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Boulevard de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France

Abstract

The Hamiltonian structure for an infinite class of nonlinear reduced fluid mod-

els, derived from a Hamiltonian drift-kinetic system, is explicitly provided in

terms of the N ` 1 fluid moments evolving in each model of the class, with

N an arbitrary positive integer. This improves previous results, in which the

existence of the Hamiltonian structure was shown, but the complete explicit

expression for the Poisson bracket of each model of the class was not provided.

We also show that, whereas the Hamiltonian functional of the fluid models can

be derived from that of the drift-kinetic system, by projecting the perturbation

of the distribution function onto its truncated series in terms of Hermite poly-

nomials, this is not the case for the Poisson bracket. Indeed, the antisymmetric

bilinear form obtained by means of the aforementioned projection, although,

interestingly, ”very similar” to the Poisson bracket of the fluid models, turns

out to differ from it. The difference is found to reside in the coefficients Wmn
pNq l

of the bilinear form, when the indices are such that l ` m ` n is even and

l ě N ` 1,m ě N ` 1, n ě N ` 1. We show with a counterexample, related

to the case N “ 2, that such bilinear form, in general, does not satisfy the

Jacobi identity. We provide a physical interpretation of the set of variables

G0, G1, ¨ ¨ ¨ , GN , in terms of which the Poisson bracket of the fluid models ex-

hibits a direct-sum structure, and point out an analogy between the present

fluid reduction problem and the problem of the truncated quantum harmonic

oscillator.

Preprint submitted to Physica D May 5, 2022



1. Introduction

In many circumstances, the behaviour of plasmas is influenced by the pres-

ence of a magnetic field characterized by one dominant component, nearly con-

stant in time, which is referred to as guide field component. This can be the

case, for instance, in tokamaks or in coronal loops, where the toroidal com-5

ponent of the field is much greater than the poloidal component. In these

situations, a small parameter naturally emerges, corresponding to the ratio be-

tween the characteristic amplitude of the time-dependent components of the

magnetic field and the strong guide field component. Taking advantage of this

small parameter, several nonlinear reduced fluid models have been derived in10

order to describe plasma dynamics in the presence of a strong guide field. In the

context of tokamak fusion plasmas, two classical examples of such reduced mod-

els are provided by reduced magnetohydrodynamics (MHD) [1, 2] and by the

Hasegawa-Wakatani model for drift-wave turbulence [3]. Reduced fluid models

of the same kind also proved to be useful for investigating fundamental aspects15

of turbulence relevant for the solar wind, as for instance in Refs. [4, 5]. Fur-

ther applications of reduced fluid models include the description of nonlinear

coherent structures in plasmas [6, 7, 8] and magnetic reconnection [9, 10, 11, 12].

In the plasma physics literature, such nonlinear reduced fluid models were

typically derived either from two-fluid models by asymptotic expansion in terms20

of small parameters (see, e.g. Refs. [1, 2, 13, 14, 15]), or by taking moments of

gyrokinetic or drift-kinetic equations and imposing a closure relation (see, e.g.

Refs. [16, 4, 17]).

From a dynamical systems perspective, a number of such models, when con-

sidered in their non-dissipative limit, were shown to possess a noncanonical25

Hamiltonian structure[18, 19, 15, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28] (see also

Ref. [29] for a review), which is the typical case for fluid models formulated from

the Eulerian point of view [30]. The existence of a Hamiltonian structure is cru-

cial for avoiding the presence of fake dissipative terms in the model, as well as

for the opportunity it gives, to apply methods of Hamiltonian mechanics for the30
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analysis of the dynamics described by the model [30, 31]. Qualitatively speak-

ing, a Hamiltonian structure is identified by a phase space, a Poisson bracket

acting on functions defined on the phase space, and a Hamiltonian, which is

a prescribed function on the phase space. For the reduced fluid models under

consideration, the phase space is a space of functions defined on the domain35

occupied by the plasma and satisfying appropriate boundary conditions. In

the two-dimensional (2D) limit, where the dynamics is assumed to be invariant

along the direction of the guide field, the noncanonical Poisson brackets for the

reduced models are generally extensions [20] of the classical Lie-Poisson bracket

of the 2D Euler equation for an incompressible fluid. The Poisson bracket for40

the full 3D models consists of the sum of the 2D bracket with a second Poisson

bracket, such that some relations between the coefficients of the two brackets

are satisfied, which guarantees the Jacobi identity [23]. The Hamiltonian of the

models, on the other hand, typically consists of a functional on the phase space,

quadratic in the model field variables.45

In Ref. [32] it was shown how an infinite class of Hamiltonian reduced fluid

models can be obtained, by imposing a particular closure on the hierarchy of

fluid equations obtained by taking moments of a drift-kinetic system. In Ref.

[33], this result was extended to more general models accounting also for finite

Larmor radius effects, equilibrium temperature anisotropy and magnetic fluctu-50

ations along the direction of the guide field. However, such results still suffered

from a gap, that we now briefly describe. Indeed, for a fluid model evolving

N `1 moments of a given particle species, the expression of the Poisson bracket

provided in Refs. [32, 33] in terms of the fluid moments (see in particular Eq.

