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ABSTRACT

The detection of multilayer cloud situations is important for satellite retrieval algorithms and for many

climate-related applications. In this paper, the authors describe an algorithm based on the exploitation of the

Polarization and Directionality of the Earth’s Reflectance (POLDER) observations to identify monolayered

and multilayered cloudy situations along with a confidence index. The authors’ reference comes from the

synergy of the active instruments of theA-Train satellite constellation. The algorithm is based upon a decision

tree that uses a metric from information theory and a series of tests on POLDER level-2 products. The

authors obtain a multilayer flag as the final result of a tree classification, which takes discrete values between

0 and 100. Values closest to 0 (100) indicate a higher confidence in the monolayer (multilayer) character. This

indicator can be used as it is or with a threshold level that minimizes the risk of misclassification, as a binary

index to distinguish between monolayer and multilayer clouds. For almost fully covered and optically thick

enough cloud scenes, the risk of misclassification ranges from 29% to 34% over the period 2006–10, and the

average confidences in the estimated monolayer and multilayer characters of the cloud scenes are 74.0% and

58.2%, respectively. With the binary distinction, POLDER provides a climatology of the mono–multilayer

cloud character that exhibits some interesting features. Comparisons with the performance of the Moderate

Resolution Imaging Spectroradiometer (MODIS) multilayer flag are given.

1. Introduction

Clouds are a key component of Earth’s climate sys-

tem. Their presence is the result of thermodynamic and

microphysic processes in the atmosphere. Consequently,

their structures can indicate various atmospheric states

and meteorological events. For instance, frontal cloud

systems indicate the encounter of different air masses,

vertically large extended clouds are the sign of large

available potential energy, and the base of warm clouds

indicates their condensation level. In return, the effects

of cloud cover on the climate is important. The radiative

effects of clouds at the top of the atmosphere, as well as

effects on the surface energy budgets, are significant and

diverse. They also significantly affect the atmospheric

circulation through the exchange of latent heat during

their lifetime.

A global observation and description of clouds are

necessary to understand and properly depict their

overall and multiple effects. This is particularly true in

the context of the climate change we are experiencing.

Whether cloud covers of different cloud types or

the partition of low-level versus high-level clouds—

which have different and sometimes opposite radiative

effects—will remain regionally or globally unchanged or

will evolve is a crucial question. It is recognized as one of

the major challenges in climate change predictions

(Bony and Dufresne 2005; Andrews et al. 2012; Vial

et al. 2013). Some recent studies argue that a conse-

quence of climate change would likely be a change in the

cloud vertical distribution (Chepfer et al. 2014).

One important and common feature of cloud covers is

their multilayer character. A thin layer of high cloud

above a lower one may affect significantly the vertical

profile of net radiative fluxes (Christensen et al. 2013),

and this top layer may skew the retrieval of cloud prop-

erties mainly based on the assumption of a single layer.
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Multilayer cloud cases have first been detected by surface

observations (Hahn et al. 1990a,b; Warren et al. 2014) or

in situ through the use of sounding balloons (Wang et al.

2000). The development of active remote sensing in-

struments has improved the identification ofmultilayered

cloudy situations as well as the description of their

properties (Mace et al. 2009; Yuan and Oreopoulos

2013). Satellite-based observations from passive sensors

having a large field of view are adequate to infer cloud

microphysical and bulk properties and study globally and

statistically the interaction between radiation and clouds.

The detection and characterization of multilayer cloud

systemswith passive remote sensing instruments remains,

however, limited. Indeed, from space, for example, a high

cloud layer can be optically thick and consequently

overshadow a lower one. Reciprocally, in the presence of

thick low clouds, high layers can be optically too thin to

be detected by a passive remote sensing instrument. Last,

the vertical distance between two cloud layers is some-

times too low for the scene to be identified as multilay-

ered by a passive instrument. Given awareness of these

difficulties, several methods have been proposed to de-

tect multilayered cloudy situations with passive sensors.

Sheu et al. (1997) combine infrared and microwave

measurements, as high clouds are practically transparent

in the microwave domain but are much more opaque in

the infrared domain. Baum et al. (1995) suggested a

semiautomatic method based on multispectral and

multiresolution measurements [multispectral, multi-

resolution (MSMR) method]. Jin and Rossow (1997)

also use a multispectral method, based on the fact that

when a low cloud is present under a thin and high cloud,

cloud-top pressure determined by the CO2 slicing

method varies with the wavelength. This method makes

it possible to detect a thin cloudy layer (t # 1) above a

low layer, with both of them being separated by at least

100 hPa. A bispectral approach has been developed by

Baum and Spinhirne (2000) and then by Nasiri and

Baum (2004) in order to detect optically thin cirrus that

overlap low-level liquid clouds when they are separated

by at least 2 km. It exploits the fact that absorption by ice

at 1.63mm is very high relative to that of liquid water,

such that reflectance at this wavelength stays the same

when the cirrus optical thickness increases. In the

meantime, the brightness temperature at 11mm strongly

depends on cirrus optical thickness. Pavolonis and

Heidinger (2004) and Heidinger and Pavolonis (2005)

combine visible and infrared measurements to detect

cirrus (0.5, t, 4) above low clouds (t. 5). Chang and

Li (2005) compare cirrus optical thickness deduced from

visible and infrared measurements. Wind et al. (2010)

have elaborated an operational algorithm for the Mod-

erate Resolution Imaging Spectroradiometer (MODIS)

(Platnick et al. 2003; King et al. 2003) instrument, whose

principal objective is the detection of multilayered

cloudy situations, specifically optically thin ice clouds

overlying lower-level water clouds. In this algorithm, the

MODIS 0.94-mm water vapor band is used along with

CO2 bands to obtain two above-cloud precipitable water

retrievals, the difference of which, in conjunction with

additional tests, provides information on where multi-

layer clouds potentially exist. Joiner et al. (2010) com-

bine information about cloud-top pressure deduced

from thermal infrared and solar measurements in order

to identify multilayered situations from vertically ex-

tended clouds. Yao et al. (2010) use cloud thermody-

namic phase retrieved by the Polarization and

Directionality of the Earth’s Reflectance (POLDER)

radiometer (Buriez et al. 1997) and the cloud-top pres-

sure provided by the MODIS instrument (Menzel et al.

2008) to detect multilayered situations. Indeed, they

make the hypothesis that clouds for which top pressure

is lower than 500 hPa and thermodynamic phase is liquid

tend to be multilayered. More recently, Watts et al.

(2011) and Sourdeval et al. (2015) showed the feasibility

of not only the detection but also the retrieval of two-

layer cloud properties using an optimal estimation ap-

proach applied to geostationary observations.

The work presented here describes the definition of a

cloud multilayer flag based only on measurements from

the POLDER sensor, which flew aboard the Polariza-

tion and Anisotropy of Reflectances for Atmospheric

Sciences Coupled with Observations from a Lidar

(PARASOL) platform from 2006 to 2013. The interests

of such a product from a passive remote sensing in-

strument are multiple. Primarily, the large swath of

POLDER observations offers a large spatial coverage.

However, POLDER cloud products have been retrieved

under the hypothesis of a monolayer cloud, which can

induce an important bias. Consequently, a flag in-

dicating the presence of a multilayer cloud structure

could improve the quality of the retrievals. Also, such a

flag would help in the description of the tridimensional

structure of a cloud system. The synergy between in-

formation coming from the multidirectional, polarized,

and multispectral POLDERmeasurements is exploited.

