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ABSTRACT

Context. We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar
evolution code CESAM2k.
Aims. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem
is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in
the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature
and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k
code, some additional quantities and their derivatives must be provided.
Methods. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities
that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of
the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional
interpolation.
Results. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module
of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution
code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed.
Conclusions. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together
with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations.
The proposed module of interpolation procedures can be easily adopted in other evolution codes.
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1. Introduction

One of the most important factors for successfully modelling the
stellar-interior structure is the equation of state (EOS) of the mat-
ter. It governs both the opacity and the thermodynamic structure
of the star, which determine the predictions of the models, such
as the surface temperature, luminosity, and radius for a given age
of the star. For several decades, several EOS formalisms have
been tested in evolutionary models of different kinds of stars,
mainly depending on mass and chemical composition. For ex-
ample, in the CESAM2k code (Morel & Lebreton 2008) differ-
ent EOS can be considered, such as OPAL (Rogers et al. 1996;
Rogers & Nayfonov 2002) or the MHD EOS (Mihalas et al.
1988); the code has been extensively used to reproduce the Sun
as a star (Morel et al. 1997) as well as many other stars of differ-
ent mass and chemical composition as a function of age.

In this paper we describe the implementation of the recently
developed EOS named SAHA-S (Gryaznov et al. 2006, 2013)
in the CESAM2k code and provide examples of its capability to

reproduce the Sun as a star. In Sect. 2 we describe basic concepts
and relations of EOS theory. The requirements by CESAM2k on
the EOS are listed in Sect. 3, and the corresponding available
SAHA-S data are discussed in Sect. 4. Implementation of the
SAHA-S EOS in the mathematical structure of the CESAM2k
code is described in Sect. 5. Particular attention is given to the
numerical algorithms based on a three-dimensional cubic spline
interpolation (de Boor 1978). In Sect. 6, we show how some
physical quantities such as the sound speed profile in the interior
are reproduced in a solar model based on the SAHA-S EOS, and
we make comparisons with earlier CESAM2k models that were
based on the OPAL EOS. Conclusions are presented in Sect. 7.

2. Basic concepts and relations

For matter in thermodynamical equilibrium, the EOS is the re-
lation between pressure P, temperature T , and density ρ, as-
suming a fixed chemical composition. There are many introduc-
tions into the EOS and its role in modelling stellar structure (e.g.
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Cox & Giuli 1968; Hansen & Kawaler 1994). However, recent
computations of the EOS based on more modern physical as-
sumptions have therefore become very difficult and elaborate
(see e.g. Gryaznov et al. 2006, 2013, for the case of the SAHA-S
EOS).

2.1. Geometry of EOS

Mathematically speaking, in the coordinate space {P,T, ρ}, an
EOS can be represented as a surface (two-dimensional mani-
fold). For a given mass and chemical composition, any change
in the thermodynamic state is described by a curve on this sur-
face. In models of stellar internal structure, a given trace inside
the star is associated with quantities {P,T, ρ} that lie on this EOS
surface.

From a geometrical point of view, the EOS surface is a
smooth (differentiable) surface. This leads to the next geomet-
rical structure, a tangent plane which uniquely exists at every
point of the surface. To describe and define the tangent plane
(which is a linear space), we write an expression for differential
of pressure in the form

dln P = χT dln T + χρ dln ρ. (1)

Following historical tradition in astrophysics, we use logarithmic
variables wherever possible. In the differential of pressure, two
dimensionless partial derivatives appear as

χT ≡
∂ln P
∂ln T

∣∣∣∣∣
ρ

and χρ ≡
∂ln P
∂ln ρ

∣∣∣∣∣
T
· (2)

These derivatives essentially describe the orientation of the tan-
gent plane in the coordinate space. χT = χρ = 1 for a perfect-gas
EOS, at least in some finite part of the EOS surface, and there
the scaled pressure

Π ≡ P/ρT (3)

is constant. As a pure geometrical consequence, a third partial
derivative δ can be introduced, and it is related to the two deriva-
tives defined above:

δ = −
∂lnρ
∂lnT

∣∣∣∣∣
P

=
χT

χρ
· (4)

Here we provide a definition of the tangent plane with help of
the pressure differential because it is the most natural for a ther-
modynamic description in which T and ρ are the independent
variables. However, for applications to stellar modelling, the dif-
ferential of density is more useful because T and P are the in-
dependent variables. Obviously, again geometrically, one can
write

dln ρ = −δdln T +
(
χρ

)−1
dln P. (5)

