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Surface roughness is a major part of soil surface condition. It results from tillage operations

and weathering. Surface roughness parameterisation is still a scientific lock and the object

of many studies. An efficient parametrisation of soil surface roughness by modelling the

bidirectional autocorrelation function estimated from 2.5D digital elevation models of soil

surfaces is introduced. It not only provides geostatistical parameters that can be related to

other soil surface characteristics, but let us emphasise that it reproduces the autocorre-

lation function with very good accuracy. The autocorrelation function is often modelled by

a function of three parameters, the height variance, a single correlation length, and a

roughness exponent. We added two parameters in order to take into account the anisot-

ropy of soil surfaces and to align the coordinate system in the direction of the maximum

correlation length. We propose the way to estimate roughness parameters and show its

robustness for soil surfaces using laboratory tests with repeated rainfall events. One soil

surface evolves from isotropy to anisotropy, and the other undergoes a reduction of initial

anisotropy. The improvement brought by a second correlation length is thus highlighted.

Under rainfall impact, the variation of the correlation lengths is more marked than that of

the usual roughness parameter that is the root mean squared of the heights. Both pa-

rameters are complementary, capturing horizontal or vertical variation respectively. The

evolution of the roughness exponent showed a slight increasing trend, which can be

related to surface smoothing.

© 2022 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Soil surface condition underlies soil-water interactions and

influences hydrogeological processes such as erosion of soils

by water, infiltration, water storage, runoff. Surface rough-

ness is a major part of soil surface condition. It results from

tillage operations and weathering and is an input parameter
psl.fr (E. Vannier).
.05.012
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in many agronomic studies (Aguilar, Aguilar, & Negreiros,

2009; Gilliot, Vaudour, & Michelin, 2017). It is widely

acknowledged that the centimetre scale is the key scale to

survey soil surface roughness for understanding and

modelling erosion processes (Huang & Bradford, 1992;

Helming, R€omkens, & Prasad, 1998; Cerdan, Souch�ere,

Lecomte, Couturier, & Le Bissonnais, 2002; Haubrock,
grE. This is an open access article under the CC BY-NC-ND license
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Nomenclature

x;y;z Coordinates in Cartesian system (in mm)

Sðx;yÞ Surface elevation at point ðx;yÞ
1D One dimensional

2D Two dimensional

2.5D Two dimensional and a half for zðx;yÞ data
3D three dimensional

DEM Digital elevation model

k State of a surface, initial and after rainfall

SðkÞ1 and SðkÞ2 Soil surfaces at state k

CCD Charge coupled device

mðkÞ
p Spatial mean of surface p at state k

Np Number of samples along axes for pth surface

ðxi; yjÞ Sampling point coordinates

Dp Sampling interval

SCIðkÞp Chain index for surface p at state k

SSA Specific surface area

GN Gradient norm
dS
dx and

dS
dy Differences in x and y directions

MWDðkÞ
p Mean weighted diameter of clods for surface p

at state k

nðkÞ
p Number of clods on surface p at state k

Di Equivalent diameter of clod i

si Fraction of surface area covered clod i

A i Area of clod i

Vi Volume of clod i

TVðkÞ
p Total volume occupied by clods for surface p at

state k

CðkÞ
p ðx;yÞ Autocorrelation function of surface p at state k

VðkÞ
p Variance of surface p at state k

s
ðkÞ
p Standard deviation of heights for surface p at

state k
~C
ðkÞ
p ðx;yÞ Model of the autocorrelation function of surface

p at state k

ðX;YÞ Coordinates in the rotated system

d
ðkÞ
p Tilt angle between the axes OX and Ox for

surface p at state k

lðkÞp;X and lðkÞp;Y Correlation lengths along the

main axes OX and OY for surface p at state k

rðkÞp Roughness exponent of surface p at state k

IðkÞp Isotropy index of surface p at state k

JðkÞp Degree of anisotropy of surface p at state k

ðxm; ymÞ and ðrm;qmÞ Coordinates of point M in Cartesian

and polar systems

ð~rm;qmÞ Coordinates of point M on modelled ellipse

in polar system

rðqÞ
Periodic function describing the modelled

ellipse in polar system

aðkÞp;0, a
ðkÞ
p;1 and bðkÞp;1 Coefficients of the Fourier series

expansion of modelled ellipse for surface

p at state k

MðkÞ
p Number of points of autocorrelation

contour plot for surface p at state k

eðkÞc;p Quadratic error between autocorrelation

and ellipse contour plots of surface p at

state k

t Variable for level curves of autocorrelation

function

l
ðkÞ
p Average correlation length for surface p at

state k

d
ðkÞ
p ðtÞ Average distance between points on

contours and the origin

a Intercept of linear regression

mseðkÞp Mean squared error of linear regression for

surface p at state k

ε
ðkÞ
p ðxi;yjÞ Error function between autocorrelations at

point ðxi; yjÞ for surface p at state k

ε
ðkÞ
xy;p and s

ðkÞ
xy;p Mean error and standard deviation of

error function for surface p at state k
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Kuhnert, Chabrillat, Güntner, & Kaufmann, 2009; Aguilar

et al., 2009; Vidal V�azquez, Rosa Vieira, Clerici De Maria, &

Paz Gonz�alez, 2009; Croft, Anderson, Brazier, & Kuhn, 2013;

Gilliot et al., 2017; Bullard, Ockelford, Strong, & Aubault, 2018;

Vannier, Taconet, Duss�eaux, & Darboux, 2018a and b; Vinci,

Todisco, Vergni, & Torri, 2020) as well as for microwave

remote sensing (Ogilvy, 1991; Franceschetti & Riccio, 2007;

Verhoest et al., 2008). Soil surface condition is generally

observed on the ground, visually and with the help of mea-

surements, as well as remotely, by remote sensing at

different frequency bands. Surface roughness parameter-

isation is still a scientific problem and the object of many

studies, in agronomic or remote sensing fields (Atkinson &

Lewis, 2000, Kamphorst et al., 2000, Vannier, Ciarletti,

Gademer, 2006, Taconet & Ciarletti, 2007, Hemmat, Ahmadi,

& Masoumi, 2007, Zribi, Ciarletti, Taconet, Paill�e, & Boissard,

2000a, Zribi, Ciarletti, & Taconet, 2000b, Verhoest et al.,

2008, Trevisani, Cavalli, & Marchi, 2009, Balaguer, Ruiz,

Hermosilla, & Recio, 2010, Grohmann, Smith, & Riccomini,

2011, De Oro & Buschiazzo, 2011, Duss�eaux, Vannier,

Taconet, & Granet, 2012, De Keyser et al., 2012, Trevisani,
Cavalli, & Marchi, 2012, Smith, 2014, Trevisani & Rocca,

2015, Martinez-Agirre, Alvarez-Mozos, & Gimenez, 2016,

Moradizadeh & Saradjian, 2016, Gilliot et al., 2017, Vannier,

Taconet, Duss�eaux, & Darboux, 2018b, Ghorbanian, Sahebi,

& Mohammadzadeh, 2019, Vinci et al., 2020). With remote

sensing, the ground parameters that can be retrieved by

inversion of radar data are soil roughness and moisture. This

is possible to achieve by simulating the backscattered signal,

which is related to these parameters, and by minimising the

difference between simulated and measured radar signal

(Djedouani, Afifi, & Duss�eaux, 2021). The simulation of the

backscattered signal can be performed by modelling the

autocorrelation function of the soil surface and by applying

an electromagnetic model. In some studies, empirical re-

gressions between backscattered signals and a ground vari-

ables are derived. Unfortunately, such regressions are of

limited validity and show mitigated variation of the back-

scattered signal as a function of the ground parameter or

dispersion between related variables. In recent studies, some

authors chose to circumvent uncertainties on ground

roughness in order to retrieve soil parameters by combining

https://doi.org/10.1016/j.biosystemseng.2022.05.012
https://doi.org/10.1016/j.biosystemseng.2022.05.012


Table 1 e Characteristics of rainfall simulations.