Our approach is based on a decision tree, which classifies

the mono–multilayered cloud scenes. The decision tree

implements tests on attributes that were selected based

on their information about the mono–multilayer char-

acter of a scene. This has been made possible thanks to

the coincident observations of POLDER-3/PARASOL

with those fromCloudSat and Cloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO).

The paper is organized as follows. First, we describe

the principle of the detection algorithm: the attributes
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that were chosen to distinguish between monolayer and

multilayer characters of cloud scenes and then the tech-

nique of classification with a decision tree and a metric

based on information theory. Second, we provide an

evaluation of the decision tree, a physical interpretation

of it, and its consistency with an independent approach

that uses the receiver operating characteristic (ROC)

curve. Then we evaluate statistically the POLDER mul-

tilayer flag: we define the notion of classification risk and

give arguments toward both a binary mono–multilayer

classification and a flag, taking discrete values interpreted

as a confidence parameter. During this evaluation, the

POLDER multilayer flag is compared with the MODIS

one. Finally, we discuss some statistics and the climatol-

ogy that we obtained about the mono–multilayer char-

acter of observed cloud covers.

2. Principle of the detection algorithm

Passive satellite measurements do not intrinsically

provide information about the vertical distribution of

cloud covers. They are insteadmore sensitive to column-

integrated cloud properties. However, the various in-

teractions between cloudy atmosphere and the radiation

field may provide information about different vertical

levels in the atmosphere. For example, the penetration

depth within cloudy atmosphere of the solar back-

scattered radiation varies with the scene’s angular con-

dition and the different natures (visible/near infrared;

use total/polarized) of the exploited radiation. This has

been shown, for instance, while estimating cloud effec-

tive radius with different types of measurements

(Platnick 2000; Bréon and Doutriaux-Boucher 2005).

The exploitation of the multidirectional character of

measurements in gas absorbing bands also provides in-

formation about the cloud vertical profile (Ferlay et al.

2010; Desmons et al. 2013).

a. A-Train dataset used

Our approach to discriminate between monolayer and

multilayer clouds using POLDER measurements is spe-

cifically based on multiple criteria. For doing so, we

analyzed a database containing POLDER level-2 data for

pixels under the track of the Cloud–Aerosol Lidar with

Orthogonal Polarization (CALIOP) and the radar of

CloudSat with a 5-km horizontal sampling (see details

about the CALXTRACT project and CALTRACK files

at http://www.icare.univ-lille1.fr/projects/calxtract/). For

these coincident pixels, we considered that the lidar and

radar echoes provide the ‘‘true’’ cloud vertical locations.

The sensitivities of the CALIOP aboard CALIPSO

(Winker et al. 2007, 2010) and the Cloud Profiling Radar

(CPR) aboard CloudSat (Stephens et al. 2002, 2008) are

suitable for the detection of respectively thin and thick

cloud layers, and the combination of their products

allows a complete knowledge of the vertical structure of

cloud layers. In this work, we have used theCloudSat 2B-

GEOPROF-lidar product, which provides cloud-base and

cloud-top altitudes (LAYERBASE and LAYERTOP)

of up to five cloud layers in each atmospheric column.

This product identifies a cloudy situation as multilayered

only when two layers are vertically spaced at least 960m

apart (Mace et al. 2009). The conversion from altitude to

pressure is performed thanks to a local conversion in-

dex. Pressures in the atmospheric column come from

meteorological reanalyses (Bloom et al. 2005) pro-

duced by the NASAGlobalModeling andAssimilation

Office (GMAO) and are available in CALIPSO CAL

LIDL2-05kmCPro products. Table 1 describes the initial

products that served to generate the CALTRACK files

we have used for this study. MODIS data are used for the

validation of our results.

b. Information about the multilayer character of
cloud structures in POLDER measurements

First, we studied the distributions of different quan-

tities and differences for monolayer and multilayer

cloud scenes. The monolayer/multilayer character is

given by the product 2B-GEOPROF-lidar, the scene

being declared multilayered when the number of cloud

layers found is strictly higher than one. Cloud distribu-

tions come from one year of measurements (2008),

corresponding to more than 6 600 000 cases. According

to the measurements of the lidar CALIOP and the radar

CPR aboard the satellite platform andCloudSat, 35% of

cloudy columns are multilayered over the entire globe at

around 1330LT. The partition between monolayered

and multilayered clouds varies with latitude (see in

Fig. 1a): over ocean, the proportion of multilayered

clouds goes down to 25% outside of the tropics (defined

as the area of latitude from2208 to1208), andwithin the
tropics, up to 50% of the cloud cases are multilayered;

over land, the meridian variation of the multilayer pro-

portion is slightly higher, with more multilayer cases in

the tropics. Cloudy cases that are selected—population

labelled herein as CC095—are close to fully cloudy

(POLDER fractional cloud cover . 0.95), and the op-

tical thickness is. 5. The purpose of this selectionwas to

minimize 3D radiative effects and surface effects in

POLDER measurements and products. This cloud

population represents around 56% of the monolayer

cases and 59%of themultilayer cases. The proportion of

multilayer cases for this population CC095 is higher than

the proportion of it for all cloudy cases: on average,

2.3% more multilayer clouds, the difference being the

highest at the tropics, as illustrated in Fig. 1b.
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Statistical distributions of the following POLDER

cloud level-2 products are analyzed: the cloud thermo-

dynamic phase, Rayleigh pressure PRayleigh, oxygen

pressurePO2
and its angular standard deviation sPO2

, and

cloud-top oxygen pressure (CTOP). Both cloud ther-

modynamic phase and Rayleigh pressure exploit the

measurements of the polarization of the upward radia-

tion field, particularly at 443nm (Buriez et al. 1997).

Determination of the thermodynamic phase uses the

signature of multi-viewing polarimetric measurements,

and the fact that polarimetric radiances saturate for

optical thicknesses greater than 2. As a consequence, in

the case of multilayer cloud structures, the thermody-

namic phase would be of the upper layer if its optical

thickness is greater than 2 (i.e., upper-layer optical

depth is small relative to the one of the lower layer);

otherwise, the signature would be a mixture between

liquid and ice clouds and then the thermodynamic phase

would be flagged as mixed (Goloub et al. 2000). The

oxygen pressure and its angular standard deviation are

obtained from the two POLDER measurements in the

oxygen A band at 763 and 765nm (Vanbauce et al.

1998). The oxygen pressure is calculated for up to 16

viewing angles, and the algorithm is based upon the fact

that O2 absorption is linked to the penetration depth of

radiation within the atmosphere. The oxygen trans-

mittance TO2
from the top of the atmosphere to a level

pressure P and then back to space is estimated by the

ratio of POLDER radiances measured in the oxygen A

band. As clouds are not perfect reflectors, the photons

penetrate the cloud layer, and the photon path depends

on the viewing directions and the cloud optical thick-

ness. Then the average oxygen pressure and the angular

standard deviation are computed (final products). The

cloud-top oxygen pressure is an estimate of the cloud-

top pressure and is derived from the oxygen pressure

and its standard deviation (Desmons et al. 2013). CTOP

has been established for monolayer clouds only, but it is

calculated here for all cloudy pixels with the idea that its

value for multilayered situations could be singular.