(81) of Ref. [32]), depends on a set of real numbers λ0, λ1, ¨ ¨ ¨ , λN , correspond-55

ing to the eigenvalues of an explicitly given, symmetric matrix denoted as W

(according to the notation of Ref. [32]). The expression of the Poisson bracket

also depends on an orthogonal matrix U , thanks to which, the matrix W can be

put in diagonal form, according to the relation UTWU “ diagpλ0, λ1, ¨ ¨ ¨ , λN q,

where UT is the transpose of U and diagpλ0, λ1, ¨ ¨ ¨ , λN q is the diagonal matrix60

with elements λ0, λ1, ¨ ¨ ¨ , λN on the main diagonal. The knowledge of the matrix
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U and of the eigenvalues of W is also necessary to cast the Poisson bracket in its

simplest form (putting in evidence its direct sum structure) which occurs when

the bracket is expressed in terms of a set of variables G0, G1, ¨ ¨ ¨ , GN , alterna-

tive to the fluid moments. Although the existence of such an orthogonal matrix65

U is guaranteed by the spectral theorem, its explicit expression, for arbitrary N ,

was not provided in Refs. [32, 33]. Likewise, the properties of the eigenvalues of

W of being real is guaranteed by the spectral theorem, but an explicit formula

for their expression was not given. Therefore, although the Hamiltonian struc-

ture for the class of fluid models under consideration was shown to exist, the70

actual expression for the Poisson bracket, for a given model, had to be found

by determining, case by case, the matrix U and the eigenvalues λ0, λ1, ¨ ¨ ¨ , λN .

Of course, this deficiency limited the immediate applicability of the results of

Refs. [32, 33], if not for the cases with very low N , where only the evolution

of the first few fluid moments is retained. We recall [32] that the matrix U75

actually provides the transformation from the variables G0, G1, ¨ ¨ ¨ , GN to the

fluid moments. Indeed, if we indicate the fluid moments with g0, g1, ¨ ¨ ¨ , gN ,

such transformation is given by gm “ UmnGn (see also Eq. (90) in the present

paper, where the notation has been changed with respect to Ref. [32] and the

matrix U is indicated with UN ).80

One of the purposes of the present paper is to remedy the above mentioned

gap, by providing the explicit expression for the Poisson bracket for any model

belonging to the class treated in Refs. [32, 33]. This is made possible by making

use of actually rather elementary properties of Jacobi matrices and Hermite

polynomials.85

A second objective of this paper concerns the relation between the Hamilto-

nian structure of the reduced fluid models and that of the parent drift-kinetic

(or gyro-kinetic) model. Indeed, the parent model describes the evolution of

the generalized perturbed distribution function gpx, y, z, v, tq, given by a linear

combination of the perturbation of the gyrocenter distribution function with the

component of the magnetic vector potential along the guide field (see Eq. (5)).

The function g depends on the spatial coordinates x, y, z, as well as on time
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t and on the component v of the velocity along the guide field. We consider

generalized perturbed distribution functions that can be expanded in series as

gpx, y, z, v, tq “
`8
ÿ

n“0

gnpx, y, z, tq
Hnpvq
?
n!

Feqpvq, (1)

where Feq is a Maxwellian distribution function, Hn is the Hermite polynomial

of order n and the coefficients gn correspond to the fluid moments. The evo-

lution of g is then governed by the infinite system of evolution equations for

the moments gn, obtained by projecting the Hamiltonian drift-kinetic (or gyro-

kinetic) equation for g on the basis of Hermite polyomials. The pN`1q-moment90

Hamiltonian reduced fluid models, on the other hand, are obtained by imposing

that the index n in the series (1) goes from 0 to N ă `8, which truncates the

infinite system of equations of the parent model, reducing it to a closed set of

N ` 1 equations. The natural question then arises, about whether the Hamilto-

nian and the Poisson bracket of a reduced fluid model can be derived from the95

Hamiltonian and the Poisson bracket of the parent model, by replacing, in the

latter, the perturbation of the distribution function, given by the infinite series

(1), with the series truncated at the moment of order N . The analysis we de-

scribe in the present paper shows that, whereas this occurs for the Hamiltonian,

it is not the case for the Poisson bracket. In particular, it is the 2D component100

of the Poisson bracket for the fluid model, which turns out to differ from the

corresponding bilinear form, obtained from the Poisson bracket of the parent

model upon replacing the perturbed distribution function with its truncated

series. Roughly speaking, the Poisson bracket and the bilinear form turn out

to be ”very similar” and the difference concerns some coefficients which, in a105

sense that will be made precise later, are associated with ”high-order” moments,

among those retained in each fluid model. Moreover, by means of a counterex-

ample, we show that, in general, the bilinear form obtained from the truncated

series, does not satisfy the Jacobi identity, and thus is not a Poisson bracket.

With the present paper, we also provide a physical interpretation of the al-110

ternative variables G0, G1, ¨ ¨ ¨ , GN . Indeed, making use of properties of Hermite

polynomials, we show that such variables are proportional to what we refer to
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as the truncated generalized perturbed distribution function, evaluated at val-

ues of the parallel velocity coordinate equal to λ0, λ1, ¨ ¨ ¨ , λN . This might also

help to shed light on previous considerations on the phenomenon of magnetic115

reconnection, based on the dynamics of such alternative variables in the case

N “ 1 [34, 35, 36].