Rainfall Intensity
(mm.h�1)

Duration
(min)

Cumulated rainfall
(mm)

n�1 33 60 33

n�2 33 60 66

n�3 42 38 93

n�4 42 51 129

n�5 42 90 192
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passive and active radar data or by developing optimization

algorithms (De Keyser et al., 2012; Ghorbanian et al., 2019;

Moradizadeh & Saradjian, 2016).

Among the different parameters modelling surface

roughness, geostatistics has retained much attention for

retrieving spatiotemporal variations in soil surface condition

by ground measurements (Darboux, Davy, Gascuel-Odoux, &

Huang, 2002; Friedrich et al., 2006; Anderson & Kuhn, 2008;

Blaes & Defourny, 2008; Vidal V�azquez et al., 2009; Haubrock

et al., 2009; Garcia Moreno, Diaz Alvarez, SaaRequejo,

ValenciaDelfa, & Tarquis, 2010; Dalla Rosa, Cooper, Darboux,

& Medeiros, 2012; Croft et al., 2013; Vannier, Taconet,

Duss�eaux, & Chimi-Chiadjeu, 2014; Bullard et al., 2018) or by

remote measurements (Woodcock, Strahler, & Jupp, 1988;

Atkinson & Lewis, 2000; Trevisani et al., 2009; Balaguer et al.,

2010; Grohmann et al., 2011; Trevisani et al., 2012; Trevisani

& Rocca, 2015). Characterising ground truth of soil surface

condition is necessary for agronomic studies and for inter-

preting radar data. The importance of a precise localisation of

microrelief structuring objects, such as mounds and de-

pressions has encouraged the development of segmentation

methods for clod delineation on 2.5D digital elevation models

(DEMs) (Vannier, Ciarletti, & Darboux, 2009; Taconet, Vannier,

& Le H�egarat-Mascle, 2010; Chimi-Chiadjeu, Vannier,

Duss�eaux, Le H�egarat-Mascle, & Taconet, 2013a; Chimi-

Chiadjeu, Vannier, Duss�eaux, Taconet, 2014; Vannier,

Duss�eaux, Taconet, & Darboux, 2019) or 2D images (Azizi

et al., 2020). The autocorrelation function modelling provides

geostatical parameters that are height variance, correlation

length and roughness exponent (Ogilvy, 1991; Franceschetti &

Riccio, 2007). Even if some local information seems to be lost

with a global statistical characterisation (Chimi-Chiadjeu,

Vannier, Duss�eaux, & Taconet, 2013b), a modelling function

of surface roughness has some advantages for further

modelling, for example remote soil survey. Indeed, the accu-

racy of soil parameters retrieved from optical or microwave

remote sensing will be dependent on the autocorrelation

function shape (Zhixiong, Nan, Perdrok, & Hoogmoed, 2005;

Zheng et al., 2019; Zribi, Gorrab, & Baghdadi, 2014). In these

papers, the autocorrelation function was estimated from 1D

soil profiles. It was therefore a mono-directional function.

These works are interesting and allowed relevant information

on soil surfaces to be extracted. Another approach, also

currently used, relies on variograms. For instance, a set of

parameters extracted from experimental semi-variograms is

presented in [Balager et al., 2010] and allows a land classifi-

cation of high resolution images. In this study, we introduce a

new parametrisation of the bidirectional autocorrelation

function estimated on 2.5 DEMs of soil surfaces. In Duss�eaux

et al. (2012) the bidirectional autocorrelation function was

modelled by a function of three parameters, as described

above, height variance, a single correlation length, and a

roughness exponent. The use of a single correlation length

implies that the soil surface is isotropic, which is not always

the case. Therefore, in Zhixiong et al. (2005) the measurement

of soil profiles was made in three directions. In the following,

themodel of the autocorrelation function has five parameters:

root-mean-square (rms) height, two correlation lengths along

two main axes OX and OY, the tilt angle between the Ox Car-

tesian axis and themain axisOX and the roughness exponent.
Friedrich et al. (2006) modelled a horizontal section of the

bidirectional autocorrelation whenmodelling laboratory sand

waves, and successfully captured the direction of the bed

forms. The variogram approach has also shown ability to

capture the anisotropy degree and direction of a soil surface in

remote sensed images. The anisotropy of surface morphology

is often defined by the relationship between spatial continuity

to the lag distance in the direction considered and it has been

studied by means of anisotropy indices derived from this

relationship. In Trevisani et al. (2012) and Trevisani et al.

(2015), a robust description of the anisotropy in surface

spatial variability was proposed. The anisotropy of soil surface

is studied here from the ratio of the minimum and maximum

correlation lengths. It should be emphasised that in this study,

a model of the full bidirectional autocorrelation function is

proposed. To our best knowledge, this is the first time that

such a model with five parameters has been applied to char-

acterise the bidirectional autocorrelation function of soil

surfaces.
2. Material and methods

2.1. Soil surfaces under study

2.1.1. Presentation of the database
The database used in the present study is composed of two

laboratory made soil surfaces, which were subjected to several

rainfalls in order to get a variety of roughness conditions. As

shown in Table 1, a set of five successive rainfalls of two in-

tensities and different durations was carried out. We note SðkÞ1

and SðkÞ2 the different stages of these two soil surfaces with

0 � k � 5. Figure 1 shows a top view of some of these stages.

The views at the top left and top right show the initial state

Sð0Þ1 and Sð0Þ2 of these soil surface trays. The images on themiddle

represent the two soil surfaces Sð1Þ1 and Sð1Þ2 after the first rain

and the images on the bottom line represent them after the last

rain. Figure 2 shows a 3D view of one of these surfaces. To each

pair of coordinates ðx; yÞ corresponds a single and unique

elevation z. Consequently, these surfaces Sðx; yÞ ¼ zðx; yÞ are

2.5D DEMs (Burrough, McDonnel, & Lloyd, 1998).

Tomake the soil surfaces, two trays of 500� 500mmwith a

depth of 100 mm were used. Each tray had a permeable bot-

tom to allow for water percolation and it was also set at a 5%

slope for water runoff. Both trays were prepared with a silt

loam soil composed of 11% of clay, 60% of silt and 29% of sand,

and an organic matter content of 2%. Initial soil moisture was

2.4% of the total soil mass. Using a hand scoop, the trays were

filled with loose soil, creating a structure similar to a seedbed.

https://doi.org/10.1016/j.biosystemseng.2022.05.012
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Fig. 1 e Top view of soil surfaces under study at initial state (top row), after first rainfall (middle row), after last rainfall

(bottom row). Laboratory made soil surfaces with a low clod concentration (left column) and, with a high clod concentration

(right column).
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Air-dried clods of various sizeswere set upon the soil surfaces.

