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ABSTRACT
With the prospect of the next generation of ground-based telescopes, the extremely large
telescopes, increasingly complex and demanding adaptive optics systems are needed. This is
to compensate for image distortion caused by atmospheric turbulence and fully take advantage
of mirrors with diameters of 30–40 m. This requires a more precise characterization of
the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The
PML aims to provide high-resolution altitude profiles of the turbulence using differential
measurements of the Moon limb position to calculate the transverse spatio-angular covariance
of the angle of arrival fluctuations. The covariance of differential image motion for different
separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous
Moon limb provides a large number of separation angles allowing for the high-resolution
altitude of the profiles. The method is presented and tested with simulated data. Moreover, a
PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August.
We present here the results of this measurement campaign.

Key words: turbulence – atmospheric effects – site testing.

1 IN T RO D U C T I O N

Over the past decades a number of instruments have been developed
in order to measure the atmospheric turbulence, which affect the
quality of images from ground-based optical telescopes.

The differential image motion monitor (DIMM; Sarazin &
Roddier 1990) and the multi-aperture scintillation sensor (MASS;
Kornilov et al. 2002) are the most commonly used instruments
for continuous monitoring at observatories around the world.
Other instruments, such as the generalized seeing monitor (GSM;
Martin et al. 1994), the slope detection and ranging (SLODAR;
Wilson 2002) and the scintillation detection and ranging (SCIDAR;
Fuchs, Tallon & Vernin 1998), have been extensively used during
site-testing campaigns. Those instruments can be classified in two
main categories: the instruments that only measure atmospheric tur-
bulence parameter values integrated through the entire atmosphere
and the profilers providing an estimation of the turbulence profile
via the turbulence structure function [C2

n(h)], which gives a measure
of the turbulence strength of a layer at an altitude h. However, all

� E-mail: lcc@saao.ac.za

profilers have limitations, either a low-resolution altitude profile of
the whole atmosphere or a high-resolution altitude profile of only
a section of the atmosphere at ground layer (GL) or in the free
atmosphere (FA). Despite their limitations these instruments have
provided very useful information for site selection, continuous see-
ing monitoring, and the determination of the essential parameters
needed for the design of adaptive optics (AO) systems.

With the advent of the extremely large telescopes with diam-
eters greater than 30 m, the constraints on the design of an AO
system are becoming more demanding, requiring the development
of new atmospheric turbulence monitoring instruments that provide
more accurate measures of atmospheric profiles with high resolu-
tion through the entire atmosphere. The quality of the AO correction
over a large field of view for this next generation of ground-based
telescopes relies on the accurate determination of the optical pa-
rameters of the atmospheric turbulence (Costille & Fusco 2011). In
particular, the distribution of the turbulence in the different layers
of the atmosphere is a critical parameter.

A new instrument, Profiler of Moon Limb (PML; Ziad
et al. 2013), has been developed in order to provide C2

n(h)
profiles from differential measurement of the wavefront angle of
arrival (AA; Borgnino 1990) fluctuations along the lunar limb.

C© 2016 The Authors
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The differential measurement is made possible by the use of two
sub-apertures, similar to the DIMM technique. Direct measurement
methods use series of single images that are affected by telescope
vibrations and wind shake. We got rid of these effects, thanks to the
differential method. Measurements are done from the difference be-
tween the measured Moon edge position in one sub-aperture with
that measured in the other. Since both apertures are similarly af-
fected by telescope vibrations and wind shake, those are suppressed
by the differential measurement. Moreover, the use of the Moon
limb offers the advantage of providing a very high-resolution alti-
tude profile of the turbulence [C2

n(h)] in addition to all the integrated
atmospheric parameters that other instruments provide: the coher-
ence length (r0), the seeing (ε0), the coherence time (τ 0) and the
isoplanatic angle (θ0). The PML instrument is an expansion of the
monitor of outer scale (MOSP; Maire et al. 2007) concept based
on a direct measurement method using series of single images of
the Moon limb to retrieve the outer scale profile [L0(h)] from the
structure function of transverse AA fluctuations. Similarly, the PML
provides a measure of the turbulence profile [C2

n(h)] from the dif-
ferential covariance of these fluctuations.

In the context of the Sutherland site characterization and in or-
der to provide information for a simulation study on potential AO
performances on the Southern African Large Telescope, a PML
observing campaign was carried out at Sutherland. This campaign
was primarily used to work on the instrument data processing and
inversion method development, but also provided first results from
PML measurements at the Sutherland site.

In this paper, we present the theoretical background of the PML
working principle in Section 2. An overview of the optical layout
of the instrument is given in Section 3. Section 4 is dedicated to the
measurement and data-processing technique.

We used simulated data to probe the validity of the method and
test our data analysis process. Those simulations are presented in the
Section 5. In 2011 August, the PML was deployed at the Sutherland
South African Astronomical Observatory (SAAO) in South Africa.
The results of this observing campaign, as well as comparison with
ancillary instruments, are presented in Section 6. In Section 7, we
proffer concluding remarks about the PML method.