From this expression it becomes clear why δ and χ−1
ρ are needed

in stellar evolution codes, and in CESAM2k in particular.
This picture can be generalized to the case where the coordi-

nate space has more dimensions, as in the case of a non-constant
chemical composition. This simple case is expressed by X and
Z, which are respectively the mass fractions of hydrogen and all
elements heavier than helium. With additional partial derivatives

χX ≡
∂ln P
∂ln X

∣∣∣∣∣
ρ,T,Z

and χZ ≡
∂ln P
∂ln Z

∣∣∣∣∣
ρ,T,X

, (6)

the differential of density becomes

dln ρ = −
χT

χρ
dln T +

(
χρ

)−1
dln P −

χX

χρ
dln X −

χZ

χρ
dln Z. (7)

The last derivative with respect to Z is smaller than the derivative
with respect to X and we omit it in further expressions.

The practical meaning of the tangent plane might not be ob-
vious until we actually deal with the principal task in the theory
of the EOS. Nevertheless, let us consider here the case where
a curve C in the EOS surface passes through the point M char-
acterized by the temperature-density pair T, ρ. Then there is a
tangent line to the curve C at this point M. This tangent line is
also part of the tangent plane of the EOS surface originating at
the point M. If we know one coordinate projection of the tangent
line, this means that we can deduce the two other projections as
well.

In the next chapter, we consider an important illustration of
this problem (the adiabatic process).

2.2. Adiabatic gradients

The fundamental thermodynamic laws state that there is a unique
curve of an isentropic process for each point of the EOS, and
again the direction of adiabatic changes belongs to the tangent
plane of that point. Generally, adiabatic changes performed un-
der constant chemical composition are considered. The adiabatic
direction can be determined by any of the three projections on
the coordinate planes. Conventionally, the best-known notations
for them are

Γ1 ≡
∂ln P
∂ln ρ

∣∣∣∣∣
S
, (8)

∇ad ≡
∂ln T
∂ln P

∣∣∣∣∣
S
, (9)

Γ3 − 1 ≡
∂ln T
∂ln ρ

∣∣∣∣∣
S
, (10)

where ∇ad is the standard notation for the adiabatic tem-
perature gradient, while the notations Γ1 and Γ3 − 1 refer
to S. Chandrasekhar (Chandrasekhar 1939; Lang 1974; or
Cox & Giuli 1968; Weiss et al. 2004). The three derivatives are
obviously related

Γ3 − 1 = Γ1∇ad. (11)

However, to obtain any of these adiabatic projections additional
thermodynamic information is required. The most natural way is
based on the caloric EOS, expressed through

Γ3 − 1 = Π
χT

cV
, (12)

where Π is defined by Eq. (3), cV is the specific heat capacity at
constant volume

cV = T
∂S
∂T

∣∣∣∣∣
V

=
∂U
∂T

∣∣∣∣∣
V
· (13)

If the adiabatic projection Γ3 − 1 is found, the other two become

∇−1
ad =

χρ

Γ3 − 1
+ χT (14)

and

Γ1 = χT (Γ3 − 1) + χρ. (15)
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The value of ∇ad is fundamental for modelling stellar convection
zones, whereas Γ1 is directly related to the adiabatic sound speed
c2 = Γ1P/ρ, which is necessary for seismic calculations. Also,
there is a direct relation between Γ1 and ∇ad without recourse to
Γ3 − 1:

Γ−1
1 =

1 − χT∇ad

χρ
· (16)

In addition to cV , another caloric quantity is cP, the specific heat
capacity under constant pressure:

cP = T
∂S
∂T

∣∣∣∣∣
P
· (17)

A common way to calculate cP is by using the difference be-
tween the two capacities, which is solely a consequence of the
geometry of the EOS surface:

cP − cV = Π
χ2

T

χρ
· (18)

Then the adiabatic exponents are

∇ad =
Π

cP

χT

χρ
(19)

and

Γ1 =
cP

cV
χρ. (20)

In summary, the minimum necessary thermodynamic informa-
tion is given by the three quantities P, χT , χρ, and by one of
four quantities (cV , cP,∇ad,Γ1). Specifically, the stellar evolu-
tion code CESAM2k requires the data set ρ,U, δ, cP,∇ad, χ

−1
ρ ,Γ1,

which can be obtained from that set of thermodynamic
quantities.