On each tray, a different clod concentrationwas used: the tray

Sð0Þ1 had a low clod concentration of 530m�2 (see top left image

of Fig. 1) and the tray Sð0Þ2 had a high clod concentration of

805m�2 (see image at top right of Fig. 1). There is no crusting of

the plots from the start of the experiment but later on.

Soil surface evolution under successive rainfalls was per-

formed with a laboratory rainfall simulator similar to the one

described in Foster, Eppert, and Meyer (1979). As shown in

Table 1, two rainfall intensities of 33 mm h�1 and 42 mm h�1

were used in order to get visually different surface conditions.

The soil surfaces showed smoothing, sealing and crusting.

Therefore, levelling of clods until disappearance of the small-

est of themwas observed. On the high clod concentration tray,

the close inter-proximity of the clods induced coalescence and

formation of blocks as shown in Vannier et al. (2018a) and the

evolution of clods is more complex on this tray. For each stage,

the soil surface elevations were recorded with an

instantaneous-profile laser scanner at a grid spacing of 0.5 mm

in x and y, and of 0.1 mm in z. The laser scanner used in the

measurements is described in Darboux and Huang (2003). In

summary, the principle of recording relies on a laser producing

a line on the soil surface and a CCD camera set at an angle to

measure the surface geometry along a profile in the y� z

planes. The laser-camera assembly was moved automatically

along a rail (x-axis), to get the whole surface geometry. With

rough surfaces, such as those of the study, there were about

20% of missing data points due to shadowing, i.e. the laser

beam was hidden from the camera by the surface roughness

(Darboux & Huang, 2003). In order to reduce the number of

missing points, two records, with a rotation of 180� between

them,were taken for eachDEM retrieval. The frameswere then

truncated and the pair of records repositioned by intercorre-

lation. The data from both pairs were then merged by keeping

the data found exclusively on each record and averaging the

repetitive data. The remaining 7% of missing data points were

estimated by nearest neighbour interpolation. The main ab-

solute difference between the common elevation points of a

pair of records was slightly less than 1 mm. So, the vertical

precision of the final DEM was 1 mm in our case. Thus, the

elevations were re-scaled at 1 mm resolution.

For each DEM, the mean plane estimated by linear regres-

sion has been removed and the spatial mean is zero.

mðkÞ
p ¼ 1

N2
p

XNp�1

i¼0

XNp�1

j¼0

SðkÞ
p

�
xi; yj

�
¼ 0 (1)

The quantity Np designates the number of samples along

the Ox- or Oy- axis for the pth- soil surface with N1 ¼ N2 ¼
1000. The pairs ðxi; yjÞ give the coordinates of sampling points

with xi ¼ iDp and yj ¼ jDp. The sampling interval Dp is equal to

0.5 mm for p ¼ 1 and p ¼ 2: Fig. 1 shows the laboratory soil

surfaces without their mean plane.

2.1.2. Current roughness indices
In results section, we shall consider current roughness indices

characterising soil surface roughness and determine the cor-

relations with the parameters of autocorrelation model. The
first one is the chain index SCI as defined in Gilliot et al. (2017)

as:

SCIðkÞp ¼
 
1� 1

SSAðkÞ
p

!
� 100 (2)

where SSA is the specific surface area index (Helming, Jeschke,

& Storl, 1992) defined as the ratio between the area of the real

3D surface and the projected area on the reference plane. In

Helming et al. (1992), SSA was computed by summing up the

surface area of all elementary grid squares at surface resolu-

tion. It was also related to the slope at each grid square. So

that, in Taconet et al. (2010) and Gilliot et al. (2017), SSA was

derived from the slope at each DEM voxel. In this paper, we

propose to estimate SSA in a different way because it appears

to us simpler to use voxel gradients than the angles between

the normal and the vertical vectors. SSA is computed by

integrating the gradient norm GN of the surface data points

Mðx;y;z ¼ Sðx;yÞÞ, with S ¼ SðkÞ
p in this study:

GN¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dS
dx

�2

þ
�
dS
dy

�2
s

(3)

where dS
dx and dS

dy correspond to the differences in x and y di-

rections. Indeed, this amounts to consider all elementary

displacements for point M to point M’ with a linear

approximation.

Then, the mean weighted diameter of the clods MWDðkÞ
p is

estimated after clod segmentation from the DEMs as in

Taconet et al. (2010) or in Vannier et al. (2019),

MWDðkÞ
p ¼

XnðkÞp

i¼1

Di:si (4)

where nðkÞ
p is the total number of clods in surface SðkÞ

p , Di is the

equivalent diameter of clod i (estimated here from the area of

clod, considered as a disc) and si is the fraction of the surface

area covered by clod i:

si ¼ A i

PnðkÞp

j¼1

A j

(5)

Also we consider the volume occupied by the clods as in

Vannier et al. (2018a), and report the total volume TVðkÞ
p :

TVðkÞ
p ¼

XnðkÞp

j¼1

Vj (6)

where Vj is the volume of clod j.

2.2. Model of the bi-dimensional soil surface
autocorrelation

2.2.1. Definition and properties of the autocorrelation function

The bi-dimensional autocorrelation function CðkÞ
p ðx; yÞ of the

soil surface SðkÞp ðx; yÞ measures the similarity between the

function SðkÞp ðx; yÞ and its shifted (lagged) copy along the

https://doi.org/10.1016/j.biosystemseng.2022.05.012
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Fig. 2 e 2.5D DEM of second laboratory soil surface with high clod concentration at initial stage.
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directions x and y as a function of the two lags. In fact, it de-

scribes the degree of spatial dependence of the soil surface

function. A biased estimator is used to compute the autocor-

relation function CðkÞ
p ðx; yÞ at the sampling points ðxi; yjÞ and

the raw autocorrelation (the double summation) is scaled by

the total number of samples, i.e. divided byN2
p. The estimate is

unbiased when the raw autocorrelation is divided by the

number of samples in the double summation, i.e. divided by

ðNp � jijÞ � ðNp � jjjÞ. A biased estimate usually has a smaller

mean squared error (Percival & Walden, 1993).

If 0 � i � Np � 1 and 0 � j � Np � 1

CðkÞ
p

�
xi; yj

�
¼ 1
N2

p

XNp�1�i

m¼0

XNp�1�j

n¼0

SðkÞ
p

�
xm; yn

�
SðkÞ
p

�
xiþm; yjþn

�
(7a)

If 1�Np � i � 0 and 0 � j � Np � 1

CðkÞ
p

�
xi; yj

�
¼ 1
N2

p

XNp�1

m¼�i

XNp�1�j

n¼0

SðkÞ
p

�
xm; yn

�
SðkÞ
p

�
xiþm; yjþn

�
(7b)

If 0 � i � Np � 1 and 1� Np � j � 0

CðkÞ
p

�
xi; yj

�
¼ 1

N2
p

XNp�1�i

m¼0

XNp�1

n¼�j

SðkÞ
p

�
xm; yn

�
SðkÞ
p

�
xiþm; yjþn

�
(7c)

If 1�Np � i � 0 and 1� Np � j � 0

CðkÞ
p

�
xi; yj

�
¼ 1
N2

p

XNp�1

m¼�i

XNp�1

n¼�j

SðkÞ
p

�
xm; yn

�
SðkÞ
p

�
xiþm; yjþn

�
(7d)

In the other cases, CðkÞ
p ðxi; yjÞ ¼ 0. The autocorrelation

function CðkÞ
p ðx; yÞ is estimated at the data points ðxi; yjÞ by the

MATLAB® command xcorr.

