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1.  Introduction
Water vapor (H2O) is only a trace species on Mars, with abundances of at most a few parts per thousand in an 
otherwise carbon dioxide (CO2) dominated atmosphere. However, it plays a key role in Mars' atmospheric chem-
istry. Indeed, CO2 is subject to photolysis and its current abundances cannot be explained without assuming that 
its photolysis product carbon monoxide (CO) is recycled into CO2 through a reaction with OH, a radical resulting 
from photolysis of water vapor (McElroy & Donahue,  1972; Parkinson & Hunten,  1972). Another relatively 
abundant trace gas on Mars is ozone (O3), but it is over a thousand times less abundant than water vapor on Mars, 
and over a hundred times less abundant than O3 on Earth. Ozone is mainly produced by the three-body reaction 
of  atomic (O) and molecular (O2) oxygen in the presence of CO2. Yet fast reactions involving odd hydrogen 
species (H, OH and HO2, or HOx) resulting from water photochemistry will readily destroy O3 or suppress its 
formation in catalytic cycles, making water vapor the key species in controlling the abundance of O3. In the 
lower atmosphere, there is sufficient CO2 (i.e., pressure) to maintain large O3 concentrations, but its abundance 

Abstract  The Nadir and Occultation for MArs Discovery (NOMAD)/UV-visible (UVIS) spectrometer on 
the ExoMars Trace Gas Orbiter provided observations of ozone (O3) and water vapor in the global dust storm 
of 2018. Here we show in detail, using advanced data filtering and chemical modeling, how Martian O3 in the 
middle atmosphere was destroyed during the dust storm. In data taken exactly 1 year later when no dust storm 
occurred, the normal situation had been reestablished. The model simulates how water vapor is transported to 
high altitudes and latitudes in the storm, where it photolyzes to form odd hydrogen species that catalyze O3. 
O3 destruction is simulated at all latitudes and up to 100 km, except near the surface where it increases. The 
simulations also predict a strong increase in the photochemical production of atomic hydrogen in the middle 
atmosphere, consistent with the enhanced hydrogen escape observed in the upper atmosphere during global dust 
storms.

Plain Language Summary  Global dust storms are rare but impactful events on Mars, occurring 
about once in a decade. Previous investigations found how water vapor is redistributed throughout the entire 
atmosphere in a dust storm. Photolysis of water vapor by sunlight produces highly reactive species that destroy 
ozone (O3). Here we present O3 measurements taken by the NOMAD/UVIS instrument on the ExoMars Trace 
Gas Orbiter in the 2018 global dust storm. After advanced data filtering, they demonstrate how O3 in the middle 
atmosphere was much reduced compared to one Mars year later when no dust storm occurred. 3D atmospheric 
model simulations of atmospheric chemistry in the global dust storm confirm this planet-wide O3 destruction, 
and help to understand the involved processes. The simulations also predict a strong increase in production 
of atomic hydrogen in the middle atmosphere, that can explain the observed increased hydrogen atmospheric 
escape during global dust storms.
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Key Points:
•	 �NOMAD ozone (O3) data filtering 
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shows strong O3 destruction compared 
to one year later with no dust storm

•	 �3D simulations of atmospheric 
chemistry in the 2018 global dust 
storm are presented to understand 
impact on odd hydrogen and odd 
oxygen

•	 �The model confirms middle-
atmospheric O3 destruction in the 
dust storm and predicts increased 
photochemical production of hydrogen
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decreases with height. This effect is strengthened by an increase in the photolysis rate coefficient of water vapor 
with height. At the same time, water vapor frequently deposits into ice clouds below ∼40 km (height changing 
with latitude and season) and becomes only sparsely available above the cloud zone. In that region, the O3 forma-
tion is no longer suppressed, and its abundances will increase with height, although limited by the decreasing CO2 
density (Daerden et al., 2019; Khayat et al., 2021; Lefèvre et al., 2004; Patel et al., 2021; Clancy and Nair, 1996).