Figure 2 presents the different distributions that result

from the year 2008 for monolayered and multilayered

cloudy scenes. An ideal distinction of the two populations

would correspond to fully separated distributions in a

multidimensional domain. Instead, we obtain overlapped

distributions with, however, different probabilities in the

case of monolayer or multilayer cloudy atmospheres for

these quantities to be higher or lower than particular

thresholds. Figure 2a shows that for monolayer clouds, the

Rayleigh pressure distribution is bimodal, with amaximum

at 280hPa and a second one at 800hPa. These two modes

indicate the presence of high-level and low-level clouds

among the cloud population. Concerning multilayer

clouds, the distribution is close to a Gaussian centered at

500hPa and spread out. Figure 2b shows that the dis-

tribution of oxygen pressure does not differ significantly

between monolayer and multilayer clouds. For CTOP

(Fig. 2c), the difference is, on the contrary, more pro-

nounced and resembles that of PRayleigh. This is because

CTOP is close to the cloud-top pressure, while PO2
is close

to the middle-of-the-cloud pressure. Values above 800hPa

are much more frequent for monolayer clouds and could

help to distinguish between the two populations. Figure 2d

shows that values taken by the angular standard deviation

of oxygen pressure differ a lot for the two populations of

cloudy atmospheres: much smaller values are taken for

monolayer clouds (smaller than around 20hPa), while

larger values aremuchmore frequent formultilayer clouds.

In the case of a single cloud layer,sPO2
is in fact linked to the

cloud geometrical thickness (Ferlay et al. 2010; Desmons

et al. 2013), while, in the case of multilayer clouds, it is

strongly impacted by the vertical distance between the

cloud layers. Hence, sPO2
is an interesting discrimination

quantity. The metric defined later will show that it is the

TABLE 1. Level-2 products provided by A-Train sensors used in this study. Products are collocated with lidar shots and sampled

every 5 km.

Product Geophysical product

Horizontal

resolution Sensor (platform)

RB2 Oxygen pressure PO2
18 3 21 km2 POLDER-3 (PARASOL)

Angular standard deviation of PO2
, sPO2

Cloud cover CC

Cloud thermodynamic phase

Cloud optical thickness t

Geotype index

2B-GEOPROF-lidar Number of cloud layers n 2.5 3 1.4 km2 CPR/CALIOP (CloudSat/CALIPSO)

Cloud-layer top altitudes LAYERTOP

Cloud-layer base altitudes LAYERBASE

MYD06 Cloud multilayer flag MLFmod 1 3 1 km2 MODIS (Aqua)

(collections 5 and 6) Quality assurance flag QA
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most discriminating criterion. Differences in pressures can

also be interesting quantities to consider. Figures 2e and 2f

show that such differences often become larger when

cloudy atmospheres are multilayered. Indeed, one pressure

is close to the lowest pressures of cloud systems, while the

other one is close to pressures in itsmiddle (Vanbauce et al.

2003), and a cloudmultilayer situation tends to be vertically

more extended than a single layer one.

c. Classification with a decision tree

We showed above that POLDER parameters can take

different values according to the monolayer/multilayer

character of cloudy atmospheres. In addition, information

about the latitude of the scene and inference of the ther-

modynamic phase of clouds can help to gain reliability for

the estimation of this character (Yao et al. 2010). To

propose an objective classification of it, we built a decision

tree whose design is based on a chosenmetric. Thismetric

quantifies the information about the level of discrimina-

tion of each criterion, which leads to a particular design

of a decision tree. It is based on actual vertical profiles of

cloudy atmospheres and a distinction of their monolayer–

multilayer character given by CloudSat and CALIPSO.

The technique of the decision tree is based on the idea

of classifying an object through a set of tests on the

attributes that describe it. These tests are organized in a

way that the answer to one of them indicates the next

test to be performed. The tests are organized as a tree,

from a root to leaves (top-down induction). A leaf of the

tree indicates one of the classes, and a test concerning

one or more attributes is associated with each node. In

our situation, the objects are the monolayer–multilayer

situations, and the attributes are the quantities sensitive

to this character. The metric used to make the choice of

the right attributes comes from information theory.

1) INFORMATION THEORY

A probabilistic interpretation of decision tree designing

is given by Cornuéjols and Miclet (2010) and is based on

information theory, developed by Claude Shannon in the

1940s. Shannon and Weaver (1949) make the link be-

tween information and the entropy of probability density.

Entropy is here very close to the thermodynamic formu-

lation given byGibbs, where it represents the logarithm of

the number of distinct states contained in a system. The

entropy of a variable w that can take the values fwjgj2C
with probabilities p(wj) is defined as

H(w)52�
j2C

p(w
j
) lnp(w

j
) . (1)

The logarithm is expressed in base 2 to be able to describe

the information using a binary base, and entropy is

expressed in bits. In this work, w stands for the mono–

multilayer character; thus, the number of classes C is equal

to 2. Entropy H(w) defines the uncertainty that we have

about the knowledge ofw.As attributes are sensitive to the

monolayer–multilayer character of a cloudy situation, we

consider now attributes a that can take the values faig and
define entropy conditioned on a, or conditional entropy, as

H(w j a)52�
i,j
p(w

j
\ a

i
) lnp(w

i
j a

i
), (2)

where p(wj \ ai) and p(wi j ai) are joint probability dis-

tribution and conditional probability, respectively. The

quantity H(w j a) represents the uncertainty on the

monolayer–multilayer character knowing the response to

the test on a. The more the quantity a allows the differen-

tiation of the values ofw, the smaller is the entropyH(w j a).
If a5 w, the entropy is equal to 0: knowing w removes the

uncertainty on w. Finally, we consider the quantity

I(w, a)5H(w)2H(w ja) . (3)

The quantity I(w, a), called mutual information (Cover

and Thomas 1991), quantifies the reduction in the un-

certainty in w due to the knowledge of a. It measures the

statistical dependence between w and a. A decision tree

that should classify the monolayer–multilayer character

w of a cloudy scene will use attributes that reduce the

FIG. 1. (a) Proportion of multilayered clouds for all clouds

and (b) difference in the proportion between the all-cloud-cover

population and the cloud population with POLDER t $ 5 and

POLDER CC $ 0.95 for the period 2006–10 during daytime. The

information on the mono/multilayer character comes from

CloudSat–CALIPSO.
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FIG. 2. Histograms of (a) Rayleigh pressure, (b) oxygen pressure, (c) angular standard deviation of the oxygen

pressure, and (d) CTOP and of the differences (e) between oxygen and CTOP and (f) between Rayleigh and

oxygen pressures. Histograms are plotted for monolayered (gray lines) and multilayered (black lines) clouds, for

which t $ 5 and CC $ 0.95 in 2008. The information on the monolayer or multilayer character comes from the

CloudSat coproduct 2B-GEOPROF-lidar.
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uncertainty about this character. At a certain node of the

tree, the choice of the attribute a that is to be considered

corresponds to the one that minimizes the uncertainty

about w or, equivalently, the one that minimizes the

quantity H(w j a). And the probabilities of branches are

conditional on the event associated with the parent node.