Recalling that the autocorrelation function is symmetrical

with respect to the origin;

cx; CðkÞ
p ð � x; 0Þ ¼ CðkÞ

p ð þ x;0Þ
cy; CðkÞ

p ð0;�yÞ ¼ CðkÞ
p ð0;þyÞ

(8)
The autocorrelation function is maximal at the origin and

the value CðkÞ
p ð0;0Þ corresponds to the second-order spatial

moment of SðkÞ
p ðx; yÞ. Because the spatial mean is zero, the

second-order moment becomes identified with the variance

VðkÞ
p ¼ ðsðkÞ

p Þ2 and the rms-height with the standard deviation of

heights and s
ðkÞ
p is given by:

sðkÞ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðkÞ
p ð0;0Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
p

XNp�1

m¼0

XNp�1

n¼0

�
SðkÞ
p

�
xm; yn

��2vuut (9)

2.2.2. A five-parameter model for the autocorrelation function
It is proposed to represent the autocorrelation function

CðkÞ
p ðx; yÞ by a five-parameter model ~C

ðkÞ
p ðx; yÞwhich verifies the

symmetry property with respect to the origin:

~C
ðkÞ
p ðx; yÞ¼

�
sðkÞ
p

�2
exp

0
@�

" 
X

lðkÞp;X

!2

þ
 

Y

lðkÞp;Y

!2#rðkÞp
1
A (10)

with X¼ xcos ðdðkÞp Þþysin ðdðkÞp Þ and Y ¼ �
xsin ðdðkÞp Þþycos ðdðkÞp Þ. The rms-height sðkÞ

p will be estimated by

Eq. (9). The quantities lðkÞp;X and lðkÞp;Y denotes the correlation

lengths along themain axesOX andOY. The tilt angle dðkÞp is the

angle between the axes OX and Ox. The last parameter rðkÞp is

the roughness exponent.

If both correlation lengths lðkÞp;X and lðkÞp;Y are equal, the soil sur-

face is isotropic otherwise it is anisotropic. Adapting the isotropy

index used in Duss�eaux et al. (2012), we can define IðkÞp as:

IðkÞp ¼
min

�
lðkÞp;X; l

ðkÞ
p;Y

�
max

�
lðkÞp;X; l

ðkÞ
p;Y

� (11)

For an isotropic soil surface, the isotropy index is

maximum and equal to 1. The degree of anisotropy JðkÞp of a soil
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surface is traduced by a decrease of the isotropy index and can

be estimated as:

JðkÞp ¼1� IðkÞp (12)

When JðkÞp ¼ 0 and rðkÞp ¼ 1, the autocorrelation function is

isotropic and it becomes identified with a Gaussian func-

tion. When JðkÞp ¼ 0 and rðkÞp ¼ 0:5, it becomes identified with a

bi-exponential function. The intermediate Gaussian-

exponential model given by Eq. (10) is often used in

remote sensing but in a version with three parameters (i.e.,

with the rms-height, the correlation length along an axis

and the roughness exponent) reducing the characterisation

of soils to 1D profiles (Fung, Li, & Chen, 1992, Li, Shi, &

Chen, 2002, Zribi, Ciarletti, Taconet, Paill�e, & Boissard,

2000a-b, 2005 and 2014, Zheng et al., 2019) or only appli-

cable for isotropic two-dimensional surfaces (Duss�eaux

et al., 2012). The previous research papers do not provide

access to the correlation lengths along the main axes and

to the tilt angle.

2.2.3. Estimation of the correlations lengths and the tilt angle
By definition, the correlation lengths are obtained from the

level curve of CðkÞ
p ðx; yÞ for the value VðkÞ

p expð � 1Þ. Applying
this definition to the autocorrelation function model ~C

ðkÞ
p ðx;yÞ,

the equation of a standard ellipse centred at the origin is:

 
xcosðdðkÞp

�
þ ysinðdðkÞp

�
lðkÞp;X

!2

þ
 �xsinðdðkÞp

�
þ ycosðdðkÞp

�
lðkÞp;Y

!2

¼ 1

(13)

If lðkÞp;X ¼ lðkÞp;Y , the contour plot is a circle expressing the isot-

ropy of the surface. By substituting y ¼ 0 (or x ¼ 0Þ into Eq. (10),

we obtain the correlation length along the Ox axis (or Oy axis)

with:

lðkÞp;x ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

cos ðdðkÞp Þ
lðkÞ
p;X

�2

þ
�

sin ðdðkÞp Þ
lðkÞ
p;Y

�2
s (14a)

lðkÞp;y ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

sin ðdðkÞp Þ
lðkÞ
p;X

�2

þ
�

cos ðdðkÞp Þ
lðkÞ
p;Y

�2
s (14b)

By using the polar coordinates x ¼ rcosq and ¼ rsinq , and

applying some trigonometric formulas, from Eq. (13) it can be

seen that for an ellipse, rðqÞ ¼ 2
r2 is a periodic function, of

period p, the Fourier series expansion of which being:

rðqÞ¼aðkÞ
p;0 þ aðkÞ

p;1 cosð2qÞ þ bðkÞ
p;1 sinð2qÞ (15)

with

aðkÞ
p;0 ¼

1�
lðkÞp;X

�2 þ 1�
lðkÞp;Y

�2 (16a)
aðkÞ
p;1 ¼

0
@ 1�

lðkÞp;X

�2 � 1�
lðkÞp;Y

�2
1
Acos

�
2dðkÞp

�
(16b)

bðkÞ
p;1 ¼

0
@ 1�

lðkÞp;X

�2 � 1�
lðkÞp;Y

�2
1
Asin

�
2dðkÞp

�
(16c)

The tilt angle dðkÞp and the two correlation lengths lðkÞp;X and lðkÞp;Y

are deduced from the Fourier coefficients aðkÞ
p;0, a

ðkÞ
p;1 and bðkÞ

p;1 by

the relationships:

2dðkÞp ¼arctan

 
bðkÞ
p;1

aðkÞ
p;1

!
½p� (17a)

lðkÞp;X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

aðkÞ
p;0±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aðkÞ
p;1

�2
þ
�
bðkÞ
p;1

�2r
vuuut (17b)

lðkÞp;Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

aðkÞ
p;0H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aðkÞ
p;1

�2
þ
�
bðkÞ
p;1

�2r
vuuut (17c)