2 T H E O R E T I C A L BAC K G RO U N D A N D
R E C O N S T RU C T I O N M E T H O D

The PML uses Moon images from two sub-apertures in order to
measure the profile of the atmospheric turbulence as illustrated in
Fig. 1. In order to recover the turbulence profile [C2

n(h)], we com-
pare our data to a theoretical model. The method uses the covari-
ance of the transverse AA fluctuations. Comparing the theoretical
and measured covariance is a non-linear inverse problem that, for
the Sutherland campaign, we chose to resolve using a simulated
annealing (SA) method (Maire et al. 2007).

Here we recall the theoretical expression of the spatio-angular
covariance of the transverse AA fluctuations in the case of the
Von Karman turbulence model (Von Karman 1948), detail how we
compute it, and test the response of our inversion grid.

2.1 Theoretical angle of arrival covariance

The optical atmospheric turbulence is commonly described by
the spectrum of its index of refraction (n) fluctuations that fol-
lows Kolmogorov’s law: �n(k) = 0.033 C2

n k−11/3, where k is the
wavenumber. However, Kolmogorov’s model assumes an infinite
outer scale (L0) value. In order to take into account the finite size
of the outer scale, other models were developed. In the case of

Figure 1. Principle of PML measurement. When measuring the angular
covariance of a system with a fixed base, B, the contribution of a layer at an
altitude h peaks for an angular value of θ = B

h
.

the PML instrument, we use the Von Karman model: �n(k) =
0.033 [2π]3 C2

n [k2 + [ 2π
L0

]2]−11/6. Based on this model, the AA
spatial covariance is given by (Borgnino, Martin & Ziad 1992;
Avila et al. 1997)

Cα(B, D) = 1.19sec(z)
∫

dhC2
n(h)S(B,D,L0(h)), (1)

with

S(B, D,L0(h)) =
∫

dff 3(f 2 + 1

L0(h)2
)−11/6

× [J0(2πf B) + J2(2πf B)]

[
2
J1(πDf )

πDf

]2

,

(2)

where z is the zenith angle, B is the separation between two sub-
apertures of diameter D, L0(h) is the wavefront outer scale at the
altitude h, f the spatial frequency and Jm is Bessel function of
order m.

In the case of differential measurements, and for observations
in two directions separated by an angle θ (Fig. 1), the differential
angular covariance can be expressed as follows (Ziad et al. 2013):

C�α(B, D, θ ) = 2Cα(θh,D) − Cα(B − θh, D)

−Cα(B + θh, D), (3)

where θh is the spatial distance of the perturbed wavefront inter-
cepted by an angle θ at an altitude h (Fig. 1).

Using equations (1) and (2), this gives

C�α(B, D, θ ) = 1.19sec(z)
∫

dhC2
n(h)[2Sh

0 − Sh
− − Sh

+], (4)

where, Sh
0 = S(θh,D,L0(h)), Sh

− = S(B − θh,D,L0(h)) and
Sh

+ = S(B + θh,D,L0(h)).
Considering the overall atmosphere as a superposition of thin

�hi discrete layers at altitudes hi, we can rewrite this expression as
a sum:

C�α(B, D, θ ) = 1.19sec(z)
∑

i

�hiC
2
n(hi)[2S

hi
0 − S

hi− − S
hi+ ].

(5)

For easier calculation, we split the components solely dependent
on predefined parameters (altitude grid and system parameters) from
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PML – turbulence profile 3701

those dependent on parameters that need to be determined [C2
n(h),

L0(h)], as follows.

(1) The energy term, containing the turbulence strength informa-
tion:

KCn(h) = 1.19sec(z)�hC2
n(h).

(2) The shape term, containing the outer scale value information:

KL(h, f ) = f 3(f 2 + 1

L0(h)2
)−11/6.

(3) The filtering terms, linked to the system sub-pupils and base:

KJ
0 (h, θ, f ) = [J0(2πf θh) + J2(2πf θh)]

[
2
J1(πDf )

πDf

]2

,

KJ
−(h, θ, f ) = [J0(2πf (B − θh)) + J2(2πf (B − θh))]

×
[

2
J1(πDf )

πDf

]2

,

and

KJ
+(h, θ, f ) = [J0(2πf (B + θh)) + J2(2πf (B + θh))]

×
[

2
J1(πDf )

πDf

]2

.

This allows us to rewrite the S integrals in the following form:

S0,−,+(h, θ ) =
∫

f

df KL(h, f )KJ
0,−,+(h, θ, f ). (6)

The S0, −, +(h, θ ) functions can be determined for each individual
layer and hence, summing over all altitudes gives

C�α(θ ) =
∑

h

KCn(h)[2
∫

f

df KJ
0 (h, θ, f )KL(h, f )

−
∫

f

df KJ
+(h, θ, f )KL(h, f )

−
∫

f

df KJ
−(h, θ, f )KL(h, f )]. (7)

If we consider the case of a fixedL0, the three
∫

fdfKJKL components
can be precalculated and stored in a matrix KS = 2S0 − S− − S+
(Fig. 2). We can then write

C = KCnKS,

where KCn is a 1 × N matrix and KS is an N × M matrix, with N
the number of layers of the reconstruction grid and M the number
of separation angles (θ ) along the Lunar limb.