Until recently, O3 was observed mostly for its total column abundances (Lefèvre et  al.,  2021; Montmessin 
et al., 2017; Perrier et al., 2006; Clancy et al., 2016; Willame et al., 2017) and in some cases for its vertical profile 
(Lebonnois et al., 2006; Montmessin & Lefèvre, 2013). The start of science operations of the ExoMars Trace Gas 
Orbiter (TGO) in 2018 formed a landmark change in the knowledge of O3 on Mars. TGO carries two sensitive 
spectrometer suites, Nadir and Occultation for MArs Discovery (NOMAD, Vandaele et  al.,  2018,  2019) and 
Atmospheric Chemistry Suite (ACS, Korablev et al., 2018, 2019). The UV-visible (UVIS) channel of NOMAD 
monitors the vertical profile of O3 on a daily basis with the solar occultation technique (Khayat et al., 2021; 
Patel et  al.,  2021). Water vapor profiles are measured simulateanously with the NOMAD IR channel (Aoki 
et al., 2019). In addition, the IR channel of ACS could retrieve O3 in some cases (Olsen et al., 2020).

Dramatic changes in the vertical distribution of water vapor during global dust storms (GDS) were first reported 
by the SPICAM instrument on Mars Express (Fedorova et al., 2018) for the 2007 GDS, and more recently by the 
TGO (Aoki et al., 2019; Fedorova et al., 2020; Vandaele et al., 2019) and SPICAM (Fedorova et al., 2021) for 
the 2018 GDS. As the planet's atmosphere contains much more dust, solar radiative heating by the dust changes 
the temperatures considerably (Smith, 2019) compared to the same season without a GDS. This has a dramatic 
impact on water vapor, as the increased temperatures prevent cloud formation, and water vapor is transported 
to much larger heights and, following the global circulation (which is also enhanced in dust storms), to higher 
latitudes, up to the polar regions. This phenomenon was simulated in a General Circulation Model (GCM), 
producing a good agreement with the water observations of NOMAD during the 2018 GDS (Neary et al., 2020).

The strong photochemical relationship between water vapor and O3 implies that the redistribution of water vapor 
during the GDS will also have an impact on O3. A first analysis of NOMAD/UVIS O3 profiles taken during 
the GDS (Patel et al., 2021) found that mid- and high-latitude O3 abundances above 20 km were reduced in the 
GDS compared to 1 year later, when no GDS occurred. Here we perform new retrievals of the O3 profiles that 
allow us to increase the signal-to-noise through spectral and spatial binning, and to develop an improved data 
filtering. Both of these facets are particularly helpful for the lower transmittances found in dusty conditions, and 
so to provide a clearer picture in the 2018 GDS. We will also investigate the behavior of odd hydrogen and odd 
oxygen (including O3) using a GCM that is operated for the conditions of Martian years (MY) 34 and 35 (Daerden 
et al., 2022; Neary et al., 2020) and that includes detailed atmospheric chemistry routines (Daerden et al., 2019). 
Combining the filtered observations with the model simulations then allows to obtain a detailed picture of the 
changes in atmospheric chemistry during the 2018 GDS.

2.  Ozone Retrieval and Data Filtering
The NOMAD/UVIS spectrometer operates in the UVIS domain between wavelengths 200–650 nm. It has two 
observation modes with different sensitivity: the solar occultation mode and nadir/limb viewing mode. In this 
study only observations made with the solar occultation channel are considered. Details and characteristics of the 
NOMAD/UVIS instrument, its solar occultation channel, and calibration were presented in various publications 
(Gérard et al., 2020; Khayat et al., 2021; Patel et al., 2017, 2021; Vandaele et al., 2018).

We perform the retrievals of O3 profiles in a manner that is equivalent to previous work (Khayat et al., 2021; Patel 
et al., 2021), but different in detail. First, we derive extinction profiles by applying the so-called “onion-peeling” 
method to the NOMAD/UVIS transmittance spectra, as was described for TGO/ACS observations (Stcherbinine 
et al., 2020). In essence, an upper triangular matrix is formed (at each wavelength) using a spherically symmetric 
atmospheric shell model, which is solved analytically to produce vertical profiles of opacity with error propaga-
tion given by equation 7 of Stcherbinine et al. (2020). The column density of O3 in each layer is then determined 
by fitting a model of a linear continuum plus O3 absorption (Sander et al., 2011) to the data between 240 and 
320 nm. The best-fit solution is found using a Marquardt-Levenberg algorithm, as implemented in the package 
MPFIT (Markwardt,  2009). The uncertainty associated with the derived O3 densities (and linear fit parame-
ters) is provided by MPFIT from the diagonal terms of the covariance matrix. Extensive comparisons of our 
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retrievals outside of dusty conditions with the published full NOMAD/UVIS O3 data set (Khayat et al., 2021; 
Patel et al., 2021) showed good agreement within the uncertainties of each retrieval. The data set presented in this 
paper, with full retrieval and filtering (see below) details, is publicly available (Daerden & Wolff, 2022).