2) DESIGNING THE DECISION TREE

Data from 2008 form a learning set of 2798792 cloudy

pixels detected by POLDER, CALIOP, CPR, and

MODIS, above land and ocean, for which the cloud cover

is $0.95 and the cloud optical thickness is $5 (both are

provided by POLDER measurements). Among those, ac-

cording to CALIOP and CPR, 1802422 pixels contained

monolayer clouds, and 996370 were multilayered cloudy

columns. The proportion of monolayer (multilayer) clouds

is thus 65% (35%). Each cloudy case is described by dif-

ferent attributes: the cloud thermodynamic phase; whether

the pixel is or is not in the tropical area; and the PRayleigh,

PO2
, sPO2

, CTOP, PRayleigh 2 PO2
, and PO2

2 CTOP pres-

sure parameters. Except for the thermodynamic phase,

which can take three values (liquid, ice, or mixed), all the

attributes give binary information from a binary rule:

a pixel is located or not in a tropical area; pressure pa-

rameters are higher or lower than a threshold value.

Ideally, one would try to design a classification tree

with final leaves as pure as possible, through successive

nodes and their associated binary tests attributes. It

would mean that attributes bring enough information to

make perfectly the distinction between monolayer and

multilayer situations. It is not the case here. Instead,

nodes are successively designed up to a step where en-

tropy cannot be reduced further. Then, the proportion of

monolayer and multilayer clouds is computed for each

leaf of the tree and is retained as a multilayer indicator.

Initially, without considering attributes that bring

information, the entropy of the variable ‘‘character

monolayer or multilayer,’’ denoted as mo 2 mu and

H(mo2 mu), is equal to 0.943. To reduce the uncertainty

in the variable mo 2 mu, we calculate the entropy condi-

tioned on the different attributes that we considered. For

the attribute concerning the latitudinal location of the pixel

and the phase of the cloud, the test is binary (inside/outside

the tropical zone, liquid or not, mixed or not, and ice or

not). For pressure parameters, the test is the following:

Is the attribute smaller than a given threshold? The

entropy of the variable mo 2 mu conditioned on pres-

sure parameters is thus computed for different thresh-

olds, ranging between two values determined for each

parameter. The threshold that will be retained is the one

that minimizes the entropy. For example, for the oxygen

pressure, the entropy H(mo 2 mu jPO2
) varies between

0.924 and 0.946, as shown in Fig. 3, the minimum being

reached when the threshold is equal to 850 hPa. Calcu-

lations of conditional entropy for the different attributes

are summarized in the top half of Table 2.

The attribute that minimizes the entropy of the vari-

able mo 2 mu is the angular standard deviation of the

oxygen pressure sPO2
, for a threshold equal to 22.5 hPa.

Thus, the test on sPO2
will constitute the first node (i.e.,

at the root) of the decision tree. This is consistent with

the observation made in Fig. 2d, which shows two very

distinct distributions of this attribute. Then, the decision

tree is further designed by separating the pixels into two

groups: the ones that respect the criterion ‘‘sPO2
#

22.5 hPa’’ and the others. In the first branch, 75% of

cloudy cases are monolayered. Again, we calculate the

entropy of the quantity mo 2 mu conditioned on attri-

butes for selected pixels (for this branch, the selection rule

is sPO2
# 22.5hPa). The new minimum of the entropy of

mo 2 mu is obtained from the attribute PRayleigh with a

threshold equal to 750hPa (details of the calculation are

given in the bottom half of Table 2). We go on designing

the different branches and nodes of the tree following the

same rule. The designing of the tree is stopped at the

fourth level of nodes that become leaves. As we have

used data from 2008 to build the tree, we used data from

2007 for validation. The tree remains stable, and it is the

one obtained for 2007, which is represented in Fig. 4.

3. Analysis and validation of the approach

The decision tree was obtained by applying a general

method based on information theory. It quantifies and

FIG. 3. Entropy of the character monolayer/multilayer condi-

tioned by a threshold on the oxygen pressure PO2
. The threshold

varies between 200 and 1000 hPa in increments of 50 hPa.
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compares the information about the mono–multilayer

character of cloud cover coming from the values taken by

different attributes. We give below a first evaluation of the

decision tree by comparing its classification with results

given by an independent approach based on theROC plot.

Then we discuss the physical meaning and consistency of

the main cloud classes obtained from the tree.

a. Evaluation with ROC curve: decision at the root of
the tree

The ROC makes it possible to evaluate the perfor-

mance of a binary classification rule. Since the 1950s, this

tool has found extensive usage in psychophysics (Green

and Swets 1966) and machine learning (Fawcett and

Provost 1996; Hand and Till 2001) to evaluate medical

diagnostic tests (Hanley and McNeil 1982; Swets 1988)

and also in atmospheric sciences (Olson 1965; Wilks

1995;Mason andGraham 1999;Gabriel et al. 2009). This

method not only considers the error rate of a binary

classification but also the number of false positives and

of false negatives. The interest of it is that the cost of

misclassification can be asymmetric, and sometimes, one

prefers to reduce the more expensive kind of errors,

even if this leads to a higher error rate (Cornuéjols and
Miclet 2010). For example, when the classification deals

with a medical diagnostic, physicians prefer to increase

the number of false alarms instead of the number of

missed disorders: false positive cases are less expensive

than false negative ones.

Here, the diagnostic concerns the mono–multilayered

character of cloud cover as classified by the decision

tree. The choice of the binary distinction at each node of

the tree can be evaluated with the ROC plot. Figure 5

shows such plots for the decision at the root of the tree,

before the first node. The ROC is a plot of the true

positive rate (TPR) versus false positive rate (FPR).

They correspond in our study to the fraction of mo-

nolayered cases correctly identified by POLDER

following a classification rule and the fraction of multi-

layered cases misclassified by it as monolayered. Each

curve corresponds to a discriminating attribute, and any

point on the curves is determined by a particular

threshold of the attribute, the variety of it being the

same as the ones used when designing the decision tree.

For the latitude and thermodynamic phase parameters,

curves are reduced to only one point that corresponds

to a unique binary distinction (inside/outside tropics,

liquid or not, etc.). A perfect classification criterion

would provide a point of coordinates (0, 1), which would

signify a sensitivity equal to 100% (no false negative)

and an FPR equal to 0. A random classification would

produce a point along the diagonal that links the bottom

left and top right corners (called the line of no discrim-

ination). Points situated above this diagonal stand for a

useful criterion (better than hazard), while points below

it represent a bad criterion. Considering equally the two

costs of misclassification (monolayered or multilay-

ered), the best criterion is the one for which the distance

between a point on the curve and the coordinate (0, 1) is

the shortest.

Figure 5 shows that, apart from phase criterion and

the parameter CTOP2 PRayleigh, which are very weakly

discriminative, the chosen parameters can bring a sig-

nificant discrimination: points can be way above the

TABLE 2. Entropies conditioned on the different attributes.