A final objective of this paper is to point out an analogy between the infinite

hierarchy of fluid equations obtained from the parent drift-kinetic system and

the problem of a quantum harmonic oscillator. In particular, the closure prob-120

lem shares similarities with the problem of the truncated quantum harmonic

oscillator.

For the sake of simplicity, in the present paper the results are illustrated

considering, as parent model, a relatively simple drift-kinetic model for the

electron dynamics. However, the results can be extended to the more refined125

hybrid and gyrokinetic parent models considered in Refs. [32, 33].

Again for the sake of simplicity, we restrict to the case of a bounded spatial

domain, where the fluid moments satisfy periodic boundary conditions. This

allows for a simple derivation of the explicit expressions for the operators φdk,

Adk, φfl, Afl (see Eqs. (29), (33), (36) and the immediately subsequent for-130

mulas), relating the generalized perturbed distribution function and the fluid

moments, with the electromagnetic potentials. Besides the argument of sim-

plicity, periodic boundary conditions are, in any event, of some relevance, as

they are often adopted in numerical simulations of reduced fluid models. On

the other hand, as will be discussed at the end of Sec. 3.1, the choice of periodic135

boundary conditions requires some restrictions on the set of observables on the

phase space.

The paper is organized as follows. In Sec. 2 we introduce the parent drift-

kinetic model. Section 3 describes the Hamiltonian structure of the parent

drift-kinetic model and of the reduced fluid models obtained after imposing a140

Hamiltonian closure provided in Ref. [32]. The latter structure is expressed in

terms of the variables G0, G1, ¨ ¨ ¨ , GN . This Section essentially reviews already

known results but formulates them in a more precise manner, with respect
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to Ref. [32]. In Sec. 4 we present one of our new results, consisting of the

explicit general Hamiltonian structure of the reduced fluid models, in terms145

of the moments. In particular, with Proposition 4.1, the coefficients in the

Poisson bracket are expressed in terms of Hermite polynomials and their zeros.

Section 5 compares the Hamiltonian and the Poisson bracket of Sec. 4, with

the functional and the bilinear form obtained from the Hamiltonian structure of

the parent drift-kinetic model, by means of the aforementioned truncated series150

approach. The results of Secs. 4 and 5 are exemplified in Sec. 6, where the

case N “ 2 is treated in detail, also showing how the approach based on the

truncated series can lead to a bilinear form which is not a Poisson bracket. In

Sec. 7 a physical interpretation of the variables G0, G1, ¨ ¨ ¨ , GN , as well as the

analogy with the problem of the quantum harmonic oscillator are discussed. We155

conclude in Sec. 8. In AppendixA and AppendixB we provide the proofs of a

Lemma and of a Proposition, respectively, formulated in Sec. 5.

2. Hamiltonian parent drift-kinetic model

We consider the following drift-kinetic model in normalized form

Bg

Bt
` rφ´ vA, gs ` v

B

Bz

ˆ

g ´

c

2

βe
Feqpφ´ vAq

˙

“ 0, (2)

∆Kφ “ δ2
c

2

βe

ż `8

´8

dv g, (3)

∆KA´A “

c

βe
2

ż `8

´8

dv vg, (4)

where Eq. (2) corresponds to the electron drift kinetic equation, whereas Eqs.

(3) and (4) correspond to the quasi-neutrality relation and to the projection of160

Ampère’s law along the direction of a magnetic guide field, respectively.

In Eqs. (2)-(4), the dynamical variable g is defined by

gpx, y, z, v, tq “ fpx, y, z, v, tq ´

c

2

βe
vFeqpvqApx, y, z, tq, (5)

where f is the actual perturbation of the electron gyrocenter distribution func-

tion, averaged with respect to the magnetic moment. We will refer to the
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function g as to the generalized perturbed distribution function. The field A is

related to the normalized magnetic field B by

Bpx, y, z, tq “ ∇Apx, y, z, tq ˆ ẑ ` ẑ, (6)

where ẑ is the unit vector along the z direction of a Cartesian coordinate sys-

tem x, y, z. We note that the model assumes the presence of a strong uniform

magnetic guide field along the z direction (corresponding to the second term on

the right-hand side of Eq. (6)). The function Feq is the Maxwellian equilibrium

distribution function, whose explicit expression reads

Feqpvq “
1
?

2π
e´

v2

2 . (7)

The field φ “ φpx, y, z, tq, on the other hand, corresponds to the electrostatic

potential. The independent variables in Eqs. (2)-(4) are given by the spatial

Cartesian coordinates x, y, and z, by the coordinate v, representing the velocity

coordinate along the direction of the guide field, and by the time t. The spatial

coordinates belong to the domain

D “ tpx, y, zq P R3 | ´ Lx ď x ď Lx,´Ly ď y ď Ly,´Lz ď z ď Lzu, (8)

with Lx, Ly and Lz positive real numbers. On the other hand, for the parallel

velocity and time coordinates one has ´8 ă v ă `8 and t ě 0, respectively.

Periodic boundary conditions over the domain D are imposed on the fields g, A

and φ, whereas we will assume that g Ñ 0 sufficiently fast, as v Ñ ˘8, in such165

a way that all integrals, with respect to v and involving g, converge.