2.3. Trace of the stellar model on the EOS surface

To avoid going into too much detail about the modelling proce-
dure, here we outline only the general scheme. The modelling is
principally based on equations giving ∇P and ∇T as functions
of T, ρ, X,Z at every point. The goal of the procedure is to ob-
tain a model curve CM, expressed as the parametric functions
P (r) ,T (r) , ρ (r), where r is radial coordinate in the model. This
curve belongs to the general EOS surface in {PTρ; XZ} space.
The derivative along the radius of the model curve CM

∇M =
dln T
dln P

(21)

depends not only on local thermodynamic values, but also on
model parameters. Therefore, the individual points on the model
curve can only be determined as a result of the calculation of the
entire model.

The spatial derivative of the density dρ/dr is necessary for
the calculation of the square of the Brunt-Väisälä frequency N2

BV,
which together with the square of the sound speed c2

s ,

c2
S =

∂P
∂ρ

∣∣∣∣∣
S

=
P
ρ

Γ1 , (22)

constitutes the principal parameters defining the oscillation prop-
erties of the model. By definition (Unno et al. 1989),

N2
BV

g
=

(
dln P

dr
Γ−1

1 −
dln ρ

dr

)
, (23)

where g is the gravitational acceleration. Using spatial deriva-
tives in the model Γ̃M

Γ̃M =
dln P
dln ρ

(24)

we can write

N2
BV

g
=

dln P
dr

(
Γ−1

1 − Γ̃−1
M

)
. (25)

The structure of Γ̃M is similar to the structure of ∇M (Eq. (21)),
except that in the case of Γ̃M we also need the gradient of density
∇ρ in the model, but ∇ρ is not directly available, in contrast to
∇P and ∇T which are the part of the modelling procedure. There
are two ways to get ∇ρ. One is by direct numerical differentia-
tion of model profile ρ(r), but that may be numerically unstable.
Another way is by expression of the thermodynamical differen-
tial for density (7). Then an expression for Γ̃M can be obtained
in the form

Γ̃−1
M = −δ∇M +

(
χρ

)−1
−
χX

χρ

dln X
dln P

· (26)

In deriving Eq. (26) from Eq. (7), we have omitted the last term
in (7), containing the derivative of pressure with respect to Z, i.e.
χZ . Nevertheless, we still use and need the derivative of pressure
χX , together with the gradient of X(r) from the model data.

Generally, the gradient of X is a much more slowly varying
function than the gradient of ρ. In several important regions of
the star it is equal to or close to zero. For example, in the mixed
and chemically homogeneous convection zone, the following ex-
pression for N2

BV can be used

N2
BV

g
=
gΓ1

c2
S

χT

χρ
(∇ad − ∇M) , (27)

where Eqs. (16) and (5) have been taken into account. In the con-
vection zone, expression (27) is much more stable and virtually
exact when compared with the same quantity obtained by numer-
ical differentiation. The reason is that the difference (∇ad − ∇M)
is very small in most places in the convection zone, and in addi-
tion is directly provided by convective transport equation. How-
ever, Eq. (26) is so far not used in CESAM2k, and Eq. (23) is
used in the convection zone and in other parts of the star.

2.4. Calculation of gravitational energy contribution

In calculations of stellar evolutions, the contribution from the re-
lease of gravitational energy is significant, especially on the
pre-main sequence stage. It is calculated on the basis of the
formula

εgrav = T
dS
dt
, (28)

where

TdS = dU + PdV. (29)

The computation of dU requires the internal energy U from the
EOS.
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3. Requirements of CESAM2k regarding
the thermodynamic quantities of the EOS

The stellar evolution code CESAM2k (Morel & Lebreton 2008)
calls for an EOS in the form of ρ = ρ(P,T ), i.e. with pressure
P and temperature T as the independent variables. Further in-
put parameters for the physical quantities are the hydrogen mass
fraction X and the mass fraction Z of all elements heavier than
helium. Additionally, there are auxiliary thermodynamic deriva-
tives specifically requested in CESAM2k calculations. These ad-
ditional derivatives are listed in Table 1 and marked there with
asterisks. Historically, for the sake of time saving, the logical pa-
rameter deriv was used to control the volume of these calcula-
tions. During the present CESAM2k calculations, the EOS pro-
cedure can still be performed with deriv=.true. or .false.
should certain output quantities be desired. Output parameters of
the EOS in CESAM are the density ρ, together with a wide set
of thermodynamic quantities: internal energy U, specific heat cP,
adiabatic gradient ∇ad, adiabatic exponent Γ1, and also the values
of δ, α, β:

δ ≡ χT /χρ (30)

α ≡ 1/χρ, (31)

β ≡ 1 − (a/3)T 4/P, (32)

where a is the radiation constant (a ≈ 7.5657 ×
10−15 erg cm−3 K−4). The derivatives of these functions with re-
spect to T at constant P, and to P at constant T are also required,
together with the derivatives with respect to the hydrogen abun-
dance X. Details of the interface are listed in Table 1.