Using a chosen altitude grid and the θ values set by the system
configuration, we can compute all the KJ functions and, in turn,
the S functions at fixed L0 and the corresponding KS matrix. The

Figure 2. Theoretical ‘S’ functions, given by equation (6). Top: S−(θ , h), S0(θ , h) and S+(θ , h) from left to right. Bottom: KS matrix. In all five figures, h is
increasing from bottom to top. Values are given for the 33 single layers of the reconstruction grid. θ goes from −356 to 356 arcsec from left- to right for the
three top figures and the bottom left. The bottom right figure shows the positive values of KS that we will use for the inversion, as we only measure positive θ .
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3702 L. Catala et al.

Figure 3. Theoretical S0, −, + for single layers with L0(h) = 20 m. Left: S−. Center: S0. Right: S+. Each colour represents the functions for a different layer
altitude: h = 50 m, 250 m, 500 m, 1 km, 2 km, 5 km and 10 km. Each lines on these figures correspond to single rows from the top three images of Fig. 2.

Figure 4. Covariance for a single layer of unity strength (KCn = 1) at h =
350 m and with L0 = 20 m. Blue line: 2S0. Blue dotted lines: S+, −. Note
the position of the peak of the lateral component located at +/ − B

h
. Black

line: C�α(h = 1 km) = KCn · [2S0 − S− − S+]. Note the high value of C�α

due to the fact that we took KCn = 1 for simplicity and better visualization
of all curves together.

top row of Fig. 2 shows the theoretical S0, −, + functions, while
the bottom graphs represent the KS matrix that will be used for
the inversion. The bottom left shows the full KS matrix, including
negative θ values. As we only perform measurements for positive
θ , we will use the positive side of the matrix for the inversion shown
on the bottom right side figure. The number of separation angles
available (x-axis) is determined by the system layout and is given
by the number of pixels along the Lunar limb. Here we have set the
number of layers to 33 with a range of altitudes going from 10 m
to 24 km above the telescope entrance pupil. L0 is set to 20 m.
We also show the 2D curve of the theoretical S0, −, + functions for
seven individual layers in Fig. 3. From this representation, we can
clearly see that the position of the peak of covariance in the lateral
components (left and right figures) is dependent on the layer altitude
h: θpeak = B

h
, with B the base between the two sub-apertures at the

telescope entrance pupil. Hence, for lower altitudes the peak of
covariance is located at larger separation angles θ .

Fig. 4 shows the combined S0, S− and S+ (blue lines) resulting in
the theoretical differential covariance (black line) for a single layer

at 350 m. Here, for simplicity we consider a layer of unity strength,
KCn = 1 and L0 = 20 m. Note that we only measure positive sepa-
ration angles, therefore, for the reconstruction we only consider the
positive components of the covariance.

In the more realistic case of an atmosphere made up of multiple
layers of variable thickness at different altitudes, with different tur-
bulence strength and outer scale value, one will input each of the
layers parameters [hi, �hi, C2

n(hi) and L0(hi)], before adding up
all the layers contribution to get the equivalent covariance for the
overall atmosphere. From those parameters, we chose two before-
hand (hi, �hi). The other two [L0(hi), C2

n(hi)] can be retrieved by
minimizing the difference between theoretical and measured values.
However, while the different components (Sh

0 , Sh
−, Sh

+) of the dif-
ferential angular covariance have a strong dependence on the outer
scale, its impact on the differential covariance itself is mitigated by
the fact that it is given by the combination of twice the central co-
variance minus the two lateral covariance. It is only when the outer
scale is small (in the metric range) that its impact on the differential
covariance cannot be neglected anymore (Borgnino et al. 1992). In
the particular case of astronomical observatory sites, the outer scale
is known to be in the decametric range. Hence, we can simplify the
inversion problem by taking a fixed outer scale value and reduce
the reconstruction to the turbulence profile alone. Similarly to the
work done on the MOSP instrument (Maire et al. 2007), we will use
an SA algorithm for the minimization process leading to the recon-
struction of the turbulence profile, C2

n(h) · dh. Other minimization
techniques were also tested and presented in Blary et al. (2014).

2.2 Altitude grid and inversion response

In order to cover both the GL and the FA part of the atmospheric
turbulence, we chose a 33-layer grid. There are 10 layers for the
GL below 1 km and 23 layers for the FA between 1 and 25 km.
The detail of the altitude grid is given in Table 1. The number of
layers was chosen in agreement with previous findings that showed
the necessity to know 30–40 layers in order to feed the later AO
systems using tomography (Costille & Fusco 2012).

We tested the response of the reconstruction grid to 89 individual
turbulent layers with altitudes ranging from 5 m to 30 km. For
simplicity, all layers were of unit strength (KCn = 1) and with an
outer scale value (L0) fixed to 20 m. We show the response results
in Fig. 5. In the top figure, the x-axis shows the altitudes of the
input turbulent layer, while the y-axis shows the altitudes of the

MNRAS 467, 3699–3711 (2017)
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PML – turbulence profile 3703

Table 1. Reconstruction altitude grid.