The motivation to develop our own retrieval process was the ability to perform sensitivity analyses and develop 
additional filters to remove spurious O3 detection. Such spurious detections (i.e., O3 detection without an O3 
signature present in the transmission spectra) were found to occur in regimes where the opacity spectra can be 
quite noisy. In other words, relying on the covariance matrix alone for our retrievals was not sufficient, since it can 
produce unphysical results. In this direction, we have taken two approaches. In addition to the formal uncertainty 
returned by MPFIT, we calculate an empirical equivalent to the information content approach (Rodgers, 2000) by 
comparing the χ 2 of the O3 retrieval for each altitude to that of a linear-only model such that values less than one 
indicate that allowing O3 provides a better fit, that is, m = χ 2(O3 + linear)/χ 2(linear) < 1. In other words, if a linear 
model fits as well (or better) than the O3 model, the retrieved value is not statistically significant. We also allow 
for the binning of transmittance data in both wavelength and height, where the latter dimension is particularly 
effective in reducing the noise in the O3 retrievals when the observations employ a large number of positions per 
occultation. We generally employed bins of 10 nm and 4 km. A somewhat similar analysis to ours presenting an 
information content approach to the full NOMAD/UVIS O3 data set is in preparation by A. Piccialli et al.

Through numerical experimentation, we developed the following data filtering criteria. Data are removed from a 
profile if (a) the average transmittance between 240 and 320 nm was below 0.02, and (b) when m = χ 2(O3 + line-
ar)/χ 2(linear) > 0.7, except during the period of April–November 2018 (which suffered from reduced signal-to-
noise ratio) where we use m > 0.85. Outside of this period, the value of 0.7 is preferred since it provides a more 
consistent removal of spurious data points. Both m values are the result of substantial trial-and-error processes 
which include manual inspection of many (e.g., hundreds) individual profile fits per experiment. (c) A final step 
in the filtering process is done when the retrieved O3 number density was less than the uncertainty returned by 
MPFIT.

3.  Ozone in the Global Dust Storm
The observations are shown in Figure 1 for latitude bands >45°N and <45°S respectively, for the period before 
and during the 2018 GDS (in Mars year, MY, 34) and in the same season exactly one Martian year later (MY35), 
when no GDS occurred. The latitude of the observations changes over time, and their geospatial distribution in 
both years is shown in Figure S1 in Supporting Information S1. The choice to show the latitude bands poleward 
of 45° resulted from a compromise to minimize the mixing of data taken at different latitudes while maintain-
ing a sufficiently dense temporal coverage of the profiles. Figure 2 shows the observations for all latitudes, but 
averaged over wider Ls intervals. The data are plotted using the height above the MOLA Mars reference level 
(Smith et al., 1999) as vertical coordinate, in order to combine observations taken over a variety of latitudes and 
longitudes (and hence for different surface heights). The observation errors for the data shown in both figures are 
shown in Figures S2 and S3 in Supporting Information S1.

In the period before the 2018 GDS (Ls = 160°–187°, Figure 1 and Figure 2a,b), a distinct O3 minimum between 
30 and 50 km (height varying with time and latitude) can be seen in each hemisphere at high latitudes in both 
years, with O3 remaining abundant above this minimum up to 50–60 km (height again varying with time and 
latitude, this is the high altitude O3 layer that was discussed before, Khayat et al., 2021). This pattern is present in 
both Mars years, but in MY34, at southern latitudes, it is less apparent because of the sparse observations in this 
case (Figure S1 in Supporting Information S1). The minimum in O3 is associated with an observed and simulated 
maximum in water vapor in this region that is caused by transport of wet air along the ascending branches of the 
Hadley circulation cells (Aoki et al., 2019; Daerden et al., 2019; Neary et al., 2020). At these heights, water is 
more easily photolyzed and produces odd hydrogen species that both destroy and suppress O3 formation (Daerden 
et al., 2019).

