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Poisson brackets and truncations in nonlinear reduced
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Boulevard de I’Observatoire, CS 84229, 06304 Nice Cedex 4, France

Abstract

The Hamiltonian structure for an infinite class of nonlinear reduced fluid mod-
els, derived from a Hamiltonian drift-kinetic system, is explicitly provided in
terms of the NV + 1 fluid moments evolving in each model of the class, with
N an arbitrary positive integer. This improves previous results, in which the
existence of the Hamiltonian structure was shown, but the complete explicit
expression for the Poisson bracket of each model of the class was not provided.
We also show that, whereas the Hamiltonian functional of the fluid models can
be derived from that of the drift-kinetic system, by projecting the perturbation
of the distribution function onto its truncated series in terms of Hermite poly-
nomials, this is not the case for the Poisson bracket. Indeed, the antisymmetric
bilinear form obtained by means of the aforementioned projection, although,
interestingly, ”very similar” to the Poisson bracket of the fluid models, turns
out to differ from it. The difference is found to reside in the coefficients W?}\?)l
of the bilinear form, when the indices are such that [ + m + n is even and
IlZN+1,m>=N+1n>=> N+ 1. We show with a counterexample, related
to the case N = 2, that such bilinear form, in general, does not satisfy the
Jacobi identity. We provide a physical interpretation of the set of variables
Go,G1,- -+ ,Gp, in terms of which the Poisson bracket of the fluid models ex-
hibits a direct-sum structure, and point out an analogy between the present
fluid reduction problem and the problem of the truncated quantum harmonic

oscillator.

Preprint submitted to Physica D May 5, 2022
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1. Introduction

In many circumstances, the behaviour of plasmas is influenced by the pres-
ence of a magnetic field characterized by one dominant component, nearly con-
stant in time, which is referred to as guide field component. This can be the
case, for instance, in tokamaks or in coronal loops, where the toroidal com-
ponent of the field is much greater than the poloidal component. In these
situations, a small parameter naturally emerges, corresponding to the ratio be-
tween the characteristic amplitude of the time-dependent components of the
magnetic field and the strong guide field component. Taking advantage of this
small parameter, several nonlinear reduced fluid models have been derived in
order to describe plasma dynamics in the presence of a strong guide field. In the
context of tokamak fusion plasmas, two classical examples of such reduced mod-
els are provided by reduced magnetohydrodynamics (MHD) [l 2] and by the
Hasegawa-Wakatani model for drift-wave turbulence [3]. Reduced fluid models
of the same kind also proved to be useful for investigating fundamental aspects
of turbulence relevant for the solar wind, as for instance in Refs. [4 [5]. Fur-
ther applications of reduced fluid models include the description of nonlinear
coherent structures in plasmas [0} [7} [§] and magnetic reconnection [9, 10} 1T}, 12].

In the plasma physics literature, such nonlinear reduced fluid models were
typically derived either from two-fluid models by asymptotic expansion in terms
of small parameters (see, e.g. Refs. [1] 2, 13, 14, [15]), or by taking moments of
gyrokinetic or drift-kinetic equations and imposing a closure relation (see, e.g.
Refs. [16] [ [17]).

From a dynamical systems perspective, a number of such models, when con-
sidered in their non-dissipative limit, were shown to possess a noncanonical
Hamiltonian structure[I8], 19, 15, [12), 20] 211, 22|, 23], 24, 25| 26], 27, 28] (see also
Ref. [29] for a review), which is the typical case for fluid models formulated from
the Eulerian point of view [30]. The existence of a Hamiltonian structure is cru-
cial for avoiding the presence of fake dissipative terms in the model, as well as

for the opportunity it gives, to apply methods of Hamiltonian mechanics for the
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analysis of the dynamics described by the model [30, BI]. Qualitatively speak-
ing, a Hamiltonian structure is identified by a phase space, a Poisson bracket
acting on functions defined on the phase space, and a Hamiltonian, which is
a prescribed function on the phase space. For the reduced fluid models under
consideration, the phase space is a space of functions defined on the domain
occupied by the plasma and satisfying appropriate boundary conditions. In
the two-dimensional (2D) limit, where the dynamics is assumed to be invariant
along the direction of the guide field, the noncanonical Poisson brackets for the
reduced models are generally extensions [20] of the classical Lie-Poisson bracket
of the 2D Euler equation for an incompressible fluid. The Poisson bracket for
the full 3D models consists of the sum of the 2D bracket with a second Poisson
bracket, such that some relations between the coefficients of the two brackets
are satisfied, which guarantees the Jacobi identity [23]. The Hamiltonian of the
models, on the other hand, typically consists of a functional on the phase space,
quadratic in the model field variables.

In Ref. [32] it was shown how an infinite class of Hamiltonian reduced fluid
models can be obtained, by imposing a particular closure on the hierarchy of
fluid equations obtained by taking moments of a drift-kinetic system. In Ref.
[33], this result was extended to more general models accounting also for finite
Larmor radius effects, equilibrium temperature anisotropy and magnetic fluctu-
ations along the direction of the guide field. However, such results still suffered
from a gap, that we now briefly describe. Indeed, for a fluid model evolving
N +1 moments of a given particle species, the expression of the Poisson bracket
provided in Refs. [32 B3] in terms of the fluid moments (see in particular Eq.
(81) of Ref. [32]), depends on a set of real numbers Ag, A1, - -+, Ay, correspond-
ing to the eigenvalues of an explicitly given, symmetric matrix denoted as W
(according to the notation of Ref. [32]). The expression of the Poisson bracket
also depends on an orthogonal matrix U, thanks to which, the matrix W can be
put in diagonal form, according to the relation UTWU = diag(Xo, A1, -+ , An),
where U7 is the transpose of U and diag(A\g, A1, -+ , Ay) is the diagonal matrix

with elements A\g, A1, - - - , Ay on the main diagonal. The knowledge of the matrix
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U and of the eigenvalues of W is also necessary to cast the Poisson bracket in its
simplest form (putting in evidence its direct sum structure) which occurs when
the bracket is expressed in terms of a set of variables Gg,G1,--- , Gy, alterna-
tive to the fluid moments. Although the existence of such an orthogonal matrix
U is guaranteed by the spectral theorem, its explicit expression, for arbitrary N,
was not provided in Refs. [32]83]. Likewise, the properties of the eigenvalues of
W of being real is guaranteed by the spectral theorem, but an explicit formula
for their expression was not given. Therefore, although the Hamiltonian struc-
ture for the class of fluid models under consideration was shown to exist, the
actual expression for the Poisson bracket, for a given model, had to be found
by determining, case by case, the matrix U and the eigenvalues Ao, A1, -, An.
Of course, this deficiency limited the immediate applicability of the results of
Refs. [32] [33], if not for the cases with very low N, where only the evolution
of the first few fluid moments is retained. We recall [32] that the matrix U
actually provides the transformation from the variables Go, Gy, - ,Gn to the
fluid moments. Indeed, if we indicate the fluid moments with go, g1, - , 9N,
such transformation is given by g,, = Up,n G, (see also Eq. in the present
paper, where the notation has been changed with respect to Ref. [32] and the
matrix U is indicated with Uy ).

One of the purposes of the present paper is to remedy the above mentioned
gap, by providing the explicit expression for the Poisson bracket for any model
belonging to the class treated in Refs. [32,[33]. This is made possible by making
use of actually rather elementary properties of Jacobi matrices and Hermite
polynomials.

A second objective of this paper concerns the relation between the Hamilto-
nian structure of the reduced fluid models and that of the parent drift-kinetic
(or gyro-kinetic) model. Indeed, the parent model describes the evolution of
the generalized perturbed distribution function g(z,y, z,v,t), given by a linear
combination of the perturbation of the gyrocenter distribution function with the
component of the magnetic vector potential along the guide field (see Eq. )

The function g depends on the spatial coordinates x,y, z, as well as on time
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t and on the component v of the velocity along the guide field. We consider

generalized perturbed distribution functions that can be expanded in series as

+00 Hn(v)
9(x,y,z,0,1) = gogn(w,w,t) il Feg(v), (1)

where Fy, is a Maxwellian distribution function, H,, is the Hermite polynomial
of order n and the coefficients g,, correspond to the fluid moments. The evo-
lution of ¢ is then governed by the infinite system of evolution equations for
the moments g, obtained by projecting the Hamiltonian drift-kinetic (or gyro-
kinetic) equation for g on the basis of Hermite polyomials. The (N + 1)-moment
Hamiltonian reduced fluid models, on the other hand, are obtained by imposing
that the index n in the series (1) goes from 0 to N < +00, which truncates the
infinite system of equations of the parent model, reducing it to a closed set of
N + 1 equations. The natural question then arises, about whether the Hamilto-
nian and the Poisson bracket of a reduced fluid model can be derived from the
Hamiltonian and the Poisson bracket of the parent model, by replacing, in the
latter, the perturbation of the distribution function, given by the infinite series
(1), with the series truncated at the moment of order N. The analysis we de-
scribe in the present paper shows that, whereas this occurs for the Hamiltonian,
it is not the case for the Poisson bracket. In particular, it is the 2D component
of the Poisson bracket for the fluid model, which turns out to differ from the
corresponding bilinear form, obtained from the Poisson bracket of the parent
model upon replacing the perturbed distribution function with its truncated
series. Roughly speaking, the Poisson bracket and the bilinear form turn out
to be "very similar” and the difference concerns some coefficients which, in a
sense that will be made precise later, are associated with ”high-order” moments,
among those retained in each fluid model. Moreover, by means of a counterex-
ample, we show that, in general, the bilinear form obtained from the truncated
series, does not satisfy the Jacobi identity, and thus is not a Poisson bracket.
With the present paper, we also provide a physical interpretation of the al-
ternative variables Gy, G1,- -+ , G . Indeed, making use of properties of Hermite

polynomials, we show that such variables are proportional to what we refer to



115

120

125

130

135

140

as the truncated generalized perturbed distribution function, evaluated at val-
ues of the parallel velocity coordinate equal to Ao, A1, , Ax. This might also
help to shed light on previous considerations on the phenomenon of magnetic
reconnection, based on the dynamics of such alternative variables in the case
N =1 [34] [35] [36].

A final objective of this paper is to point out an analogy between the infinite
hierarchy of fluid equations obtained from the parent drift-kinetic system and
the problem of a quantum harmonic oscillator. In particular, the closure prob-
lem shares similarities with the problem of the truncated quantum harmonic
oscillator.

For the sake of simplicity, in the present paper the results are illustrated
considering, as parent model, a relatively simple drift-kinetic model for the
electron dynamics. However, the results can be extended to the more refined
hybrid and gyrokinetic parent models considered in Refs. [32] [33].

Again for the sake of simplicity, we restrict to the case of a bounded spatial
domain, where the fluid moments satisfy periodic boundary conditions. This
allows for a simple derivation of the explicit expressions for the operators ¢qp,
Ak, o5, A (see Egs. , , and the immediately subsequent for-
mulas), relating the generalized perturbed distribution function and the fluid
moments, with the electromagnetic potentials. Besides the argument of sim-
plicity, periodic boundary conditions are, in any event, of some relevance, as
they are often adopted in numerical simulations of reduced fluid models. On
the other hand, as will be discussed at the end of Sec. the choice of periodic
boundary conditions requires some restrictions on the set of observables on the
phase space.