GL h(m) 10 150 250 350 450 550 650 750 850 950
dh = 100 m

FA h(km) 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75
dh = 500 m

h(km) 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 16 18 20 22 24
dh = 1 km dh = 2 km

Figure 5. Response of the inversion algorithm to single turbulent layers. Top: the single turbulent layer input altitude is given on the x-axis while the y-axis
represents the altitudes of the reconstruction grid. For each input layer (x) the relative distribution of the turbulence throughout the reconstruction grid layers
(y) is represented by the pink ellipses. Bottom: the colour triangle-like shaped curves represent the sensitivity of each altitude grid height to turbulence in all
89 input layers.

reconstruction grid. The pink ellipses represent the relative amount
of turbulence in each layer of the reconstruction grid. The bottom
graph of Fig. 5 shows how each of the reconstruction grid altitude
is sensitive to turbulence in the adjacent layers. The base of each
triangle gives the range of altitudes for which the individual layers
of the reconstruction grid can partially sense turbulence. The height
at each altitude gives the sensitivity strength from 0 to 1, the latter
being 100 per cent sensitive.

For each of the 89 single turbulent layers, the reconstruction pro-
cess should apportion the turbulence of the input layer between
the 33 layers of the reconstruction grid. One expects that for a tur-
bulent layer located at one of the reconstruction grid altitudes, all
the turbulence will be reflected in that layer after the inversion. In
the case of a turbulent layer located in between two altitudes of the
reconstruction grid, one will expect the reconstruction to spread the
turbulence between the adjacent layers. If we take the input 10 km

layer (on the x-axis), located between the 9.5 and 11 km layers of the
reconstruction grid (on the x-axis), the turbulence is redistributed
with 63.7 per cent in the 9.5 km layer and 36.3 per cent in the 11 km
one. Similarly, the 21 km layer is split with 48.15 per cent in the
20 km layer and 51.85 per cent in the 22 km layer. The redistribu-
tion agrees with the theoretical expectations and validates both the
choice of our altitude grid and inversion method.

3 O P T I C A L L AYO U T A N D M E A S U R E M E N T
M E T H O D

3.1 PML optical layout

The PML (Ziad et al. 2010, 2013) was designed to provide high-
resolution altitude profiles of the atmospheric turbulence. Similar
to the DIMM technique, it uses a differential method via a two

MNRAS 467, 3699–3711 (2017)
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3704 L. Catala et al.

Figure 6. PML optical layout. Left: schematic of the overall instrument setup with the two sub-aperture masks at the entrance pupil of the telescope. Right:
schematic of the optical path from the telescope entrance pupil to the imaging CCD. L1 is a collimating lens, DP represents the Dove prism and L2 refocusses
the collimated beam on to the imaging CCD.

sub-aperture mask mounted at the entrance pupil of the telescope,
allowing telescope vibration and wind shake effects to be ignored.
The profiles are reconstructed from the differential covariance func-
tions. The use of the continuous Lunar limb, as compared to a double
star with SLODAR, provides a large number of separation angles,
allowing for the high resolution of the altitude profiles.

The PML consists of a 16-inch MEADE telescope tube mounted
on an Astro-Physics AP3600 equatorial mount with a mask made
of two holes with separation B = 0.267 m and diameter D = 0.06 m
(Fig. 6, left). When pointing the telescope at the Moon two images
of the limb are produced, corresponding to the two sub-apertures.
In order to separate the two images, a Dove prism (D) is introduced
in the optical path (Fig. 6, right). The Dove prism flips over one of
the images and avoids overlap of the images. The image acquisition
is performed by a PCO Pixelfly CCD operating at a frame rate of
33 Hz. The CCD, with a pixel size of 9.9μ, produces images of
640 × 480 pixels. The image scale is 0.594 arcsec per pixel. The
exposure time needs to be short enough to ‘freeze’ the turbulence,
typically of the order of a few minutes (i.e. τ 0). Here it was set to
5 min. The number of images used for each measurement was set
to a 1000 images per data set. For each acquisition, we used the
statistical properties of the atmospheric turbulence to retrieve its
parameters.

3.2 Image pre-processing and ‘cleaning’

Prior to the data analysis that will lead to the profile reconstruction,
there are a number of steps that need to be followed to make sure that
we removed any instrumental bias due to optical misalignment and
imperfect tracking. This will ensure that when performing the differ-
ential measurements we properly match the same point on the Moon
edge from both images, hence only measuring the edge motion due
to atmospheric turbulence. The full pre-processing, summarized in
Fig. 7, involves the following steps.

(1) Flat-fielding and dark-frame subtraction.
(2) Measuring image rotation, should any remain after the optical

alignment of the Dove prism.

(3) Measuring shift in the x-direction, if any.
(4) Measuring image drift due to telescope pointing inaccuracy,

if any.
(5) Applying, rotation, shift and drift correction to the images.