Observational constraints imposed by the orbital geometry of the TGO spacecraft caused gaps in the data of up to 
∼15° wide in Ls (at different times of the year in MY34 and MY35, see Figure 1), complicating the comparison of 
the 2 years over certain Ls ranges. Nevertheless, it is seen that in MY35 the ozone peak abundances above 30 km 
continue through to Ls = 230° after which the observable ozone above 30 km gradually disappears (Figures 1b 
and 1d). Figure 2d confirms this seasonal behavior in MY35, with a similar ozone distribution as before Ls = 187° 
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Figure 1.  Time series of the ozone (O3) number density profiles. Panels (a and b) for latitudes north of 45°N, for the same season in Mars year 34 (a, with GDS) and in 
Mars year 35 (b). Panels (c and d) show the same for latitudes south of 45°S. Left plots for the O3 observed by NOMAD/UVIS and right ones from simulations. Gaps in 
the data are due to observational restrictions imposed by orbital geometry of the Trace Gas Orbiter spacecraft. Gray shading: for the observations, this represents values 
that were filtered out (see Section 2) or are below 10 7 cm −3; for the simulations, values are below 10 7 cm −3. Height is taken with respect to the MOLA reference level 
(black shading at the bottom of the panels shows the actual surface). Model results were interpolated to the time and location of the observations. The thick vertical 
dashed lines indicate the onset of the global dust storm in MY34 and the same time one Mars year later.
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Figure 2.  Latitude-height distribution of the ozone (O3) number density profiles. Panels (a and b) show the average over Ls = 160°–187° and (c and d) over Ls = 187°–
230°, in MY34 (a and c) and MY35 (b and d). The first period is before the global dust storm (GDS) in MY34, the second period covers the GDS in MY34. Left plots 
for the O3 observed by NOMAD/UVIS and right ones from simulations. Gray shading: for the observations, this represents values that were filtered out (see Section 2); 
for the simulations, values are below 2 × 10 6 cm −3. Height is with respect to the MOLA reference level (black shading shows zonally averaged MOLA topography). A 
grid of 1.5° in latitude and 1.5 km in height was used to compute the averages. Model results were interpolated to the time and location of the observations.
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(Figure 2b) but with slightly reduced abundances. In MY34 however, ozone is strongly reduced immediately after 
the onset of the GDS for all heights above 20 km in the north and 30 km in the south (Figures 1a and 1c), consist-
ent with the previous analyses (Khayat et al., 2021; Patel et al., 2021). This dramatic ozone reduction takes place 
at all latitudes, as can be seen in Figure 2c.

4.  Atmospheric Chemistry Simulations
The differences in O3 behavior between MY34 and MY35 have been qualitatively attributed to the observed 
increase of water vapor during the GDS at heights and latitudes that, in normal (non-GDS) conditions exhibit 
very low water vapor abundances (Patel et al., 2021). The enhanced high-altitude water vapor abundances lead 
to increased water vapor photolysis, producing odd hydrogen species that rapidly catalyze O3 loss. However, the 
enhanced odd hydrogen species that are key to this process were not observable at the time. Without observational 
access to these radical species that drive the chemical pathways between water vapor and O3, we turn to a model 
for atmospheric chemistry (Daerden et al., 2019; Neary & Daerden, 2018) to understand the enhanced destruction 
of O3 during the GDS. Previous work has demonstrated how this model reproduced the redistribution of water 
vapor observed by NOMAD during the 2018 GDS (Neary et al., 2020). Here the model was run consecutively 
for MY34 and MY35. Both years were simulated using their respective daily dust optical depth climatologies 
(Montabone et  al., 2015, 2020). For a direct comparison of model and data, the time-evolved 3D simulation 
results were interpolated in space and time to the NOMAD/UVIS observed O3 profiles and added to Figures 1 
and 2 in the same format as the data, but without filtering.