The paper is organized as follows. In Sec. [2| we introduce the parent drift-
kinetic model. Section |3| describes the Hamiltonian structure of the parent
drift-kinetic model and of the reduced fluid models obtained after imposing a
Hamiltonian closure provided in Ref. [32]. The latter structure is expressed in
terms of the variables Go,G1, -+ ,Gy. This Section essentially reviews already

known results but formulates them in a more precise manner, with respect
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to Ref. [32]. In Sec. [4] we present one of our new results, consisting of the
explicit general Hamiltonian structure of the reduced fluid models, in terms
of the moments. In particular, with Proposition [{.] the coefficients in the
Poisson bracket are expressed in terms of Hermite polynomials and their zeros.
Section [f] compares the Hamiltonian and the Poisson bracket of Sec. [ with
the functional and the bilinear form obtained from the Hamiltonian structure of
the parent drift-kinetic model, by means of the aforementioned truncated series
approach. The results of Secs. [4] and [f] are exemplified in Sec. [6} where the
case N = 2 is treated in detail, also showing how the approach based on the
truncated series can lead to a bilinear form which is not a Poisson bracket. In
Sec. [7] a physical interpretation of the variables Go,G1,- - , Gy, as well as the

analogy with the problem of the quantum harmonic oscillator are discussed. We

conclude in Sec. [§ In [AppendixA] and [AppendixB| we provide the proofs of a

Lemma and of a Proposition, respectively, formulated in Sec.

2. Hamiltonian parent drift-kinetic model

We consider the following drift-kinetic model in normalized form

0 0 2
&;Z +[p—vA,g] + U% <g - EFeq(¢ - vA)) =0, (2)

2 +0o0
_ 52 /=
Bro=dy = [ avg, 3)
+o0
ALA_A:HB;J_OC dvvg, (4)

where Eq. corresponds to the electron drift kinetic equation, whereas Egs.
and correspond to the quasi-neutrality relation and to the projection of
Ampere’s law along the direction of a magnetic guide field, respectively.

In Egs. —, the dynamical variable g is defined by

2
Be

where f is the actual perturbation of the electron gyrocenter distribution func-

g(.’II,y,Z,’U,t) :f(‘r7y7zuv7t)_ UFeq(’U>A({L'7y,Z7t), (5)

tion, averaged with respect to the magnetic moment. We will refer to the
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function g as to the generalized perturbed distribution function. The field A is

related to the normalized magnetic field B by
B(z,y,2,1) = VA(z,y,2,t) x £+ £, (6)

where Z is the unit vector along the z direction of a Cartesian coordinate sys-
tem x,y, 2. We note that the model assumes the presence of a strong uniform
magnetic guide field along the z direction (corresponding to the second term on
the right-hand side of Eq. @) The function F,, is the Maxwellian equilibrium

distribution function, whose explicit expression reads

Fra(v) = =%, (7)

The field ¢ = ¢(z,y, z,t), on the other hand, corresponds to the electrostatic
potential. The independent variables in Egs. — are given by the spatial
Cartesian coordinates x, y, and z, by the coordinate v, representing the velocity
coordinate along the direction of the guide field, and by the time ¢. The spatial

coordinates belong to the domain

D={(.’E,y72>ER3| _ngngzv_Lygy\L

A\

yo—L. <z< L.}, (8)

with L., L, and L, positive real numbers. On the other hand, for the parallel
velocity and time coordinates one has —00 < v < +00 and t > 0, respectively.
Periodic boundary conditions over the domain D are imposed on the fields g, A
and ¢, whereas we will assume that g — 0 sufficiently fast, as v — 00, in such
a way that all integrals, with respect to v and involving g, converge.

Two parameters are present in the system and are defined as

noT{ m

T (9)
BO m;

66287{-

where ng and Tj. are the uniform equilibrium particle density and electron tem-
perature, respectively, with the temperature expressed in energy units. We indi-
cated with By the (dimensional) amplitude of the magnetic guide field, whereas
m. and m; are the electron and ion mass, respectively. The perpendicular Lapla-

cian operator A and the canonical Poisson bracket [, ], on the other hand, are
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defined by

0* 02
ALf =+ S (10)
ordg e

respectively, for two functions f and g.
As above anticipated, Eqgs. — are expressed in terms of normalized

quantities. The normalization of the adopted variables is given explicitly by

7 i 3 B L Vg

T = == z2== v=— ==
de7 y de7 L7 Ute? L b)
L vy Vie = L C(; L A

9= —-——"9, Fe :7F87 ¢:777 A=— ) 12
de no ? no ! de vieBode de Bod, ( )

where c is the speed of light, d. = c\/m is the electron skin depth,
L is a characteristic scale length of variation along the guide field direction,
Vie = \/m is the electron thermal speed. In the formulas , we denoted
with a tilde the dimensional quantities.

The system - corresponds to a cold-ion, collisionless version of the
electron drift-kinetic equation derived in Ref. [37]. The model belongs to the
class of so-called § f models, which assume small fluctuations of the distribution
functions, i.e. f /Feq « 1. Weak spatial variations are assumed along the guide
field direction, which corresponds to the condition d./L « 1. We also recall that
the derivation of the model in Ref. [37] requires 3. « 1 and 62 « 1. The model
can be applied to describe, for instance, magnetic reconnection due to electron
inertia in collisionless plasmas with a strong guide field, a phenomenon that can
be relevant for tokamak devices and the solar corona. The same model was also
adopted in Ref. [38] for the description of drift-Alfvén vortices in plasmas. In
the same reference [38], the Hamiltonian structure of the model was also given.

We point out that, although the results presented in the present paper apply
to the model —, they can be extended to more sophisticated Hamiltonian
parent models such as those treated in Refs. [32, B3], which account for further
physical ingredients such as multiple species, parallel magnetic perturbations, fi-

nite Larmor radius effects and equilibrium temperature anisotropies. Our choice
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for the model — for the present article is mainly due to its relative sim-
plicity, although, at the same time, the Hamiltonian structure of this system
possesses all the fundamental features of the Hamiltonian structures of the more

general parent models of Refs. [32] [33].

3. Hamiltonian structure of the parent drift-kinetic model and of the

family of fluid models in terms of the variables Go,G1, - - ,GN

In this Section we review, although formulated in a more precise setting,
the Hamiltonian structure of the parent model —, as well as that of the
family of fluid models that can be derived from it by means of a specific closure
preserving the Hamiltonian structure. However, the Hamiltonian structure of
the fluid models that we review in this Section, as anticipated in Sec. is
the one presented in Ref. [32], which is not expressed in terms of the fluid
moments but in terms of alternative variables Gy, G1,- - , G, which are linear
combinations of the fluid moments, but with coefficients whose expressions are
not known in general, so far.

Before proceeding with the review of such Hamiltonian structures, we find
it appropriate to introduce some preliminary definitions. The purpose of the
following Sec. [3.1]is to formulate a more precise setting, with respect to previ-
ous references such as Refs. [32] [33], for the drift-kinetic and the reduced fluid
models. Also, we will recall a few notions, such as that of functional derivative,
which will be repeatedly used throughout the paper. The readers already fa-
miliar with these subjects can of course skip these parts and go directly to Sec.

0.2)

3.1. Preliminaries

We first introduce the space F of smooth, periodic and square integrable

functions on D. This space will include the fluid Hermite moments of order

10
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greater than zero, and is given by

F={h:R> - R|he L*D)nC®D),
h(z,y,2z) = h(z + 2Ly, y,2) = h(z,y + 2Ly, z) = h(z,y,z +2L,) Y(z,y,z) € R3}.
(13)
Due to the periodicity assumption, an element h € F can be represented as
Fourier series in the following way:
h(x) = Z hye™ >, (14)
ket

where x = (z,y,2) € R® and k = (ky, ky, k) is an element of the lattice ¢

defined by
™Tm TN TP 3
== = £ VAR 1
‘%/ {(Lm7LyaLz>7<m7nap)e } ( 5)

In Eq. , the Fourier coefficients hy are given by the Fourier transform

1

By = — —
< 8L,L,L.

f d3x h(x)e” kX, (16)
D

It is now appropriate to introduce the subspace Fy of F, consisting of the
elements of F possessing zero spatial average with respect to x and y, over each
plane z =constant. This will be the space of the fluid Hermite moment of order

0 and is given by
Fo={heF|hx=0 fork=(0,0,7p/L,) withpe Z}. (17)

The specificity of the moment of order 0 comes from the quasi-neutrality relation
which, as will be seen, implies that the moment of order 0 have zero spatial
average in the plane perpendicular to the guide field.

Given a positive integer NV € Z-(, we also introduce the space

= 1
Fn =Fyg x F x x F, (18)

N times
which will correspond to the phase space of a fluid model in which the highest-
order moment retained in the evolution equations is the one of order N (note
that such fluid model actually evolves in time N + 1 moments, given that the

lowest order moment is the one of order 0).

11



Next, we introduce the space G of the generalized perturbed distribution

function:
+00
Hy(v)
g = ‘R* > R|g(x,v) = (X F..(v),
{g | 9(x,v) gog()m q(v)
W2 dV .2
go€Fo, gi€F forieZ.y, H,(v)=(-1)"ez dv”e_T forneZzO}.

(19)
which will be the phase space of the parent drift-kinetic system. Note that,
once the dynamical equations are introduced, and thus the time parameter
t is added, the dependence on time of ¢ is contained in the dependence on
time of the coefficients g,. According to a quite standard practice in ¢ f drift-
kinetic and gyrokinetic theory (see, for instance, Refs. [37, [39, [16]), we are
considering generalized perturbed distribution functions that can be expressed
as a series in Hermite polynomials H,,, multiplied by the equilibrium distribution
function F,,, which guarantees a sufficiently rapid decay of g as v — 0. The

orthogonality relation

J-MC dv Hpy (0) Hy (V) Feq(v) = nlémn, (20)

—0o0
permits to express the coefficients g,, of the expansion in Eq. , in terms of
9r 85 1 [+©

gn = 7 J_OO dvHy, g, n = 0. (21)
For given g € G and n > 0, an element g,, defined by Eq. will be referred
to as fluid moment, or simply as moment of g of order n. We recall that the
first Hermite polynomials correspond to Hy = 1,H; = v,Hy = v2 — 1,H; =
v3 — 3v,... and that the first four moments are proportional to fluctuations of
density, parallel canonical momentum, parallel temperature and parallel heat

flux, respectively, of the electron gyrocenters. In particular, following Eq. ,

one has
+o0 +o0
go = f dvg, g1 = f dv g, (22)
—0o0 —0o0
1 +00 ) 1 +00 5
go = —f dv (v —1)g, g3 = —J dv (v° — 3v)g,- - (23)
V2 ) V6 J o

12



Evidently, any element g € G also admits a representation in Fourier series, with
respect to x, according to:
g(x,v) = > G(v)e’™, (24)
ket

with x € R?, v € R and where the Fourier coefficients g, following the expres-
sions (16) (although the tilde symbol in this case was also added, in order to
avoid possible confusion with the fluid moments g, ) and , read

i = Z I T Hu ke (25)

Equations

+00
AL = 52\/67 J dvg, (26)
+a0
AJA—A= \/%f_oo dv g, (27)

can be solved in Fourier space with respect to ¢ and A, for a given drift-kinetic
generalized perturbed distribution function g € G. The solutions for the electro-
magnetic potentials in terms of drift-kinetic generalized perturbed distribution
function (for which we use the subscript dk) are two elements ¢, A € F given
by
¢ = daxlgl, A = Aalgl, (28)
with ¢ar[]: G — F and Agi[] : G — F linear operators acting on g € G in the
following way:
Parlg Z barlg , Adklgl(x) = 2 Agi[glke™™, (29)
ket ket

where

danlgl, = — \/;f s ];2, for ke #\{(0,0,7p/L.), peZ}, (30)

¢arlgl = ¢o,,  for ke {(0,0,mp/L.), peZ}, (31)
Adk \/EJJWO g s for ke #. (32)

13
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In Eq. , ¢o, € C, for p € Z, is a family of complex constants, such that
¢0, = ¢o_, for n € Z-o, with the overbar indicating the complex conjugate.
The choice of the arbitrary constants ¢, , for n € Zx¢, fixes the z-dependence
of the value of the spatial average of ¢, with respect to z and y, on planes
z =constant.