The eventual residual rotation is measured by stacking all images
of an acquisition. This is equivalent to a long-exposure image and
suppresses the seeing effect to only keep the static optical misalign-
ment. The difference between the top and bottom edge positions
gives us the residual rotation angle. The x-drift is measured for each
image as compared to a reference image chosen to be the first of an
acquisition. Finally, the drift parallel to the y-axis due to imperfect
polar alignment is measured by fitting a line to the data representing
the mean edge position throughout an acquisition as shown in the
image 4 of Fig. 7.

After applying all corrections, we can measure the position of
the Moon edges on the images that we will use for the profile
reconstruction.

3.3 Angle of arrival covariance – experimental measurements
and profile reconstruction

For each image, we determine the edge position by taking the im-
age derivative before using a barycenter method for the detection
(Maire et al. 2007). The method is illustrated in Fig. 8. Once the
edge positions have been determined for all sets of two images
of an acquisition, we can calculate the experimental differential
covariance of the AA as illustrated in Fig. 9:

Cmeas
�α

(θ ) = 〈[αT (xi) − αB (xi)] [αT (xi + θ ) − αB (xi + θ )]〉 ,

where αT(xi) and αB(xi) are the vertical coordinates of the limb at
an initial xi coordinate for, respectively, the top and bottom images.
αT(xi + θ ) and αB(xi + θ ) are the positions at the xi coordinate
along the limb separated by an angle θ from the initial position.
The brackets signs (〈〉) represent the average value for all the prod-
ucts corresponding to a specific separation angle θ along the edge.
One can see that the larger the θ , the fewer the number of mea-
surements along the finite length of the Lunar limb. After the image

MNRAS 467, 3699–3711 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/467/3/3699/2556149 by C
N

R
S - ISTO

 user on 07 June 2022



PML – turbulence profile 3705

Figure 7. Full alignment process summary. (1) Flat-fielding and dark-frame subtraction. (2) Measure the residual rotation between the top and bottom images.
(3) Find the x-displacement of each image (dxi) with respect to the reference image. (4) Find the amount of drifting between images (k). The figure in step 4
shows the averaged position of the limb (y) for all 1000 images of an acquisition (x) and the slope of line fits (cyan and yellow) gives us the amount of drifting
between two consecutive images (dark blue dots and cyan line are from the top image while red dots and yellow line are from the bottom image). (5) Applying
the shift (dxi) and drift (k · i) correction to each image, after correction for the rotation. Then the images are ready to be used for edge detection and data
extraction.

Figure 8. Edge detection. Top left: original image and an example of a
vertical cut showing a Heaviside step function at the edge of the Lunar limb.
Bottom left: derivative of the image and the peak function of its vertical cut.
Right: zoom in around the peak of the image derivative and windowing used
to perform a barycenter measurement of the peak position.

pre-processing, the ‘cleaned’ images are generally between 550 and
600 pixels wide. This gives a maximum of 599 measurements for the
smallest separation angle (θ1 = 1 pixel = 0.594 arcsec) and a single
measurement for the largest separation angle (θmax ∼ 599 pixels
� 356 arcsec). The measurement error is therefore much larger for
larger than smaller θ . In the inversion process, we will weigh the
fits by the number of data points for each θ . For one acquisition, we
calculate C�α (θ ) for each of the 1000 images. The final differential
covariance function for the acquisition is obtained by taking the
average of all thousands C�α (θ ).

Figure 9. Experimental covariance. Detail of the differential covariance
measurement. We calculate the product of the difference between top (blue)
and bottom(red) positions at xi and (xi + θ ) for all xi positions along the
edge. The average of all products is the differential covariance [Cmeas

�α
(θ )]

value at a separation θ .

Using both, measured and theoretical, covariances one can re-
construct the turbulence. We generate an atmospheric profile [hi,
�hi, C2

n(hi) and L0(hi)] with which we compute the correspond-
ing theoretical covariance function before comparing it to the
measured one.
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We use an SA algorithm (Kirkpatrick, Gelatt & Vecchi 1983) to
find the best-fitting value. The SA algorithm is a random search
technique, which exploits an analogy with thermodynamics and
the way in which a metal cools and freezes into a minimum en-
ergy, assimilated here to our global minimum. Starting from an
initial set of C2

n(hi) values, we compute the initial cost func-
tion (En = 0) between the theoretical and measured covariances:
En=0 = ∑

θ [C theo
�α

(θ ) − Cmeas
�α

(θ )]2. Then, for each subsequent iter-
ation (n), we apply a small variation to the previous C2

n(hi) values,
calculate the new cost function, and then compute the cost differ-
ence �E = En + 1 − En. If it is negative, the cost decreases and
we keep the new set of parameters. If the cost increases, �E is
positive, we do not systematically reject the solution but accept it
with a probability p = e( − �E/T). This cost-increasing acceptance
probability allows for exploring the full parameter space and avoids
becoming trapped in a local minimum. This acceptance probability
is set by the ‘temperature’ parameter T, in analogy with thermody-
namics. The SA algorithm starts with a high initial temperature to
explore a wide area of the parameter space and a ‘cooling’ schedule
slowly lowers the ‘temperature’ towards the reduction of the search
around the global minimum. We will stop the search, and keep the
current best set of C2

n(hi) values as our best-fitting result, when, at
a fixed ‘temperature’, no improvement to the cost function can be
made. A similar technique was also used in Maire et al. (2007).

