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Abstract The movement of water, matter, organisms, and energy can be altered substantially at ecohydro-
logical interfaces, the dynamic transition zones that often develop within ecotones or boundaries between
adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological
interfaces are often ‘‘hot spots’’ of ecological, biogeochemical, and hydrological processes and may provide
refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global
hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to distur-
bance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable pro-
cesses at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological,
biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between differ-
ent drivers and controls critically limits our ability to predict complex system responses to change. In this
paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces
across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary frame-
work, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We
argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to
be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from
their current representation as boundary conditions at investigated ecosystems.

Plain Language Summary The movement of water, matter, organisms, and energy can be altered
substantially at ecohydrological interfaces that we introduce here as a new concept to support the quantitative
analysis of nonlinear system behavior stimulated by the complex and multifacetted interactions of hydrological,
biogeochemical, and ecological processes across system boundaries. Ecohydrological interfaces are defined
here as the dynamic transition zones that may develop at ecosystem (or subsystem) boundaries and control
the movement and transformation of organisms, water, matter, and energy between adjacent systems. In this
paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces
across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary frame-
work, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We
argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be
conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their
current representation as boundary conditions at investigated ecosystems.

Key Points:
� Ecohydrological interfaces are

dynamic transition zones, changing
in space and in time
� Ecohydrological interfaces are

defined by their specific functioning
often supporting process hot spots
and hot moments
� Interface ecohydrological,

biogeochemical, and ecological
processes often differ from their
neighboring ecosystems

Correspondence to:
S. Krause,
s.krause@bham.ac.uk

Citation:
Krause, S., et al. (2017), Ecohydrological
interfaces as hot spots of ecosystem
processes, Water Resour. Res., 53, 6359–
6376, doi:10.1002/2016WR019516.

Received 18 JUL 2016

Accepted 24 APR 2017

Accepted article online 29 APR 2017

Published online 17 AUG 2017

KRAUSE ET AL. ECOHYDROLOGICAL INTERFACES AS HOT SPOTS 6359

Water Resources Research

PUBLICATIONS

VC 201 . American Geophysical Union.

All Rights Reserved.

7

The copyright line for this article was
changed on 1 SEP 2018 after origina
online publication.

7 l

http://dx.doi.org/10.1002/2016WR019516
http://orcid.org/0000-0001-5278-129X
http://orcid.org/0000-0001-9374-660X
http://orcid.org/0000-0003-1714-1240
http://orcid.org/0000-0002-6910-4874
http://orcid.org/0000-0001-6430-0449
http://orcid.org/0000-0001-5494-5753
http://orcid.org/0000-0001-5361-2033
http://orcid.org/0000-0003-4635-750X
http://orcid.org/0000-0001-7213-9448
http://orcid.org/0000-0001-9787-8327
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


1. Introduction

The study of system boundaries has been a mainstay in ecological and hydrological research [Cadenasso
et al., 2003; Strayer et al., 2003; Yarrow and Marin, 2007]. Interdisciplinary research has highlighted the
importance of ecosystem boundaries, many of which are ‘‘hot spots’’ of ecological, biogeochemical, or
hydrological processes [McClain et al., 2003; Caraco et al., 2006; Pinay et al., 2015; Peipoch et al., 2016].

We introduce ecohydrological interfaces as a new concept to support the quantitative analysis of nonlinear
system behavior stimulated by the complex and multifacetted interactions of hydrological, biogeochemical,
and ecological processes across system boundaries. Ecohydrological interfaces are defined here as the
dynamic transition zones that may develop at ecosystem (or subsystem) boundaries and control the move-
ment and transformation of organisms, water, matter, and energy between adjacent systems (referred to by
Hedin et al. [1998] as ‘‘control points’’). In contrast to stationary boundaries (separators of different ecosys-
tems or subsystems) or ecotones (boundaries that have a defined thickness and share characteristics with
each of the systems they separate), ecohydrological interfaces are nonstationary, emerging for a limited
time and then disappearing, expanding and contracting, or moving around within a boundary or ecotone.
Different than boundaries and ecotones, which are delineated primarily based on system properties [Cade-
nasso et al., 2003; Strayer et al., 2003; Yarrow and Marin, 2007], ecohydrological interfaces are defined by
their specific functioning (for example, the dynamic extent of surface water mixing in streambed environ-
ments forming hyporheic zones as ecohydrological interfaces with distinct redox environments and ecolog-
ical niche functions and behavior).

Ecohydrological interfaces are manifold, including (1) soil-atmosphere interfaces, (2) capillary fringes as
interfaces between phreatic and vadose zones, (3) interfaces between terrestrial upland and lowland
aquatic ecosystems, (4) groundwater-surface water interfaces, including those associated with riparian or
hyporheic zones, biofilms, and surface water-benthic zone interfaces (Figure 1). Ecohydrological interfaces
provide key ecosystem functions and services [Belnap et al., 2003], including water purification, thermal reg-
ulation, and maintenance of biodiversity [Perelo, 2010; Krause et al., 2011a; Freitas et al., 2015]. They increase
ecological resilience by providing refuge for organisms during extreme events or source areas for recoloni-
zation after disturbances [Clinton et al., 1996, Kumar et al., 2011; Crump et al., 2012; Stubbington, 2012].

In this paper, we aim to uncover the organizational principles—the main drivers and controls, and their
interactions and feedbacks—that determine the development and capacity of ecohydrological interfaces to
transform the flow of energy, water, and matter between adjacent ecosystems. We therefore do the
following:

1. Compare the characteristics of transformation processes at different ecohydrological interfaces in fresh-
water ecosystems, including groundwater-surface water, groundwater-vadose zone, and benthic-pelagic
interfaces (section 2).

2. Determine common or unique features of nonlinear process dynamics in ecohydrological interfaces and
outline critical gaps in the understanding of their functioning (section 3).