Two parameters are present in the system and are defined as

βe “ 8π
n0T0e
B2

0

, δ2 “
me

mi
, (9)

where n0 and T0e are the uniform equilibrium particle density and electron tem-

perature, respectively, with the temperature expressed in energy units. We indi-

cated with B0 the (dimensional) amplitude of the magnetic guide field, whereas

me and mi are the electron and ion mass, respectively. The perpendicular Lapla-

cian operator ∆K and the canonical Poisson bracket r , s, on the other hand, are
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defined by

∆Kf “
B2f

Bx2
`
B2f

By2
, (10)

rf, gs “
Bf

Bx

Bg

By
´
Bg

Bx

Bf

By
, (11)

respectively, for two functions f and g.

As above anticipated, Eqs. (2)-(4) are expressed in terms of normalized

quantities. The normalization of the adopted variables is given explicitly by

x “
x̃

de
, y “

ỹ

de
, z “

z̃

L
, v “

ṽ

vte
, t “

vte
L
t̃,

g “
L

de

vte
n0
g̃, Feq “

vte
n0
F̃eq, φ “

L

de

cφ̃

vteB0de
, A “

L

de

Ã

B0de
, (12)

where c is the speed of light, de “ c
a

me{p4πe2n0q is the electron skin depth,

L is a characteristic scale length of variation along the guide field direction,

vte “
a

T0e{me is the electron thermal speed. In the formulas (12), we denoted170

with a tilde the dimensional quantities.

The system (2)-(4) corresponds to a cold-ion, collisionless version of the

electron drift-kinetic equation derived in Ref. [37]. The model belongs to the

class of so-called δf models, which assume small fluctuations of the distribution

functions, i.e. f̃{F̃eq ! 1. Weak spatial variations are assumed along the guide175

field direction, which corresponds to the condition de{L ! 1. We also recall that

the derivation of the model in Ref. [37] requires βe ! 1 and δ2 ! 1. The model

can be applied to describe, for instance, magnetic reconnection due to electron

inertia in collisionless plasmas with a strong guide field, a phenomenon that can

be relevant for tokamak devices and the solar corona. The same model was also180

adopted in Ref. [38] for the description of drift-Alfvén vortices in plasmas. In

the same reference [38], the Hamiltonian structure of the model was also given.

We point out that, although the results presented in the present paper apply

to the model (2)-(4), they can be extended to more sophisticated Hamiltonian

parent models such as those treated in Refs. [32, 33], which account for further185

physical ingredients such as multiple species, parallel magnetic perturbations, fi-

nite Larmor radius effects and equilibrium temperature anisotropies. Our choice
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for the model (2)-(4) for the present article is mainly due to its relative sim-

plicity, although, at the same time, the Hamiltonian structure of this system

possesses all the fundamental features of the Hamiltonian structures of the more190

general parent models of Refs. [32, 33].

3. Hamiltonian structure of the parent drift-kinetic model and of the

family of fluid models in terms of the variables G0, G1, ¨ ¨ ¨ , GN

In this Section we review, although formulated in a more precise setting,

the Hamiltonian structure of the parent model (2)-(4), as well as that of the195

family of fluid models that can be derived from it by means of a specific closure

preserving the Hamiltonian structure. However, the Hamiltonian structure of

the fluid models that we review in this Section, as anticipated in Sec. 1, is

the one presented in Ref. [32], which is not expressed in terms of the fluid

moments but in terms of alternative variables G0, G1, ¨ ¨ ¨ , GN , which are linear200

combinations of the fluid moments, but with coefficients whose expressions are

not known in general, so far.

Before proceeding with the review of such Hamiltonian structures, we find

it appropriate to introduce some preliminary definitions. The purpose of the

following Sec. 3.1 is to formulate a more precise setting, with respect to previ-205

ous references such as Refs. [32, 33], for the drift-kinetic and the reduced fluid

models. Also, we will recall a few notions, such as that of functional derivative,

which will be repeatedly used throughout the paper. The readers already fa-

miliar with these subjects can of course skip these parts and go directly to Sec.

3.2.210

3.1. Preliminaries

We first introduce the space F of smooth, periodic and square integrable

functions on D. This space will include the fluid Hermite moments of order
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greater than zero, and is given by

F “ th : R3 Ñ R |h P L2pDq X C8pDq,

hpx, y, zq “ hpx` 2Lx, y, zq “ hpx, y ` 2Ly, zq “ hpx, y, z ` 2Lzq @px, y, zq P R3u.

(13)

Due to the periodicity assumption, an element h P F can be represented as

Fourier series in the following way:

hpxq “
ÿ

kPK

hkeik¨x, (14)

where x “ px, y, zq P R3 and k “ pkx, ky, kzq is an element of the lattice K

defined by

K “

"ˆ

πm

Lx
,
πn

Ly
,
πp

Lz

˙

, pm,n, pq P Z3

*

. (15)

In Eq. (14), the Fourier coefficients hk are given by the Fourier transform

hk “
1

8LxLyLz

ż

D
d3xhpxqe´ik¨x. (16)

It is now appropriate to introduce the subspace F0 of F , consisting of the

elements of F possessing zero spatial average with respect to x and y, over each

plane z “constant. This will be the space of the fluid Hermite moment of order

0 and is given by

F0 “ th P F |hk “ 0 for k “ p0, 0, πp{Lzq with p P Zu. (17)

The specificity of the moment of order 0 comes from the quasi-neutrality relation

(3) which, as will be seen, implies that the moment of order 0 have zero spatial

average in the plane perpendicular to the guide field.