In Eqs. (30)-(32) we also introduced the perpendicular wave number k|
defined as ki = 4 /k2 + k2.

The solutions — permit then to express, at any time ¢, the electro-
magnetic potentials ¢ and A in terms of ¢ in Egs. -.

Using Eq. and the orthogonality relation , one can also express the
solutions for ¢ and A as the images of linear operators (with the subscript fl
to indicate that ¢ and A, in this case, are expressed in terms of fluid variables)
onl]l: Fo — F and Apl] : F — F, acting on the fluid moments go and g,
respectively. More precisely, if we define, for v € Fy and w € F:

dulul(x) = >, dplule™™, (33)
ket

where

dplu], = —52\/7 e for ke . #\{(0,0,7p/L.), peZ}, (34)

Be k3’
¢fl[u]k = ¢0p7 for ke {(O,O,T(p/LZ),pE Z}v (35)
and
Apw](x) = Y Ap[w]e™™, (36)
ket
with

Wk

Afl[w]k:l\/ﬂ;l-l—ki’ for kE:%/, (37)

14



one has, for g € G, the relations

barlgl = —0° ,6’ \F k”; de wFeq

52\/5710;:%[90]1(, for ke #\{(0,0,7p/L.), peZ}, (38
e V]

¢dk[ ]k - ¢0p = ¢fl gO] for ke {(Oa 077Tp/Lz) , DE Z}7 (39)
_[Be ¥ In f“’o
A k dvvH,F,
arlg Z \Fl + k2 ) e
«/56 S 1122 = Aplgil,,  for ket (40)

where, in Eqs. —, we made use of Egs. , and of the orthogonality
relation . The electrostatic and magnetic potentials ¢ and A can thus be

expressed in terms of the zeroth and first order moments of g by

¢ = ¢fl[90]7 A= Afl[gl], (41)

respectively.
The condition for gy of having zero spatial average on planes z =constant
20 comes from the fact that Eq. , for each k € ¢, implies —(k2 + k2)¢i =
2/Begor- When evaluated at k = (0,0, 7p/L.), for p € Z and ¢(o,0,xp/L.) #

0, this relation implies go(g,0,xp/r.) = 0. The electrostatic potential ¢, on the

other hand, is determined up to the choice of the arbitrary constants ¢g,, with
n € N.
235 In order to introduce the Hamiltonian structures of the drift-kinetic and fluid

models, it is also convenient to define here the functional derivatives that we
will make use of, later in the paper.

Given a real functional F': G — R, we denote its functional derivative, with
respect to g € G, as 0F /dg and we define it by means of the relation

1 +OO
hr% (F(g + €dg) — J J d3x 5g 59 (42)

for all §g € G. Functional derivatives of this type will appear in the Hamiltonian

formulation of the drift-kinetic model.

15
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With regard to the functional derivatives with respect to the moments,
occurring in fluid models, given a functional F : Fny — R, its functional
derivative with respect to h € Fn is denoted as 6F/dh and corresponds to

SF/Sh = (F/Sho,6F /Shy, -+ ,6F/5hy) defined by

lim 1(F(h + e6h) — F(h)) = f d®z 6h - 5—F, (43)
e—0 € D (Sh

for all 6h = (6hg,0hq, -+ ,0hy) € Fn. Note that the dot on the right-hand side
of Eq. 1} denotes a scalar product, so that dh - §F/6h = Zi\;o Oh;(0F /0h;).
Moreover, by varying one Jh; at the time, for ¢ = 0,1,--- , N, while keeping

0h; = 0 for j # 4, one obtains

1 oF
lim*(F(h07~-- ,hi +e<5hi,--~ ,hN) —F(h07"- ,hi,“- ,hN)) = J d31'5hi7,
e—0 € D oh;

(44)
which singles out the expression of 6 F'/6h;, defining the functional derivative of
F with respect to h;, for a given i.

As will be reviewed in Sec. the Poisson bracket of a Hamiltonian system

acts on observables, which are functions defined on the phase space. In the case

of the parent drift-kinetic model and of the reduced fluid models derived from

it, the Jacobi identity for the Poisson bracket relies on the relation

L) Pz ufv,w] = L) 3z wlu, v], (45)

for functions u,v,w € F. The periodic boundary conditions satisfied by wu,v
and w imply that boundary terms vanish when integrating by parts, which is
required to prove the identity . Because the Poisson bracket for the drift-
kinetic model and the reduced fluid models will contain functional derivatives of
observables, at the place of v and w, in an expression analogous to the left-hand
side of Eq. (see, for instance Eqs. and ), we require the observables
to be such that their functional derivatives satisfy periodic boundary conditions
on D.

We will indicate with C®(P) the set of real smooth functionals over a phase

space P, such that the functional derivatives of these functionals satisfy periodic
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boundary conditions on D. So, for instance, the set of observables for the parent
drift-kinetic model will be denoted as C*(G), whereas the set of observables for

the (N + 1)-moment fluid models will be C®(Fy).

8.2. Hamiltonian formulation of the parent drift-kinetic model

Based on Refs. [38, B2], we review here the (noncanonical) Hamiltonian
structure of the parent drift-kinetic model -. First, we recall that (see,
e.g. Refs. [30, 31 [40]) a Hamiltonian system on a phase space P is a dynamical

system

a(t) = J(u(t))ouH (u(t)), (46)

where the dot indicates the time derivative and u : R — P is a curve describing
the time evolution in phase space of the dynamical variable u following an initial
condition u(0) = ug € P. We denote with ®(P) the set of observables of the
dynamical system. On the right-hand side of Eq. the symbol J indicates
the Poisson operator J : T*P — TP (where T*P and TP are the cotangent
and tangent bundle of P, respectively ) and H € ®(P) is the observable corre-
sponding to the Hamiltonian of the system. In Eq. we also denoted with
0y a derivative with respect to u, which, in the infinite-dimensional case, takes
the form of a functional derivative, as those defined in Egs. and .

A generic observable F' € ®(P) of the Hamiltonian system evolves ac-
cording to

F = {F, H}, (47)

where {, } is a Poisson bracket, i.e. an antisymmetric bilinear form satisfying the
Leibniz rule and the Jacobi identity. Note that, for two observables F, G € ®(P),

the Poisson operator and the Poisson bracket are related by
{F,G} =< 0,F, J(u)0,G >, (48)

where <, > indicates a dual pairing.
The Hamiltonian structure of a Hamiltonian system on a given phase space

is thus determined by its Hamiltonian and its Poisson bracket. Due to the
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antisymmetry property of the bracket, it follows from that H = 0, which
expresses the conservation of the total energy.

As anticipated in Sec. 3.1} the phase space for the parent drift-kinetic system
is given by the set G. The Hamiltonian structure of this system [38] consists of

the following Hamiltonian functional Hg, € C®(G):

Halo) = 5 fp & Jj: do ( jijq - \/Zg(sb - vA)) 7 (19)

where ¢ = ¢ar[g], A = Aax[g], and of the Poisson bracket

3 +o0 /36 aGg
{F,G}ar, = JD d xf dv ?g[Fg7 Gyl — vFeng—aZ , (50)
—0

for F,G € C*(G). In Eq. we also introduced the subscript notation on the

functionals to indicate functional derivatives, so that, for instance F,, = 6F/dg.
Note that the antisymmetry of the second term in the Poisson bracket relies
on the fact that boundary terms vanish when integrating by parts.

We also observe that the Hamiltonian physically corresponds to the
sum of the energy associated with the small-amplitude fluctuations of distri-
bution function around a Maxwellian equilibrium (first term on the right-hand
side), with the energy associated with electromagnetic fluctuations, given by the
remaining two terms on the right-hand side.

We proceed at a formal level, assuming that, for a generic initial condition
9(x,y,2,v,0) = go(x,y,2,v) € G, the solution of the system — exists for
0 <t< T, withT > 0, and that, for each solution, g(z,y,z,v,t) € G for
0 <t <T. We then identify a solution g(z,y, z,v,t), corresponding to a given
initial condition, with a curve g : [0, 7] — G that associates, at each time ¢, a
point g(t) € G in phase space.

Concerning the Hamiltonian structure of the drift-kinetic model, we remark

o L\ ala - oaala). &

In order to derive the latter relation one makes use of the following symmetry

that
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properties of the operators ¢q[] and Agx| ]

+0 +o

de’ J dv hoarlg J d*x f dv gpax[h (52)
+o0 +o

f d*x f dv hAg[g f >z f dv gAai[h (53)

for g, h € G. The properties (52| — 53]) easily follow from the definitions —

and from the orthogonality of the Fourier and Hermite bases.
From the expressions and , using integration by parts, it follows
that the Poisson operator associated with the drift-kinetic Poisson bracket

is given by
Be 0
= Al 5 N FP Y 4
Jar(9) B [g, -] —vFeq Ee (54)
with respect to the dual pairing
+00
< f.h >:J d%f dv fh, (55)
D —o

for two functions f, h. Combining Eqs. and with the general expression

for a Hamiltonian system, one retrieves namely the drift-kinetic equation

()

8.8. Hamiltonian formulation of the fluid models
Multiplying both sides of Eq. by H,/vn!, for n = 0,1,2,--- and inte-

grating over v, one obtains the following infinite system of fluid equations
0g 0

W ol - [l + 5 (42 a) <o (56)
0 0

W4 1o.g1] - ﬁ%m]MmH(ﬁmwO So)-o 6D

%+mm VLAl = ValA ] + 5 (Vi Ve + VB2 4) =0,

(58)

ot
(59)

19

0 0
IN [6, 98] — VN + 1[A, gn11] — VN[A, gn—1] + e (VN +1gn41 + \/NQN—l) =0,



where

AL 52\/5790, (60)

AJA—-A= %gl, (61)

and the fluid moments gg, g1, g2, - are defined in Eq. . We remark that,
on the basis of our definitions, gy, g1 and g» are proportional to the fluctuations
of the electron gyrocenter density, parallel velocity and parallel temperature,
respectively, where 'parallel’ refers to the direction of the guide field. Note also
2s  that the first three equations - of the hierarchy are peculiar, as they
involve also derivatives, with respect to z, of the electromagnetic potentials ¢
and A. For N > 2, on the other hand, the equations of the hierarchy are given
by Eq. .
Given a fixed integer N > 1, the infinite hierarchy of equations - can
be truncated by imposing

gns1 =0, (62)

The resulting closed system, given that we are assuming g € G in the parent
drift-kinetic system, can be written as
99m 290
ot 0z
2 0
5 (Vinl(6mo + 6ma)A = 616) =0, m =01, N, (63)
. 02

Agp= 52\/?90, (64)

AA— A= %gl, (65)

+ [¢7gm] - SNn”L [A,g’n,] + SNnLn

where the sum over repeated indices is understood and where Sy, =~ indicates
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the element of row m and column n, of the (N + 1) x (N + 1) matrix

0 1 0 0 0
1 0 42 0 0
0 v/2 0 /3 .. 0
0 0 3 0 0

Sy = va (66)
0 0 0 .. 0 +N
0 0 0 .. /N 0

We specify that, in this paper, the indices of the rows and of the columns of
(N +1) x (N + 1) matrices run from 0 to N.