3. Based on a comparison of the organizational principles of different ecohydrological interfaces, we pro-
pose a roadmap for the development of multiscale conceptual models of ecohydrological interface pro-
cesses and their interactions that can be expanded to other types of ecohydrological interfaces not
covered here (section 4).

2. Transformation of Energy, Water, and Matter Fluxes
Across Ecohydrological Interfaces

Ecohydrological interfaces developing in aquatic ecosystems (e.g., between groundwater and surface water
or groundwater and the vadose zone) extend from the microscale (e.g., interfaces at microbial biofilms) to
kilometer scale (e.g., aquifer-river interfaces). Despite their varied dimensions, these interfaces share com-
mon properties: (1) abrupt changes in aggregate state (e.g., solid, liquid, or gas phase) and (2) steep gra-
dients in physical and biogeochemical conditions [Naiman et al., 1988; Naiman and Decamps, 1997]. The
steep physical, chemical, and biological gradients in ecohydrological interfaces often correspond to distinct
types and enhanced rates of biogeochemical processes [Yarrow and Marin, 2007; McClain et al., 2003] and
have significant impacts on ecosystem responses and resilience to environmental change [Brunke and
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Gonser, 1997]. Examples of specific conditions at ecohydrological interfaces that facilitate transformative
processes and/or arise because of their transformative nature include:

1. Steep redox gradients across groundwater-surface water interfaces as a result of enhanced biogeochemi-
cal activity [Lewandowski et al., 2007; Lautz and Fanelli, 2008; Krause et al., 2013; Trauth et al., 2015].

2. Step changes in microbial metabolic activity [Haggerty et al., 2009; Argerich et al., 2011] and high concen-
trations of bioavailable organic carbon, nitrogen, or phosphorus at riparian-wetland interfaces [Schelker
et al., 2013], at groundwater-surface water interfaces [Zarnetske et al., 2011a, 2011b], and in biofilms [Bat-
tin et al., 2003, 2007, 2016], resulting in microzonation of denitrification [Briggs et al., 2015] and enhanced
interface denitrification rates where microbial denitrifiers are concentrated [Harvey et al., 2013].

3. Coexistence of multiple aggregate states (solid, liquid, gas phase), across which energy and matter are
transferred, such as between atmosphere and porous soil matrix [Shahraeeni et al., 2012], atmosphere-
water interfaces [Assouline et al., 2010], unsaturated and saturated soil compartments [Li and Jiao, 2005],
and between the soil matrix and soil water or air in soil macropores [van Schaik et al., 2014].

4. Shifts between physical and biological controls of solute transport across water-organism interfaces [Larned
et al., 2004; Nishihara and Ackerman, 2009; Nishizaki and Carrington, 2014].

While there have been recent improvements in understanding how ecohydrological interfaces control
energy and water fluxes (in particular between groundwater and surface water) [Krause et al., 2011a; Boano

Figure 1. Landscape perspective of different types of ecohydrological interfaces with (1) atmosphere-soil interfaces, (2) unsaturated-
saturated soil interfaces, (3) riparian-stream interfaces, and (4) hyporheic zone interfaces and characteristic profiles of water fluxes, mixing,
gas exchange, and redox conditions (Eh).
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et al., 2014; Cardenas, 2015], critical knowledge gaps remain with respect to how they affect reactive trans-
port, solute mixing, and biogeochemical cycling across system boundaries [Puth and Wilson, 2001; Krause
et al., 2011a]. Our understanding of the spatial and temporal organization of driving forces (e.g., hydrostatic
pressure distribution, concentration gradients, and turbulence intensity) and controls (e.g., interface trans-
missivity and roughness) of ecohydrological interface fluxes and reactivity are at an early stage [Gomez-Velez
et al., 2012, 2014; Zhang et al., 2015; Gonz�alez-Pinz�on et al., 2015].

Many ecohydrological interfaces are spatially heterogeneous and temporally dynamic [Kennedy et al., 2009;
Roskosch et al., 2012]. While the physical (structural) boundaries between adjacent and interacting systems
(e.g., between groundwater and surface water) are usually clearly defined and stationary, dynamically devel-
oping ecohydrological interfaces (e.g., hyporheic zones) are defined by their functioning and may change in
time with regard to their spatial extent and activity [Cardenas and Wilson, 2006, 2007; Stubbington, 2012;
Trauth et al., 2015; Gomez-Velez et al., 2014; Boano et al., 2010, 2014]. However, some structural boundaries
around which ecohydrological interfaces evolve can themselves be dynamic, such as migrating bed forms
and flexible and compressible benthic organisms [Ren and Packman, 2004; Huang et al., 2011; Larned et al.,
2011; Harvey et al., 2012], further complicating the identification and delineation of ecohydrological
interfaces.

Patterns and dynamics of ecohydrological interface activity include the development of hot spots (zones of
enhanced activity) [McClain et al., 2003; Lautz and Fanelli, 2008; Frei et al., 2012; Krause et al., 2013] and hot
moments (periods of increased activity) [McClain et al., 2003; Battin et al., 2003; Harms and Grimm, 2008]
that disproportionately alter the fluxes of water, energy, and matter. Hot spots or ‘‘control points’’ [Bernhardt
et al., 2017] have captured the attention of many researchers, who study how they affect nutrient turnover
[Lewandowski et al., 2007; Moslemi et al., 2012], ecosystem productivity [Poungparn et al., 2012], pesticide
degradation [Klaus et al., 2014], and the bioavailability of metals, such as mercury, to organisms at higher
trophic levels [Sizmur et al., 2013]. Yet when and under what conditions ecohydrological interfaces repre-
sent hot spots or control points, or what makes them behave as such, has not always been clearly
determined.

We have for instance only begun to understand how biological activity (e.g., earthworm and chironomid
burrowing, stream periphyton growth, or riparian plant root growth) can create small-scale ecohydrological
interfaces that are hot spots of microbial and biogeochemical activity [H€olker et al., 2015; Baranov et al.,
2016]. Furthermore, the concept of hot moments entails long periods of relatively low activity punctuated
by pulses of rapid activity. These temporal dynamics suggest that some ecohydrological interfaces can be
ephemeral. We now turn to these and other gaps in our understanding of ecohydrological interfaces.