4. Available SAHA-S data

The physical description of the SAHA-S EOS is found in
Gryaznov et al. (2006, 2013). The currently available data are
described in Baturin et al. (2013). They are in original form, by
which we mean that their physical input parameters are based on
temperature T and density ρ. This means that they describe the
EOS in the form P = P(T, ρ), which is different from the form
of the EOS as required by CESAM2k.

More specifically, the available SAHA-S data are tabulated
with the parameters T and Qs(ρ,T ):

Qs =
ρ

(T/106)2.25 · (33)

The power 2.25 was used in Eq. (33) because, during the creation
of the SAHA-S basic data tables, it leads to the most compact
rectangular coverage of the solar model trace (see Fig. 1). At the
same time, with that choice, the authors managed to avoid the
problematic region of extremely high density which is not rele-
vant to ordinary stars. We note that in future versions of SAHA-
S this choice of power might be changed to allow modelling a
broader mass range of stars.

The (bijective) transformation above allows us to calculate
stellar models with the help of rectangular tables, which is very
useful for the necessary interpolations within the tables (see
Sect. 5.2). In particular, the choice of a new independent vari-
able Qs instead of ρ makes it possible to interpolate in a two-
dimensional, equidistant, and rectangular grid of mesh points.
This has the advantage that the two-dimensional mesh can be
written as a product of two one-dimensional meshes. In the plane

Table 1. Interface of CESAM2k and an EOS.

Input:
Pressure P
Temperature T
Hydrogen mass fraction X
Heavy-element mass fraction Z
Logical parameter deriv for derivatives∗

Output:
Variable Computation in SAHA-S module
ρ Inverse interpolation P(T,Qs, X)
∂ρ/∂P|T,X Eq. (44)
∂ρ/∂T |P,X Eq. (45)
∂ρ/∂X|P,T Eq. (46)
U Originally available SAHA-S data
∂U/∂P|T,X Eq. (48)
∂U/∂T |P,X Eq. (47)
∂U/∂X|P,T Auxiliary SAHA-S data
δ Auxiliary SAHA-S data
∂δ/∂P|T,X∗ Spline derivatives, Eq. (52)
∂δ/∂T |P,X∗ Spline derivatives, Eq. (51)
∂δ/∂X|P,T ∗ Spline derivative, Eq. (50)
cP Auxiliary SAHA-S data
∂cP/∂P|T,X∗ Spline derivatives, Eq. (52)
∂cP/∂T |P,X∗ Spline derivatives, Eq. (51)
∂cP/∂X|P,T ∗ Spline derivative, Eq. (50)
∇ad Auxiliary SAHA-S data
∂∇ad/∂P|T,X∗ Spline derivatives, Eq. (52)
∂∇ad/∂T |P,X∗ Spline derivatives, Eq. (51)
∂∇ad/∂X|P,T ∗ Spline derivative, Eq. (50)
α Eq. (31)
β Eq. (32)
Γ1 Auxiliary SAHA-S data

Notes. Derivatives marked by asterisk are computed only if
deriv=.TRUE.

of T − ρ, the SAHA-S mesh points lie inside a parallelogram
limited by the blue boundaries in Fig. 1. Compared with the
boundaries of the OPAL tables (also plotted in Fig. 1), those of
SAHA-S are different because it was specifically developed for
solar modeling; however, the table construction of SAHA-S is
also necessary for our multi-dimensional non-local spline inter-
polation, which makes this procedure effective and simple. The
track of solar model points is shown by the solid red curve. Solar
evolution models can be calculated onward from an early stage
of the pre-main sequence, an example of such a calculation is
plotted by the dashed red curve.

To assess the possibility of using the SAHA-S tables in its
presently available domain to stars of different mass, we have
plotted two examples, one for a star with 0.8 M� (orange curve)
and the other for a star with 2 M�, close to the end of their main
sequence lives (magenta curve).

As shown in Fig. 1, we conclude that for low-mass stars,
modelling with the SAHA-S EOS is rather limited, whereas for
massive main sequence stars it has better prospects. However,
for such applications the domain of the tables will have to be
expanded toward higher temperatures and lower densities.

