events, such as CIRs
or sector boundary crossings.

5.3 Algorithm

By working in the solar wind reference frame, the obstacle
is moving within the simulation domain. Eventually, the ob-
stacle would reach the boundaries of the box, before steady-
state is reached. We therefore need to somehow keep the ob-
stacle close to the centre of the simulation domain. This is
done by shifting all particles and fields of n1x every m iter-
ations, n,m ∈ N, as illustrated in Fig. 6. Using integers, the
shift of the field is simply a side-way copy of themselves
without the need of any interpolation, and the shift of the
particles is simply the subtraction of n1x to their x coordi-
nate. Field values as well as particles ending up downstream
of the simulation domain are discarded.

This leaves only the injection boundary to be dealt with.
There, we simply inject a slice of fields and particles picked
from the output of Step 1, using the right slice index in order
to inject the continuous turbulent solution, as shown in Fig. 6.
These slices are n1x wide.

With idx_it the index of the iteration, the algorithm il-
lustrated in Fig. 6 is then as follows:

– Inject cometary ions according to qi(r) (cf. Eq. 11).

– Advance particles and fields (cf. Fig. 1).

– If idx_it%m=0,

– shift particles and fields of -n1x.

– discard downstream values.

– inject upstream slice idx_slice from Step 1 out-
put.

– increment idx_slice.

– Increment idx_it.

This approach has one constraint, we cannot fine-tune the
relative speed v0 between the wind and the obstacle, which
has to be

v0 =
n

m

1x

1t
(12)

in order for the obstacle to come back to its position every
m iterations, and therefore not drift up- or downstream of the
simulation domain.
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Figure 6. Injection algorithm for simulating a moving object within the simulation domain.

5.4 CUDA and MPI implementation, performances

The computation done by Menura’s solver (Fig. 1) is entirely
executed on multiple GPUs (graphics processing units), writ-
ten in C++ in conjunction with the CUDA programming
model and the Message Passing Interface (MPI) standard,
which allows splitting the problem and distributing it over
multiple cards (i.e. processors). GPUs can run thousands
of threads simultaneously and can therefore tremendously
accelerate such applications. The first implementation of a
hybrid-PIC model on such devices was done by Fatemi et al.
(2017). However their still limited memory (up to 80 GB at
the time of writing) is a clear constraint for large problems,
especially for a turbulence simulation which requires a large
range of spatial scales and a very large number of particles
per grid node. The use of multiple cards becomes then un-
avoidable, and the communication between them is imple-
mented using a CUDA-aware version of MPI. The division
of the simulation domain in the current version of Menura
is kept very simple, with equal size rectangular sub-domains

distributed along the direction perpendicular to the motion of
the obstacle: one sub-domain spans the entire domain along
the x axis with its major dimension, as shown in Fig. 6. MPI
communication is done for particles after each position ad-
vancement and for fields after each solution of Ohm’s law
and Faraday’s law. But since the shift of fields and particles
described in the previous section is done purely along the
obstacle motion direction, no MPI communication is needed
after the shifts, thanks to the orientation of the sub-domains.

Another limitation in using GPUs is the data transfer time
between the CPU and the cards. In Menura, all variables are
initialised on the CPU and are saved from the CPU. Data
transfers are then unavoidable, before starting the main loop,
and every time we want to save the current state of the vari-
ables. During Step 2 of the simulation, a copy of the out-
puts of Step 1 is needed, which effectively doubles the mem-
ory needed for Step 2. This copy is kept on the CPU (in the
tank object) in order to make the most out of the GPU mem-
ory, in turn implying that more CPU–GPU communication is
needed for this second step. Every time we inject a slice of

Ann. Geophys., 40, 281–297, 2022 https://doi.org/10.5194/angeo-40-281-2022



E. Behar et al.: Menura 291

fields and particles upstream of the domain, only this num-
ber of data is copied from the CPU to the GPUs, using the
injector data structure as sketched in Fig. 6.