The determination of the tilt angle and the two correlation

lengths is done in three steps. Firstly, the level curve of CðkÞ
p ðx; yÞ

for the value VðkÞ
p =e is obtained by using the MATLAB® function

“contour”. The contour plot is made on MðkÞ
p points whose Car-

tesian coordinates ðxm; ymÞ are known. In the second step, the

polar coordinates ðrm; qmÞ of each point are defined and the

periodic function rðqÞ given by Eq. (15) is obtained and the

Fourier coefficients aðkÞ
p;0, a

ðkÞ
p;1 and bðkÞ

p;1 are computed. In the third

step, the tilt angle and the two correlation length are computed

from Eq. (17). The solution is non-unique: two tilt angles are

possible and two pairs of signs, ðþ;�Þ or ð � ;þÞ, can be

assigned for the two correlation lengths. For each possible set

of parameters ðlðkÞp;X; l
ðkÞ
p;Y ; d

ðkÞ
p Þ, the associated ellipse is plotted and

the coordinates ð~rm; qmÞ of the points on this ellipse are deter-

mined. The three parameters retained as solutions are those

which minimise the quadratic error eðkÞc;p defined by:

eðkÞc;p ¼
1

MðkÞ
p

XMðkÞ
p

m¼1

				1� ~rm
rm

				
2

(18)

2.2.4. Estimation of the roughness exponent

Once the four parameters ðsðkÞp ; lðkÞp;X; l
ðkÞ
p;Y ; d

ðkÞ
p Þ are determined,

the roughness exponent is computed from the level curves of

the autocorrelation function CðkÞ
p ðx; yÞ for the values

VðkÞ
p expð�tÞ where t varies between a minimum tm and a

maximum tM with the increment Dt. These level curves are

also obtained by using the MATLAB® function “contour”. The

level curve of the modelled autocorrelation function ~C
ðkÞ
p ðx; yÞ

for the value VðkÞ
p expð�tÞ becomes identified with the ellipse

given by:
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xcosðdðkÞp

�
þysinðdðkÞp

�
lðkÞp;X

!2

þ
 �xsinðdðkÞp

�
þycosðdðkÞp

�
lðkÞp;Y

!2

¼tð1=rðkÞp Þ

(19)

Let us ðxðtÞ;yðtÞÞbe the Cartesian coordinates of the points

on the t-contour. For t ¼ 1, we obtain the ellipse given the

correlation lengths. Consequently, we find that xðt¼ 1Þ¼ lðkÞp;x

and yðt¼1Þ¼ lðkÞp;y where the correlation lengths along the Ox

and Oy axes are given by Eq. (14a) and Eq. (14b), respectively.

Let us reason on the Ox axis and take y ¼ 0. Taking into

account the remarks above, we show from Eq. (19) that rðkÞp is

the slope of the following linear equation where the symbol ln

designates the natural logarithm function:

lnðtÞ¼ 2rðkÞp ln

 
xðtÞ
lðkÞp;x

!
(20)

For each value of t; the value xðtÞ can be computed from

the t-level curves and the parameter rðkÞp can therefore be

determined by linear regression. We can also estimate the

roughness exponent by reasoning on the Oy axis, on any axis

passing through the origin or on the average distances be-

tween the points on the contours and the origin. The param-

eter rðkÞp is estimated from these average distances d
ðkÞ
p ðtÞ.

The t-level curve of CðkÞ
p ðx; yÞ is obtained by using the

MATLAB® function “contour” and the t-contour plot ismade on

MðkÞ
p ðt) points whose Cartesian coordinates ðxmðtÞ; ymðtÞÞ are

known. The average distance d
ðkÞ
p ðtÞ is defined as follows,

d
ðkÞ
p ðtÞ¼ 1

MðkÞ
p ðtÞ

XMðkÞ
p ðtÞ

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxmðtÞÞ2 þ

�
ymðtÞ

�2q
(21)

For t ¼ 1, the average distance d
ðkÞ
p ðtÞ corresponds to the

average correlation length l
ðkÞ
p . Finally, a linear regression is

made on the pairs ð2 lnðdðkÞ
p ðtÞ =l

ðkÞ
p Þ; lnðtÞÞ for many values of t:

The slope of this linear regression gives the roughness expo-

nent estimation and in theory, the y-intercept amust be equal

to zero. For each soil surface SðkÞ
p , the mean square error mseðkÞp

of the linear regression is given.
Table 2 e Reference roughness indices.

State k 0 1 2 3 4 5

TVðkÞ
1 � 106 mm3 1.626 1.815 1.750 1.673 1.582 1.414

TVðkÞ
2 � 106 mm3 1.254 1.389 1.379 1.272 1.227 1.144

SCIðkÞ1 25.5 23.6 22.6 19.8 18.0 15.2

SCIðkÞ2 27.6 24.0 21.3 19.2 16.8 14.9

MWDðkÞ
1 mm 36.6 40.1 41.2 43.6 44.5 45.0

MWDðkÞ
2 mm 27.2 29.7 31.0 31.4 32.4 35.5

lðkÞ1
a mm 17.3 17.6 18.3 18.8 19.8 21.3

lðkÞ2
a mm 16.0 16.9 17.8 18.4 19.2 20.9

rðkÞ1
a 0.69 0.70 0.71 0.72 0.73 0.73

rðkÞ2
a 0.68 0.70 0.71 0.72 0.72 0.72

a With three-parameter model of the autocorrelation function.
2.2.5. Validation of the modelled autocorrelation function

Once the five parameters ðsðkÞp ; lðkÞp;X; l
ðkÞ
p;Y ; d

ðkÞ
p ; rðkÞp Þ are determined,

the modelled autocorrelation function ~C
ðkÞ
p ðx; yÞ can be plotted

and compared with the reference autocorrelation function

CðkÞ
p ðx; yÞ estimated from the DEM. For measuring the prox-

imity between the two curves, we determine the error func-

tion ε
ðkÞ
p ðxi; yjÞ at each sample point ðxi;yjÞ:

ε
ðkÞ
p

�
xi; yj

�
¼
CðkÞ
p

�
xi; yj

�
�~C

ðkÞ
p

�
xi; yj

�
CðkÞ
p ð0;0Þ

(22)

We estimate the mean error ε
ðkÞ
xy;p and the standard devia-

tion s
ðkÞ
xy;p of the error function from the sample points defining

the central lobe of autocorrelation function.

In the next section, the level curves of the reference auto-

correlation function CðkÞ
p ðx; yÞ and the modelled one ~C

ðkÞ
p ðx; yÞ

for different percentages q of the variance VðkÞ
p are compared.

In addition, using least squares the correlation length and

roughness exponent of a three-parameter model of the auto-

correlation function are estimated:

~C
ðkÞ
p ðx; yÞ¼

�
sðkÞ
p

�2
exp

0
@�

0
@x2 þ y2

lðkÞp

2

1
A

rðkÞp
1
A (23)

3. Results

3.1. On the references roughness indices

All the reference roughness indices are shown in Table 2.With

an increase followed by decrease, the total volume occupied

by the clods, TV, shows that the clods swelled during the first

rainfall event and then eroded. The values of TV, as well as

MWD, show that clods are generally smaller on the second

laboratory soil surface. Since it decreases, the SCI index re-

flects well the erosion of the surfaces under rainfall impact

and captures the increase of rainfall intensity. With clods of

different size and closeness, the kinetic of the two surfaces are

slightly different. The erosion is faster on the second surface

having smaller and closer clods. The MWD index increases

due to the disappearance of the smallest clods. It can be seen

that the correlation length follows the increase of MWD, with

high correlations of 87.2% and 98.8% between the two vari-

ables for the first and second surface respectively. The corre-

lation length obtained with the three-parameter model is also

highly correlated with SCI, evolving in the opposite direction.