Because the matrix Sy is real symmetric, it exists an orthogonal matrix Uy €
O(N +1) such that UL SnyUn = diag(Ao, A1, , An), where Ao, A1, , Ay are

the eigenvalues of Sy. One can then introduce the alternative variables
G; =U} gm, i=0,1,---,N, (67)

in terms of which the system — can be rewritten as

ot 0z

2 0 T T T .
- | — = =
o (WE, +V2Wg )A-UF 6) =0, i=0,1,--,N, (68)
2 N
AL =52 /E n;o Ung,. G, (69)
[Be <
ALA-A=y|7 m2=o Un,, Gm. (70)

In Ref. [32] it was shown that the system (68)-(70) (which is equivalent to Eqgs.
(63)-(65)) is Hamiltonian, with Hamiltonian functional

+ [¢ — )\iA, Gz] + N

N

H(Go, Gy, ,Gy) = %L B (Z G2 — \/ZUNMGZ» (011[Uny, G — )\Z-Afl[UNuGl])> :
n=0 1)

where, due to the orthogonality of the matrix Uy, from Eq. , one has

Un,,Gi = go and Un,,G; = ¢1 (we recall that, also in the expression ,
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the sum over repeated indices is understood). In Eq. we are considering
H e C*(Gn), where

N
QN = {(Go,Gl,'” ,GN)G]:X]:X Xf‘ ZUNozGlEJ:O}' (72)
=0

The introduction of this set is required in order for the expression ¢ [Un,, Gi]
to be well defined and, in turn, for the equation to be solved with respect

to ¢.
The Poisson bracket, on the other hand, is given by

{FaK}G:{FﬂK}GL+{F7K}GH7 (73)

where

{F,K}¢q =4/@§: ! Jd%G»[FG Kg,]
bl 1 2 7;:OU»NM i (2 i il

N
0K,
— E . 3 G
{F,K}GH P, AzJDd II'F‘GVI R s

for F, K € C*(Gy). Using the relation

oH 2 .
5a Gi—\/ﬂ*UNm(cﬁfl[UNmGl]—)\iAfz[UNuGl])a i=0,1,---,N, (74)

one can indeed obtain Egs. —, from Egs. (71) and , applying the
expression .

We remark that, in order to obtain the relation , we made use of the

symmetry properties

f xnonle] =f @bl (75)
D D

J drud p[w] =J dBrwApful, (76)
D D
for n,§ € Fo and u,w € F, which are a straightforward consequence of the

relations and .

4. Hamiltonian structure of the family of fluid models in terms of the

moments gos g1, ygN

The Hamiltonian formulation of the fluid models described in Sec. [B.3l

crucially depends on the knowledge of the matrix Uy and of the eigenvalues
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Ao, A1, -+, An. The existence of such matrix is guaranteed by the spectral the-
orem and this is sufficient to show the existence of the Hamiltonian structure.
However, in the absence of an explicit expression for the matrix Uy and for
the eigenvalues of Sy, the general expression for the Hamiltonian and the
Poisson bracket cannot be determined, and one is forced to find such ma-
trix and such eigenvalues case by case, when possible, for a given N of interest.
Moreover, the general expression of the transformation is not known ei-
ther. This expression is required in order to rewrite the Poisson bracket ,
for an arbitrary N, in terms of the fluid moments gg, g1, - - , gn, which are the
variables that one naturally adopts in applications.

In this Section we remedy this deficiency and provide the explicit expression
for the matrix Uy and for the eigenvalues of Sy, as well as the Hamiltonian for-
mulation of the fluid models —, for arbitrary N, in terms of the moments
90,91, gN-

Indeed, in Refs. [32, B3] it was not realized that the eigenvalues of the
matrix Sy correspond to the zeros of the Hermite polynomial Hy 1 (z) (which
is actually a well known fact, see, e.g. Ref. [4I]). From the recurrence relation

xHy(x) = Hpy1(z) + nH,_1(x) it follows that
aH,(x) = vVn + 1H, 1 (2) + vV/nH, 1 (2), (77)

where we defined

H,(z) = n = 0. (78)

Equation (77), evaluated at @ = \;, for a given eigenvalue X; € {Xo, A1, -+, An},
yields

NHn(N) = vV + TH1 (N) + vVnHu 1 (M) (79)
Combining Eq. with the expression of Sy, one sees that the vector
(ﬁo(Ai), H, (Ai)yoe s Hx (M\i))T is an eigenvector of Sy associated with the eigen-
value \;. Because the columns of the matrix Uy correspond to orthonormal

eigenvectors of Sy, we have that a generic element of Uy is given by

Uy =122 m,n=0,1,---, N, (80)

mn
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where

are normalization constants. The expression for these constants can be simpli-

fied making use of the Christoffel-Darboux identity [42]

= ; (82)

i Hy(x)Ho(y)  Hyi(2)Hy(y) — Hy(@) Hy(y)
= 2nn! INHIN(z — y)

where H,(z) = 2% H,(v/2z) are rescaled Hermite polynomials. The simpli-
fication is obtained by first taking the limit x — y, with the help of the de
I’Hopital rule, in the expression . Then one sets y = \,,, and given that

Hpy1(An) =0, one can obtain the following simplified expression [43], 4T]

N +1
U(p) = TlHN(/\n” (83)

Combining Egs. and , it follows that the explicit expression for a

generic element of the matrix Uy is given by

N!' H,(\)
U - —mirm/ =0,1,--- ,N 84
Non N+1|HN()\77,)|7 m,n y 4y 9 9 ( )

so that the generic matrix Uy has the form

N! H0(>\0) N! I:IU()\l) N! ﬁo(AN)
N+1 [Hn (o)l N+1|[Hy(A)] N+1 [Hn(AnN)|
Nl _Hi(00) Nl _Hi(M) N _Hi(An)
N+1 [Hy (o)l N+1[Hy(M)] N+1[Hy(AnN)I
Uy = (85)
N!_ _Hx(Xo) N!_ Hx(A1) N!_ _Hnx(w)
N+1 [Hn (o)l N+1 [Hy (M) N+1[Hn(AN)|

We are now ready to provide the explicit Hamiltonian structure, in terms of
the fluid moments, for an arbitrary member of the class of reduced fluid models

under consideration. We formalize this result by means of the following
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Proposition 4.1. For any integer N = 1, the system @—@, with go, g1, ,gN €

Fn, is a Hamiltonian system with Hamiltonian H € C*(Fy) given by

H(go, g1, ,9n) = J (Zgn \/790@1[90] glAfl[gl])), (86)

and Poisson bracket given by

{FaK}g:\/i Z (N)lL)dsxgl[FgmaK N

l,m,n=0

N
: oK
3 gn
E SNoun L) d’x Fy, 3 (87)

m,n=0

for F,K € C*(Fy), where

N! iHl()‘i)Hm(/\i)Hn(/\i)
N+14 HiZ\)Viminl

In the expression , the numbers \g, A1, -+ , AN are the eigenvalues of the

Wi, = (88)

matriz Sy given in Eq. , and are known to correspond to the zeros of the

Hermite polynomial Hy1(v).

Proof. The system (63)-(65) is equivalent to the system (68)-(70). In particular,
given that the orthogonal matrix Uy is invertible with inverse UJQI = UL, one

has a linear invertible map Uy : Gy — Fn defined by
Unz = UNZ, (89)

for z € Gy, which preserves the properties of a Poisson bracket. Therefore,
in order to determine the Hamiltonian structure of the system —, it is
sufficient to express the Hamiltonian structure of the system —, in terms
of the variables gg, g1, - , gn, making use of the transformation (@ and of its
inverse

gm = UNn,,, G, m=0,1,---,N. (90)

We proceed with transforming first the Hamiltonian . Using the orthogo-
nality of Uy, and Eq. (67)), one readily has that

N N
DG = Z UX,.9iU%, 95 = Z 95UN, Uk9i = D 98, (91)
n=0 i=0

n,t,5=0 n,,7=0
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which permits to transform the first term on the right-hand side of Eq. .
With regard to the remaining terms, they readily follow from the relations

Un,, G = go and Un,,G; = g1. Thus, one has straightforwardly

H(Go,G1,+++ ,GN) = f (Zgn \/790¢fl[90] 91Afz[91])>

:H(gOag17"'7gN)' (92)

With regard to the Poisson bracket, in order to transform {, }s , one needs to

transform also the functional derivatives in terms of the variables go, g1, - , gn-
This is accomplished using Egs. and , from which one obtains
oF o OF
= . i =0,1,--- N 93
6Gi Nij 69] ’ ¢ ) Ly AR ( )

for F e C®(Gn) and F = F oldy' € C*(Fy).
Using the relations @ and in the expression , for F, K € C*(Gn),
yields

(File -2y S -

1=0[]m,n= 0

N N
0K
-3 S UL UL f d F,, Lo
im in D az

i=0m,n=0

N .
\/E Z Z Hl Hp (Ni) Hn (M) degxgz[Fgm,K 1 (95)

l,m,n=01t=0 () u(l)

D

—2 2 )\ ) Ha(N) d?’:chmaKg" (96)

i=0m,n=0 U(a) U(q) D 0z

Be N H (A Hy () Ho (A)
\f Py N+1Z OO Jp P29 o] 0D

=0 N
Hm 7, Kg
’!L7 98
N+ 1 m; OIZ(:) JQV l T2 N S 'TL J Qm az ( )

where F' = F olUy', K = K oUy", and where in the steps —, we made
135 use of the expressions and .
Given the definition , we see that the expression is already in the

desired form. We focus then on the expression (98). Making use of the formula
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we obtain

N! i 3, Hm(Aa) Ha(Ai)
N+1427 52 (\)vVmin!

5 S [N (Wmr T o (N) 4 Vi (0 Ha(N) [ N Hu (M)
Z ZO N+1 . HN()\z> N + 1HN()\i)

m,n=0i=
N

=Y. (WVm+1Uy,,,, Uk, +vmUy,_, U.)
=0

= (\/m + 16m+1,n + \/aém,l’n) = SN'nt,n' (99)

Using the expression and the result in the two final steps of —

yields
3 N
Vs X W dealh. K,
l,m,n=0

oK,
- Z SNmn JD d3$ Fgm azg ’ (100)

5
=

fa

which completes the proof.

O

Remark 4.1. The Poisson bracket generalizes, up to the normalization,
various Poisson brackets present in the literature. For instance, for N = 1, it

s0  reduces to the bracket for the electron dynamics of the models of Refs. [24] [25]
44] and to the bracket of the model of Ref. [12] in the cold-ion limit. For N = 2
one retrieves the bracket for the ion gyrofluid dynamics of the model of Ref.
[26], whereas for N = 3, in the 2D limit, the bracket pertaining to the electron
dynamics with heat flux of Ref. [27] is obtained.