The resemblance of the model results to the O3 observations is strong in morphology and often also in absolute 
values, providing evidence that the model captures well the underlying chemical processes. To understand these 
processes, Figure 3 shows the time-evolved simulation results of a range of key species (H2O, OH, H, HO2, O and 
O3) at latitudes 60°N and 60°S in both Mars years. Figure 4 shows the global latitude-height cross-sections of 
the same species averaged over Ls = 210°–220° (peak of the GDS in MY34) in both MY34 and MY35, and their 
relative change in this time window. (As the changes for odd hydrogen species between the 2 years are very large 
(ratio >1,000), we show them as a ratio. For O3, the differences are smaller (ratio ∼< 20), and we show them as a 
percentage difference on a linear scale.) Both figures assist to the interpretation of Figures 1 and 2.

In the middle atmosphere, up to 100 km, and as low as 20 km at at low- and midlatitudes, down to 10 km north 
of of 45°N latitude, and down to the surface south 60°S, the O3 abundances are severely reduced, up to 100% 
(Figure  4f, right panel, and Figure S8 in Supporting Information S1, right panels). This is a planet-wide O3 
destruction, taking place throughout almost the entire atmosphere, and demonstrates the massive impact of the 
GDS on the atmospheric composition.

Because water vapor is redistributed in a GDS from the lower atmosphere at low latitudes to the rest of the 
atmosphere (Neary et al., 2020), a small decrease in water vapor columns could be seen in measurements during 
previous GDS (M. D. Smith, 2004; M. Smith et al., 2018; Trokhimovskiy et al., 2015). As a consequence, we here 
simulate that O3 abundances at low altitudes, low- and midlatitudes are increased (Figure 4f).

In terms of total O3 columns, these changes are small in absolute terms, because (a) the air densities in the lowest 
atmosphere dominate the total column contribution, and (b) because total O3 abundances in this season are 
small. But the changes are not small in relative terms. Figure S1 in Supporting Information S1 shows how the 
O3 column at low latitudes is predicted to increase from below 1 to almost 2 μm-atm, this is a 100% increase. At 
high latitudes, the reduction of the O3 column is up to 2 μm-atm, representing a 50% decrease in the north and a 
100% decrease in the south.

Five reactions (see below) are dominating the change of the O3 in the GDS. This change in O3 follows the change 
in the relative strength of these reactions during the GDS (Figures S4 through S7 in Supporting Information S1 
for reaction numbering and rates). Combined, they define the main pathway from enhanced water vapor to O3 
depletion, which can be described as follows:

1.	 �The increase of water vapor in the middle and upper atmosphere and its subsequent photolysis (H2O + hν → 
H + OH, J11-13) results in the increased formation of atomic hydrogen (H) and OH radicals.

2.	 �The OH radicals react with CO (CO + OH → CO2 + H, R1), and to a lesser extent with O (O + OH → O2 + H, 
R10), to cause an additional increase in atomic hydrogen.
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3.	 �Atomic hydrogen reacts with molecular oxygen (H + O2 + CO2 → HO2 + CO2, R26) leading to an increase 
in HO2.

4.	 �HO2 then reacts with atomic oxygen, O (HO2 + O → OH + O2, R11) and so reduces the abundance of atomic 
oxygen. OH is returned to the atmosphere to resume step 2, and acts as a catalyzer.

5.	 �Finally, the decrease in O suppresses the formation of O3 in O + O2 + CO2 → O3 + CO2 (R24)

The direct destruction of O3 by HO2 and OH is also enhanced in the GDS (Figure S7 in Supporting Informa-
tion S1, R18 and R21), but only at high altitudes/latitudes, and not in the region of highest O3 abundances, and so 
contributes less to the O3 changes in the GDS.

The simulated time evolution of O3 throughout the GDS as a result of these reactions, in comparison with the 
simulated evolution in MY35 and with the relative differences between both years, is shown Figure S8 in Support-
ing Information S1. An animation showing the model simulation of the O3 vertical distribution in the GDS and 
one year later is also included in the Supporting Information S1.