Correlation coefficients for both surfaces amount to 97.4% and

98.2% respectively. Both indices show that the initial differ-

ence of roughness between the two soil surfaces vanished

after five rainfalls. The roughness exponent derived from the
Table 3 e Surface rms-heights s
ðkÞ
p for soil surfaces at

initial state and at the states after rainfall events.

State k 0 1 2 3 4 5

s
ðkÞ
1 mm 8.6 8.9 8.8 8.2 7.8 7.2

s
ðkÞ
2 mm 8.5 8.7 8.5 8.1 7.7 7.1
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three-parameter model was close for the two surfaces. It

increased slightly with cumulative rainfall and reached a

plateau. With a mean value of about 0.71, it was between the

exponential and the Gaussian autocorrelation function. It

evolved from displaying exponential behaviour to a more

Gaussian behaviour, which can reflect the smoothing effect of

rainfall. The rms-heights is also a reference roughness index,

but it is included in the model of the autocorrelation function

and is commented on in section 3.2.

3.2. On the root-mean square height

Table 3 shows the values of the rms-height sðkÞp for the twelve

plots under study. For a given state of the two laboratorymade

soil surfaces, the rms-heights are close. The relative variation

between the initial and final values of the rms-height is equal

to 16.3% for the first surface and to and 16.5% for the second.

The rms-height is highly correlated to the total volume

occupied by the clods (in Table 2), with correlation coefficients

of 93.6% for the first surface and of 88.8% for the second. If only

the decreasing part from the second rainfall is considered,

then the correlation coefficients increase up to 98.8% for both

surfaces. For this decreasing part, the rms-height is also

highly correlated with the SCI roughness index (see Table 2)

with correlation coefficients of 99.9% and 97.4% respectively.

3.3. On the correlation lengths and the inclination angle

Table 4 shows the values of the correlation lengths lðkÞp;X and lðkÞp;Y

and the values of the ellipse tilt angle d
ðkÞ
p for the twelve plots

at our disposal. The correlation lengths show an increasing

trend. Indeed, an increase of MWD and correlation lengths

correlated to MWD were observed. It should be noted that

MWD reached a maximum correlation coefficient of 95.5%

with the correlation length lðkÞ1;X for the first soil surface,

whereas it was 87.2% with the correlation length of the three-

parameter model lðkÞ1 (and only 66.2% for lðkÞ1;Y due to initial

decrease). For the second soil surface, the maximum of 99.0%

was obtained with lðkÞ2;Y but the correlation lengths of the five-

parameter model and of the three-parameter model were

correlated at more than 99.8%, so that MWD had also elevated

correlation coefficients of 98.8% and 98.3% with lðkÞ2 and lðkÞ2;X,

respectively.

The first laboratorymade soil surface in its initial state was

quasi-isotropic with an isotropic factor Ið0Þ1 equal to 97%. Under
Table 4 e Estimations of correlations lengths lðkÞp;X and lðkÞp;Y

along the main axes OX and OY and tilt angle d
ðkÞ
p for two

soil surfaces at initial state and at the states after rainfall
events.

State k 0 1 2 3 4 5

lðkÞ1;X mm 17.6 19.0 20.6 20.7 22.0 23.1

lðkÞ1;Y mm 17.2 16.5 16.8 17.4 18.2 19.8

d
ðkÞ
1 degrees 118 88.6 88.6 83.1 88.1 88.0

lðkÞ2;X mm 17.3 18 18.9 19.5 20.3 21.9

lðkÞ2;Y mm 15.0 16.0 16.8 17.4 18.2 20.0

d
ðkÞ
2 degrees 10.8 15.1 12.9 10.4 14.9 6.9
the cumulative effect of the rainfalls, anisotropy appeared and

in the last state, the isotropic factor Ið5Þ1 was equal to 86%,

traducing the anisotropy of 14%. The correlation lengths lðkÞ1;X

and lðkÞ1;Y along the two main axes increased with cumulative

precipitations. The tilt angle d
ð0Þ
1 was equal to 118� but since

this surface in its initial state was quasi-isotropic, the ellipse

was nearly circular and the angle of inclination played a sec-

ondary role in the ellipse parametrisation. After the first

rainfall, the average value of the tilt angle was 87.3� and the

variations around thismean valuewere small. Because the tilt

angle was close to 90� at all states, then lðkÞ1;yzlðkÞ1;X and lðkÞ1;xzlðkÞ1;Y.

This property can be verified by applying Eq. (14). The corre-

lation lengths along the axes Ox and Oy were obtained and it

was found that in the initial state lð0Þ1;x ¼ 17:3 mm and

lð0Þ1;y ¼ 17:5 mm (in its initial state, the surface was quasi-

isotropic) and in the final state, lð5Þ1;x ¼ 19:8 mm and lð5Þ1;y ¼
23:1 mm. The initial state was the state with the highest tilt

angle, which departed a little from 90� so that lð0Þ1;xzlð0Þ1;Y, which

values 17.2 mm and lð0Þ1;yzlð0Þ1;X, which values 17.6 mm. At final

state, with a tilt angle of 88�, then lð5Þ1;x ¼ lð5Þ1;Y and lð5Þ1;y ¼ lð5Þ1;X. The

relative variation between the initial and final values for the

Ox-correlation length was equal to 14.5% and equal to 31.3%

for the Oy-correlation length. For water runoff, the trays were

set at a 5% slope along the Oy-direction. The relative variation

with the correlation length was therefore twice as large in

slope direction. It can be seen that for this surface, MWD was

best correlated with the correlation length along the

Oy-direction.

The second soil surface made in the laboratory already

showed some anisotropy of 13% in its initial state. Under the

cumulative effect of the rainfalls, this anisotropy was

reduced and in the final state, it was equal to 9%. The average

value of the tilt angle is 11.8� and the variations around this

mean value were< 5�. Taking into account the values of the

angles, for the second soil surface, lðkÞ2;xzlðkÞ2;X and lðkÞ2;yzlðkÞ2;Y for all

states. By applying the system of Equation (14), correlation

lengths were obtained along the axes Ox and Oy and it was

found that in the initial state lð0Þ2;x ¼ 17:2 mm and

lð0Þ2;y ¼ 15:1 mm and in the final state, lð5Þ2;x ¼ 21:9 mm and lð5Þ2;y ¼
20:0 mm. Also, at the initial state, lð0Þ2;xzlð0Þ2;X (17.3mm) and lð0Þ2;yz

lð0Þ2;Y (15.0 mm), and at final state lð5Þ2;x ¼ lð5Þ2;X (21.9 mm) and lð5Þ2;y ¼
lð5Þ2;Y (20.0 mm). The relative variation between the initial and

final values for the Ox-correlation length was equal to 27.3%

and equal to 32.5% for the Oy-correlation length. The relative

variation was slightly more marked in the Oy-direction

defining the 5% slope of the tray. It was noted that for this

surface, MWD was best correlated with the correlation

length along the Oy-direction.

Table 5 shows the values of the quadratic error eðkÞc;p between

the modelled ellipse and the reference contour obtained from

the autocorrelation function for the twelve plots under study.

The error was < 10�4 for both the laboratory made soil sur-

faces and this showed that the ellipse modelled by the two
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Table 5 e Error eðkÞc;p between ellipse derived from estimated parameters lðkÞp;X, l
ðkÞ
p;Y and d

ðkÞ
p and level curve of reference

correlation function at the value e�1V
ðkÞ
p for two soil surfaces at initial state and at the states after rainfall events.