3. Critical Gaps in Understanding Ecohydrological Interfaces

We currently lack an overarching framework that integrates the factors that drive and control transforma-
tion processes at ecohydrological interfaces. Perceptions and conceptualizations of boundaries, and with
that ecohydrological interfaces, are often scale dependent [Cadenasso et al., 2003; Strayer et al., 2003]. At
large scales, some ecohydrological interfaces (e.g., between aquifers and rivers) may be conceptualized as
discrete boundaries, causing abrupt transitions with step changes in processes across the boundary (Figure
2a). However, downscaling reveals three-dimensional gradients within interfaces (e.g., in hyporheic zones),
and transient or gradual changes of physical or biogeochemical properties (Figure 2b). Acknowledgement
of the context and scale-dependent view of ecohydrological interfaces is important because the scale in
which ecohydrological interfaces are investigated can preclude the detection and quantification of physical,
chemical, and biological activity at other scales [Atkinson and Vaughn, 2015]. Further, temporal variation in
the shape or spatial extent of interfaces and the steepness of gradients within them suggests that our con-
ceptualizations of interfaces vary over temporal as well as spatial scales—as for instance shown for transient
behavior of hyporheic zones in response to hydrological forcing [Malzone et al., 2016].

Clear delineations of the spatial and temporal extent of ecohydrological interfaces are further complicated
by discipline-specific perspectives on interface properties, processes, and functions (Figure 2c) [Yarrow and
Marin, 2007; Harvey et al., 2013]. Based on discipline-specific perceptions, hyporheic zones, for instance, are
defined by the spatial extent of groundwater and surface water mixing (hydrology), the extent of steep
chemical gradients (biogeochemistry), or the abundance of benthic and hypogean taxa (ecology), resulting
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in significantly different perceptions of their extent [Krause et al., 2011b, 2014b]. Recent studies of benthic
systems have focused on the dynamics and ecological effects of multilayered interfaces (e.g., small-scale dif-
fusive boundary layers nested within larger-scale roughness layers, within larger benthic boundary layers)
[Larned et al., 2004; Nikora, 2010] and on microzonation of biogeochemical processes, e.g., redox micro-
zones [Briggs et al., 2015]. Views of the capillary boundary at the groundwater-vadose zone interface differ
between ecologists focusing on matric potential effects on plant available water and water uptake, (bio)-
geochemists interested in redox chemistry differences between pore water and adsorption to mineral
surfaces [Alexander and Scow, 1989; Baham and Sposito, 1994] and groundwater hydrologists and hydrogeo-
logical engineers concerned with water table depths. Such discipline-specific perceptions of ecohydrologi-
cal interfaces can limit the transferability of process understanding and the exchange of data and
knowledge across disciplinary boundaries.

Detailed understanding of the drivers and controls of enhanced interface activity is critical for evaluating
the functional significance of ecohydrological interfaces. Examples include the shift from aerobic to anaero-
bic respiration in hyporheic zones, which is controlled by residence time of hyporheic water and nutrients
in the streambed [Zarnetske et al., 2011a, 2011b; Briggs et al., 2014], or temperature thresholds triggering
bacterial activity [Bourg and Bertin, 1994]. Here we pose four critical questions (spanning scales and crossing
disciplinary boundaries) that must be answered to understand the role of ecohydrological interfaces in eco-
system functioning:

1. What environmental conditions determine the capacity of ecohydrological interfaces to transform the
flow of energy, water, and matter between adjacent ecosystems?

2. How are ecohydrological interfaces organized and how do they evolve in space and time?
3. What mechanisms (drivers and controls) determine the spatiotemporal organization of ecohydrological

interfaces?
4. How do the impacts of hot spots and hot moments at ecohydrological interfaces upscale to ecosystem

ecohydrological, biogeochemical, and ecological processes?

3.1. What Environmental Conditions Determine the Capacity of Ecohydrological Interfaces to
Transform the Flow of Energy, Water, and Matter Between Adjacent Ecosystems?
Ecohydrological interfaces have been described as intensive modifiers of energy, water, and solute fluxes
and biogeochemical cycling [Harvey and Fuller, 1998], that exhibit hot spot characteristics [McClain et al.,
2003; Lautz and Fanelli, 2008; Krause et al., 2013] and nonlinear behavior [Zarnetske et al., 2011a, 2011b;
Briggs et al., 2014]. To understand why ecohydrological, biogeochemical, and ecological transformation pro-
cesses in ecohydrological interfaces often differ from their neighboring ecosystems, it is necessary to review
the physical, chemical, and ecological interactions that characterize them.
3.1.1. Physical Properties
Contrasts in interface material properties from the adjacent environmental systems (sometimes coinciding
with aggregate state boundaries such as between liquid and gas phase, or with changes in transmissivity)
affect velocity and direction of exchange fluxes (Figure 3). Impacts of ecohydrological interfaces on

Figure 2. Conceptual model of ecohydrological interfaces connecting two adjacent contrasting environments (Component 1 and Compo-
nent 2) with scale-dependent representation of gradients of chemical, physical, and biological properties (solid black line). (a) Large scales
exhibit step functions in interface properties, where interfaces appear as two-dimensional layers of zero depth; (b) zoomed into smaller
scales with steep gradient of chemical, physical, and biological properties and a three-dimensional interface zone with some depth dimen-
sion; and (c) difficulties are frequently encountered in determining the upper and lower boundary and depth of the interface zone, espe-
cially where property distributions blend into background properties due to their nonlinearity.
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exchange fluxes can vary from complete cessation, if the interface is impermeable (Figure 3a), to unaffected
(Figure 3b) or even accelerated exchange. The geometry of property distributions at ecohydrological inter-
faces (such as hydraulic conductivities at groundwater-surface water interfaces) may cause hysteretic
behavior that is dependent on exchange-flow direction (Figure 3c). For example, surface water flow veloci-
ties decrease when infiltrating into the streambed, while groundwater upwelling through the streambed