3.4 PML Fried parameter extraction

In addition to the turbulence profile, the PML data can be used to
measure the integrated seeing by determining the Fried parameter.
For each acquisition, we have the temporal variation of the position
over the 1000 images and for each position along the edge. This
provides 600 DIMM measurements per acquisition. In the case of
the PML, the motion is only measured in the direction perpendicular
to the Lunar limb that corresponds to the direction perpendicular to
the sub-apertures separation base, hence the transverse motion. The
classical relation between the Fried parameter (r0) and the variance
of the image position (σ 2) can be found in Fried (1966) and Tatarskii
(1971). In our case, we will use the absolute variance (σ 2

abs), which
is calculated from the absolute positions (y − 〈y〉) rather than the
raw ones. For all positions along the edge, we compute σ 2

abs over the
1000 images. Then we used the expression derived by Ziad et al.
(1994), based on σ 2

abs and including the outer scale (L0):

r
5/3
0 = 0.179sec(z)λ2 [D−1/3 − 1.52L−1/3

0 ]

σ 2
abs

.

We can apply this method to either the top or bottom images inde-
pendently. Note that when L0 tends towards infinity, the expression
simplifies to the more general Kolmogorov’s case.

Similarly, a method that uses the differential motion have been
developed for both the transverse motion, perpendicular to the di-
rection of the sub-apertures separation and the longitudinal motion,
parallel to the direction of the sub-apertures separation. It can also
be used to determine the Fried parameter. In the PML case, we
are only looking at the transverse differential variance (σ 2

t ). The
original formula was derived by Sarazin & Roddier (1990):

r
5/3
0 = λ2 × sec(z) × D−1/3 × Kt

σ 2
t

,

with

Kt = 0.358 × (1 − 0.811 × S−1/3),

Figure 10. Simulated covariance for 33 layers with a profile given in the
second column of Table 2 (simu). The black line shows the perfect covari-
ance overlapped to the noisy covariance (red crosses) produced by adding
Gaussian noise to the perfect curve.

where S = B
D

, D is the apertures diameter and B the separation
between the two apertures and z is the zenith angle.

An updated value of the constant Kt is given in Tokovinin (2002):

Kt = 0.364 × (1 − 0.798 × S−1/3 − 0.018 × S−7/3).

The method using top or bottom images independently was use-
ful during preliminary tests to make sure that the results from top
images were consistent with those from the bottom images. How-
ever, those are strongly affected by telescope vibrations and wind
shake. The measurements of the Fried parameter presented in Sec-
tion 6 were extracted with the more reliable differential method
implemented with the later Kt value.

4 SI M U L AT I O N S

In order to probe our reconstruction method, we simulated differ-
ential covariances for a profile with altitudes matching our recon-
struction grid. We looked at two cases, one with a perfect covariance
curve and one with a noisy covariance curve. The noisy data were
produced from a perfect covariance to which we added Gaussian
noise (Fig. 10). The additional noise is within 5 per cent of the value
of the ‘clean’ simulated data.

We show the reconstruction results in Fig. 11, with the input
simulated data in red and reconstruction in blue. On the left we
show the covariances, while on the right we have the corresponding
turbulence profiles. For both graphs, we give the mean relative error
between the input data and the output reconstruction. The top two
panels correspond to the perfect covariance case, while the bottom
panels correspond to the noisy data case. In addition, the relative
strength of the layers from the simulated and reconstructed profiles
are reported in Table 2.

The relative error of the reconstruction from a perfect data set
seems negligible on the covariance, with a value close to zero.
However, this still reflects as a 1.57 per cent relative error on the
reconstructed profile. In the case of the noisy data set, the rela-
tive error on the reconstructed covariance is 0.45 per cent, which
reflects as 13.5 per cent on the reconstructed profile. The error
on the profile is more important for the higher layers of the
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PML – turbulence profile 3707

Figure 11. Example of simulated covariance and the best fit from our reconstruction method in the case of a 33 layers model matching the reconstruction
grid. Left: covariance fit showing the simulated covariance (red crosses) overlapped with the reconstructed ones (blue line). Right: corresponding profiles, for
the simulated profile (red line) and the reconstructed one (blue stars). Top: reconstruction from a perfect covariance curve (black line in Fig. 10). Bottom:
reconstruction from a noisy covariance curve (red crosses in Fig. 10). The simulated and reconstructed profiles relative turbulence strengths are given in Table 2.
For each graph, we provide the value of the relative error between the simulated and reconstructed data.

atmosphere. At higher altitudes, the covariance peaks from dif-
ferent layers get closer to each other (Fig. 3) and hence the re-
sponse of the reconstruction is more sensitive to turbulence in
adjacent layers, seen as wider triangles in the bottom graph of
Fig. 5. As a result, we should see some error coming from an in-
correct redistribution between adjacent layers. In order to evaluate
this effect, we compared the reconstructed and original simulated
profiles after applying a smoothing over three consecutive layers:

C2
n(hi) = 1

3

i+1∑
k=i−1

C2
n(hk). After smoothing, the relative error be-

tween the profiles goes down to 4.3 per cent, confirming that a large
part of the error originates from an incorrect redistribution between
adjacent layers. Also, in some cases, poorer optimization of the algo-
rithm could generate convergence issues and additional error in the
redistribution.