State k 0 1 2 3 4 5

eðkÞc;1 2.02 10�5 2.35 10�5 4.33 10�5 6.74 10�5 7.51 10�5 8.57 10�5

eðkÞc;2 1.03 10�5 7.23 10�5 6.53 10�5 6.08 10�5 6.81 10�5 8.81 10�5

Fig. 3 e Level curve of reference autocorrelation function and ellipse or circles passing through correlation lengths for first

laboratory soil surface at final state.
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correlation lengths and the tilt angle was close to the refer-

ence iso-contour providing a correlation lengths in all di-

rections of the plane.

The first laboratory made soil surface in the last state is an

anisotropic soil surfacewith an isotropic factor Ið5Þ1 equal to 86%.

Figure 3 shows the reference contour, themodelled ellipse given

by Eq. (13) and the circles of radius lð5Þ1;x and lð5Þ1;y associated with

the soil surface Sð5Þ1 . On this horizontal section of the autocor-

relation function, the reference contour and the modelled el-

lipse are superimposed. The reference contour cannot be

approached by a circle of radius lð5Þ1;x or by a circle of radius lð5Þ1;y.

Figure 4 also shows a section of the normalised autocorrelation

function in the vertical plan, along the directionsOx andOy. The

better fit of the five-parameter model can be seen.
3.4. On the roughness exponent

Figure 5 shows the data points ð2 lnðdð0Þ2 ðtÞ =l
ð0Þ
2 Þ; lnðtÞÞ for t

varying between tm ¼ 1=10 and tM ¼ 1:2 with the increment D

t ¼ 1=10. For the second laboratory soil surface (p ¼ 2) in the

initial state (k ¼ 0), the quantity l
ð0Þ
2 designates the average

correlation length derived from the level curve of the refer-

ence autocorrelation function Cð0Þ
2 ðx; yÞ for the value

Vð0Þ
2 expð�1Þ and the quantity d

ð0Þ
2 ðtÞ designates the average

distance at the origin for the level curve of Cð0Þ
2 ðx; yÞ for the

value Vð0Þ
2 expð � tÞ. Figure 5 also shows the linear regression

obtained from these data points. The slope of this linear

regression gives the roughness exponent rð0Þ2 equal to 0.67 and

https://doi.org/10.1016/j.biosystemseng.2022.05.012
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Fig. 4 e Normalised autocorrelation functions with respect to Ox axis (left column) andOy axis. (right column) for the first

laboratory soil surface at final state.

Fig. 5 e Data points ð2 lnðdð0Þ
2 ðtÞ =l

ð0Þ
2 Þ; lnðtÞÞ and linear

regression for determination of roughness exponent for

the second laboratory surface at initial state.
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the y-intercept a
ð0Þ
2 is equal to �9.2 10�3. The mean square

error mseð0Þ2 of the linear regression is equal to 2.7 10�4. This

low value confirms the validity of the linear regression and as

shown in Fig. 5, the comparison between the data points and

the linear regression line was therefore conclusive.

Table 6 shows the values of the roughness exponent rðkÞp

and the y-intercept a
ðkÞ
p for the twelve plots at our disposal.
Table 6e Estimations by linear regression of roughness expone
soil surfaces at initial state and at the states after rainfall even

State k 0 1 2

rðkÞ1 0.68 0.71 0.71

a
ðkÞ
1 �1.6 10�2 �1.6 10�2 �1.7 10

mseðkÞ1 7.3 10�4 7.2 10�4 7.8 10�4

rðkÞ2 0.67 0.69 0.70

a
ðkÞ
2 �9.2 10�3 �9.1 10�3 �7.2 10

mseðkÞ2 2.7 10�4 2.3 10�4 1.3 10�4
The roughness exponent increases slightly under the effects

of successive rainfalls. With such roughness exponent values

(ranging between 0.67 and 0.72), the autocorrelation function

was neither a bi-exponential nor a Gaussian function but the

shape of the curve somewhat in between. For all soil surfaces,

the y-intercept value was small and close to the theoretical

value of zero. As shown also in Table 6, the mean square er-

rors mseðkÞp were small and this validates the use of estimation

of the roughness exponent by linear regression.

It should be noted that the values of roughness exponents

obtainedwith the five-parametermodel of the autocorrelation

function were very close to those obtained with the three-

parameter model (see Table 2).

3.5. Comparison between the five-parameter model and
the reference autocorrelation function

Figure 4 shows an example of reference autocorrelation

function along the Ox and Oy direction modelled using the

three- and five-parameter models. The five-parameter model

showed very good agreement for the main lobe of the refer-

ence autocorrelation function along both directions. Figure 6

gives the level curves of the reference autocorrelation func-

tion and that modelled for four values of the height expressed

as a percentage q of the variance, for three states of the sur-

faces SðkÞ1 and SðkÞ2 . The comparisons are conclusive. For q ¼ 0:8;

0:6 and e�1; the level curves are superimposed. For q ¼ 0:2,

there was good agreement. For the second laboratory made
nt rðkÞp , with y-intercept aðkÞ
p andmean square errormseðkÞp for

ts.

3 4 5

0.72 0.72 0.72
�2 �1.6 10�2 �1.6 10�2 �1.7 10�2

7.1 10�4 6.9 10�4 7.4 10�4

0.71 0.71 0.72
�3 �7.6 10�3 �7.8 10�3 �8.6 10�3

1.6 10�4 2.0 10�4 2.0 10�4
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Fig. 6 e Level curves of reference autocorrelation function andmodelled function for four values of the height expressed as a

percentage of the variance. Laboratory made soil surfaces with a low clod concentration (left column), with a high clod

concentration (right column).

b i o s y s t em s e n g i n e e r i n g 2 2 0 ( 2 0 2 2 ) 8 7e1 0 298

https://doi.org/10.1016/j.biosystemseng.2022.05.012
https://doi.org/10.1016/j.biosystemseng.2022.05.012


Table 7 eMean values ε
ðkÞ
xy;p of the error function between estimated correlation function and reference correlation function

for 3 and five-parameter models.

Model State k 0 1 2 3 4 5

3 parameter ε
ðkÞ
xy;1 5.6 10�3 6.6 10�3 6.6 10�3 5.4 10�3 4.0 10�3 2.1 10�3

5 parameter. ε
ðkÞ
xy;1 4.3 10�3 6.1 10�3 4.0 10�3 3.1 10�3 7.6 10�4 �5.4 10�4

3 parameter ε
ðkÞ
xy;2 1.9 10�3 1.8 10�3 1.5 10�3 1.5 10�3 2.4 10�3 2.4 10�3

5 parameter ε
ðkÞ
xy;2 �7.0 10�4 �3.2 10�4 1.0 10�4 �5.0 10�4 1.1 10�3 2.5 10�3

Table 8 e Standard deviations s
ðkÞ
xy;p of the error function between estimated correlation function and reference correlation

function for 3 and five-parameter models.