Figure 3. Conceptual model of the scale-dependent complexity of ecohydrological interface exchange-fluxes in systems with interfaces
representing thresholds with (left) infinitesimal thickness, (middle) steep gradients with abrupt property changes or (right) variable (tran-
sient and abrupt) property changes between interface and adjacent environments, with one-directional flow ceasing at (in) the (a) inter-
face zone or (b) crossing the interface, (c) bidirectional exchange fluxes across the interface, (d) flow reduction across the interface
pathway, and (e) the advective mixing of interface exchange fluxes with intracompartmental fluxes.
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may accelerate toward the interface with surface water. Reduced flow velocities and increased residence
times that have been observed at many ecohydrological interfaces (Figure 3d) can substantially enhance
biogeochemical processing [Zarnetske et al., 2011b; Briggs et al., 2014]. Quantifying the spatiotemporal vari-
ability of biogeochemical processing in heterogeneous interface zones of variable activity will require a shift
from the current focus on mean residence times to residence-time distributions that are dynamic [Botter
et al., 2011; Pinay et al., 2015].

In many cases, exchange fluxes at ecohydrological interfaces interact with larger flow systems in the adja-
cent ecosystem (Figure 3e). At aquifer-river interfaces, for instance, exchange fluxes interact across multiple
scales. Hyporheic exchange here can be affected by regional groundwater flow, causing complex and
nested patterns of exchange fluxes [Trauth et al., 2015; Gomez-Velez et al., 2014] and thus, spatially complex
end temporally dynamic ecohydrological interfaces. In this context, we have only begun to understand the
impacts of interacting drivers and controls of interfaces exchange. Following the previous example, this
includes how streambed transmissivity [Krause et al., 2013] and pressure variations caused by interface
topography, such as riparian microtopography [Frei et al., 2012], bed forms [Cardenas et al., 2004] or mean-
ders [Boano et al., 2010], overlap in their impacts on hyporheic exchange fluxes [Gomez-Velez et al., 2014;
Boano et al., 2010, 2014] and dynamically evolve in time due to variability in atmospheric and hydrody-
namic forcing [Malzone et al., 2016].
3.1.2. Ecological (Including Microbiological) Processes
Ecohydrological interfaces between groundwater, surface water, and vadose zones can have large effects
on ecological conditions in the adjacent systems [Cadenasso et al., 2003; Pinay et al., 2015]. Thermodynami-
cally controlled microbial processes drive biogeochemical transformations in these subsurface systems, and
in turn, biota respond to the chemical gradients that result from their activity. A classic example is aerobic
respiration, which in subsurface zones is largely carried out by microorganisms. As they consume oxygen
and organic carbon, microbes create conditions that favor transition to anaerobic metabolism. Although
some microorganisms are facultative anaerobes, others are excluded once oxygen concentration drops
below a threshold. In fact, a sequence of terminal electron accepting processes, each with their suite of
microbial specialists, ensues along redox gradients that characterize anoxic environments [Morrice et al.,
2000]. Aquatic macrophytes, benthic biofilms, and riparian vegetation may exude or release organic matter
during metabolism or upon death or decomposition, which provides an energy source for microbial metab-
olism. Community structure and elemental composition of primary producers may influence biogeochemi-
cal turnover and location of biogeochemical hot spots at ecohydrological interfaces, as they are likely to
release organic matter at different rates and with different chemical composition. Hence, in addition to
altering nutrient availability and stoichiometry, aquatic macrophytes, benthic algae, and pelagic phyto-
plankton colonies may induce hot spots of microbial metabolism [de Moraes et al., 2014].

Aquatic and wetland plants influence the saturated substrate where fine-scale microenvironments develop
around their root systems, altering the oxygen concentrations, nutrient uptake, sediment structure, and
microbial activity of riparian and hyporheic zones. For example, exudates from the roots of a wetland shrub,
Baccharis sp., fuel microbial respiration, including denitrification, in streamside sediments and riparian zones
[Schade et al., 2001; Harms and Grimm, 2008]. The size of the ecohydrological interface zone in which these
root exudates drive microbial metabolism tends to be restricted to a few centimeters around the root zone
[Schade et al., 2001]. Vascular plants influence not only the interstitial water of the sediment but also the
water column, through mutualistic interactions with phytoplankton and bacterial communities [Brodersen
et al., 2014], and the atmosphere, by respiration and gas exchange [Xing et al., 2006]. Ecological impacts on
ecohydrological interface functioning are not restricted to living organisms. Large woody debris alters
streambed topography and enhances groundwater-surface water interactions and supply of organic car-
bon, thus supporting habitat complexity and biotic activity [Warren et al., 2013; Krause et al., 2014a]. The
nutrients and pollutants that had previously been absorbed by biota are now released during decomposi-
tion and can stimulate localized hot spots of increased resource availability [Krause et al., 2014a], or inverte-
brates can induce the development of biogeochemical hot spots through the regeneration of nutrients
[Grimm, 1988a].

The morphology, physiology, and productivity of benthic autotrophs (e.g., algal and cyanobacterial mats,
seagrasses, corals growing on the bottom of streams, lakes, and coastal marine ecosystems) are strongly
influenced by the hydrodynamic and chemical conditions in surface water-benthic interfaces. Mass
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transport across these interfaces is often the rate-limiting step for nutrient acquisition and gas exchange by
the organisms [Jumars et al., 2001; Larned et al., 2004], and hydrodynamic forces imposed by these interfa-
ces affect the organism stature and biomechanical properties [Statzner et al., 2006; Albayrak et al., 2014].
While interface conditions clearly affect benthic autotrophs, the opposite is also true. Benthic autotrophs
function as roughness elements that modify flow structure and as biogeochemical reactors that alter water
chemistry [Folkard, 2005; Reidenbach et al., 2006; Larned et al., 2011]. The picture that is emerging from
recent studies of surface water-benthic interfaces is a flow-organism feedback system consisting of
responses by organisms to flow conditions, flow modifications induced by the organisms, subsequent
responses by the organisms to the modified flow, and so forth [Nikora, 2010; Dijkstra and Uittenbogaard,
2010; Larned et al., 2011]. Similar feedback systems should apply to the heterotrophic organisms in sedi-
mentary systems, as described below. Such feedbacks are an important source of nonlinearity in process
rates at ecohydrological interfaces.