Overall, when running a set of 100 noisy data simulations, the
mean relative error on the profile reconstruction is 14 per cent for
the full range of altitude, 25 per cent for the 5–24 km range and
5 per cent for altitudes below 5 km.

5 FI RST MEASUREMENTS AND RESULT S AT
T H E SU T H E R L A N D S I T E

The PML was deployed at the SAAO Sutherland Observatory in
South Africa during 2011 August. During the PML observing cam-
paign we also had a MASS-DIMM and a GSM running alongside
it. On all nights that the PML was operational, we were able to
compare the seeing measurement to the values derived from the
GSM and DIMM instruments, and the atmospheric profile to the
measurements of the FA from MASS.

5.1 Fried parameter measurements

We obtain the equivalent of a DIMM measurement for each field
angle along the Lunar limb. The corresponding r0 value for the
acquisition is taken as the mean of all values along the limb. An
example of Fried parameter measurement is shown in Fig. 12. On
the left-hand side, one can see the measured Fried parameter for
all positions along the Lunar limb for the acquisition obtained at
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Table 2. Reconstruction profile from covariance
simulations.

Relative strength of the
turbulence layers ( per cent)

Altitude 33 simulated layers
(km) simu recon recon

(noisy)

0.01 31 30.6 31
0.15 6 6 6.1
0.25 4 4 3.8
0.35 3 2.9 3.3
0.45 2 2 1.6
0.55 3 3 3.4
0.65 2 2 1.5
0.75 5 5 5.5
0.85 5 5 4.6
0.95 2 2 2.3
1.2 2 2 1.9
1.7 2.5 2.5 2.5
2.25 2 2 2
2.75 1.5 1.5 1.6
3.25 1 1 0.6
3.75 5 5 6
4.25 3 3 1.6
4.75 1.6 1.6 2.9
5.5 1.4 1.4 0.6
6.5 0.5 0.5 1.1
7.5 1.4 1.4 0.9
8.5 2.2 2.2 2.7
9.5 2.3 2.3 2
11 2 2 2.2
12 1.5 1.5 1.6
13 2.1 2 1.7
14 0.3 0.3 0.5
15 0.5 0.5 0.8
16 0.9 0.9 0.7
18 0.7 0.7 0.6
20 0.3 0.9 0.4
22 1.2 1.2 1.7
24 1.1 1.1 0.4

18:46:09 UT on the night of 2011 August 11. As given in the leg-
end, the mean value of the Fried parameter for this acquisition
was 9.45 cm. On the right-hand side, we have the seeing measure-
ments throughout the night along with the corresponding DIMM
and GSM measurements. From the figure, it is apparent that seeing

measurement trends agree very well between PML and DIMM, but
that the PML measures a better seeing. There was a height differ-
ence between the DIMM and PML setups. The DIMM entrance
aperture is located approximately 1.5 m from the ground, while that
of the PML one was positioned approximately 3 m from the ground.
Hence, we expect the PML to measure a higher r0 value. In addi-
tion, even when fully opened, the sliding roof of the MASS-DIMM
enclosure can still cause surface turbulence to worsen the seeing as
seen from the instrument. On the other hand, one would expect the
GSM and PML measurements to agree. There are three factors that
could have contributed to the discrepancy between PML and GSM
measurements. Even though both GSM and PML sit on a 1.5 m pier,
the GSM entrance aperture is slightly lower than that of the PML
due to the instruments’ respective sizes. In addition, they are not
pointing at the same object and, hence, are not sensing the exactly
same part of the atmosphere. More importantly, and probably the
main error contribution, there were contrast issues with the GSM
during the campaign due to cirrus clouds, humidity as well as frost
forming on the sub-apertures of the GSM unit.

5.2 Turbulence profiles

The measured (red circles) and fitted (blue line) covariances for the
acquisition obtained at 19:01:11 UT on the night of 2011 August
11 are shown in Fig. 13 (left). The fitted covariance function corre-
sponds to the best-fitting turbulence profile for that measurement.
The retrieved profile is shown on the right-hand side of Fig. 13.
In order to verify both our profile reconstruction and seeing mea-
surement with PML, we compared the seeing value obtained in the
DIMM-mode (rDIMM

0 ), as presented in Section 5.1, and the value cal-
culated from the full integration of the profile (rprofile

0 ). For the night
of 2011 August 11 at 19:01:11 UT, rDIMM

0 = 9.04 cm, as compared
to r

profile
0 = 8.99 cm. In addition, we compared the PML results with

those from the MASS-DIMM instrument. We calculated r0 from the
integrated MASS profile which gives a value of 25.7 cm. Integrating
the corresponding top layers of the PML profile (0.5–25 km), we
obtain an r0 of 27.1 cm. Both instruments agree well on the amount
of turbulence located in the FA. However, these are comparisons
on a single acquisition. In order to obtain a sense of how well the
data reconstruction performs, the value of the relative error between
measured and reconstructed covariances for 125 measurements over
two nights is displayed in the bottom graph of Fig. 13. The mean
relative error value is found to be 0.16 per cent. Further verification