Model State k 0 1 2 3 4 5

3 parameter s
ðkÞ
xy;1 1.57 10�2 2.10 10�2 2.77 10�2 2.57 10�2 2.74 10�2 2.36 10�2

5 parameter s
ðkÞ
xy;1 1.55 10�2 1.59 10�2 1.75 10�2 1.65 10�2 1.55 10�2 1.37 10�2

3 parameter s
ðkÞ
xy;2 3.19 10�2 2.70 10�2 2.64 10�2 2.59 10�2 2.63 10�2 2.67 10�2

5 parameter. s
ðkÞ
xy;2 2.29 10�2 2.03 10�2 1.86 10�2 1.87 10�2 1.92 10�2 2.04 10�2
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soil surface, it was seen that there was a difference between

the two level curves along the Ox-axis. This difference was

due to the flaring of the reference autocorrelation function at

the base of its central lobe.

For the two laboratory made surfaces, the area defined by

the q-level curve increased with the successive rainfall and

the spreading of the clods. For the tray Sð0Þ1 , the level curves

were almost circular, thus reflecting the isotropy of the sur-

face. Under the cumulative effect of the rainfalls, anisotropy

appeared and the level curves stretched along the Oy-axis due

to the inclination of the trays in this direction. The second

laboratory made soil surface exhibited three states a slight

anisotropy. As shown in section 4.2, under the cumulative

effect of the rainfall and the inclination of the trays, anisot-

ropy weakly reduced.

Table 7 shows the mean values of the error function (given

by Eq. (22)) and estimated from the sample points defining the

central lobe of autocorrelation function. Table 8 shows the

standard deviations for all the surfaces at our disposal. The

mean errors were <1% for all the soil surfaces under consid-

eration and across the whole directions defining the central

lobes on average were 0.3% (absolute). The standard de-

viations were <3.2% for all the soil surfaces under consider-

ation and were on average 1.8% across all directions. These

errors defining the proximity between the modelled and

reference autocorrelation functions were weak, which illus-

trates the reliability of the proposed model.
4. Discussion

The bidirectional autocorrelation function used in remote

sensing studies is usually modelled by a function of three

parameters, rms-height, a single correlation length, and a

roughness exponent. This function is thus supposed isotropic.

The proposed model of the autocorrelation function devel-

oped here has five parameters in order to take into account the

anisotropy of soil surfaces and to align the coordinate system

into the direction of themaximum correlation length. This led
to an accurate fit of the autocorrelation function estimated

from DEM which was better than that obtained with a three-

parameter model. As shown in Table 7, except in the last

state of the second laboratory soil surface, all the mean errors

were smaller for the five-parameter model than for the three-

parameter model and all the standard deviations of errors

were smaller with the five-parameter model than with the

three-parameter model. This shows numerically the

improvement brought by the proposed model with five-

parameters.

The goodness of fit of the autocorrelation function and the

relevance of the parameters offered a good description of soil

surface roughness. This offers the possibility of modelling

taking into account the anisotropy of soil surface. Figure 3

shows that a three-parameter model is ineffective for aniso-

tropic surfaces and does not provide the reference iso-contour

giving the correlation lengths in any direction of the plane. It

has been shown that the proposed approach is feasible to

characterise soil surface roughness with moderate anisotropy

under controlled conditions. Future work will consider more

strongly anisotropic soil surfaces. It will be necessary to reg-

ister DEMs larger than 500 � 500 mm in order to highlight the

strong anisotropic factors and directional structures that

occur due to the furrows. The limitation of 500 mm is due to

the used laser scanner used here. Some other photogram-

metry methods or another laser scanner will be needed.

The evolution of model parameters under the rain impact

requires discussion. The rms-heights and even more the

correlation lengths are sensitive to roughness change induced

by rainfall. During the first rainfall, an increase of the rms-

height could be seen which reflects clod swelling phenome-

non as shown in Vannier et al. (2018b). After the second

rainfall (k� 2Þ, as shown in Table 3, the rms-height decreased

with cumulative precipitation. This decrease could be related

to the erosion of clods by rainfall impact, which causes some

levelling of larger clods and the disappearance of smaller ones

(Vannier et al., 2018b). Secondly, with the low clod concen-

tration tray, as well as the tray with a high concentration,

correlation lengths show an increasing trend (see Table 4).
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This increase is related to the spreading of clods under rainfall

impact, which was studied by Vannier et al. (2018b). The low

clod concentration soil surface in the initial state is quasi-

isotropic with an isotropic factor Ið0Þ1 equal to 97%. The high

clod concentration soil, in the initial state, had anisotropy of

13% with a correlation length along the Ox axis greater than

that along the Oy axis. For water runoff, the trays were set at a

5% slope along the Oy-direction. This slope contributed to a

clod stretching along the Oy-direction and this caused

anisotropy for the soil surface with a low concentration of

clods under the succession of rainfalls. For the second tray,

with high clod concentration, the slope of 5% contributed to

reduced initial anisotropy that was oriented along the Ox di-

rection. The improvement brought about by a second corre-

lation length was highlighted. The rms-height and both

correlation lengths were highly correlated with other rough-

ness indices of reference and they were complementary. They

had the advantage to be gathered in a modelling function.

The roughness exponent shows a small increase which

was in the direction from exponential to Gaussian behaviour

due to the degradation of small clods as explained in Zribi,

Baghdadi, Holah, Fafin, and Gu�erin (2005) in the case of real

agricultural soils. The roughness exponents estimated with

five- or three-parameter models were very close together and

were usually related to soil surface texture. It would be

interesting to include higher roughness surfaces to better

study this parameter.

This work was conducted with laboratory made soil sur-

faces approaching seedbeds. Therefore, the parameters were

smaller than that of real (field-based) seedbeds. However,

there is no obstacle to estimate the five-parameter model

from experimental autocorrelation functions of seedbeds

recorded in the fields. Flat horizontal supports for the clods

occurred, so that the DEMs were centred by subtracting the

mean height.With DEMs for natural seedbeds, this step can be

carried out by estimating the determined component by either

averaging along one direction or extracting first singular

values of the DEM (that is a matrix), and then considering the

residue representing random roughness.
5. Conclusion

An efficient parametrisation of soil surface roughness was

introduced that relies on modelling the bidirectional auto-

correlation function estimated from 2.5D DEMs of soil sur-

faces. The proposed method estimated each parameter of the

model and showed robust parameter estimation for two soil

surfaces made in the laboratory that were subjected to

rainfall.

By introducing a second correlation length, it was possible

to capture the evolution of a surface from isotropy to anisot-

ropy or from anisotropy to isotropy under rainfall. The five

parameters of the model could be related to surface

characteristics.

The goodness of fit of the autocorrelation function and the

relevance of the parameters showed feasibility and interest of

the method. It opens perspectives for further modelling in

remote sensing and geosciences.
Ourmedium-term goal will be to use thismodel to describe

real agricultural soils (seedbeds soils and soils with more

marked tillage). The surface of agricultural soils presents

several levels of roughness: that is roughness due to the dis-

tribution of clods, due to furrows and that linked to the natural

morphology of the soil. Each of these roughness can be char-

acterised by an autocorrelation function. The five-parameter

model used to describe the roughness linked to the distribu-

tion of clods requires confirmation on real soils. The furrows

can be modelled by a random periodic function and the

associated autocorrelation function shows oscillations related

to the periodicity (Mattia, 2011). Roughness due to the mac-

roforms of the terrain (of the order of several metres) defines

the topography of the landscape and the local mean plane on

which the other levels of roughness are arranged (Martinez-

Agirre et al., 2016). The concept is to in the future define the

overall autocorrelation function associated to these three

levels of roughness.
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