Recently, ecohydrological research has considered biota at higher trophic levels, such as macroinvertebrates
and aquatic vertebrates, and their capacity to alter the physical-chemical characteristics that regulate the
rate of activity and ecosystem functioning at ecohydrological interfaces [Coco et al., 2006; Layman et al.,
2013; Patrick, 2014]. Lewandowski et al. [2007], Roskosch et al. [2012], and Baranov et al. [2016], for instance,
describe a system of interactions and feedbacks between chironomids and aquifer-lake ecohydrological
interfaces. In these studies, chironomid activity had direct impacts on hydrodynamics and biogeochemistry,
while physical-chemical conditions, such as temperature, affected chironomid pumping behavior [Roskosch
et al., 2012] and hence, subsurface flow pattern and biogeochemical processing rates. Similarly, vertebrates
may alter streambed topography, for example through nest-building activities, which lead to changes in
connectivity and fluxes across the surface water sediment interface [Collins et al., 2014], through their move-
ment (Hippopotamus) or beaver dam construction [Naiman et al., 1994]. Additionally, fish induce biogeo-
chemical hot spots by excretion [Grimm, 1988b; Vanni, 2002] and nutrient release following their death and
decomposition [Levi and Tank, 2013].
3.1.3. Thermodynamics and Biogeochemistry
At stationary boundaries, matter and energy fluxes may be absorbed, transmitted, reflected, transformed,
amplified, or unaffected. Boundaries can be highly permeable to some substances, and represent reactive
filters for others [Cadenasso et al., 2003; Strayer et al., 2003; Belnap et al., 2003]. We propose that these con-
cepts of flux behavior at boundaries can be extended to nonstationary ecohydrological interfaces, which
develop dynamically in space and time. Processing rates at ecohydrological interfaces are controlled by
both mass transport and reaction kinetics, with transport-limited conditions arising when reaction rates are
faster than mass-transport rates [Sanford and Crawford, 2000; Larned et al., 2004; Cornelisen and Thomas,
2009]. Conversely, process rates tend to be kinetically controlled (reaction limited) when mass-transport
rates are faster than reaction rates [Sanford and Crawford, 2000; Nishihara and Ackerman, 2009; Argerich
et al., 2011]. Increased biogeochemical activity is often attributed to the spatial and temporal coincidence
of reactants in a mixing zone (Figure 4a) [McClain et al., 2003]; however, enhanced turnover may also be
controlled by high reactivity in interfaces (Figure 4b), resulting directly from the chemical gradients at the

Figure 4. Examples for the development of biogeochemical hot spots at ecohydrological interfaces, hosting distinctly different reaction
properties and hence biogeochemical processes than its adjacent environments: (a) enhanced reactivity directly resulting from the interac-
tion of interface exchange fluxes such as the precipitation of a reactant at the ecohydrological interface due to exceeding its solubility
product and (b) enhanced reactivity as an intrinsic property of the interface environment, such as anoxic areas in hyporheic or riparian
zones.
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interface [Krause et al., 2013; Trauth et al., 2015]. It has yet to be established how the mixing of reactants at
ecohydrological interfaces influences interface redox conditions and controls residence-time distributions
of different reactants, and hence, biogeochemical processing rates. Possible approaches to achieve this
involve combinations of residence-time distributions and dimensionless numbers used to describe the
transport versus reaction relationships of flow systems, such as the Damk€ohler number or Peclet number
describing diffusion/advection ratios [Pinay et al., 2015]. Furthermore, the reaction significance factor
approach (RSF) has been applied for quantifying reaction versus transport limitation in single hyporheic
flow paths within basin-scale assessments of the number of river excursions through the hyporheic zone
[Harvey et al., 2013; Gomez-Velez et al., 2015]. Despite these advances, predictions of biogeochemical proc-
essing at ecohydrological interfaces remain challenging, since not only can biogeochemical turnover be
enhanced but also the type of processes and chemical reactions may differ distinctively from adjacent eco-
systems [Naiman et al., 1988].

3.2. How Are Ecohydrological Interfaces Organized in Space and Time?
Complex microhabitat structure and biological activity create ecohydrological interface heterogeneity [Lew-
andowski et al., 2007; Hanzel et al., 2013], with interface processes often varying over a wide range of spatial
and temporal scales [Belnap et al., 2003]. Hyporheic exchange flows, for instance, include sinuosity-driven
flows in meandering streams [Boano et al., 2010; Gomez-Velez et al., 2012] and bed-form-driven flows caused
by streambed features such as riffles and pools [Thibodeaux and Boyle, 1987; Tonina and Buffington, 2007;
K€aser et al., 2013], small-scale ripples and dunes [Cardenas and Wilson, 2007], and flow obstacles such as
dams or wood [Sawyer et al., 2011; Briggs et al., 2012; Krause et al., 2014a].

Scale-dependent drivers of the spatial and temporal organization of ecohydrological interface properties
are complex. Mixing of chemical reactants in ecohydrological interfaces may involve the transport of multi-
ple reactants from source areas to the interface (Figure 5a) [e.g., Zarnetske et al., 2011a, 2011b] or the mixing
of a reactant already present at the interface with another reactant that is transported into it (Figure 5c)
[e.g., Lewandowski et al., 2007; Krause et al., 2013]. In many cases, just a fraction of the mass flux crosses the
ecohydrological interface. Often mass fluxes return to their original compartments (Figures 5b and 5d); e.g.,
surface water infiltrates into the hyporheic zone and exfiltrates back into the stream after passage through
the bed.