A question to consider is to what extent the specific spatio-temporal distribution of the NOMAD observations 
(Figure S1 in Supporting Information S1) could have an impact on our results. In some cases, there are differ-
ences in coverage between MY34 and MY35, such as in the south before the GDS, or in the northern high-lati-
tudes after Ls ∼ 200°. However between Ls ∼ 215°–230°, the coverage is similar in both years, so that the results 
shown in Figure 2 are robust. When considering only the profiles that are close in both Ls and latitude in both 

Figure 3.  Simulated time series of H2O, OH, H, HO2, H and O3 number densities for latitudes 60°N (top rows) and 60°S (bottom rows) around equinox, for Martian 
years 34 (with global dust storm, GDS) and 35 (no GDS). The color shading shows the number density averaged over all longitudes and local times. The dashed white 
lines indicate the onset and end of the GDS in MY34 and the same times in MY35.
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Figure 4.  Latitude-height cross-sections of the simulated number densities of H2O, OH, H, HO2, O and O3 for MY34 (left 
column) and MY35 (center column), averaged over Ls = 210°–220° (period which falls in the global dust storm (GDS) in 
MY34). The right column show the ratio of the averaged number densities in MY34 and MY35, except for O3 for which 
the relative difference is shown. The densities from both years were first interpolated to a common altitude grid as the 
atmospheric height scale changed during the GDS.
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years (Figures S9 and S10 in Supporting Information S1), there are more gaps in the figures, but they confirm our 
conclusions about how NOMAD witnessed O3 loss in the 2018 GDS.

An interesting result from the simulations is the increased production of atomic hydrogen in the middle and 
upper atmosphere (Figures 3c and 4c), with increased number densities by factors of 10–100 above 60 km. This 
result (already preliminary shown in Neary et al., 2020) seems consistent with the observed enhanced abundance 
of atomic hydrogen in the upper atmosphere as observed by MAVEN during the 2018 global and regional dust 
storms (Chaffin et al., 2021; Stone et al., 2020).

5.  Conclusions
The two endpoints of the above chain of reactions, water vapor and O3, were observed by NOMAD before and 
during (MY34) and out of (MY35) the 2018 GDS (Aoki et al., 2019; Khayat et al., 2021; Patel et al., 2021). The 
model demonstrates the detailed chain of reactions occurring between these end points, involving unobserved 
odd hydrogen and oxygen species. The successful reproduction of the water vapor (Neary et al., 2020) and O3 
observations (this paper)—both end points in the chemistry chain—in very different conditions (in and out of a 
GDS), by the model provides support for the simulation of these unobserved species and the involved reactions. 
The simulated O3 destruction in the GDS, supported by available observations, occurs throughout the middle 
atmosphere, that is, on a planet-wide scale. This shows the massive impact of the GDS and the redistribution of 
water vapor on atmospheric chemistry and composition, as the odd hydrogen radicals resulting from water vapor 
photolysis are highly reactive.

Interestingly, the simulated increase in the production of atomic hydrogen in the middle atmosphere during the 
GDS (Figures  3c and 4c) is important to understand the observed enhanced atmospheric escape during dust 
storms (Chaffin et al., 2021; Stone et al., 2020). It has been generally assumed that the redistribution of water 
vapor during GDS is causing the observed enhanced escape (Chaffin et al., 2021; Heavens et al., 2018; Shaposh-
nikov et al., 2021; Stone et al., 2020). While a dynamical perspective to understand the transport of water vapor 
to the upper atmosphere during a GDS was given in terms of wave activity (Yiğit, 2021), we provide here the 
photochemical processes that are also involved.

Data Availability Statement
ExoMars Trace Gas Orbiter data are publicly available through the European Space Agency's Planetary Science 
Archive (http://archives.esac.esa.int/psa) with additional access to NOMAD data through the PI institute (http://
nomad.aeronomie.be). The NOMAD/UVIS Solar Occultation O3 data set presented in this work, as well as the 
results from the General Circulation Model simulations are available on the BIRA-IASB data repository (https://
repository.aeronomie.be/?doi=10.18758/71021070, Daerden & Wolff,  2022). The GEM-Mars General Circu-
lation Model is based on the Global Environmental Multiscale model 4.2.0 version of the community weather 
forecasting model for Earth, which is one of the more recent versions available to the community, under the GNU 
Lesser General Public Licence v2.1. The adaptation for Mars is developed and maintained at the Royal Belgian 
Institute for Space Aeronomy.
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