Given a positive integer N P Zą0, we also introduce the space

FN “ F0 ˆ F ˆ ¨ ¨ ¨ ˆ F
loooooomoooooon

N times

, (18)

which will correspond to the phase space of a fluid model in which the highest-215

order moment retained in the evolution equations is the one of order N (note

that such fluid model actually evolves in time N ` 1 moments, given that the

lowest order moment is the one of order 0).
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Next, we introduce the space G of the generalized perturbed distribution

function:

G “

#

g : R4 Ñ R | gpx, vq “
`8
ÿ

n“0

gnpxq
Hnpvq
?
n!

Feqpvq,

g0 P F0, gi P F for i P Zą0, Hnpvq “ p´1qne
v2

2
dn

dvn
e´

v2

2 forn P Zě0

*

.

(19)

which will be the phase space of the parent drift-kinetic system. Note that,

once the dynamical equations are introduced, and thus the time parameter

t is added, the dependence on time of g is contained in the dependence on

time of the coefficients gn. According to a quite standard practice in δf drift-

kinetic and gyrokinetic theory (see, for instance, Refs. [37, 39, 16]), we are

considering generalized perturbed distribution functions that can be expressed

as a series in Hermite polynomialsHn, multiplied by the equilibrium distribution

function Feq, which guarantees a sufficiently rapid decay of g as v Ñ ˘8. The

orthogonality relation
ż `8

´8

dv HmpvqHnpvqFeqpvq “ n!δmn, (20)

permits to express the coefficients gn of the expansion in Eq. (19), in terms of

g, as

gn “
1
?
n!

ż `8

´8

dv Hn g, n ě 0. (21)

For given g P G and n ě 0, an element gn defined by Eq. (21) will be referred

to as fluid moment, or simply as moment of g of order n. We recall that the

first Hermite polynomials correspond to H0 “ 1, H1 “ v,H2 “ v2 ´ 1, H3 “

v3 ´ 3v,... and that the first four moments are proportional to fluctuations of

density, parallel canonical momentum, parallel temperature and parallel heat

flux, respectively, of the electron gyrocenters. In particular, following Eq. (21),

one has

g0 “

ż `8

´8

dv g, g1 “

ż `8

´8

dv vg, (22)

g2 “
1
?

2

ż `8

´8

dv pv2 ´ 1qg, g3 “
1
?

6

ż `8

´8

dv pv3 ´ 3vqg, ¨ ¨ ¨ (23)

12



Evidently, any element g P G also admits a representation in Fourier series, with

respect to x, according to:

gpx, vq “
ÿ

kPK

g̃kpvqe
ik¨x, (24)

with x P R3, v P R and where the Fourier coefficients g̃k, following the expres-

sions (16) (although the tilde symbol in this case was also added, in order to

avoid possible confusion with the fluid moments gn) and (19), read

g̃k “
`8
ÿ

n“0

gnk?
n!
HnFeq, k P K . (25)

Equations

∆Kφ “ δ2
c

2

βe

ż `8

´8

dv g, (26)

∆KA´A “

c

βe
2

ż `8

´8

dv vg, (27)

can be solved in Fourier space with respect to φ and A, for a given drift-kinetic

generalized perturbed distribution function g P G. The solutions for the electro-

magnetic potentials in terms of drift-kinetic generalized perturbed distribution

function (for which we use the subscript dk) are two elements φ,A P F given

by

φ “ φdkrgs, A “ Adkrgs, (28)

with φdkr s : G Ñ F and Adkr s : G Ñ F linear operators acting on g P G in the

following way:

φdkrgspxq “
ÿ

kPK

φdkrgskeik¨x, Adkrgspxq “
ÿ

kPK

Adkrgskeik¨x, (29)

where

φdkrgsk “ ´δ
2

c

2

βe

ż `8

´8

dv
g̃k
k2K
, for k P K z tp0, 0, πp{Lzq , p P Zu , (30)

φdkrgsk “ φ0p , for k P tp0, 0, πp{Lzq , p P Zu , (31)

Adkrgsk “ ´

c

βe
2

ż `8

´8

dv v
g̃k

1` k2K
, for k P K . (32)
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In Eq. (31), φ0p P C, for p P Z, is a family of complex constants, such that

φ0n “ φ̄0´n
for n P Zą0, with the overbar indicating the complex conjugate.220

The choice of the arbitrary constants φ0n , for n P Zě0, fixes the z-dependence

of the value of the spatial average of φ, with respect to x and y, on planes

z “constant.

In Eqs. (30)-(32) we also introduced the perpendicular wave number kK

defined as kK “
b

k2x ` k
2
y.225

The solutions (30)-(32) permit then to express, at any time t, the electro-

magnetic potentials φ and A in terms of g in Eqs. (3)-(4).