Attribute Entropy Threshold value (hPa)

All clouds

— H(mo 2 mu) 5 0.943 —

Lat H(mo 2 mu j lat) 5 0.939 —

Phase H(mo 2 mu j phase) 5 0.938 —

PO2
0.924 # H(mo 2 mu jPO2

) # 0.946 850

sPO2
0.895 # H(mo 2 mu j sPO2

) # 0.944 22.5

PRayleigh 0.896 # H(mo 2 mu jPRayleigh) # 0.945 750

CTOP 0.899 # H(mo 2 mu jCTOP) # 0.945 750

PRayleigh 2 PO2
0.908 # H(mo 2 mu j dPRayleigh2PO2

) # 0.946 2100

PO2
2 CTOP 0.913 # H(mo 2 mu j dPO2

2CTOP) # 0.946 100

Clouds for which sPO2
# 22.5 hPa

— H(mo 2 mu)s#22.5 5 0, 811 —

Lat H(mo 2 mu j lat)s#22.5 5 0, 807 —

Phase H(mo 2 mu j phase)s#22.5 5 0, 810 —

PO2
0.794 # H(mo 2 mu jPO2

)s#22.5 # 0, 810 800

PRayleigh 0.772 # H(mo 2 mu jPRayleigh)s#22.5 # 0, 810 750

CTOP 0.787 # H(mo 2 mu jCTOP)s#22.5 # 0, 810 750

PRayleigh 2 PO2
0.779 # H(mo 2 mu j dPRayleigh2PO2

)s#22.5 # 0, 810 2100

PO2
2 CTOP 0.799 # H(mo 2 mu j dPO2

2CTOP)s#22.5 # 0, 810 100
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FIG. 4. (a) ‘‘Left’’ limb (sPO2
# 22.5 hPa), and (b) ‘‘right’’ limb (sPO2

. 22.5 hPa) of the decision tree for the

distinction of monolayered and multilayered cloud structures. For every test at every node, the number of con-

cerned clouds as well as the proportion of monolayered (boldface type) and multilayered structures are given. The

tree has obtained its learning from the CALIOP/CPR track using data from 2008 and then applied to 2007. The

values given are those from 2007.
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diagonal for some thresholds, as for PRayleigh, CTOP, and

PO2
2 PRayleigh. The angular standard deviation of the ox-

ygen pressure sPO2
appears as a highly discriminating pa-

rameter, and the best classification corresponds to a

threshold on sPO2
of around 20hPa. This corroborates the

calculations of entropy made in the previous paragraph

and confirms the choice of sPO2
as the first node of the tree

with a threshold value of 22.5hPa.

b. Physical analysis of the tree

Although the attributes chosen for the distinction of

monolayered and multilayered situations have been

chosen from a physical understanding of these situa-

tions, the decision tree has been obtained by applying a

rigorous but general method based on objective and

quantitative criteria. In the following paragraph, we

propose to detail the physical rationale behind these

criteria and to analyze the portrait of the main pop-

ulations obtained by this classifier.

Leaves from the left branch of the tree (Fig. 4a) concern

clouds for which the angular standard deviation of the

oxygen pressure is lower or equal to 22.5hPa. This means

that the variability of the photon pathlength inside the

cloudy layer according to the different viewing directions is

quite limited. Clouds belonging to leaf 1 with a monolayer

confidence index of 91% (’10% of the cloudy situations)

present a Rayleigh pressure higher than 750hPa and a

pressure CTOP higher than 800hPa, which corresponds to

low clouds with a top altitude smaller than 2.5km. Leaf 7

shows amonolayer confidence index of 70% (’14%of the

cloudy situations) and describes middle to high clouds

(PRayleigh # 750hPa and CTOP . 300hPa) that also

have a limited vertical extent (PO2
2 PRayleigh # 150hPa).

They are indeed probably cirrus or altostratus, monolayer

cloud types.

The right branch of the tree concerns clouds for which

the angular standard deviation of the oxygen pressure is

higher than 22.5hPa (Fig. 4b). This important angular

variability of the directional oxygen pressure indicates

clouds that tend to get away from the model of the perfect

reflector. As would be expected, the second node on this

branch concerns the thermodynamic phase, as the re-

lationship between angular standard deviation of oxygen

pressure and cloud geometrical thickness is highly influ-

enced by the scattering phase function and hence the

thermodynamic phase (Ferlay et al. 2010). The nodes that

lead to leaf 4, with themultilayer confidence index of 81%,

concern liquid water clouds located in tropical areas and

for which PO2
2 PRayleigh . 200hPa. These criteria are

consistent with characteristics of multilayer clouds. Like-

wise, leaf 12, which displays a multilayer confidence index

of 70%, concerns clouds with a thermodynamic phase

identified as mixed, which indicates a rather complex mi-

crophysics or potentially multilayer situations (Riédi et al.
2010). These clouds are found at middle to high altitudes

(PRayleigh # 700hPa), and are located in the tropical re-

gion. These characteristics are compatible with multilay-

ered situations often met in this region.

4. Definition of amultilayer flag and first evaluation

A first validation of the design of the decision tree

comes from the stability of the results obtained for dif-

ferent years and the consistency of the result coming

from the tree’s metric with the one from the ROC ap-

proach. Each POLDER elementary pixel falls into the

tree down to 1 of the 20 leaves that were defined. To

evaluate our classification rule, we need to define a

multilayer indicator, or flag, from the tree’s classification

to be able to compare it with other approaches. This is

what we perform here, followed by a first qualitative

comparison between POLDERmultilayer classification

and the one from MODIS for one case study.

a. Definition of a multilayer flag

The scores in percent obtained at each final leaf of the

decision tree represent a statistical confidence in the

monolayer–multilayer character of particular cloudy

scenes that were equally classified throughout the tests

of the tree. We chose to define a multilayer flag MLFpol

defined as

FIG. 5. ROC at the root of the decision tree. TPRs and FPRs are

given following the classification of all cloudy scenes as monolayered

or multilayered from tests on the different attributes with different

thresholds. Data are from 2009. Values of threshold on the angular

standard deviation sPO2
are emphasized. Curves are shrunk to

a unique point when the criteria of classification are based on a unique

threshold.

1130 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

Unauthenticated | Downloaded 06/02/22 02:45 PM UTC



MLF
pol

5 1002 (leaf’s monolayer probability score in percent). (4)

Thus, MLFpol takes discrete values between 0 and 100.

Values closest to 0 indicate a higher confidence in the

monolayer character and closest to 100, a higher confi-

dence in the multilayer character. This indicator can

be used as it is, a confidence in the vertical partition of

atmospheric hydrometeors in one or more than one

layer. It may also lead to a binary classification between

monolayer and multilayer clouds.

It is interesting and challenging to compare this

multilayer classification with another one coming

from a different approach or measurement. An op-

portunity is offered at the pixel level and over a long-

time period thanks to the coincidence of numerous

PARASOL and MODIS/Aqua measurements under

the CALIPSO/CloudSat track, all platforms being

part of the A-Train.

The value of the MODIS multilayer flag (MLFmod) is

the result of the success of independent multilayer

tests. When more tests are positive, the value of the

scientific dataset (SDS) Cloud_Multi_Layer_Flag in-

creases from 2 to 8 for MODIS collection 5 (Wind et al.

2010) and from 2 to 9 for collection 6 (Platnick et al.

2015). The value 1 for MLFmod indicates single-layer

clouds. In collection 6, the multilayer detection has

been updated, and a Pavolonis–Heidinger (PH) test

(Pavolonis and Heidinger 2004) is added. Information

about each test result is kept in the sixth byte of the

Quality_Assurance_1km SDS. We followed the rec-

ommendation of Platnick et al. (2015) and interpret

cases where only the PH multilayer test is positive as

single cloud cases. They represent around 9% of all the

cloudy cases over the temporal period of study. The

value 0 means not only clear-sky cases but also cases

where there was no cloud optical property retrieval.

They represent around 13% of all cloud cases.