5.4.1 Profiling

For Step 1, the decaying turbulence ran 10 000 iterations, and
four NVIDIA V100 GPUs were used with 16 GB memory
each, corresponding to one complete node of the IDRIS clus-
ter Jean Zay. A total of 2 billion particles (500 million per
card) were initialised. The time for the solver on each card
reached a bit more than 3 h, with a final total cost of about
13 h of computation time for this simulation, taking into ac-
count all four cards, and the variables initialisation and out-
put. Step 2 was executed on larger V100 32 GB cards, pro-
viding much more room for the addition of 60 000 cometary
macroparticles per iteration.

During Step 1, 87.3 % of the computation time was spent
on moments mapping, i.e. steps 0 and 2 in the algorithm of
Fig. 1, while respectively 2.7 % and 0.8 % were spent on ad-
vancing the particles velocity and position. The computation
of Ohm’s and Faraday’s laws sums up to 0.5 %; 0.9 % was
utilised for MPI communication of field variables, while only
0.08 % was dedicated for particles MPI communication, due
to the limited particle transport happening in Step 1.

A total of 91 % of the total solver computation time is de-
voted to particles treatment, with 96 % of that part spent on
particle moment mapping, which might seem a suspiciously
large fraction. We note however that such a simulation is
characterised by its large number of particles per node, 2000
in our case. A total of 99.6 % of the total allocated memory
is devoted to particles. The time spent to map the particles
on the grid is also remarkably larger than the time spent to
update their velocity, despite both operations being based on
the same interpolation scheme. However, during the mapping
of the particle moments, thousands of particles need to incre-
ment the value at particular memory addresses (correspond-
ing to macroparticle density and flux), whereas during the
particle velocity advancement, thousands of particles only
need to read the value of the same addresses (electric and
magnetic field).

5.4.2 Scalability

An important part of performance testing for parallelised
codes is the scalability of the parallelisation. When each par-
allel process is serial (i.e. one thread for one process), the
strong and weak scaling of the code are classical perfor-
mance tests, with theoretical laws available for comparison
(respectively Amdahl’s law and Gustafson’s law). These laws
cannot be directly adapted to the case of devices that already
have a highly parallel structure, such as GPUs. We however
can approach the same strong and weak scaling properties of
the code to get some valuable insights on the performance of
the Menura’s MPI implementation.

Strong scaling refers to the speed-up (gain of computa-
tion time) obtained while simulating the same problem (same
grid size and same number of particles per grid node) with a
growing number of processes (the load thus decreasing on
each GPU). The upper panel of Fig. 7 shows the speed-up
obtained using from 1 to 25 processes (i.e. GPUs) solving
the same problem: a homogeneous, fully periodic, 2D plasma
box, with no initial disturbance, with total size 1000× 1000
grid nodes and 1000 particles per grid node. V100 cards with
16 GB of RAM were used for all runs but one (see below).
The speed-up is measured as sN = tref/tN . t denotes a com-
putation time, counted from the start of the main algorithm
loop to its end, thus excluding the variables’ initialisation and
output. Each run is completed five times, and the average
value for each type of run is given in Fig. 7. tref is a ref-
erence computation time; tN is the computation time using
N processes. The results are given in a log–log representa-
tion, to emphasise the behaviour of the code at low and large
number of processes. To simplify the analysis and contrary
to the usual approach followed for serial processes, tref is not
chosen as tref = t1, but here as tref = t4 for the following rea-
son. When using between 4 and 16 GPUs, we achieve the
ideal scaling: when doubling the number of processes, we
halve the computation time. In other words all {s4, . . ., s16}

lie along the straight line of slope 1/4 (since tref is taken for
four processes). Points for lower and higher number of pro-
cesses diverge from this ideal scaling. For low numbers of
processes, the reason for the relative slow-down is the mem-
ory usage of the cards. When dividing the problem between
two cards, 87 % of their memory is used1, compared to the
47 % usage in the case of four processes. This reflects the fact
that GPUs only possess a finite number of parallel threads,
though this number surpasses 5000 for this precise hardware.
In turn, when an operation needs more threads than available,
the computation time is increased. On the opposite end of the
test, for N > 16, it is the irreducible operations, such as MPI
communication or the kernels calls by the CPU, which be-
come greater than the actual calculation time by the GPUs,
and lead the speed-ups to diverge from the ideal linear evo-
lution.