As mentioned above, two additional input parameters of
SAHA-S tables are the hydrogen mass fraction X and the heavy-
element mass fraction Z. With respect to X, we perform a
B-spline interpolation, but in Z our interpolation is linear. We
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Fig. 1. Domain of applicability of the SAHA-S EOS, and two versions
of the OPAL EOS. The profiles of main sequence stars with masses
0.8 M�, 1.0 M�, and 2.0 M� are indicated by the solid orange, red, and
magenta curves, respectively. The dashed curve shows the profile of a
1 M� early pre-main sequence model.

Table 2. Auxiliary data of SAHA-S.

Variable Computation
P, dyn/cm2 Original SAHA-S data
U, erg/g Original SAHA-S data
∂U/∂ρ |T Original SAHA-S data
cP Eq. (18)
χρ Original SAHA-S data
δ Eq. (4)
Γ1 Eq. (20)
∇ad Eq. (19)
∂U/∂X |P,T Eq. (49)
ρ, g/cm3 Original SAHA-S data
∂ln P/∂ln X |T, ρ Original SAHA-S data

note that the mixture of the heavy elements included in SAHA-S
cannot be changed unless a new set of thermodynamic tables is
constructed. The current version of SAHA-S EOS includes the
eight most abundant elements heavier than helium.

The original SAHA-S thermodynamic quantities provide all
the necessary thermodynamic information, but not in the form
of the quantities needed by CESAM2k. While SAHA-S pro-
vides P, χT , χρ, cV , together with the derivative with respect to
the chemical composition (∂P/∂X)|T,ρ, and also the quantities U,
(∂U/∂ρ)|T,X , and (∂U/∂X)|T,ρ, CESAM2k requirements include
additional quantities that have to be calculated, such as δ, cP,
∇ad, and their derivatives.

5. Bridging between SAHA-S and CESAM2k

To integrate SAHA-S into CESAM2k, we had to apply several
modifications. First, a transformation from P(T, ρ) to ρ(P,T )
has been performed (see Sect. 5.1). Second, the set of original
SAHA-S thermodynamic quantities has been expanded to match
the requirements from CESAM2k. The additional quantities are
listed in Table 2.

Third, a B-spline interpolation of the resulting expanded ta-
bles has been performed in the variables log(T ), log(Qs), and X.
The advantage of this type of interpolation is its high efficiency
even in three dimensions. Also, it allows the calculation of the
derivatives of all tabulated functions and of functions based on
the tabulated quantities. Moreover, a B-spline interpolation pre-
serves the smoothness of the thermodynamic functions. Details
of the technique are discussed in Sect. 5.2.

Fourth, and finally, we have developed auxiliary routines to
provide the transformation from derivatives with respect to Qs
to derivatives with respect to ρ, and from derivatives with re-
spect to T , ρ to derivatives with respect to P, T . Our routines
use B-spline derivatives with respect to X under constant T and
Qs, which are transformed to those at constant P and T (see
Sect. 5.3). Previously, in CESAM2k only a finite difference dif-
ferentiation was used for the latter, requiring extra calls of the
EOS procedure.

5.1. Transformation of the EOS to the form ρ(P,T )

When starting from P = P (ρ,T ), represented in the form of a set
of piece-wise interpolation polynomials of type ( j)S (x) (with j
being the order), a method to find the inverse functions of these
interpolation polynomials ( j)S −1 (y) is needed. In the linear case
( j = 1), the solution of this problem is simple and analytical,
but in the case of quadratic and cubic polynomials it results in
complicated irrational functions. For cubic splines, an analyti-
cal inversion becomes practically useless and numerically ineffi-
cient. We therefore solve the inversion problem numerically by
the Newton-Raphson iteration method (Press et al. 1992). In par-
ticular, for a given P0 we must find the root ρ0 of the equation
P0 = P (ρ). The value of the density in step i of the iteration is

ρ(i) = ρ(i−1) +
1

P′(ρ)

[
P0 − P

(
ρ(i−1)

)]
. (34)

The efficiency of the iterative method strongly depends on the
quality of the evaluation of the derivative P′(ρ) during every step
of the iteration. In addition to the rather crude but robust method
based on finite-difference estimates of the derivative, two other
approaches for P′(ρ) are available. The first uses the derivative
∂P/∂ρ |T obtained from the tabulated data of EOS. This method
achieves a rapid convergence of the iteration, but it requires an
additional interpolation of the quantity χρ (T, ρ, X). The second
mathematically more rigorous method consists in obtaining the
derivative from the analytical cubic polynomial for P (ρ) with
given fixed T, X. In the present paper, we use the method based
on interpolation of χρ.