Using Eq. (25) and the orthogonality relation (20), one can also express the

solutions for φ and A as the images of linear operators (with the subscript fl

to indicate that φ and A, in this case, are expressed in terms of fluid variables)

φflr s : F0 Ñ F and Aflr s : F Ñ F , acting on the fluid moments g0 and g1,

respectively. More precisely, if we define, for u P F0 and w P F :

φflruspxq “
ÿ

kPK

φflruskeik¨x, (33)

where

φflrusk “ ´δ
2

c

2

βe

uk
k2K
, for k P K z tp0, 0, πp{Lzq , p P Zu , (34)

φflrusk “ φ0p , for k P tp0, 0, πp{Lzq , p P Zu , (35)

and

Aflrwspxq “
ÿ

kPK

Aflrwskeik¨x, (36)

with

Aflrwsk “ ´

c

βe
2

wk

1` k2K
, for k P K , (37)
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one has, for g P G, the relations

φdkrgsk “ ´δ
2

c

2

βe

`8
ÿ

n“0

1
?
n!

gnk

k2K

ż `8

´8

dv HnFeq

“ ´δ2
c

2

βe

g0k
k2K

“ φflrg0sk, for k P K z tp0, 0, πp{Lzq , p P Zu , (38)

φdkrgsk “ φ0p “ φflrg0sk, for k P tp0, 0, πp{Lzq , p P Zu , (39)

Adkrgsk “ ´

c

βe
2

`8
ÿ

n“0

1
?
n!

gnk

1` k2K

ż `8

´8

dv vHnFeq

“ ´

c

βe
2

g1k
1` k2K

“ Aflrg1sk, for k P K . (40)

where, in Eqs. (38)-(40), we made use of Eqs. (22), (25) and of the orthogonality

relation (20). The electrostatic and magnetic potentials φ and A can thus be

expressed in terms of the zeroth and first order moments of g by

φ “ φflrg0s, A “ Aflrg1s, (41)

respectively.

The condition for g0 of having zero spatial average on planes z “constant

comes from the fact that Eq. (3), for each k P K , implies ´pk2x ` k2yqφk “230

δ2
a

2{βeg0k. When evaluated at k “ p0, 0, πp{Lzq, for p P Z and φp0,0,πp{Lzq ‰

0, this relation implies g0p0,0,πp{Lzq
“ 0. The electrostatic potential φ, on the

other hand, is determined up to the choice of the arbitrary constants φ0n , with

n P N.

In order to introduce the Hamiltonian structures of the drift-kinetic and fluid235

models, it is also convenient to define here the functional derivatives that we

will make use of, later in the paper.

Given a real functional F : G Ñ R, we denote its functional derivative, with

respect to g P G, as δF {δg and we define it by means of the relation

lim
εÑ0

1

ε
pF pg ` εδgq ´ F pgqq “

ż `8

´8

dv

ż

D
d3x δg

δF

δg
, (42)

for all δg P G. Functional derivatives of this type will appear in the Hamiltonian

formulation of the drift-kinetic model.
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With regard to the functional derivatives with respect to the moments,

occurring in fluid models, given a functional F : FN Ñ R, its functional

derivative with respect to h P FN is denoted as δF {δh and corresponds to

δF {δh “ pδF {δh0, δF {δh1, ¨ ¨ ¨ , δF {δhN q defined by

lim
εÑ0

1

ε
pF ph` εδhq ´ F phqq “

ż

D
d3x δh ¨

δF

δh
, (43)

for all δh “ pδh0, δh1, ¨ ¨ ¨ , δhN q P FN . Note that the dot on the right-hand side

of Eq. (43) denotes a scalar product, so that δh ¨ δF {δh “
řN
i“0 δhipδF {δhiq.

Moreover, by varying one δhi at the time, for i “ 0, 1, ¨ ¨ ¨ , N , while keeping

δhj “ 0 for j ‰ i, one obtains

lim
εÑ0

1

ε
pF ph0, ¨ ¨ ¨ , hi ` εδhi, ¨ ¨ ¨ , hN q ´ F ph0, ¨ ¨ ¨ , hi, ¨ ¨ ¨ , hN qq “

ż

D
d3x δhi

δF

δhi
,

(44)

which singles out the expression of δF {δhi, defining the functional derivative of240

F with respect to hi, for a given i.

As will be reviewed in Sec. 3.2, the Poisson bracket of a Hamiltonian system

acts on observables, which are functions defined on the phase space. In the case

of the parent drift-kinetic model and of the reduced fluid models derived from

it, the Jacobi identity for the Poisson bracket relies on the relation

ż

D
d3xurv, ws “

ż

D
d3xwru, vs, (45)

for functions u, v, w P F . The periodic boundary conditions satisfied by u, v

and w imply that boundary terms vanish when integrating by parts, which is

required to prove the identity (45). Because the Poisson bracket for the drift-

kinetic model and the reduced fluid models will contain functional derivatives of245

observables, at the place of v and w, in an expression analogous to the left-hand

side of Eq. (45) (see, for instance Eqs. (50) and (87)), we require the observables

to be such that their functional derivatives satisfy periodic boundary conditions

on D.

We will indicate with C̄8pPq the set of real smooth functionals over a phase250

space P, such that the functional derivatives of these functionals satisfy periodic
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boundary conditions on D. So, for instance, the set of observables for the parent

drift-kinetic model will be denoted as C̄8pGq, whereas the set of observables for

the pN ` 1q-moment fluid models will be C̄8pFN q.