The MODIS parameter MLFmod actually indicates

valid but potentially problematic effective radius re-

trievals, caused mostly by multilayer situations. While

based on totally different approaches and metrics,

MLFpol and MLFmod can be qualitatively compared as

low values of the flags indicate single-layer scenes and

high-value,multilayer scenes.Another comparison is also

possible once a binary distinction is defined for each flag.

b. Qualitative evaluation on one case study

Figure 6a shows a red–green–blue (RGB) represen-

tation in true colors (I) and in false colors (II) of a cloud

scene as it was observed by MODIS (bands 1, 4, and 3

and 7, 2, and 1, respectively) on 24 September 2008,

southeast of South Africa. Stratocumulus low-level

clouds can be seen on the southwestern part of the im-

age with mostly closed cells. In the other part of the

domain, the cloudy situation is more complex, with

convective cells of different sizes and the large presence

of cirruslike ice clouds. The figure in false colors (panel

II) reveals slightly more clearly that some high-level

clouds seem to lie above liquid ones at lower altitudes,

with an optical thickness small enough so that the lowest

cloud layer is visible. In the southeastern part of the

domain, the perturbation effect of the Kerguelen Islands

on the flow of low-level atmospheric layers is even vis-

ible, while the surrounding area seems covered by

cirrus clouds.

Figure 6b shows the maps of the multilayer flag from

MODIS collection 5 (C5) and PARASOL. Despite the

facts that MODIS and POLDER sensors do not have

the same footprint or the same pixel resolution (see

Table 1), the figure shows a clear consistency between

POLDER andMODIS: they both describe the low-level

clouds as single-layer clouds, and they both indicate a

high probability of multiple cloud layers in the

same areas.

For POLDER and MODIS measurements that are

coincident with the shots of the satellite lidar and radar,

that is, on the green line in Figs. 6a and 6b, precise in-

formation about the vertical location of clouds is available

from CALIOP and CPR. Figure 6c shows the values of

POLDER and MODIS multilayer flags for those loca-

tions as well as the true cloud vertical partition, with black

and green flags in the monolayer and multilayer cases,

respectively. For the convenience of comparison,MODIS

flags are multiplied by a factor of 10. The value 1 for

MLHmod, so a 10 here, indicates single layer, and higher

values indicate cloud multilayered structures with an in-

creasing confidence. The figure shows how complex and

different the vertical partition of cloud scenes can be and

the classification by the different instruments and algo-

rithms of each particular cloud scene. For example, the

monolayer cases in the southernmost and northern-

most parts of the domain (black flags) are classified by

PARASOL with low values of MLFpol. These values are

smaller than the threshold value of 44, a classification that

identifies these cases as monolayered with, as we will see

below, an overall minimization of the POLDER risk of

multilayer misclassification. MODIS C5 and collection 6

(C6) multilayer flags also take low values mostly equal to

one, indicating monolayer cloud scenes. At some loca-

tions, MODIS C6 takes the value 4 while clouds are

monolayered, and the quality assurance (QA flag indi-

cates the only success of the PH test. It confirms the
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Fig. 6. (a) MODIS RGB imagery, as described in the text. (b) PARASOL (I) and MODIS C5 (II) multilayer flags. (c) Values of

POLDER (red) andMODIS C5 (blue) and C6 (gray) multilayer flags under the CPR/CALIOP track at a horizontal sampling of 5 km for

a cloud scene on 24 Sep 2008. In (a) and (b), the straight green line indicates the track of CloudSat and CALIOP. In panel II of (b), the

POLDER swath is indicated by a black box to help the comparison. In panel I of (b), low values indicate single-layer clouds and high

values indicate multilayer clouds with increasing confidence for POLDER. In panel II of (b), 1 indicates a single-layer cloud, and values

from 2 to 8 indicate a multilayer situation with increasing confidence for MODIS C5. In (c), the cloud vertical cross sections from the

CPR/CALIOP are flagged in black for monolayer cases and in green for multilayer cases; the horizontal dashed line gives the threshold

that minimizes the risk of misclassification between monolayer and multilayer cases with POLDER.
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comment of Platnick et al. (2015) stating that the PH

algorithm can be overly aggressive in flagging multi-

layered scenes. Most of the multilayer scenes (two or

three cloud-layer scenes with green flags) come with

higher values of the three flags (POLDER andMODIS

C5 and C6). This is the case between latitudes 428 and
408S and between 508 and 468S. At some locations, the

multilayer diagnostic is difficult (see around the lati-

tude 44.58S), which is certainly due to the higher optical

depth of the upper cloud layer.

5. Global performance of the POLDERmultilayer
flag

The POLDER cloud multilayer flag defined above pro-

vides precisely a statistical confidence in the mono–

multilayer character of each cloud scene. This multilayer

flag can be used as it is: smaller (larger) values mean higher

confidence in themonolayer (multilayer) character of cloud

scenes. This flag can be a guide for a careful use of cloud

parameters, which are largely retrieved under the mono-

layer assumption. For climatological applications, for ex-

ample, the value of the flag could definewhich cloudy pixels

should be considered or rejected in the statistics. We pro-

pose to define from this multilayer flag a binary distinction:

a cloud scene is classified as either monolayered or mul-

tilayered. A binary distinction offers several advantages.

It allows an optimization of the handling of data with a

minimization ofmisused scenes and a quantification of the

classification’s performance with calculation of its associ-

ated risk and confidence. And it permits the comparison

of different classifications based on different metrics.

a. Mono–multilayer binary distinction, risk, and
confidence

Considering the definition of the POLDERmultilayer

flag, a binary classification rule based on a unique

threshold T on the multilayer flag is the following: if

MLFpol # T, the cloudy scene is described as being

monolayered, and if MLFpol . T, as multilayered. For

each value of T, we compute the statistical risk of mis-

classification by POLDER and the confidence in the

monolayer (multilayer) character when a pixel is clas-

sified as monolayer (multilayer). The definition of the

best binary distinction corresponds to the value ofT that

minimizes the risk of misclassification.

To compute risk and confidence, we built the confusion

matrix of the classification rule (see Table 3), which

makes it possible to compare the estimated mono–

multilayer character with the true one (given by Cloud-

Sat/CALIPSO). The confusion matrix defines true positive

(TP), false positive (FP), and estimated positive (EP)

pixels, as well as true negatives (TN), false negatives

(FN), and estimated negatives (EN), when cloudy pixels

are classified as monolayered (positives) or multilayered

(negatives). ‘‘Estimated’’ positives (negatives) describes

the number of clouds identified as monolayered (multi-

layered) by our algorithm. If we consider that all errors are

equally significant, that is, that the cost of misidentifying

a monolayer or a multilayer scene is equal, the sum of the

nondiagonal elements of the confusion matrix divided by

the size of the dataset t gives an estimate of the real risk of

misclassification:

real_risk5
FP1FN

t
. (5)

The confidences in the qualifiers ‘‘monolayered’’ and

‘‘multilayered’’ are obtained with

C
mono

5
TP

EP
and C

multi
5

TN

EN
. (6)

Figure 7 shows the real risk associated with POLDER

classification for different values of the threshold level T

on MLFpol. The cloud population consists of all cloudy

pixels in 2008 with a POLDER cloud cover higher than

TABLE 3. Confusion matrix for a multilayer indicator.