The starting point of the density iteration ρ(0) is a bit tricky,
and its choice can affect the convergence rate and number of iter-
ations necessary. Using the inverse linear interpolation function
between a pair of mesh points lying nearest to the desired pres-
sure value P = P

(
ρ j

)∣∣∣∣
T,X

for a given value of Tand X, we obtain
a reasonably good starting point of the iteration

ρ(0) = tρ j + (1 − t)ρ j+1, (35)

where t =
[
P − P(ρ j+1)

] / [
P(ρ j) − P(ρ j+1)

]
in the interval

around P, P(ρ j) < P < P(ρ j+1).

5.2. Interpolation technique

To represent thermodynamic functions, we use the cubic spline
interpolation with special end conditions, known as the not-a-
knot condition, following de Boor (1975). Using the de Boor
(1978) notation, a cubic spline will have order k = 4.
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We interpolate the function f (xi), given on the equidistant
mesh xi, i = 1...N, in the interval [a; b]. We use a B-form of the
presentation of the splines, where the result is a sum over N basis
functions B j,k(x):

S (x) =

N∑
j=1

α jB j,k(x). (36)

In this representation α j are dependent on f (x), but B j,k(x) are
not. So, to interpolate a number of functions at the same point
we need to calculate B j,k(x) only once. Moreover B-forms can
be easily expanded to multi-dimensional interpolation:

S (x, y, z) =
∑

j1, j2, j3

α j1, j2, j3B j1,k(x)B j2,k(y)B j3,k(z). (37)

We proceed to calculate basis functions, B j,k(x), which are used
to interpolate to point x.

The definition of B j,k(x) depends on a mesh of spline-sites
t j which is defined not uniquely. Generally, t j may not coincide
with any knots of interpolation mesh x j. For the sake of simplic-
ity, we construct t-mesh as follows:

t1 = x1, tN+4 = xN ,
t2 = x1, tN+3 = xN ,
t3 = x1, tN+2 = xN ,
t4 = x1, t5 = x3, t6 = x4 ... tN = xN−2, tN+1 = xN .

(38)

For not-a-knot condition, the first four and the last four knots
have multiplicity 4, and the second (i = 2) and penultimate (i =
N − 1) x-knots are omitted (Fig. 2a). The total number of t-mesh
points is N + k.

For a given x, let us define integer index of interval i(x) in
t-mesh according to two conditions: ti < ti+1 and x ∈ [ti, ti+1).
The first condition in definition of i is important in the case of
multiplicative knots. To compute the interpolating polynomial
S (x) at the point x within the interval i, only k non-zero basis
functions (and corresponding coefficients αi) are needed:

S (x) =

i∑
j=i−k+1

α jB j,4(x). (39)

To calculate all needed basis functions at x, it is most efficient to
use the recursion relation (de Boor 1978):

Bi,k(x) =
x − ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x
ti+k − ti+1

Bi+1,k−1(x). (40)

The recursion is started from the first-order spline

Bi,1(x) =

{
1 if ti ≤ x < ti+1,
0 elsewhere. (41)

Sometimes Eq. (40) is considered the definition of the basis B-
functions.

Figure 2 shows the t-mesh and the B-functions calculated for
the interpolation procedure. We note that the B-functions depend
on the specific choice of the t-knots.

Another property of B-splines is the possibility of calculat-
ing analytical derivatives of the interpolating polynomials in the
form of giving lower order splines. For example, the first deriva-
tive ( j = 1 in Eq. (12b) de Boor 1978) can be written in the form

D1

∑
i

αiBi,k

 =
∑

i

α(2)
i Bi,k−1, (42)

Bi,4

B(
x)

a b
0
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0.8

1.0

a b
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(b)

t t
i N+1

t1
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t4 tNtN-1ti+1

t2

t5 t6

tN+2

tN+3

tN+4

t t
i N+1

t4 tNtN-1x
ti+1

t5 t6

t t
i N+1t4 tNtN-1ti+1

t5 t6

B1,4

B2,4
B3,4

B4,4

BN,4

x

Fig. 2. Panel a: Mesh {ti} with not-a-knot end condition; b) cubic B-
spline basis functions Bi,k(x).

where the quadratic splines Bi,k−1 have already been calculated
and used in Eq. (40), and where

α(2)
i =

αi − αi−1

(ti+k−1 − ti)/(k − 1)
· (43)

For all the functions listed in Table 2, files with the appropri-
ate B-spline coefficients for interpolation and differentiation in
log T , log Qs, and X, are included in the SAHA-S module.