The weak scaling of the code is measured by increasing
the size of the problem while increasing the number of pro-
cesses, keeping the same load on single processes. The re-
sults are given using the same definition of the speed-up, still
using the run N = 4 for reference. Each process now sim-
ulates a 1000× 125 nodes domain with 1000 particles per
node (thus corresponding to the previous N = 8 run). Be-
cause of the much smaller differences in computation time,
the scales are kept linear. As previously, s4 is defined as 1.
The GPU memory usage is now 27 %, and the computation
time is 260 s for the referenceN = 4. Using only one process
results in a speed-up of 1.04; i.e. the runs completes about
4 % faster than the reference run. ForN = 2,3,4, the compu-

1One larger 32 GB card was used for the case of N = 1.
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Figure 7. Results for the strong (a) and weak (b) scaling properties of Menura. The strong scaling test consists of a simulation domain of a
1000×1000 grid with 1000 particles per grid node, divided into an increasing number of processes (i.e. GPUs). During the weak scaling test,
the load on each GPU is kept constant (1000× 125 grid, 1000 particles per node) and the number of processes is increased. The speed-up in
both cases is defined as sN = tref/tN with here tref = t4.

tation time is equal within a second, resulting in a plateau of
values around sN = 1. For N > 4, another plateau is reached
with a speed-up of 0.96, now computing 4 % slower than the
reference run, independently of the number of GPUs used.
The interpretation of these three different values (1.04, 1.00
and 0.96) is straightforward. When running only one process,
no MPI communication between processes is necessary, re-
sulting in a faster run. Increasing the number of processes
from two to four only involves the exact same amount of
communication between neighbouring processes, not affect-
ing the other communication, and the computation time is
unchanged. From four to five (and more) processes, com-
munication is now done between two or more computation
nodes (with one compute node hosting four GPUs in Jean
Zay cluster used here). Communicating data between cards
within a same node is faster than between cards on differ-
ent nodes, and therefore an observable slow-down happens
at N = 5. Increasing the number of nodes (from 8 cards to
16, then to 20) does not affect the computation time, for the

same reason that increasing the number of cards within one
node results in the same computation time.

These two tests exhibit a fine behaviour of Menura’s MPI
parallelisation, also showing that for this problem size, MPI
communication does not cost more than 4 % to 8 % addi-
tional computation time, depending on the number of nodes
used.

6 First result

We now focus on the result of Step 2, in which cometary
ions were steadily added to the turbulent plasma of Step 1,
moving at a super-Alfvénic and super-sonic speed. Table 3
lists the physical parameters used for Step 2. After 4000
iterations, the total number of cometary macroparticles in
the simulation domain reaches a constant average value: the
comet is fully developed and has reached an average “steady”
state. From this point, we simulate several full injection pe-
riods (1500 iterations), looping over the domain of the injec-
tion tank in Fig. 6. As an example, Fig. 8 displays the state
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Table 3. Physical parameters of the model comet.

v0 363 km s−1 (6.66 vA)
Q 5× 1026 s−1

νi 2× 10−7 s−1

u0 1 km s−1

Figure 8. Perpendicular magnetic fluctuations during the interac-
tion.

of the system at iteration 6000, focusing here again on the
perpendicular fluctuations of the magnetic field. This time
the colour scale is logarithmic, since magnetic field fluctua-
tions are spanning over a much wider range than previously.
While being advected through a dense cometary atmosphere,
the solar wind magnetic field piles up (augmentation of its
amplitude because of the slowing down of the total plasma
bulk velocity) and drapes (deformation of its field lines due
to the differential pile-up around the density profile of the
coma), as first theorised by Alfven (1957). This general result
was always applied to the global, average magnetic field and
was observed in situ at the various comets visited by space
probes.