3.2. Hamiltonian formulation of the parent drift-kinetic model255

Based on Refs. [38, 32], we review here the (noncanonical) Hamiltonian

structure of the parent drift-kinetic model (2)-(4). First, we recall that (see,

e.g. Refs. [30, 31, 40]) a Hamiltonian system on a phase space P is a dynamical

system

9uptq “ JpuptqqBuHpuptqq, (46)

where the dot indicates the time derivative and u : R Ñ P is a curve describing

the time evolution in phase space of the dynamical variable u following an initial

condition up0q “ u0 P P. We denote with ΦpPq the set of observables of the

dynamical system. On the right-hand side of Eq. (46) the symbol J indicates

the Poisson operator J : T˚P Ñ TP (where T˚P and TP are the cotangent260

and tangent bundle of P, respectively ) and H P ΦpPq is the observable corre-

sponding to the Hamiltonian of the system. In Eq. (46) we also denoted with

Bu a derivative with respect to u, which, in the infinite-dimensional case, takes

the form of a functional derivative, as those defined in Eqs. (42) and (43).

A generic observable F P ΦpPq of the Hamiltonian system (46) evolves ac-

cording to

9F “ tF,Hu, (47)

where t , u is a Poisson bracket, i.e. an antisymmetric bilinear form satisfying the

Leibniz rule and the Jacobi identity. Note that, for two observables F,G P ΦpPq,

the Poisson operator and the Poisson bracket are related by

tF,Gu “ă BuF, JpuqBuG ą, (48)

where ă , ą indicates a dual pairing.265

The Hamiltonian structure of a Hamiltonian system on a given phase space

is thus determined by its Hamiltonian and its Poisson bracket. Due to the
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antisymmetry property of the bracket, it follows from (47) that 9H “ 0, which

expresses the conservation of the total energy.

As anticipated in Sec. 3.1, the phase space for the parent drift-kinetic system

is given by the set G. The Hamiltonian structure of this system [38] consists of

the following Hamiltonian functional Hdk P C̄
8pGq:

Hdkpgq “
1

2

ż

D
d3x

ż `8

´8

dv

ˆ

g2

Feq
´

c

2

βe
gpφ´ vAq

˙

, (49)

where φ “ φdkrgs, A “ Adkrgs, and of the Poisson bracket

tF,Gudk “

ż

D
d3x

ż `8

´8

dv

˜

c

βe
2
grFg, Ggs ´ vFeqFg

BGg
Bz

¸

, (50)

for F,G P C̄8pGq. In Eq. (50) we also introduced the subscript notation on the270

functionals to indicate functional derivatives, so that, for instance Fg “ δF {δg.

Note that the antisymmetry of the second term in the Poisson bracket (50) relies

on the fact that boundary terms vanish when integrating by parts.

We also observe that the Hamiltonian (49) physically corresponds to the

sum of the energy associated with the small-amplitude fluctuations of distri-275

bution function around a Maxwellian equilibrium (first term on the right-hand

side), with the energy associated with electromagnetic fluctuations, given by the

remaining two terms on the right-hand side.

We proceed at a formal level, assuming that, for a generic initial condition

gpx, y, z, v, 0q “ g0px, y, z, vq P G, the solution of the system (2)-(4) exists for280

0 ď t ď T , with T ą 0, and that, for each solution, gpx, y, z, v, tq P G for

0 ď t ď T . We then identify a solution gpx, y, z, v, tq, corresponding to a given

initial condition, with a curve g : r0, T s Ñ G that associates, at each time t, a

point gptq P G in phase space.

Concerning the Hamiltonian structure of the drift-kinetic model, we remark

that
δHdk

δg
“

g

Feq
´

c

2

βe
pφdkrgs ´ vAdkrgsq. (51)

In order to derive the latter relation one makes use of the following symmetry

18



properties of the operators φdkr s and Adkr s:
ż

D
d3x

ż `8

´8

dv hφdkrgs “

ż

D
d3x

ż `8

´8

dv gφdkrhs, (52)

ż

D
d3x

ż `8

´8

dv hAdkrgs “

ż

D
d3x

ż `8

´8

dv gAdkrhs, (53)

for g, h P G. The properties (52)-(53) easily follow from the definitions (30)-(32)285

and from the orthogonality of the Fourier and Hermite bases.

From the expressions (48) and (50), using integration by parts, it follows

that the Poisson operator associated with the drift-kinetic Poisson bracket (50)

is given by

Jdkpgq “ ´

c

βe
2
rg, ¨ s ´ vFeq

B

Bz
, (54)

with respect to the dual pairing

ă f, h ą“

ż

D
d3x

ż `8

´8

dv fh, (55)

for two functions f, h. Combining Eqs. (51) and (54) with the general expression

(46) for a Hamiltonian system, one retrieves namely the drift-kinetic equation

(2).

3.3. Hamiltonian formulation of the fluid models290

Multiplying both sides of Eq. (2) by Hn{
?
n!, for n “ 0, 1, 2, ¨ ¨ ¨ and inte-

grating over v, one obtains the following infinite system of fluid equations

Bg0
Bt
` rφ, g0s ´ rA, g1s `

B

Bz

ˆ

g1 `

c

2

βe
A

˙

“ 0, (56)

Bg1
Bt
` rφ, g1s ´

?
2rA, g2s ´ rA, g0s `

B

Bz

ˆ

?
2g2 ` g0 ´

c

2

βe
φ

˙

“ 0, (57)

Bg2
Bt
` rφ, g2s ´

?
3rA, g3s ´

?
2rA, g1s `

B

Bz

ˆ

?
3g3 `

?
2g1 `

?
2

c

2

βe
A

˙

“ 0,

(58)

...