5.3. Algorithm for calculation of thermodynamic derivatives

To incorporate the SAHA-S EOS into a stellar evolution code,
the thermodynamic derivatives with respect to P, T , and X, are
needed, as listed in Table 1. The first group is the derivatives of
density, and they can be extracted from the terms of Eq. (7):

∂ρ

∂P

∣∣∣∣∣
T

=
ρ

P
χ−1
ρ , (44)

∂ρ

∂T

∣∣∣∣∣
P

= −
ρ

T
δ, (45)

∂ρ

∂X

∣∣∣∣∣
P,T

= −
ρ

X
χ−1
ρ χX . (46)

In all these derivatives of density, we have used χ−1
ρ and δ instead

of the basic set of derivatives in Eq. (7). The derivative ∂ρ/∂X|P,T
in Eq. (46) is expressed via χX defined by Eq. (6).

Second group of derivatives is of internal energy U:

∂U
∂T

∣∣∣∣∣
P

= T
∂S
∂T

∣∣∣∣∣
P
− P

∂V
∂T

∣∣∣∣∣
P

= cP − Πδ. (47)

Other symmetrical derivatives can be found in an analogous way:

∂U
∂P

∣∣∣∣∣
T

= T
∂S
∂P

∣∣∣∣∣
T
− P

∂V
∂P

∣∣∣∣∣
T

=
1
ρ

(
−δ + χ−1

ρ

)
. (48)

So the corresponding procedure can be simplified and uses only
tabulated values cP, χρ, and δ. The last derivative of U with re-
spect to X is expressed via values originally available in SAHA-S
table:
∂U
∂X

∣∣∣∣∣
P,T

=
∂U
∂X

∣∣∣∣∣
ρ,T

+
∂U
∂ρ

∣∣∣∣∣
X,T

∂ρ

∂X

∣∣∣∣∣
P,T
· (49)
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To transform the derivatives from the SAHA-S coordinates of
log Qs, log T , and X to the CESAM2k coordinates of P, T , and
X, we use

∂ f
∂X

∣∣∣∣∣
P,T

=
∂ f
∂X

∣∣∣∣∣
ρ,T

+
∂ f

∂ln Qs

∣∣∣∣∣
X,T

1
ρ

∂ρ

∂X

∣∣∣∣∣
P,T
, (50)

∂ f
∂T

∣∣∣∣∣
P,X

=

(
∂ f
∂ln T

∣∣∣∣∣
Qs,X
− (δ + 2.25)

∂ f
∂ln Qs

∣∣∣∣∣
T,X

)
1
T
, (51)

∂ f
∂P

∣∣∣∣∣
T,X

=
∂ f

∂ln Qs

∣∣∣∣∣
T,X

∂ρ

∂P

∣∣∣∣∣
T,X

1
ρ

=
∂ f

∂ln Qs

∣∣∣∣∣
T,X

1
P
χ−1
ρ , (52)

where f is any of the quantities from Table 2.
The expression of derivatives with respect to ln Qs, ln T

through derivatives with respect to ln ρ, ln T is given by

∂ f
∂ρ

∣∣∣∣∣
T

=
∂ f

∂ln Qs

∣∣∣∣∣
T

1
ρ
, (53)

∂ f
∂ln T

∣∣∣∣∣
ρ

=
∂ f
∂ln T

∣∣∣∣∣
Qs

+
∂ f

∂ln Qs

∣∣∣∣∣
T

(−2.25) . (54)

6. Comparison of the SAHA-S and OPAL 2001 EOS
incorporated in CESAM2k

To demonstrate the correct working of SAHA-S inside CE-
SAM2k, we present the results of computations performed with
the stellar evolution code CESAM2k. All figures illustrate the
profiles of physical quantities in calibrated models of the Sun.
These models differ in the EOS used: OPAL 2001 and SAHA-S,
respectively.

The SAHA-S EOS has been incorporated in CESAM2k with
the aforementioned interpolation method, which is numerically
efficient and, in addition, inside the model it allows interpolation
in Z at every point in space and time.

The adiabatic exponent Γ1 of the different models of the
present-day Sun is plotted for the deep part of the solar interior
(Fig. 3). The outermost part closer to the surface, which would
exhibit large variations in Γ1, is not shown. In the deep interior of
the convection zone, the difference in Γ1 due to EOS can attain
an absolute value up to 10−3. This discrepancy is detectable by
present-day helioseismology (Vorontsov et al. 2013). Generally
speaking, the discrepancy in Γ1 in Fig. 3 is the result of a dif-
ference in the structure of the models. Specifically, a first part of
the discrepancy is caused directly by differences in the physical
assumptions of the EOS and by a different Z mixture. However,
a further change is induced indirectly by those model quantities
that depend on the structure variables. The net discrepancy is the
sum of these two effects.