Ecohydrological interfaces are frequently characterized by nonlinear temporal dynamics, including tipping
points, caused by rapid changes in thermodynamic or biogeochemical characteristics at the interface, such
as the shift from aerobic to anaerobic metabolism [McClain et al., 2003; Harvey et al., 2012; Zarnetske et al.,

Figure 5. Enhanced ecohydrological interface reactivity as a function of exchange-flow patterns at/in/across the interface with fluxes carry-
ing reactant R and S to meet and mix (a) at the interface with not all but just a fraction of the reactants mixing (b) at the interface due to
tangential fluxes and transport of reactant S into the ecohydrological interface already containing autochthonous reactant R, results in
(c) processing of S and R to product P (d) with some of the external reactant (S) returning to the compartment it originated from.
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2011a, 2011b; Briggs et al., 2014, 2015] or biogeochemical responses to fast changes in soil water content
[Fromin et al., 2010]. Also, rainfall pulses in dryland environments can result in rapid and nonlinear increases
in microbial respiration at the soil-air interface [Collins et al., 2014] or in the vadose zone-groundwater inter-
face of riparian zones during dry seasons [Baker et al., 2000; Harms and Grimm, 2008]. In both of these exam-
ples, ecohydrological interfaces come into existence when water is added (i.e., rainfall impinges on the soil
surface, or the groundwater table rises into previously dry riparian soil), such that biogeochemical processes
are stimulated rapidly. However, the cumulative long-term effects of such hot moments on ecohydrological
interfaces, as well as their subsequent contribution to system behavior at a global scale [Kreyling et al.,
2014] still need to be investigated in detail.

3.3. What Mechanisms (Drivers and Controls) Determine the Spatiotemporal Organization of
Ecohydrological Interfaces?
Spatial patterning in the properties of ecohydrological interface can result directly from interface processes
and thus, may partly be explained by the functioning of the ecohydrological interface. Examples include
redox patterns in hyporheic zones resulting from oxygen depletion by hyporheic biogeochemical process-
ing [Zarnetske et al., 2011a, 2011b; Krause et al., 2013]. In other cases, the origin of spatial variability is inde-
pendent of actual interface processes (e.g., spatial variability in hydraulic conductivity can control patterns
of exchange fluxes in ecohydrological interfaces). Spatial patterns of solute concentration in ecohydrologi-
cal interfaces may be controlled partially by the spatial organization of properties in the adjacent ecosys-
tems (Figure 6). For example, spatially homogeneous physical properties in hyporheic zones (Figures 6a–6c)

Figure 6. Variable characteristics and heterogeneity of ecohydrological interfaces as result of differences in passive or active organizational
mechanisms structuring interface properties, with Example I, passive controls—streambed properties controlling hyporheic zone reactivity:
homogeneously low or high ecohydrological interface reactivity (concentrations) at hyporheic zones resulting from (a) continuously low
streambed reactivity or (b) depth decreasing or (c) increasing streambed reactivities, in contrast to spatially heterogeneous streambed
properties, subsequently causing (d) spatial variability at the interface. Example II, active controls—chironomids as engineers of interface
complexity: no effect of chironomids and (e) homogenous and (g) heterogeneous distribution of biological, chemical, and physical proper-
ties within the sediment matrix and at the burrow wall interface; chironomid pumping induced gradients of (f) decreasing oxygen concen-
tration from the tube into the adjacent sediment and (h) increasing soluble reactive phosphorus concentration from the tube into the
adjacent sediment.

Water Resources Research 10.1002/2016WR019516

KRAUSE ET AL. ECOHYDROLOGICAL INTERFACES AS HOT SPOTS 6368



or around chironomid burrows (Figure 6e) will facilitate ecohydrological interface activity that is controlled
primarily by interface exchange fluxes and mean residence times [e.g., Zarnetske et al., 2011a, 2011b]. In
contrast, a heterogeneous matrix in surrounding ecosystems (Figures 6d and 6g) will add further complex-
ity, making it important to quantify not only exchange fluxes and residence times but also their distribu-
tions [Gomez-Velez et al., 2014]. In addition to spatial heterogeneity, patterns may evolve with time as
interface processes progress. For instance, chironomid pumping can affect property distributions at the sed-
iment/burrow wall interface (Figures 6f and 6h), where they have been shown to induce gradients of
decreasing oxygen concentration with increasing distance from the tube (Figure 6f) or increasing concen-
tration of soluble reactive phosphorus with increasing distance from the tube walls into the adjacent sedi-
ment (Figure 6h) [Lewandowski et al., 2007; Baranov et al., 2016].

Disentangling the impacts of different drivers and controls on processes in ecohydrological interfaces
remains a challenge, partly due to combined effects and feedbacks between hydrological, biogeochemical,
and biological processes that may be additive, synergistic, antagonistic, or undetectable. To use freshwater
microbial biofilms as an example, biogeochemical turnover in biofilms is related to their biomass [Singer
et al., 2010; Haggerty et al., 2014]. Hence, biofilm growth causes biogeochemical turnover rates to increase.
At the same time, increased biofilm thickness changes its permeability and has the potential to cause signif-
icant clogging, increasing contact area and residence and reaction times at the biofilm surface, which in
some cases has been shown to accelerate biogeochemical turnover [Battin et al., 2007] or even change the
type of chemical reactions, inducing shifts from aerobic to anaerobic conditions or limiting biogeochemical
processing at the interface [Treese et al., 2009].