Without diving very deeply in the first results of Menura,
we see that the pile-up and the draping of upstream perpen-
dicular magnetic field fluctuations also has an important im-
pact on the tail of the comet, with the creation of large ampli-
tude magnetic field vortices of medium and small size. This
phenomenon, together with a deeper exploration of the im-
pact of solar wind turbulence on the physics of a comet, is
gathered in a subsequent publication.

7 Conclusions

This publication introduces a new hybrid PIC plasma solver,
Menura, that allows for the first time to investigate the impact
of a turbulent plasma flow on an obstacle. For this purpose, a
new two-step simulation approach has been developed which
consist of, first, developing a turbulent plasma, and second,
injecting it periodically in a box containing an obstacle. The
model has been validated with respect to well-known fluid
and kinetic plasma phenomena. Menura has also proven to
provide the results expected at the output of this first step of
the model – namely decaying magnetised plasma turbulence.

Until now, all planetary-science-oriented simulations have
ignored all together the turbulent nature of the solar wind
plasma flow, in terms of structures and in terms of energy.
Menura has been designed to fulfil this deficiency, and it will
now allow us to explore, for the first time, some fundamental
questions that have remained open regarding the impact of
the solar wind on different solar system objects, such as the
following: what happens to turbulent magnetic field struc-
tures when the solar wind impacts on an obstacle such as a
magnetosphere? How are the properties of a turbulent plasma
flow reset as it crosses a shock, such as the solar wind cross-
ing a planetary bow shock? How does the additional energy
stored in the perpendicular magnetic and velocity field com-
ponents impact the large-scale structures and dynamics of
planetary magnetospheres?

On top of the study of the interaction between the turbulent
solar wind and solar system obstacles, we are confident that
the new modelling framework developed in this work, in par-
ticular its two-step approach, might as well be suitable for the
study of energetic solar wind phenomena, namely co-rotating
interaction regions and coronal mass ejections, which could
be similarly simulated first in the absence of an obstacle, to
then be used as inputs of a second step including obstacles.

Appendix A: Normalised equations

In Menura’s solver, all variables are normalised using the
background magnetic field amplitude B0 and background
density n0, or equivalently using the corresponding proton
gyrofrequency ωci0 and Alfvén speed vA0. The background
variable definitions are given in Table 1. Based on these
definitions, one can derive the following main equations of
the solver. A normalised variable ã is obtained by dividing
this variable by its background value, ã = a/a0, equivalently
a = ã a0. We first consider Faraday’s law, and using the back-
ground parameters definitions of Table 2:

∂B
∂t
=−∇×E (A1)

⇒
∂B̃B0

∂t̃ t0
=−∇̃/x0× (ẼE0) (A2)
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⇒
∂B̃B0

∂t̃/ωci0
=−∇̃/di0× (Ẽ vA0B0) (A3)

⇒
∂B̃
∂t̃
=−∇̃× Ẽ, (A4)

with

∇̃ =

(
∂

∂x̃
,
∂

∂ỹ

)
. (A5)

In other words, Faraday’s law expressed with normalised
variables is unchanged compared to its SI definition. Ohm’s
law becomes

Ẽ=−ũi× B̃+ J̃× B̃+ ∇̃ · p̃e− η̃h∇̃
2J̃, (A6)

with

J̃= ∇̃× B̃ (A7)

and

p̃e = βeñ
κ . (A8)

Concerning the gathering of particles moments,

ñ=
∑
spec
wspec

∑
p

W
(
r̃p

)
, (A9)

with wspec = ñspec/particle-per-nodespec. For the
solar wind proton, ñ= 1 and one simply gets
wsw = 1/particle-per-node. W(r̃p) stands for the shape
factor, triangular in our case (in 2 spatial dimensions, one
macroparticle affects the density and current of nine grid
nodes, with linear weights).