The Brunt-Väisälä frequency NBV has significant oscillations
in the convection zone if it is computed using Eq. (25), that is,
by numerical differentiation of the density. Figure 4 presents the
dimensionless value of rN2

BV/g computed in models with OPAL
2001 (green curve) and SAHA-S (red curve). The random fluctu-
ations in the case of OPAL 2001 is significantly higher because
of higher numerical noise in the OPAL 2001 data tables. The
lower level of fluctuations in models with SAHA-S is due to the
quality of our spline interpolation and to less numerical noise in
the tables. However, even in the case of SAHA-S, the accuracy
of numerical differentiation is not sufficient. In particular, N2

BV
repeatedly changes its sign. The situation can be improved by

lg T

5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

Γ
1

1.664

1.665

1.666

1.667

OPAL 2001

SAHA-S

1.668

1.663

Fig. 3. Adiabatic exponent Γ1 in the deeper interior of the Sun (down to
the centre).
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Fig. 4. Dimensionless squared Brunt-Väisälä frequency rN2
BV/g in the

convection zone of the Sun.

using Eq. (27) in the convection zone (blue curve), which gives
a monotonic and negative N2

BV, as dictated by the physics of a
slightly sub-adiabatic stratification.

The difference in the sound speed between a model with a
given EOS on the one hand, and the result of a helioseismic
inversion (Vorontsov et al. 2013) on the other hand, is shown
in Fig. 5. The red curve refers to a model obtained with the
SAHA-S EOS, the green curve to a model with OPAL 2001.
The blue curve represents a standard solar model: Model S of
Christensen-Dalsgaard et al. (1996), in which an early OPAL
version was used (Rogers et al. 1996). This figure shows how
sound speed in modern model calculations closely approximates
the observational data, and how accurate EOS data should be to
enable an adequate analysis. Inside the convection zone, above
the location of 0.713r/RSun, the model structure is predominately
defined by Γ1, and the differences between the curves reflect the
thermodynamic differences between the applied EOS. The re-
quired accuracy of the sound speed in EOS calculations has to
be better than 10−4 (see Vorontsov et al. 2013, for a detailed anal-
ysis).

Most of the difference between the model sound speed be-
low the convection zone is connected to opacities and the general
structure of the model core. It is rather difficult to demonstrate
specific effects of the EOS here. Common to all solar models is
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Fig. 5. Relative sound-speed-square difference between a helioseismic
inversion (Vorontsov et al. 2013) and three different models.

a hump in sound speed just below the bottom of the convection
zone. This hump is probably related to the tachocline and over-
shooting, both of which are poorly treated by current models.
The analysis of these model differences is well beyond the scope
of the present study.

7. Conclusions

We present the results of the incorporation of the new version
of the SAHA-S EOS into an advanced stellar evolution code,
CESAM2k. There is a mismatch between the data available in
the thermodynamic calculations and the data needed for stellar
modelling. These differences are due to the fact that the evolution
code calls for quantities as functions of pressure and temperature
instead of temperature and density, which are the most common
independent variables in thermodynamic computations. The dif-
ferent independent variables require re-writing the set of par-
tial derivatives of the thermodynamic quantities. To avoid time-
consuming and noisy finite-difference numerical differentiations
during the calculations, throughout we rely on thermodynamic
relations and analytic expressions, and on pre-computed values
of the auxiliary interpolation coefficients αi. A specific feature
of the CESAM2k code is the demand for some extra quantities
such as specific heat capacities and adiabatic gradients.

Due to the regular node mesh in the SAHA-S EOS tables, we
were able to use an efficient interpolation algorithm in the form
of three-dimensional cubic spline functions, allowing us to keep
the smoothness of the functions and their first derivatives, and to

provide good estimates of higher partial derivatives, in particu-
lar those with respect to chemical composition. With respect to
interpolation in Z, we have adopted linear interpolation between
adjacent table points.

Our results obtained for the spline coefficients and the nec-
essary interpolation software are available as a freely download-
able FORTRAN module1.

We anticipate that our EOS interface routines can be adapted
to other stellar evolution codes.

The SAHA-S EOS has been integrated in the CESAM2k
code, and the first results of solar modelling have already been
obtained. We have also carried out a preliminary comparison
with the results of previous computations which were based on
the OPAL EOS.
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