Improving the understanding of the functioning of ecohydrological interfaces across spatial and temporal
scales will require to start acknowledging that traditional hierarchical classification schemes where physi-
cal boundary conditions and hydrological behavior control thermodynamic processes and biogeochemis-
try, which then define the biological template or ecological niche are not suitable to adequately describe
the complex interactions between biological, biogeochemical and hydrological processes at ecohydrolog-
ical interfaces. As discussed above, biological activity can be a major driver of the spatial and temporal
organization of ecohydrological interface functions and often actually shape the physicochemical tem-
plate. It is essential to fully acknowledge this complexity of multidirectional interactions also in experi-
mental and conceptual model designs as oversimplification of cause-impact relationships will not yield
the required understanding of what drives organizational principles of ecohydrological interface
functions.

3.4. How Do the Impacts of Hot Spots and Hot Moments at Ecohydrological Interfaces Upscale to
Ecosystem Ecohydrological, Biogeochemical, and Ecological Processes?
Our capacity to quantify and predict the large-scale and long-term importance of hot spots and hot
moments at ecohydrological interfaces is hampered by our limited understanding of how mechanisms
structuring ecohydrological interfaces and their processes scale in space and time [Krause et al., 2011b;
Pinay et al., 2015]. The effects of interface hot spot activity have been observed at scales ranging from
microscales such as biofilms to intermediate scales of stream reaches [Lautz and Fanelli, 2008; Trauth et al.,
2015], and conceptual frameworks have been developed to explain interface process dynamics [Fisher et al.,
1998; McClain et al., 2003; Harms and Grimm, 2008; Pinay et al., 2015]. For example, there is evidence that
hyporheic zone processes can have implications for the whole stream network [Kiel and Cardenas, 2014;
Harvey and Gooseff, 2015; Gomez-Velez et al., 2015; Zarnetske et al., 2015], with hyporheic nitrification and
denitrification in headwater streams altering the nitrogen load in rivers [Alexander et al., 2007]. Although
hot spot activity has been shown to be at least temporarily significant at small local scales, its larger-scale
importance for energy transfer or biogeochemical turnover in entire river networks or catchments is still
widely debated. This partly results from the fact that processes specific to ecohydrological interfaces have
often been studied by coupling conceptual models of different ecosystem types (e.g., coupling groundwa-
ter and surface water models) [Markstrom et al., 2008; Yuan et al., 2011] or land-surface schemes and atmo-
spheric models with hydrological models [e.g., Maxwell and Miller, 2005]. In both cases, ecohydrological
interface conditions are at least partly defined as boundary conditions instead of integrating ecohydrologi-
cal interface conditions and behavior implicitly, a practice that restricts the way dynamic interface processes
can be analyzed across scales.

Water Resources Research 10.1002/2016WR019516

KRAUSE ET AL. ECOHYDROLOGICAL INTERFACES AS HOT SPOTS 6369



4. A Vision for Integrated Research at Ecohydrological Interfaces

The pressing challenges of global environmental change, such as increasing frequencies and magnitude of
extreme events [Hall et al., 2014; Bl€oschl et al., 2015], call for improved understanding of their impacts from
plot to regional scales, across ecosystem types, and beyond disciplinary boundaries. This will require
advanced methods for multiscale monitoring of highly dynamic ecosystem behavior [Blaen et al., 2016;
Abbott et al., 2016] in order to enhance the current understanding of quantitative implications and dynamic
behavior of ecohydrological interface processes for coupled water, matter, and energy fluxes and biogeo-
chemical turnover. The most critical knowledge gaps outlined in this review include the following:

1. Inadequate conceptual frameworks for understanding how processes occurring at ecohydrological inter-
faces vary with scale and how and whether small-scale interface processes are manifested at large scales
across complex landscapes.

2. Failure to transfer and integrate scale-dependent methods and knowledge of mechanisms controlling
ecohydrological interface processes across disciplinary and ecosystem boundaries [Hannah et al., 2007;
Krause et al., 2011b, 2014b; Abbott et al., 2016].

Interdisciplinary research strategies will need to move the research of ecohydrological interfaces from a
descriptive to a mechanistic and predictive stage, extending the scope to a wider range of ecohydrological
interfaces than explored in this paper. Ecohydrological interfaces not only connect different environmental
domains but also represent a research topic that requires and fosters novel linkage between traditionally
distinct disciplines. The development of multiscale conceptual models of ecohydrological interface func-
tioning requires interdisciplinary thinking and integration of discipline-specific methods. Following this
rationale, we propose the following ‘‘roadmap’’ to catalyze research advances.

5. Roadmap for Ecohydrological Interface Research

5.1. Enhance Capacities for Multiscale Monitoring and Modeling
Developing multiscale conceptual models of ecohydrological interfaces will require advances in physical,
microbial, biogeochemical, and ecological monitoring using innovative sensing and tracing technologies
[Gonzales-Pinzon et al., 2014; Abbott et al., 2016; Blaen et al., 2016]. In turn, the application of these technolo-
gies will require new methods for managing big data sets, and advanced tools for spatial and time-series
analysis. Recent advances in distributed sensor networks such as Fibre-optic Distributed Temperature Sens-
ing [Selker et al., 2006], thermal IR imagery [Pfister et al., 2010], and high-frequency in situ sensors, analyzers
and imagers [Jordan et al., 2007; Reidenbach et al., 2010; Neal et al., 2012] provide capacity for improved res-
olution and frequency in monitoring exchange fluxes across ecohydrological interfaces in real time [Grant
and Marusic, 2011; Krause et al., 2015; Blaen et al., 2016]. Technology exchange among disciplines has the
potential to advance process monitoring beyond current observations of average, compartmental system
behavior, including identification and quantification of hot moments and hot spots. Using terrestrial dia-
toms to detect the rapid onset and cessation of flow path connectivity in the hillslope-riparian zone-stream
continuum [Pfister et al., 2009; Mart�ınez-Carreras et al., 2015 is a promising example of such a cross-
disciplinary approach.