Remark 4.2. Comparing Eq. with Eq. , i.e. the expressions of the
Poisson bracket in terms of the fluid moments gy, g1, -+ ,gn and in terms of
the variables Gy, Gy, - - - , Gn, respectively, it emerges that the Poisson bracket

takes a much simpler form in terms of the latter variables. In particular, when

27



345

350

355

360

365

considering the perpendicular component {F, K}, , one sees that this is the

direct sum of independent Poisson brackets of the form
czf d*r Gi[Fa,, Ka, (101)
D

with constant coefficients cg, ¢y, -+ ,cny. The direct sum is one of the ways in
which one can build a Lie-Poisson bracket by extension [20]. As a consequence,
the proof of the Jacobi indentity is much easier when the bracket is expressed
in terms of the variables Gg,Gq, -+ ,Gn. This represents one of the main

advantages of introducing such variables.

5. Comparison with the approach based on a truncated series

In this Section we compare the Hamiltonian and the Poisson bracket
(87) with the functionals and the bilinear form, respectively, that one derives
from the parent drift-kinetic Hamiltonian and Poisson bracket , upon
replacing, as dynamical variable, the generalized perturbed distribution function
g with its truncated series retaining only the first N + 1 Hermite moments. In
order to carry out the comparison, we first present, with the next Proposition
a reformulation of the Poisson bracket . The proof of Proposition
is preceded by the following

Lemma 5.1. For every integer N > 1, the coefficients W(??\;;l n Eq. @

possess the following properties:

(a) Wiy =0 ifl+m+mnis an odd number,

o(m)o(n) _ m

(b) For fized integers l,m,n, one has WNa(l) = W(N’)Ll, where o : {l,m,n} —

{l,m,n} is a permutation of the integers l,m,n.

The proof of Lemma [5.1]is provided in

Remark 5.1. We observe that the property W('J”Vgl = W("I'([)Ll, following from
Lemma , is required by the antisymmetry of the Poisson bracket {, },
[20].
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We now proceed with re-expressing the Poisson bracket {, }, in a way that
will facilitate its comparison with the bilinear form obtained from the truncated
series, which will be derived in Sec. 5.1} In order to formulate the correspond-
ing Proposition, it is convenient to the define, for a given integer N > 1, the

following sets An and By:

AN = {(l,m,n)eZiO\Lm,ngN, l+m + nis even,

m+n=l,n+l=m,l+m>=n}, (102)

By = {(l,m,n)eZ;OU,mméN, [ +m + n is even,

m+n>N+1,n+l>N+1,l4+4m>N +1}. (103)

The set By is thus a subset of Ay.

Also, for two given positive integers m and n, such that m +n > N + 1, we

introduce the number ry, = defined by
TN,,, = min(Ry, ), (104)
where
Ry, ={reZ.g:(m+n—N—-1)/2<r <min(m,n)}. (105)

We can now formulate the following

Proposition 5.2. Given two functionals F, K € C*(Fy), the Poisson bracket

{, }4 can be expressed in the following way:
{F, K}y = {F, K}y, +{F, K}, (106)

In the expression one has

[Be 0 jyrmn
{F7 K}QJ_ = 5 Z W(N) l J’D dgx a1 [E‘]m,’ Kgrz]’ (107)

l,m,n=0
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where

Zf (l, m, n) € AN\BN,

N H ) e m n Hypgnoor(N)
(’}1\,’;1 —{N+145 H (M) = (m—r)(n—n)lrl  ilmn! (108)
U'm!n!

if (I,m,n) € By,

0 otherwise

and

ol oK,
3 n
(F,K}g =— > stf BrF,, a;] . (109)

m,n=0 D

The proof of Proposition [5.2]is provided in

5.1. Poisson bracket {, }, vs. bilinear structure obtained from truncated series

The closed fluid system - can be obtained from the drift-kinetic
system (2)-(4), assuming that g, at any time ¢, is a truncated Hermite series,
retaining only the moments from order 0 up to order N. Therefore it is natural
to ask whether the Hamiltonian and the Poisson bracket of the fluid model
— can be obtained from those of the drift-kinetic model, by replacing
g, in the latter, with its truncated series, or, more precisely, by restricting
the Poisson algebra of observables, to functionals of Hermite series truncated
at the moment of order N, and then expressing the outcome of the resulting
restricted algebra in terms of the fluid moment variables. A delicate point in
this operation concerns the Poisson bracket. Indeed, in order for the set of
functionals of the truncated Hermite series to be closed under the restricted
bilinear algebra operation (descending from the drift-kinetic Poisson bracket),
one has to restrict the Poisson operator of the drift-kinetic bracket, taking its
composition with the projector onto the subspace of truncated Hermite series.
Because this operation is not invertible, the resulting bilinear form can fail to

satisfy the Jacobi identity and therefore not be a Poisson bracket.
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In order to carry out this analysis, let us first introduce the operator Py :

G — I'y defined by
S H,
Prig) = ) gn—r"Fo. 110
N (g) 7;0 g m q ( )
The operator Py projects a generalized perturbed distribution function g onto

the subspace

I'y={9€Glgi=0 Vi=N+1}, (111)

whose elements are the truncated Hermite series. Each g € I'y can be written

as

306 = 3 0n6) 5L R 0) (12)

Wlth (907917 e 79N) € ]:N Satlsfylng

1 +00
gn:ﬁj‘ d’UHng, n:O,l,-~-,N. (113)
PJ—w

We want to identify the restriction of the Poisson algebra of observables of
the drift-kinetic system, consisting of C®(G), to the algebra C®(I'y) of the
truncated Hermite series, with the corresponding restricted bilinear algebra op-
eration. In particular, we want to determine the expression of the restricted

Hamiltonian functional H : 7 — R defined by

H(Qnglv' o 7gN) = Hay, OPN(g) = Hdk(g)v (114)

for g € T'y given by Eq. , and of the bilinear operator [, ] : C®(Fy) x
C*®(Fy) — C®(Fy) given by

_ /8FoPn(g) 6K o Pn(g)
[[F’K]]f_ <(59,Jdk OPN(9)69>
- (% @) (115)

WhereF,REC_'OO(FN) andF(QOmglv"' agN) :FOPN(Q) :F(g)’K(g())gla"' agN) =

KoPn(g) = K(3), with ge T'y.
In Egs. (114) and (115)), the functional Hg, the Poisson bracket {, }q

and the Poisson operator Jg are those of the drift-kinetic model given by Egs.

([19), and (54), respectively. In Eq. (115, as above mentioned, we are
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considering a bilinear form involving the composition of the Poisson operator
Jak, with the projector Py. The composition of these two operators, in general,
is not a Poisson operator. Therefore, the bilinear form is not guaranteed
to be a Poisson bracket.

After having defined the restricted Hamiltonian functional and bilinear
algebra operation , we intend to find their explicit expressions in terms of
the fluid moments gg, g1, - , gn, in order to compare them with the Hamilto-
nian and the Poisson bracket of the fluid model.

The wanted expressions for H and [, ]| are provided by the next two Propo-

sitions.

Proposition 5.3. The functional H, defined by the relation , coincides
with the Hamiltonian functional H of the fluid model given in Eq. (86) of

Proposition [{.1}
Proof. From Egs. (114)), and (112)) one has

+oo N
H, Hy
3 g,
H(go, 91, »gn) = Hak(§ Jd f (n;ﬂg”mg",ﬁn/!ﬂq

(116)
\/; Z gn Pq <¢dk lz n' —F7—= eq] vAagg lz g ——1F% ]))

(117)
%f (Z_} \/> (90051(90] — 1Afl[91])> = H(go, 91, - ,9n)-

(118)

To go from the expressions (116))-(117) to the expressions (118]) we made use of
the orthogonality relation for Hermite polynomials and of the relations ,
permitting to express electromagnetic potentials in terms of fluid moments.

O

Proposition 5.4. Given two functionals F, K € C*(Fy), the bilinear operator
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[, ], defined by the relation , can be written as

[F. K] = [F, K]+ [F, K], (119)
where
[F,K]. = 4/ Z W N)ZJ BrglF,, K, (120)
l,m,n=0
with
Vilm!n!
m—mn n+l—m m4n— ’ Zf (l7m7n’) € AN7
(Hrg=m) b (g ) (=)
%l = (121)
0 otherwise
and
[F, K] = — Z Sy f Bz F, Ky, (122)
mn 0 mn m aZ

Proof. From Eq. (115)), using Egs. and (|112)), we obtain

1] = (O @)

st rw (f [F;, K~]vFeqF§a;§§>. (123)

From the definitions of functional derivatives and , using also the rela-
tions (112)) and (113]), one obtains the following chain rule for functional deriva-

tives:

(x), (124)

= N
(x,v) Z
for F(§) = F(go,91, -+ ,gn). Inserting the expressions (112)) and (124)) into Eq.

(23) yiclds

- [oe [ (S n et )

l,m,n=0
H\H,,H, oK
- F, “F In 125
m;:() eq m 9m Oz )7 ( )

where we also made use of the relation v = Hy(v).
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At this point, we can apply to the expression ((125|) the following identity for
Hermite polynomials [45]:

J”c Hy(v)Hp(v)Hp(v)

dv Feq(v)

o mln!

(126)

ifl+m+nisevenandl+m=n, m+n=l,n+l>=m

()t (o (g

0 otherwise.

(127)

In particular, with regard to the expression in the second line of Eq. ([125)), we

have that
+oo H\H,,H, vm!n!
f dv Fﬁq j/ﬁ = 1+m—n)) m-:)z—nl | (ntl=mY) (128)
ey mmn. ( 2 )( 2 )( 2 )
when m + n + 1 is even and the three conditions
14+m=n, m+n>=1, n+1=m, (129)
are satisfied. Otherwise,
+oo H\H,,H,
f dv Fog———22" — 0, (130)
—o vm!n!

The conditions (129)), together with the constraint for m + n + 1 of being even,
imply
m—1l<n<m+L (131)

From the relation (131]) it follows that the integral (128 can be non-zero only
ifn=m-—1,n=morn =m+ 1. However, the case n = m implies that
m+n+1=2m+11is odd. Therefore, also in this case the integral is zero.

Using Eq. (128)), it follows that

dv F, ——
Using Eqgs. (126) (recalling that [,m and n go from 0 to N) and (132]) into Eq.

oo H\H, H,
f ! Vim 5m+1 n+ \/76m 1n = N,ML' (132)
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(125]), we can write

Be 0 pm
[[F, K]] = \/; Z (IL\;L)Z Dd3x gl[Fgm7Kgn]

l,m,n=0
N

0K
— >l SN J Pz F, I (133)

m,n=0 D 62

where
VIlm!n! .
(Em=n)| (atlom)| (min=l)p’ if (I m,n) € Ay,

Ny = (134)

0 otherwise.

Therefore we can conclude
[F,K] = [F, K], + [F, K. (135)
O

From Proposition [5.3] it follows that, for any N, the Hamiltonian of the
fluid model can be derived from the Hamiltonian of the drift-kinetic model, by
replacing, in the latter, the generalized perturbed distribution function with its
truncated series of order N. On the other hand, Proposition [5.4] shows that the
Poisson bracket of the fluid model cannot be obtained from the Poisson bracket
of the drift-kinetic model, by considering a Poisson operator depending only on
truncated Hermite series, and by restricting the set of observables to C®(Fy).