J̃i =
∑
spec
wspec

∑
p

ũi
(
r̃p

)
W
(
r̃p

)
(A10)

Appendix B: ∇ ·B and total energy

Starting with the 2-dimensional Faraday’s law (one can ig-
nore the third component, which cannot take part in the di-
vergence of the magnetic field since in 2 dimensions ∂z· ≡ 0),

∂tBx = ∂yEz,

∂tBy =−∂xEz, (B1)

discretised to

∇tBx, i, j =+1/1t ∇yEz, i, j ,

∇tBy, i, j =−1/1t ∇xEz, i, j , (B2)

with the notation ∇t ,∇x,∇y representing the discrete tempo-
ral and spatial derivatives. The five-point-stencil central finite
difference discretisation of ∂yEz reads

∇yEz, i, j = 1/(12 1x)
(
Ez, i, j−2− 8Ez, i, j−1

+ 8Ez, i, j+1−Ez, i, j+2

)
. (B3)

The divergence of the magnetic field increment1B is then

div
(
1Bi, j

)
=

1

122 1x 1t

(
∇x

(
∇yEz, i, j

)
−∇y

(
∇yEz, i, j

))
. (B4)

The two consecutive finite differences on the electric field
component can be expanded to

div
(
1Bi, j

)
=

1

122 1x 1t(
Ez, i−2, j−2− 8Ez, i−2, j−1+ 8Ez, i−2, j+1−Ez, i−2, j+2

)(
−8Ez, i−1, j−2+ 64Ez, i−1, j−1− 64Ez, i−1, j+1+ 8Ez, i−1, j+2

)(
8Ez, i+1, j−2− 64Ez, i+1, j−1+ 64Ez, i+1, j+1− 8Ez, i+1, j+2

)(
−Ez, i+2, j−2+ 8Ez, i+2, j−1− 8Ez, i+2, j+1+Ez, i+2, j+2

)(
−Ez, i−2, j−2+ 8Ez, i−1, j−2− 8Ez, i+1, j−2+Ez, i+2, j−2

)(
8Ez, i−2, j−1− 64Ez, i−1, j−1+ 64Ez, i+1, j−1− 8Ez, i+2, j−1

)(
−8Ez, i−2, j+1+ 64Ez, i−1, j+1− 64Ez, i+1, j+1+ 8Ez, i+2, j+1

)(
Ez, i−2, j+2− 8Ez, i−1, j+2+ 8Ez, i+1, j+2−Ez, i+2, j+2

)
in which terms cancel each other two by two, resulting in a
divergence-free magnetic field increment, div(1Bi, j )= 0.
It follows that only round-off errors will accumulate in the
time evolution of div(B). The same argument is classically
done for constrained transport schemes, which use staggered
grids to ensure the same property, with the additional com-
plexity of secondary variables for the electric and magnetic
fields, and fields interpolation/averaging between cell cen-
tres and cell edges and corners. Tóth (2000) provides great
insights on the constrained transport and finite central differ-
ences schemes, also showing that both conserve the magnetic
field divergence.

The time evolution of the divergence of the magnetic field
for the decaying turbulence run is shown in Fig. B1. We find
that the variance of the divergence grows but remains smaller
than 10−11, while the maximum value of the divergence (us-
ing its absolute value) remains lower than some 4.0× 10−5,
given an initial value of 2.0×10−6. This growth is due to ac-
cumulating round-off errors, over tens of thousand of mag-
netic field pushes. It was tested that for the exact same prob-
lem, increasing the number of time steps increases this accu-
mulated error, despite a finer time resolution.

The total energy, despite a clear decrease over most of the
simulation time, is bounded within +1% and −4%. An ad-
ditional run was used, which does not include initial pertur-
bation, i.e. a homogeneous plasma. This run shows a nearly
perfect energy conservation, with departures of the order of
10−5 the total energy at initial time.
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Figure B1. Time evolution of the maximum of the divergence of the magnetic field (a) and of the total energy (b) for the decaying turbulence
run.
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