5.2. Improve Conceptual Understanding of Interface Processes and Their Interactions
In addition to improving monitoring capacity, resulting discipline and system specific knowledge needs to
be integrated to improve understanding of the scale-dependent processes and mechanisms that lead to
the development of bioreactive hot spots and hot moments [Soulsby et al., 2008]. For instance, the applica-
tion of process understanding gained in groundwater-vadose zone or groundwater-surface water interfaces
to other ecohydrological interfaces, ecosystem types, and disciplines will support the development of an
integrated conceptual framework for ecohydrological interfaces. Promising examples include the following:

1. The linking of spatial patterns and behavior of anecic earthworm populations to the generation of prefer-
ential flow pathways through macropores, which in turn affects pesticide infiltration [Palm et al., 2013;
van Schaik et al., 2014].

2. Investigations of biogeochemical hot spots developing around chironomid burrow walls with fluxes of
pore water infiltrating from the adjacent sediment and active ventilation of water from the tube into the
surrounding sediment [Roskosch et al., 2012; Baranov et al., 2016].
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3. The extension of boundary layer research from atmosphere-forest and atmosphere-soil interfaces [Finne-
gan, 2000] to a variety of surface water-benthic interfaces [e.g., Nikora, 2010; Larned et al., 2011; Nepf,
2012].

4. Novel approaches for analyzing process dynamics at plant-soil interfaces including plant root endo-
sphere and rhizosphere [Vandenkoornhuyse et al., 2015].

5.3. Quantify the Impact of Interface Hot Spots and Hot Moments at Regional Scales
To improve the prediction and quantification of landscape-scale water, matter, and energy fluxes and bio-
geochemical cycling, quantitative model frameworks need to incorporate improved mechanistic under-
standing of the space-time organization of ecohydrological interface activity. This may be achieved by
advancing conceptual modeling frameworks that integrate traditionally separate model domains. In addi-
tion, there is great potential for enhanced interdisciplinary knowledge exchange by transferring subject-
specific theory across disciplinary boundaries and testing its validity at ecohydrological interfaces [Abbott
et al., 2016]. For instance, concepts linking the spatial organization and hydrological functioning of
intermediate-scale catchments [Zehe et al., 2014] provide potential for being applied to advance the process
understanding of the functioning of ecohydrological interfaces. In this catchment-scale example, a hierar-
chy of functional units (i.e., coevolving elementary functional units) has been shown to control catchment
functioning, ultimately resulting in spatially organized landscapes [Zehe et al., 2014]. In other applications,
the blurring of system boundaries and adopting of flow path approaches has been advocated to more real-
istically scale up to larger landscapes [Fisher et al., 1998, 2004; Kolbe et al., 2016]. Adaptations of such con-
cepts may have great potential to improve large-scale quantification of ecohydrological interface activity.

5.4. Manage Ecohydrological Interfaces to Enhance Ecosystems Services and Increase Resilience to
Environmental Change
Ecosystem services provided by ecohydrological interfaces need to be restored and their resilience to future
environmental perturbations improved, in order to better manage the adjacent ecosystems [Kasahara and
Hill, 2008; Hester and Gooseff, 2011; Harvey and Gooseff, 2015]. For example, multiple restoration measures
have been trialed with the goal of enhancing hyporheic exchange fluxes across groundwater-surface water
interfaces (e.g., constructed channel structures [Crispell and Endreny, 2009] and bed forms [Kasahara and
Hill, 2006], altered streambed hydraulic conductivity [Ward et al., 2011], planting [Gurnell, 2014], and woody
debris installation [Krause et al., 2014a]). A key challenge remains to identify drivers that can be manipulated
or managed at relevant scales. New high-frequency and high-resolution data obtained from novel distrib-
uted sensor networks can help to improve the understanding of dominant controls of ecohydrological
interface reactivity [Krause et al., 2015; Blaen et al., 2016]. Such an understanding is required to design
potential engineering and management measures to restore, maintain, or enhance processes of ecohydro-
logical interfaces. Explicit consideration of the dynamics of processes at ecohydrological interfaces also has
the potential to improve management and risk assessment frameworks. Specifically, managing ecohydro-
logical interfaces may permit their efficient use and promote their moderating impact and remediation
potential, for example, by enhancing nutrient retention or removal at hyporheic or riparian interfaces.

6. Conclusions

This paper has elaborated our view that to better understand the functioning of ecosystems, their compo-
nent subsystems, and their interactions, it is important to explicitly account for the dynamics of processes
occurring at ecohydrological interfaces. This implies consideration and analysis of ecohydrological interfa-
ces in their own right, as entities with unique functioning and inherent, often complex, spatial patterns and
temporal dynamics of physical, biogeochemical, and ecohydrological properties. Ecohydrological interfaces
often occur at boundaries and ecotones, but they are not boundaries per se. They may appear and disap-
pear, having a large or a small role in determining larger-scale processes that vary over space and time. An
improved understanding of the wider landscape interactions between connected ecosystems will only be
possible if current ecosystem and landscape concepts incorporate the processes that occur at ecohydrologi-
cal interfaces.

The analysis of the actual causes of dynamic ecohydrological interface reactivity, including reasons for non-
linear behavior such as hot spots and hot moments, requires intensification of interdisciplinary research
and enhanced capacity for high-frequency/resolution monitoring to adequately capture nonlinear process
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dynamics as they occur. Combining technological and conceptual advancement from different disciplines
can help us to understand nonlinear ecohydrological interfaces behavior. This will advance our understand-
ing and conceptual frameworks of ecosystem processes, from their current, often disciplinary, descriptions
of patterns and dynamics of ecosystems as segregated entities to dynamic systems with interconnected
processes and interferences that are substantially controlled by the conditions at system and subsystem
interfaces.

We recognize that we have provided insight into the importance of processes at a subset of the universe of
ecohydrological interfaces, with a bias toward examples of ecohydrological interfaces involving freshwater
ecosystems such as groundwater-surface water and benthic-pelagic interfaces. Further interdisciplinary
research is needed to develop new strategies for extending and integrating this process understanding to
other types of ecohydrological interfaces in more terrestrial ecosystems, such as plant-atmosphere, soil-
plant, or microbe-plant interfaces.
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