More in detail, by comparing Proposition with Proposition [5.4] one sees that

{’ }-‘JH = [[a ]]H' (136)

However, the difference arises in the ”perpendicular’ components {, },, and
[, ], characterized by the coefficients W(”f\;; , and W?}\}‘) ;- More specifically, one
sees that in general Wy}, = WY, except when (I,m,n) € By, i.e. when [,
m and n are all sufficiently ’large’. For most of the values of [, m and n, the

coefficients of the bilinear form, obtained from the truncated series, and the
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Figure 1: Plot illustrating, in the Imn space, the points where W{]'L\;)Ll = W?JL\?)Z = 0, the points

of the set An\By and the points of the set By, for the case N = 5. The yellow points are

those for which W{X])ll = WZ'JLV")Z = 0. The blue points are the points of the set Ay\Bn. At

such points one has W(T]”Vgl = WZ’]’\?)I. The red color indicate the points of the set Byn. At

such points W(’}l\,’;l #* W%l. It is at such points that the coefficients of {, }4, differ from
those of [, J..

coefficients of the Poisson bracket, are nevertheless identical. It is in this sense,
that we previously stated that the bilinear form [, ] and the Poisson bracket
{, }4 are ”very similar”. Note also that the expression for the coefficients W’&l\?) b
given by Eq. 1} does not depend on N, whereas this is the case for W(’]”\,’; !
when (I,m,n) € By, as shown by Eq. (108).

The distribution, in the Imn space, of the points where W(’}ngl = W?}\?)l =0, of
the points of Ax\Bx (where Wiy = W%l) and of the points of By (where
W(T}l\/f;l # WE’}V”) ,) is illustrated, for the case N =5, in Fig.

6. Example : a three-moment model

In order to exemplify the results presented in Secs. [l and [ we treat here in
detail the case N = 2. In this case, the resulting fluid model evolves the three
moments gg, g1 and go, which, as anticipated in are proportional to the
fluctuations of electron gyrocenter density, parallel canonical momentum and

parallel temperature, respectively. The closure adopted in this case is g3 = 0,
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which amounts to set the parallel heat flux fluctuations of the electron gyrocen-
ters equal to zero.

The matrix S, reads

0 1 0
Sa=11 0 2, (137)
0 v2 0

and its eigenvalues, corresponding to the zeros of Hz(z) = x> — 3z, are
()‘07)‘1a>‘2) = (_\/5707 \/g) (138)

From Eq. of Proposition we have that the Hamiltonian of the fluid

model is given by

H(go,91,92) = %L) d*x <9(2) +g5+ 95— \/Z(goéﬁfl[go] - glAfz[gl])>
(139)
For the Poisson bracket, we consider the expression following from Eq.
of Proposition For two functionals F, K € C*(F;) the Poisson bracket can

thus be written as

(F K}, = \/7 Z W(2 da:gl[Fgm,K]

l,m,n=0
2 0K
> S, | dar, S (140)
m,n=0 D z
where
W(z)z =0, for 0 <Il,m,n <2 except for
Wio =1,
W WQ) 1 W(Q) 1= 1
W W(2)2 W(2)2 (141)
W(121)2 W(2) 1= W(2) 1= \@7
1
22 _
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In a less compact form, the Poisson bracket (140) can be written as

(FK)y = | & (ﬁ( ([P o) + By Koy ) [Fy K)

+91([Fyo0 Kg, ] + [Fgquo]‘*‘\f[ g1s 92]—&-[[ 920 K1)

T 05([Faor K] + [ng,Kgohf [Fyrs Kol + jﬁ[FK D) (142)
5, o5, D ap, e op, P,

The Hamiltonian (139)) and the Poisson bracket (142]) yield the following equa-

tions of motion:

0 0 2 0A

;ﬁo (6, 90] — [A, 1] + =2 Eg =0,

agl +[¢,01] = [4, 90] — V2[4, 92]+ +\fag2—\ggf 0, (143)
6;52 + [#, 92] — \F[A g1] +\fagl V2 (ZA 0,

where ¢ = ¢yi[go] and A = Ap[g1]. The system coincides namely with
the fluid system in the case N = 2, obtained by truncating the hierarchy
ws  of equations (56)-(59) with g3 = 0.
Also, from Eq. one obtains

1 ﬁ’L

v 3 6

|1 1
Us -5 0 S| (144)

1 1 1

V3 Vi B

(note a difference with respect to Eq. (87) of Ref. [33], due to a different num-
bering of the eigenvalues and a different choice in the normalization constant).
From the matrix Us one can, by means of Eq. , obtain the expressions for

the variables (Go, G1,G2) € Ga, which read

90 g1 g2
Gy = —=— =+ =%,
°TV6 V2 B
2 g2
=A/=gg — == 14
G1 390 73 (145)
g0 g1 g2
Gy= "=+ "—F=+—F.
TV6 V2B
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In terms of these variables, following Egs. —7 the system (143) can be

rewritten as

Gy oGo 2o 3, s\
&*WW%A’G()]“%*\/;&( 2“@)—07

oG, [6,G41] = 0, (146)

ot
G, G, [zTo( 3, o).
at+[¢>\/§A,Gz]+x/§az+4/ﬁeaz< 2A\/§>—0,

where d) = ¢fl[U20lGl] and A = Afl[UQUGl]-
The formulation (146)) puts in evidence the existence of a Lagrangian in-

variant, corresponding to G1, which is simply transported by the velocity field

VExB = £ x V¢, (147)

which identifies with the so-called E x B velocity field. We note that, on the
basis of our definitions of the fluid moments, G is proportional to n. — Tj./2,
where n. and Tj. are normalized fluctuations of electron gyrocenter density
and parallel temperature, respectively. We observe that the relation Tj. =
2n. (implying G; = 0) expresses an adiabatic law for the parallel electron
temperature. Therefore, if T}, = 2n. at ¢ = 0, G; = 0 is a solution of Eq. ,
which expresses the adiabatic relation between parallel electron temperature
and density at all times. If T}, # 2n. at ¢ = 0, on the other hand, such initial
departure from adiabaticity is conserved along the flow of the E x B velocity at
all times. From Eqs. (146) it can also be seen that, in the 2D limit in which the
fields Gy, G; and G5 do not depend on the z coordinate, all these three fields
become Lagrangian invariants, as already pointed out in Refs. [32 [33].

We now apply, to the case N = 2, the approach based on the truncated series.
From Proposition we obtain that the truncated Hermite series g € I's, given
by

_ 2 H,(v)
g(X, U) = 7;0 gn(X) m FEQ(U)v (148)

when inserted into the drift-kinetic Hamiltonian Hgg, yields the functional

H(g0,91,92) = H(go0,91,92), where H is the fluid Hamiltonian (139). On
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the other hand, the expression of the bilinear form [, ], for two functionals

F,K € C*(Fy), follows from Proposition and is given by

[Be < ymn
[F. K] = > Z WE | dPe gl Fy,., Ky,

l,m,n=0 D
2 oK
B 2 San J d?’z Fgm 79"7 (149)
m,n=0 D 0z
where
Wzggll =0, for 0 <Il,m,n <2 except for
W?S)O = 17

Wizyo = Wiy = Wizyn = 1,
WS o = Wizy = Wizo = 1, (150)
Wiz = W5 = Wiay1 = v2,

Comparing Eq. with Eq. and Eq. with Eq. , it emerges
that the bilinear form [, ] differs from the Poisson bracket {, }, only by the
coefficient W%§)2 = 24/2, which is not equal to VV(222)2 = 1/4/2. Indeed, the set
By is given by By = {(2,2,2)} and, from Eq. of Proposition [5.2] it follows

that only the expression for W22, = 1/4/2 differs from the expression of the

(2)2

corresponding coefficient of [, ].

Remark 6.1. It turns out that the bilinear form (149)) is antisymmetric, satisfies
the Leibniz rule but it does not satisfy the Jacobi identity. Therefore, the form
(1149) is not a Poisson bracket. In order to see this, we first remark that the

Jacobi identity for the bilinear form [, | can be written as
MF, K]]J_,EHJ_ + MF,K]]J_,E]]H + [[[[F, K]]HvEHJ- + [[[[F,K]]H,E]]H-i- O= 0, (151)

where the symbol (J indicates the additional terms obtained by cyclic permu-
tation of F, K and E. The identity (151)) must be valid for all functionals
F, K, E e C®(F).
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In order to investigate the relation (151) we can make use of a result pre-
sented in Sec. 3.2 of Ref. [23]. According to such result, one has that

[IF, K]y, E]L + [[F, K]y, E])+ O= 0, (152)

which follows from the fact that [, ]| is itself a Poisson bracket with constant

Poisson operator. With regard to the expression
[[F, K]., E])+ O, (153)
it vanishes for all F, K, E € C*(F,) if and only if the condition

Sa,., W = So,, W), = S, W for 0 < j,m,n < 2, (154)

(2)i im W (2) 8

(where the sum over the repeated index 7 is understood) is satisfied. However, if

we consider the case j = 2,m = 2,n = 1, from Egs. (137)) and (150)), we obtain
SQMW%;)i =9, 5212W%21)i =2. (155)

Therefore S, W3 ; # S2,,W(;); and the condition (154) is not satisfied. Thus,
the expression (153)) does not vanish for all F, K, E € C*(F;). Similarly, one
can show that the

MFvKHJ_vE]]J_"_ O=0, (156)

does not hold for all F,K,E € C®(F,). An effective way to see this is to
take advantage from a result in Sec. 2.3 of Ref. [20] (actually, the result of
Ref. [20] refers to a purely 2D domain, but this difference is irrelevant for the
present purpose). According to this result, for a given N, antisymmetric bilinear
operations of the form satisfy the Jacobi identity if and only if all the NV +1

matrices W) | whose elements of row i and column j are defined by

W(k) ij

(N) 4 Z.vj7k:0a"'7N7 (157)

pairwise commute.

In the present case N = 2, from Eq. (150, one obtains that the three
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matrices W, W) and W®) are given by

10 0 0 1 0 0 0 1
WO =10 1 0f WP=]1 0 v2f, W®P=1]0 v2 0
001 0 v2 0 10 2v2

(158)

Clearly, both W) and W®) commute with W), which is the identity matrix.

However, one has

0 V2 0 0 2 0
whw® =15 o 5|, wWAWO =5 o 2. (159)
0 2 0 0 5 0

Therefore, W) and W® do not commute and, consequently, the condition
is not satisfied for all F, K, E € C®(F,), which, in turn, implies that [, ], is
not a Poisson bracket on its own. We finally remark that the sum of the two
contributions [[F, K], E]1+ O and [[F, K], E]j+ O cannot vanish either,
for any choice of F, K and E, because [[F, K], E]j+ O explicitly contains
partial derivatives with respect to z of functional derivatives of F, K and F,
whereas [[F, K], E]j+ O does not contain this type of derivatives. Therefore,
there cannot be cancellation between these two contributions, for any choice of
F, K and E. In conclusion, the Jacobi identity is not satisfied.

We also remark that, if one had replaced the value 24/2 of W%22)2 with the
value 1/4/2, corresponding to W(222) 5, the condition would have been satis-
fied and the three matrices W, W(1) and W would have pairwise commuted.
Thus, the Jacobi identity would have been satisfied, which confirms that {, },
is a valid Poisson bracket.