Estimated class

Real class

Monolayered (P) Multilayered (N) Sum

Monolayered TP FP EP

Multilayered FN TN EN

Sum P N t

FIG. 7. Real risk associated with POLDER pixel classification for

different thresholds on the multilayer flag MLF. All cloudy pixels in

2008 with POLDER cloud cover .0.95 and cloud optical depth .5.
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0.95 and cloud optical depth higher than 5, noted as

CC095. The real risk is around 64% when T 5 0 and

36% when T 5 100: these are the global probabilities

that cloud scenes are monolayered and multilayered.

When the threshold is low, the confidence Cmono is

higher, with very few cloudy pixels classified as mono-

layered, and the confidence Cmulti is very low. The re-

verse is obtained for threshold values close to 100. The

two confidences range respectively from 92% down to

65% for Cmono and from 35% up to 78% for Cmulti when

the threshold goes from 0 to 100. For a particular value

of the threshold level, T 5 44, the real risk is minimum

and equals 29.5%. The existence of a minimum on the

curve validates this approach for a binary distinction and

its interest: while the decision tree helps to discriminate

cloudy pixels according to their mono–multilayer fea-

ture, there is also a best way, all errors of classification

being equally significant, to make an objective binary

distinction between pixels. For this chosen threshold

level of 44, we did compute the confusion matrix for the

cloud population CC095 over the period 2006–10 and for

all surface types (top matrix in Table 4). It shows first that

POLDER tends to overestimate the global proportion of

monolayer clouds (71% against 65%). This result is con-

sistent with the fact that POLDER hardly distinguishes

very thin cirrus above a lower cloud deck. Around 82% of

monolayered clouds and 47% of multilayered are well

classified. Confidences are Cmono 5 74.0% and Cmulti 5
58.2%, and the real risk over that period is 30.5%. These

numbers result from the fact that POLDER identifies a

significant fraction of cloudmultilayer scenes asmonolayer

and some monolayer scenes as multilayer.

For comparison, we defined a binary multilayer classifi-

cation for MODIS and computed the corresponding con-

fusionmatrix: a value equal to unity forMLFmod indicates a

monolayer cloud case, while a value larger indicates a

multilayer one. Concerning theMODISC6multilayer flag,

we followed the recommendation of Platnick et al. (2015)

and considered carefully the quality assurance byte 6 set-

ting. The confusion matrices in the middle and bottom of

Table 4 show that MODIS C5 and C6 flag performances

are very close to the one of POLDER. The real risks with

MODIS C5 and C6 are 31.7% and 32.8%; their confi-

dences Cmono and Cmulti are 73.1% and 56.6% (73.0% and

53.7%, respectively). It should be noted that not account-

ing for the QA information would lead to a quite different

MODIS C6 result and performance, with only 55% of

monolayered cases identified (against 70%), a lower value

ofCmulti, and a global higher real risk. It confirms again the

previous analysis about the importance of MODIS QA

information.

To analyze and compare with more details the sta-

tistical performance of the multilayer flags, we com-

puted monthly mean risk and confidences with a

3-month window and over the entire globe (Fig. 8) and

the zonal variation of these quantities over the 5 yr

(Figs. 9a–c). Beside the cloud population CC095 that

served as a learning database, we considered also the

whole cloud population without restriction (noted as

allCC). Considering first the cloud population CC095,

Fig. 8 shows that the POLDER risk of mis-

classification is quite constant over the period, with a

similar limited seasonal variation over the years.

Figure 9a shows, however, that the POLDER zonal

risk varies, with a maximum in the tropics. This en-

hanced risk in the tropics—where there is a maximum

proportion of multilayer scenes (see Fig. 1a)—is as-

sociated with a decrease in the confidence in the

monolayer character Cmono (Fig. 9b), while the con-

fidence in the multilayer character Cmulti is high there

(Fig. 9c). Figure 8 shows also the agreement of

POLDER and MODIS (particularly C5) monthly

mean results for the cloud population CC095, MODIS

risks of misclassification being slightly higher.

MODIS risks are actually smaller than POLDER

ones out of the tropics but significantly higher within

the tropics (see Fig. 9a). These higher risks are again

associated with a decrease of Cmono. Results show also

that the performance of the POLDER classification is

much weaker when the cloud cover is less homoge-

neous and optically thick. The degradation concerns

all months and all latitudes and comes from a signifi-

cant decrease in the confidence Cmulti. Some cloud

monolayer scenes with CC , 0.95 and low cloud op-

tical depth are actually interpreted as being multi-

layered by the POLDER indicator. The monolayer

character is less affected by CC: multilayered scenes

with CC , 0.95 are not interpreted as being mono-

layered. It is not a surprise that the horizontal

TABLE 4. Confusion matrices in percent for the POLDER and

MODIS multilayer flags over the period 2006–10.

Estimated class

Real class (CloudSat–CALIPSO)

Monolayered (P) Multilayered (N) Sum

POLDER multilayer confidence index for a threshold of 44%

Monolayered 53.1 18.7 71.8

Multilayered 11.8 16.4 28.2

Sum 65.0 35.0 100

MODIS collection 5

Monolayered 51.9 19.1 71.0

Multilayered 12.6 16.4 29.0

Sum 64.5 35.5 100

MODIS collection 6

Monolayered 51.1 18.9 70.0

Multilayered 13.9 16.1 30.0

Sum 65.0 35.0 100
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heterogeneity of a cloud scene is also an issue for the

correct remote estimation of its cloud vertical parti-

tioning. It is particularly the case for POLDER, cer-

tainly, because the decision tree described above was

trained with a population of clouds with CC$ 0.95 and

t . 5. The risk obtained for land surfaces only—not

shown here—is between 4% and 7% higher when

compared with cases over ocean, and MODIS results

show also a sensitivity to the difference in the two cloud

populations allCC and CC095.

b. Inferred mono/multilayer climatology

Having considered a binary distinction between

monolayer and multilayer cloud scenes from the

passive instruments POLDER and MODIS, a global

climatology of this binary cloud distinction can be

obtained and compared with the reference shown in

Fig. 1a. It is another way to challenge the capacity

of the multilayer flags. Here, only observations of

the passive sensors obtained under the CALIOP/

CloudSat track were used. Figure 10a shows the

zonal proportion of monolayer clouds inferred from

PARASOL and MODIS over the ocean and the

period 2006–10 and for cloud scenes with a cloud

cover CC$ 0.95 and t$ 5. The true proportion from

the lidar and the radar is indicated with the thick

green curve. The figure shows that POLDER is able

to provide correctly the global feature of this cli-

matology, with a minimum fraction of monolayer

cases in the tropics, a rapid increase of it between

latitudes 208 and 308, and a quite constant fraction up

to 708 of latitude. However, POLDER tends to

overestimate the occurrence of monolayer cases and

particularly at midlatitudes. It is certainly a limit of

the POLDER retrieval due to optically thin cirrus

clouds overlying a lower cloud deck, cirrus that

POLDER does not discern. MODIS C5 and C6 (blue

and black lines) provide a more reasonable pro-

portion of monolayered clouds at midlatitudes as

compared with POLDER. It is certainly due to a

higher sensitivity of MODIS parameters, and among

them the multilayer classification, to thin cirrus

clouds, as illustrated in Wind et al. (2010) in their

Fig. 7. However, the global climatologies provided

by MODIS C5 or C6 are quite different: the inferred

fractions of monolayer clouds increase in the tropics

relative to midlatitudes, which is the inverse of the

climatology obtained from CALIOP/CloudSat. It

should be remembered again that the MODIS mul-

tilayer classification indicates issues on effective

radius retrieval and inconsistency in cloud phase

retrieval that might be due to multilayer situations.