Figure 12. Fried parameter measurement. Left: measurements of the Fried parameter for all positions along the Lunar limb on the night of 2011 August 11
at 19:46:09 UT with an average value of 9.45 cm. Right: instrument comparison of the measured seeing on the night of 2011 August 11 with PML (red), GSM
(green) and DIMM (grey).
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PML – turbulence profile 3709

Figure 13. PML turbulence profile results. Top left: measured covariance (red circles) and the best fit of the theoretical covariance (blue line) on 2011 August
11 at 19:01:11 UT. Top right: retrieved PML turbulence profile from the best-fitting covariance. Bottom: relative error between measured covariances and fitted
ones for 125 measurements over two nights. The mean error value is 0.16 per cent.

is obtained by instrument cross-comparison with MASS results on
an entire night’s data set.

Fig. 14 shows the turbulence profile evolution throughout the
night on 2011 August 11 from both PML and MASS measure-
ments. The top figure shows the full PML profile with 33 layers.
The corresponding MASS profile for the same night is displayed
in the bottom left figure. On the bottom right panel, we give the
MASS weighting function, which defines the reconstruction range
of the six altitudes. The dotted grey lines indicate the weighted
central altitudes of each MASS bin. Note that those altitudes are
just indicative. One can see from the triangular weighting functions
of MASS that the contribution in each fixed layer could, in reality,
be due to turbulence at higher and/or lower altitudes. Also, all the
turbulence measured by the PML in the GL is unseen by the MASS.
It is also worth noting that the scale of the turbulence strength on
the PML and MASS profiles are not the same. This is due to a
different dynamic range. Since the MASS uses less layers for the
profiles reconstruction, it allocates more turbulence in each layers
than does the PML reconstruction. The turbulence strength within
individual MASS layers ranges from 5e−15 to 2e−12, while it ranges
from 1e−16 to 5e−12 for the PML.

Comparing the FA turbulence from the PML (above the plain
grey line) to the MASS profile, one can see a fairly good agreement
between the two. We see strong turbulence around 500 m, and from
2 to 8 km before 18:00 UT, fading away later on with turbulence
remaining mainly in the 2 and 8 km layers of MASS until 21:00
UT. These are seen around 1.7 km and between 4 and 10 km on the

PML profile. After 23:00 UT, the 16 km layer of MASS becomes
dominant, in particular around 00:00 UT, where a peak of turbulence
is also seen in the 4 and 8 km layers. Those are seen by PML from
4.5 to 18 km.

The PML profile has a clear advantage over the MASS one. Not
only PML delivers a much higher altitude resolution in the FA, but
it also resolves the GL turbulence below 500 m, with a resolution
of 100 m, unseen by the MASS instrument.

6 D I S C U S S I O N A N D C O N C L U S I O N S

The PML method proposed in this paper uses differential measure-
ments, making it insensitive to tracking errors or telescope wind
shake. Moreover, the use of the continuous Lunar limb provides a
large range of separation angles, as compared to the double star used
for SLODAR, allowing for the high resolution of the altitude profile
of the turbulence. The large number of separation angles available
also permit a characterization of both the GL and FA, where most
other instruments are tuned to determine one or the other. The
method was validated by testing it on both simulated synthetic data
and cross-comparison with MASS-DIMM and GSM results. Sim-
ulations showed that the reconstruction, using an SA method, was
accurate within 14 per cent of the real value, with higher error for
altitudes above 5 km, mainly due to incorrect redistribution between
adjacent layers. Further optimization of the SA inversion could po-
tentially help to lower the error. Other reconstruction algorithms
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Figure 14. Turbulence profiles for the night of 2011 August 11. Top panel: PML measurements. Bottom left panel: MASS profile for the same night. Bottom
right panel: MASS weighting functions. As an indication, we reported the average separation between MASS layers, represented as dotted grey lines, on the
PML profile (top figure). In addition, all PML layers below the plain grey line are unsensed by the MASS. The white bottom area on the MASS corresponds
to this range of altitudes where there is no measurement. Note that the scale of PML and MASS profiles are not the same as their data do not have the same
dynamic range due to the different number of layers.

have been investigated, in particular that used in Blary et al. (2014)
that led to lower errors.

The comparison to DIMM measurements, for the r0 value, and
MASS, for the C2

n(h) profile, shows good agreement in both cases.
The great advantage of the PML over the MASS is its much higher
altitude resolution, with 33 layers spread through both the GL, with
a vertical resolution of 100 m, and the FA, with resolution ranging
from 500 m to 2 km, while the MASS has only six layers, limited
to the FA alone.

A first measurement of L0(h) profile gave promising results, but
further improvements, in particular to increase the number of layers
in the reconstruction, are required.

In principle, both θ0 and τ 0 can be retrieved from PML data.
This is something that could be implemented in further data anal-
ysis. Also, more work is currently being done to speed up the data
processing in order to have an automated system that can produce
real-time measurements.
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