The additional term, with respect to the expression 7 present in Eq.
for (I,m,n) € By, is what ’corrects’ the coefficient W), in order to
modify the form [, ] into a Poisson bracket. In particular, it modifies the per-
pendicular form [, ] turning it into {, }4,, which is a Poisson bracket obtained

by extension of a Lie-Poisson bracket [20].
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Finally, we note that, had one naively (and not correctly) used the bilinear
form as a Poisson bracket, and derived a set of equations using the formula
gi = [gi, H], for i = 0,1,2, with H given by Eq. , one would have never-
theless obtained the correct equations of motion . Indeed, the coefficient
W%QQ)Q, which spoils the Jacobi identity, would have produced no finite terms
in the equations of motion. Therefore, this is one of the examples that points
out subtleties existing in the identification of Poisson brackets among ’almost
identical’ antisymmetric bilinear forms. These can indeed yield the same equa-
tions of motion from the same Hamiltonian, but they are not Poisson brackets
because they do not satisfy the Jacobi identity. It also shows how truncations

can spoil the Hamiltonian structure of a model.

7. Physical interpretations of the variables Gy, G, - ,GNn. Analogy

with the problem of the quantum harmonic oscillator

The set of variables Gy, Gy, - -+ , Gy introduced with Eq. , proved to be
useful [32] in order to find the Poisson bracket for the fluid models which, in
terms of these variables, takes the simple form . Such variables are related

to the Casimir invariants of the perpendicular Poisson bracket {, },, , i.e. to

observables C' € C*(Gy) such that
{C,F}a, =0,  VFeC¥Gn). (160)

More precisely, one has that the observables C; € C*(Gy), with i = 0,1,--- , N,
and defined by

Ci:J drCi(Gy), fori =0,1,---, N, (161)
D

with Cy,Ca, -+ ,Cn arbitrary smooth functions, are infinite families of Casimir
invariants for {, }¢,. Casimir invariants of this form have been found in the
2D limit of a number of reduced fluid models, as for instance in those of Refs.
[46, 24, 25, 26, 27]. The associated variables Gy, G1, -+ ,Gy have also been

used to investigate simulations of collisionless magnetic reconnection [I1], 40,
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277, 10, [47] or directions of spectral cascades in 2D plasma turbulence [48]. In
the 2D limit, such Casimir invariants are analogous to the Casimir invariants
of the 2D Euler equation for an incompressible fluid [30]. However, in spite
of their frequent occurrence in reduced fluid models for plasmas, a complete
physical interpretation of the variables Gy, G1, -+ ,Gy, associated with such
Casimir invariants, still appears to be lacking. Here we provide an attempt to
remedy this gap.

We begin by recalling, as stated at the beginning of Sec. that the N +1-
moment fluid model — can be obtained from the parent drift-kinetic
system — by replacing ¢g with its truncated Hermite series

§(x, v,t) = i ) Hm g o) (162)
g = gm I m eq .
Using the relation g,, = Un,,,, Gn, Eq. (162)) can be rewritten as
N
- H, (v
g(x,v,t) = Z Un,,,Gn(x,1) m( )Feq(v). (163)

Vm!

Evaluating Eq. (163) at v = A;, for ¢ =0,1,--- , N and using the relation

m,n=0

NS H;i(\j)Hi(Ax)
N+1 ; |Hy O\)[[Hy (e)]i! Ok (164)

which, analogously to Eq. (B.3)), follows from the orthogonality between Uy

and U, one obtains the relation

N +1
30, My t) = A /T; | HyOW)|Gi(x, ) Fag(Ns),  fori=0,1,---,N. (165)
This relation can alternatively be written as
Gi(x,t) = an, §(x, A, t), fori =0,1,---, N, (166)

where

N! 1
anN N, = .
N + 1 |Hn(N)|Feq(Xi)
From the relation (166) one can then interpret each G; as a field providing, up

(167)

to the multiplicative constant factor o x,, the spatial and temporal evolution
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of the truncated distribution function related to electrons with parallel velocity
v = )‘z
Using Eq. , the evolution equation for a given G;, can be written

as

(7G aG N0

where ¢ = ¢fl [UNOZGZ] and A = Afl[UNllGl]- Upon deﬁning

g)\i(X, t) = g(X, )\i,t), (169)

one obtains, through Eq. (165]), the evolution equation for gy,, which reads

0gx, 2 0
0z Be Feq(Xi)Ai 0z

We remark that analogies between the dynamics of variables GG; in fluid models

08,
ot

+ o= NA B ] + N (MA—¢)=0.  (170)

(for N = 1) and the dynamics of the electron drift-kinetic distribution function
was observed by means of numerical simulations of magnetic reconnection in
Refs. [34], B5] B6].

From the relation it follows that, knowing the location of A; (i.e. of the
zeros of Hy1(x)), tells what are the particular values of v for which the trun-
cated generalized perturbed distribution function is proportional to G;. From
the properties of the zeros of Hermite polynomials, some information about the
location of the eigenvalues \; can actually be inferred.

We proceed by recalling some known properties about zeros of Hermite poly-
nomials, from which we also draw some conclusions on the dynamics described
by the reduced fluid models, and their relation with the parent drift-kinetic
model.

First, for a given N, the eigenvalues \; are distinct [42]. Moreover, as already
noticed in Sec. [5| they are symmetrically distributed around = = 0, and, when
N is even, there exists one m such that \,, = 0. Therefore, for fluid models

with even N (i.e. evolving an odd number of moments), one has

aG +[¢,Gm] =0, (171)
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i.e., there exists one, and only one field G,,, which is purely advected by the
E x B velocity field (this was the case, for instance, of G; in Eq. (146))). This
reflects the fact that, when N is even, the Poisson bracket can be written

N
_ Be 1 3. . _f?s%
(F K)o =, <4/2lh%iJ;d;rGJﬁb”}Qh] 5| dtars,

1=0
1#Em

/8. 1
+ Be ‘[ 3z GnlFa, , Ka, ] (172)
2 UN o D

Casimir invariants of the bracket ((172)) are given by

as

Q:Jd%G“ i=0,-,N, i#m, (173)

D

@mzj‘meMGm) (174)
D

where C,, is an arbitrary smooth function. Therefore, when the number of
retained moments is odd, the system admits, even in 3D, an infinite number
of Casimir invariants, corresponding to the family €,,, in addition to the finite
number of Casimir invariants €;, withé = 0,--- , N and i # m. A similar feature
was encountered also in the Casimir invariants of the model described in Ref.
[28].

A different situation occurs when the number of moments is even (i.e. N is

odd). In this case, \; # 0 for all ¢ and the Poisson bracket reads

N
ﬁe 1 J 3 f 3 (3KG
F K)o =Y (/= PrGiFo . Kal— M\ F 286
{F,K}c i=0< 2 U o rGi[Fg,, Ka,] — A Ddx G,

(175)

Casimir invariants thus reduce to
Q=fd%Gh i=0,---,N, (176)
D

and remain in a finite number.
The explicit form of the matrix Uy provided in the present paper, makes
it also now possible to easily express Casimir invariants in terms of the fluid

moments, for arbitrary IN. This becomes particularly relevant in the 2D case,

46



530

535

540

545

550

where the evolution equations of the fluid moments can be recast in the form of
advection equations for the Lagrangian invariants Gy, G1, -+ ,GxN.

More in general, as it emerges from Eq. , the eigenvalues \; express the
weight of the magnetic contribution, relative to the E x B contribution, of the

generalized velocity fields
v, =2 x V(¢ + \NA), 1=0,1,---,N. (177)

The incompressible velocity fields v; are those that advect the fields G; in the
plane perpendicular to the guide field.

Another property of zeros of Hermite polynomials is that they interlace (see,
e.g. Ref. [49]). This means that, if Ao, A1,--- , Ay are the zeros of Hy11 and

0> ALy, Alyyq are the zeros of Hy o, one has

Ay <Ao< Ap < <Ay < Aygq- (178)

Therefore, between two consecutive eigenvalues \; and \;;1 of Sy, there will
always be one eigenvalue Aj,; of Syi1. Also, for a given interval v; < v < va,
one can always find an eigenvalue that belongs to that interval, provided N is
large enough. This suggests how the relative weight of magnetic vs. E x B
contributions, in the generalized velocity fields v;, evolves, as IV increases. We
point out that the arguments discussed in this Section, about the eigenvalues
Ai, hold for N arbitrarily large but finite. In particular, although, as just stated,
for sufficiently large N, one can find an eigenvalue \; arbitrarily close to a given
value of v, not all the real values of v are eigenvalues of Sy, even for N arbitrarily
large. Indeed, because the eigenvalues are zeros of polynomials with rational
coefficients, there exists no N, for which \; = v, for some i < N, when v is a
transcendental number (see also Ref. [43]). From this, we can infer a limitation
in the approximation of the drift-kinetic dynamics with that of the reduced fluid
models. Indeed, reduced fluid models with the adopted Hamiltonian closure,
as mentioned at the beginning of Sec. replace the actual dynamics of g
with that of a truncated series. Through the relation , one has a direct

correspondence between the variables G; of the fluid model, and a truncated
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series of g, for a discrete set of v € {\g, A1, -, An}. Thus, the dynamics of the
fields G; can be seen as an approximation of the dynamics of the actual function
g, for a discrete set of values of v. However, because of the above remark on the
non-transcendental character of the eigenvalues \;, we can conclude that there
cannot be an approximation of g, by means of a certain G;, for transcendental
values of v, no matter how large IV is.

We remark that the infinite hierarchy of equations —, obtained from

the drift-kinetic system without truncations, can be written as

99m 290
ot 0z

3 0
R (\/m!(émo b Gma) A — 5m1¢) =0, meZso, (179)

where Spn = /M0 nt1++vm + 10, n—1 are the elements of the infinite matrix

0 1 0 0 0
1 0 2 0 0
0 V2 0 3 0
0 0 3 0 0
S = | (180)
0 0 0 .. 0 N
0 0 0 .. +/N 0

One can recognize, up to multiplicative constant factors, the matrix S as the
Jacobi matrix of the position operator z for a quantum harmonic oscillator in
the orthonormal basis consisting of eigenvectors of the number operator N. The
matrix S, in particular, can be written as S = a” + a, where a” and @ are ma-
trices of elements a%n = /MO n41 and @y = \/m7—|—15m7n_1. The matrices
a” and a are associated with the ladder operators a' and @, respectively. In
terms of this analogy, one could interpret, from the first line Eq. 7 the
temporal variation of the moment g,, as influenced by the action of such two

operators. One of them (analogous to the ”creation” operator a') corresponds
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to v/m + 1gm41 and the second one (analogous to the ”annihilation” operator
@) corresponds to y/mg,—1. We point out that a connection between creation-
annihilation operators and the dynamics of moments obtained from the Vlasov
equation was investigated in Ref. [50]. In this context, we also find it interesting
to mention that our approach for closing the infinite hierarchy 7 by replac-
ing the infinite matrix S with a finite matrix Sy, is analogous to the procedure
adopted in quantum mechanics for approximating the behavior of a quantum
harmonic oscillator by a truncated quantum harmonic oscillator [43][41]. Indeed,
the matrices Sy correspond to those associated with the position operators of
truncated harmonic oscillators. The analogy with the quantum harmonic oscil-
lator relies on the choice of the Hermite polynomials as basis for representing
the generalized perturbed distribution function g. Therefore, we believe that

the analogy would fail if a different basis were chosen for representing g.