Two layers of ice clouds, for example, might cause no

inconsistency in the retrieval and be classified as a

single cloud case. Actually, the proportion of mono-

layer cases when only the C6 PH test is positive is

around 50% in the tropics and more than 75% out of

it. Considering those cases as monolayered situations

instead of multilayered leads to a rather good estimate

of monolayer cloud proportion in the tropics while

underestimating this proportion at midlatitudes (see

the gray line in Fig. 10b). This tendency of over-

estimation of multilayer cases at midlatitudes is

known for the PH algorithm (Wind et al. 2010;

Platnick et al. 2015). For cloudy scenes over land, not

shown here, the estimated climatologies exhibit the

same feature: POLDER gets the global feature with

an underestimation of monolayer proportion; MODIS

FIG. 8. Monthly mean real risk of the multilayer classification with a 3-month window from POLDER

(POL) and MODIS C5 and C6 and for all surfaces.
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C5 and C6 overestimate largely this proportion in the

tropics.

It is interesting to observe the sensitivity of the re-

trieved climatologies to the amount of cloud cover, as

already done for the risk and confidence in the classifi-

cation. Figure 10b shows the corresponding proportion

of monolayer clouds for all cloud cover over the time

period. The ‘‘reference’’ climatology shows a global in-

crease of this fraction, as already noted in Fig. 1a, and

this tendency is verified for climatologies inferred from

MODIS data. It is the contrary for POLDER, which

shows a global decrease of it. POLDER actually clas-

sifies some fractional cloud covers with low optical

depth as multilayer scenes. For these scenes, the angular

contrast in the observation might increase, interpreted

in our algorithm as an effect of multiple cloud layers. It is

consistent with the observed increase of the risk (see in

Fig. 9a) and the decrease of the multilayer confidence

(see Fig. 9c) from CC095 to allCC. For MODIS, while

their corresponding risk and confidence varies weakly

with CC, their inferred climatologies happen to be more

sensitive to it.

6. Conclusions

In this paper, we present the definition of a cloud

multilayer flag based on POLDER–PARASOL mea-

surements. This flag allows identifying the multilayer

FIG. 9. Zonal variations of (a) the real risk and of the confidences

in (b) the monolayer classification and (c) the multilayer classifi-

cation. Risk and confidences are for POLDER (POL) andMODIS

C5 and C6 classifications for all surfaces over the period 2006–10.

FIG. 10. Zonal proportion of monolayered clouds over 2006–10

from CloudSat/CALIOP, POLDER, and MODIS for (a) clouds

over ocean with CC . 0.95 and t $ 5, and (b) all clouds.
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character of cloudy situations. To obtain this new

cloud parameter, we first distinguished between

monolayered and multilayered cloud scenes from the

measurements of the A-Train active sensors when

there was a coincidence of the measurements. This

showed us the sensitivity of POLDER level-2 pa-

rameters to the mono–multilayer character of cloud

situations, hence containing information about this

character. We built a decision tree that performs a

statistical classification of cloud scenes through a series

of tests on the POLDER parameters. The tests that are

retained bring the most information about the studied

character for successive populations of cloud scenes.

The attribute that distinguishes the most between the

two types of situations and that stands for the first

node of the tree is a threshold (22.5 hPa) on the an-

gular standard deviation of the oxygen pressure sPO2
,

hence exploiting the multidirectional character of

POLDER measurements. This result has been vali-

dated with a second independent technique (ROC

curve). The multilayer flag that is obtained is the final

result of the tree’s statistical classification and rep-

resents directly a confidence in the mono–multilayer

character of each cloud scene. An analysis of the

tree’s classification with a concern about its physical

sense shows that the application of a general and

rigorous statistical classification method, based on

rightly chosen attributes, does not produce physical

inconsistency.

The POLDERmultilayer flagMLFpol takes 20 discrete

values between 0 and 100. Values closest to zero in-

dicate a higher confidence in the monolayer character

and closest to 100 a higher confidence in the multi-

layer character. This indicator can be used either as a

confidence in the mono–multilayer character of a

cloudy scene or, used with a threshold, can lead to a binary

index to distinguish between monolayer and multilayer

clouds. A study of the real risk of misclassification as a

function of the threshold shows that the risk is minimized

with a threshold of 44. With this rule for a binary distinc-

tion, and for cloud layers with a POLDER cloud cover

higher than 0.95 and cloud optical depth higher than 5—

denoted as CC095—the confidence in the estimated

monolayer (multilayer) character of the scene is 74.0%

(58.2%) over the period 2006–10. The mean risk to

misidentify a cloudy situation over all latitudes is 30.5%,

ranging between 29% and 34% over 5 yr. The risk is

higher over land than over ocean. The risk is maximum

in the tropics, and it comes from a decrease in the con-

fidence in the monolayer classification. It might be due

to the high value of optical depth of high cloud layers

above lower ones. A quantitative evaluation of the

multilayer classification from MODIS C5 and C6 shows

quite similar results, which is remarkable considering

that the principles of the two classifications are very

different. MODIS risks of misclassification are slightly

higher than the risks of POLDER. However, POLDER

risk and multilayer confidence are more sensitive to the

type of cloud cover, and the performance of the POLDER

classification decreases significantly when cloud opti-

cal thickness is lower than 5, contrary to MODIS over

ocean.

Finally, as a last evaluation of the POLDER mul-

tilayer classification, we studied the zonal climatology

of monolayered and multilayered clouds as inferred

from the passive sensors POLDER and compared

with the reference climatology from CPR/CALIOP

and MODIS measurements. For the cloud population

CC095, POLDER provides a quite right feature of

this climatology, with a minimum fraction of mono-

layer cases in the tropics and a maximum out of it.

However, POLDER overestimates globally by 6%

the cloud monolayer proportion. This is certainly

partly caused by the non-discernment of thin layers

of high ice clouds above lower cloud layers. Another

important aspect of POLDER classification is that

POLDER interprets some monolayer optically thin

layers as multilayered cases. The MODIS algo-

rithms, on the contrary, provide, with precaution

taken, a correct proportion of monolayered clouds at

midlatitudes. However, they overestimate signifi-

cantly the proportion of monolayer clouds in the

tropics.

These results demonstrate the potential and com-

plexity for passive sensors to identify cloud scenes as

monolayered or multilayered. POLDER measure-

ments are sensitive to the multilayer character of cloud

scenes, and the resulting POLDER multilayer classi-

fication, obtained from a very general decision tree

approach, comes with interesting performances in

terms of confidences in the classification, risk of mis-

classification, and inferred climatology, both inside and

outside of the tropics. One of the perspectives of this

study is to pursue the analysis of the classification’s

performance. One must further analyze which cloud

monolayer and multilayer scenes are well identified

by POLDER and which are not. Then, we aim to an-

alyze again the performance and significance of other

POLDER cloud parameters in view of this new in-

formation about the inferred cloud vertical structure.

The combined use of the two passive sensors POLDER

and MODIS should also be certainly considered, as

their capacities for classifying cloud scenes might well

be complementary in different situations and improve

the possible description of the multilayer character of

cloud scenes with passive sensors.
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