8. Conclusions

We presented new results concerning an infinite class of Hamiltonian nonlin-
ear reduced fluid models describing the dynamics of plasma and electromagnetic
fields in the presence of a strong magnetic guide field. The Hamiltonian struc-
ture of all these models is now available in an explicit form, thus completing
the results of Refs. [32] B3] about the existence of such structure. Although the
Hamiltonian reduced fluid models can be obtained from the parent drift-kinetic
model, by truncating the Hermite series expansion of the generalized perturbed
distribution function, we showed that this approach cannot be applied in order
to derive the Hamiltonian structure of the fluid models from that of the parent
model. Indeed, by this approach, one does not retrieve the Poisson bracket of
the fluid models, but a different (although, interestingly, ”very similar”) bilinear
operator which we showed, with a counterexample, not to satisfy, in general,
the Jacobi identity. Such truncations are thus shown not to preserve the Hamil-
tonian structure. In order to derive the Hamiltonian structure of fluid models

from that of a parent kinetic model, alternative approaches should be followed.
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Examples of fluid reductions from kinetic systems, that preserve a Hamiltonian
structure, are provided in Refs. [51} 52} 53] 54, [55] (6]

From a more physical perspective, we showed the existence of a relation (so
far unknown, to the best of our knowledge), between the variables Gy, G1,- -+ ,Gn
and the truncated generalized perturbed distribution function. Also, we put in
evidence some features of the dynamics of the reduced fluid models, inferred
from properties of the zeros of Hermite polynomials. A limitation in the capa-
bility of a reduced fluid model to approximate the dynamics of the drift-kinetic
model was also identified. Furthermore, we pointed out an analogy between the
hierarchy of fluid equations and the problem of the quantum harmonic oscilla-
tor. In particular, the closure problem in the plasma physics context, shares
similarities with the problem of the truncated harmonic oscillator in quantum
mechanics.

In our opinion, the present paper motivates further research in various direc-
tions. On one hand, given the above mentioned failure in deriving the Poisson
brackets of the reduced fluid models, by the truncated series approach, the prob-
lem of the derivation of such Poisson brackets remains open. The identification,
carried out in Sec. 5] of the terms that ’correct’ the coefficients W’(?}\}L) ,» turning
them into the coefficients (’}1\;; , of the Poisson bracket, might give some hint
on how the Lie algebra underlying the Poisson bracket {, }, descends from that
of the parent Poisson bracket {, }4x.

A further natural direction of investigation, potentially leading to a number
of applications in terms of modelling plasmas with strong anisotropies, concerns
the identification of Hamiltonian closures for reduced fluid models accounting,
in addition to the evolution of moments involving the coordinate v, also mo-
ments with respect to the perpendicular velocity coordinate. In Ref. [33] finite
Larmor radius effects involving the perpendicular velocity (or, equivalently, the
magnetic moment) coordinate, were taken into account. However, no general
Hamiltonian closure was found for models evolving also moments with respect
to such coordinate.

Finally, we believe it could be useful to deepen the investigation of the anal-
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ogy between the present hierarchy of fluid models and the quantum harmonic
oscillator. In particular, it might be interesting to see whether the techniques
adopted to approximate the quantum harmonic oscillator by a truncated oscil-
lator, as done in Ref. [41], could be transferred to the problem of approximating

a drift-kinetic system by a reduced fluid model.
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AppendixA. Proof of Lemma

Proof. In order to prove the statement (a) it is convenient to introduce the

function
N!' Hy(x)H,,(x)H,(x)
0 = Al
NlnLn (x) N + 1 H]Q\](x)\/m ( )
so that
N
WS =7 0, (M. (A.2)
i=0

Because an Hermite polynomial H,(z) is an even (odd) function of z if n is an
even (odd) number, it follows from the definition that, if [ +m +n is odd,
the function 6y, ,, is odd. Moreover, the elements Ao, A1, -+, Ay, which are
the zeros of the Hermite polynomial Hy1(z), are symmetrically distributed
around x = 0 on the real axis, so that if \; is a zero, also —)\; is. In particular
one has \; = 0, for a certain ¢, when Hy .1 is an odd function, i.e. when N is

even.
We first consider the case when N is odd. In this case \; # 0 for i =
0,1,--- , N. We sort the eigenvalues )\; in increasing order so that \g < \; <
- < An. Due to the above mentioned symmetry property around x = 0, we

have that

{)‘Oa)‘h"' a)‘N*17)‘N+17"' 7AN71>>\N}

2 2

:{_A]\U_)\N—la"'7_)‘%7)‘%7"';AN—1,AN}' (Ag)

o1



Thus, from Eq. (A.2)), considering that 8y, . is an odd function when I +m+n

is odd, one has

Wis, = Z On,. (Ni) 2 On, (\i)

i N+1

N N
Z 9Nlmn + 9Nlmn )" 2 eNlmn + 0N1mn ()‘)) =0

(A.4)

The case when N is even proceeds in a similar way, with the difference that the

eigenvalue \; = 0 must be taken into account. Therefore one has

{>\0a)‘17 U a)‘%—laA%7>\%+1a o 7>\N—17)\N}
= {=AN, = AN-1, A, 0 AN gy An-n, A (A.5)

Analogously to Eq. 1) the expression for the coeflicients W N) , is given by

Wi = Z 0N M)+ Y O () + 0N, (Ax)
i=8+1
N

N
= ) (ONpn (X) + 08 (AN) + 080, (0) = D (=0, (M) + Oy, (M) = 0,

=N N+1
i=5+1 5

(A.6)

where Oy, (0) = 0 because fx,,,, is an odd function.

With regard to the statement (b), it follows straightforwardly from com-
mutativity under multiplication, which implies ﬁa(l)ﬁg(m)ﬁg(n) = HH,,H,.
Consequently, from the expression , we obtain

N A . .
Wo’(m)o(n) _ N! Z Ho’(l) ()‘Z)Ha(m)()‘l)Ho(n)()‘l)
(V) o) N+14 H%(\)

N H(N) Ho (M) Hi (M)
N +1 ; H%(\)

= Win,. (A.7)
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AppendixB. Proof of Proposition

Proof. Comparing the expressions (106)), (107) and (L09) with the expression
, it immediately follows that, in order to prove the Proposition, it suffices

to prove the relation . Also, because of Lemma @, we only need
to consider 3-ples (I,m,n) such that [ + m + n is even. Moreover, by virtue
of Lemma @, once we obtain an expression for W(Tvgzv we automatically
obtain the expressions for all the coefficients obtained by permutations of I, m
and n.

To obtain the required expression for the coeflicients W(’}l\;;l we first recall
the following identity for Hermite polynomials (which can be obtained from Eq.
(2.01) of Ref. [57]):

min(m,n)
Hy(@)Ha(x)= Y ol <m) (”) Hypponor(2). (B.1)

r=0 T r

From Eq. 7 it follows that the coefficients W(TJ”\,’)LZ can then be rewritten as

Wiv = 1 4 HZ ()

(B.2)

NCY H () mi“‘Z’”’") m! nl Hpponoor(\)
(m—r)(n—r)rl  VIimn!

Due to the orthogonality of the matrices U and U7, from the expression ,

one obtains the following relation:

N! i Hj(Ni)Hi ()

- = 0j &, B.3
N+14 HZ,(Mi)VjE! / (B-3)

Now we consider a coefficient W(’}LV’)LZ for a fixed 3-ple (I, m,n) and proceed by

separating the analysis in two cases.

Case I : In a given 3-ple (I,m,n), the elements l,m,n are such that
I+ m + n is even and there exist at least two elements such that their sum

is less than or equal to N + 1

Let us suppose that m and n are such that m +n < N + 1. Due to the
orthogonality relation (B.3)), when the condition m + n — 2r = [ (with 0 <
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r < min(m,n)) is satisfied, the right-hand side of Eq. yields a finite
contribution. Note also that, if m +n = N + 1, the contribution coming from
Hpyin(N) = Hy41(N;), corresponding to r = 0, vanishes. This contribution,
actually, is not determined by the relation , because such relation involves
only Hermite polynomials up to order N. However, one has that Hy1(A;) = 0,
because, as recalled before Eq. , Aiisazeroof Hyyq foralle=0,1,---  N.
Therefore, the case m +n = N + 1 provides at most only one finite contribution
to W(%?w as does the case m +n < N + 1. The non-zero contribution occurs

for
m+n—1
2 )

(recall that we are considering I + m + n even, so that m + n — [ is also even),

(B.4)

r =

provided that

m+n—1 m+n—1 m+n—1
— =0, > —, z B.5
2 " 2 2 (B:5)
The conditions (B.5)) can be reformulated as
m+n=l, l+m=n, n+1=m. (B.6)

If these conditions are fulfilled, from Eq. (B.2), using Eq. (B.3)), one obtains
mn Vilmln!

W(N)l - (m_ m+2nfl)! (TL— m+2nfl)! (m+nfl)!

2
Vilm!n!

RE=nE=one=

If any of the three conditions is not satisfied, then W(T]"\,gl = 0, because
there would be no r, with 0 < r < min(m,n), such to provide a non-zero
contribution in the right-hand side of Eq. , due to Eq. . The 3-ples
(I,m,n) belonging to Case I and yielding W(T\;)Ll # 0 are thus those given by
(I, m,n) € AN\Bn.

Note that, due to the invariance of the coefficients W{}’V’)‘l under permuta-
tion, one can easily determine the coefficients in Case I also when the sum of
two indices is greater than N + 1. For instance, if one is in Case I and wants to

computeW(”]\l,)m,witthrl>N+1,l+m>N+1andm+n<N+1, it
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suffices to permute the indices and, due to W("]\l,) = W(’RZ)I ;> one can follow the

above procedure carried out for W{%’l

Case Il :  In a given 3-ple (I,m,n), the elements I, m,n are such that [+ m+n

isevenandl+m>N+1, m+n>N+1, n+l>N+1

We are thus referring to the case (I,m,n) € By. The sum on r on the
right-hand side of Eq. (B.2) involves the Hermite polynomials H,,4n, Hpmtn—2,
Hyin—as 5 Hyyn—2min(m,n)- We denote with ry, — the smallest integer r,

with 0 < r < min(m, n), such that m + n — 2ry,,, < N + 1. This corresponds

mn

to the definition ((104)). We can then split the sum on r, in Eq. (B.2), into two

parts, in the following way:

NI N "Nmn ~ m)! n! Hm+n72’r‘(>\i)
mn — B.
W(nyi N+ 1 Z H2 ( ; (m—=r)!(n—r)r'  /Ulm!n! (B.7)
min(m,n) | |
m! n. Hm+n—27'(/\i)
B.8
+ ng (m—r)(n—n)lr'  ilmln! B8

The sum from r = 7y, to r = min(m,n), in the expression (B.8]), involves

only Hermite polynomials of order at most equal to IV + 1. Therefore, although
m+mn > N + 1, this expression can be treated in the same way as Case I, using
the relation (B.3). On the other hand, the sum from r = 0 to r = ry,,, — 1, in
the expression , involves only Hermite polynomials of order greater than
N +1 (and thus greater than [). For such polynomials, the orthogonality relation
does not apply. However, the terms in the expression , in general,

can provide additional finite contributions to W(TV’; ;- It follows that, from Eq.

-B.8, the expression for W&”VT;Z in Case II can be written as

TN. 1
pas m! n! Hyin—or (M)
Wi N +1 Z ) rgo (m—=—r)(n—n)lr'  ilmln!
\/l!m.n.

T () () (=)

(B.9)

Equation thus yields the required expression for ng\[)zl when (I,m,n) €
By.
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