BgN
Bt

` rφ, gN s ´
?
N ` 1rA, gN`1s ´

?
N rA, gN´1s `

B

Bz

´?
N ` 1gN`1 `

?
NgN´1

¯

“ 0,

(59)

...
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where

∆Kφ “ δ2
c

2

βe
g0, (60)

∆KA´A “

c

βe
2
g1, (61)

and the fluid moments g0, g1, g2, ¨ ¨ ¨ are defined in Eq. (21). We remark that,

on the basis of our definitions, g0, g1 and g2 are proportional to the fluctuations

of the electron gyrocenter density, parallel velocity and parallel temperature,

respectively, where ’parallel’ refers to the direction of the guide field. Note also

that the first three equations (56)-(58) of the hierarchy are peculiar, as they295

involve also derivatives, with respect to z, of the electromagnetic potentials φ

and A. For N ą 2, on the other hand, the equations of the hierarchy are given

by Eq. (59).

Given a fixed integer N ě 1, the infinite hierarchy of equations (56)-(59) can

be truncated by imposing

gN`1 “ 0. (62)

The resulting closed system, given that we are assuming g P G in the parent

drift-kinetic system, can be written as

Bgm
Bt

` rφ, gms ´ SNmnrA, gns ` SNmn

Bgn
Bz

`

c

2

βe

B

Bz

´?
m!pδm0 ` δm2qA´ δm1φ

¯

“ 0, m “ 0, 1, ¨ ¨ ¨ , N, (63)

∆Kφ “ δ2
c

2

βe
g0, (64)

∆KA´A “

c

βe
2
g1, (65)

where the sum over repeated indices is understood and where SNmn
indicates
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the element of row m and column n, of the pN ` 1q ˆ pN ` 1q matrix

SN “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 ... 0

1 0
?

2 0 ... 0

0
?

2 0
?

3 ... 0

0 0
?

3 0 ... 0

... ...

... ...

0 0 0 ... 0
?
N

0 0 0 ...
?
N 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (66)

We specify that, in this paper, the indices of the rows and of the columns of

pN ` 1q ˆ pN ` 1q matrices run from 0 to N .300

Because the matrix SN is real symmetric, it exists an orthogonal matrix UN P

OpN ` 1q such that UTNSNUN “ diagpλ0, λ1, ¨ ¨ ¨ , λN q, where λ0, λ1, ¨ ¨ ¨ , λN are

the eigenvalues of SN . One can then introduce the alternative variables

Gi “ UTNim
gm, i “ 0, 1, ¨ ¨ ¨ , N, (67)

in terms of which the system (63)-(65) can be rewritten as

BGi
Bt

` rφ´ λiA,Gis ` λi
BGi
Bz

`

c

2

βe

B

Bz

´

pUTNi0
`
?

2!UTNi2
qA´ UTNi1

φ
¯

“ 0, i “ 0, 1, ¨ ¨ ¨ , N, (68)

∆Kφ “ δ2
c

2

βe

N
ÿ

m“0

UN0m
Gm, (69)

∆KA´A “

c

βe
2

N
ÿ

m“0

UN1m
Gm. (70)

In Ref. [32] it was shown that the system (68)-(70) (which is equivalent to Eqs.

(63)-(65)) is Hamiltonian, with Hamiltonian functional

HpG0, G1, ¨ ¨ ¨ , GN q “
1

2

ż

D
d3x

˜

N
ÿ

n“0

G2
n ´

c

2

βe
UN0i

Gi pφflrUN0l
Gls ´ λiAflrUN1l

Glsq

¸

,

(71)

where, due to the orthogonality of the matrix UN , from Eq. (67), one has

UN0l
Gl “ g0 and UN1l

Gl “ g1 (we recall that, also in the expression (71),
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the sum over repeated indices is understood). In Eq. (71) we are considering

H P C̄8pGN q, where

GN “ tpG0, G1, ¨ ¨ ¨ , GN q P F ˆ F ˆ ¨ ¨ ¨ ˆ F |
N
ÿ

l“0

UN0l
Gl P F0u. (72)

The introduction of this set is required in order for the expression φflrUN0l
Gls

to be well defined and, in turn, for the equation (69) to be solved with respect

to φ.

The Poisson bracket, on the other hand, is given by

tF,KuG “ tF,KuGK ` tF,KuG‖ , (73)

where

tF,KuGK “

c

βe
2

N
ÿ

i“0

1

UN0i

ż

D
d3xGirFGi

,KGi
s,

tF,KuG‖ “ ´

N
ÿ

i“0

λi

ż

D
d3xFGi

BKGi

Bz
,

for F,K P C̄8pGN q. Using the relation

δH
δGi

“ Gi´

c

2

βe
UN0ipφflrUN0l

Gls´λiAflrUN1l
Glsq, i “ 0, 1, ¨ ¨ ¨ , N, (74)

one can indeed obtain Eqs. (68)-(70), from Eqs. (71) and (73), applying the

expression (46).305

We remark that, in order to obtain the relation (74), we made use of the

symmetry properties
ż

D
d3x ηφflrξs “

ż

D
d3x ξφflrηs, (75)

ż

D
d3xuAflrws “

ż

D
d3xwAflrus, (76)

for η, ξ P F0 and u,w P F , which are a straightforward consequence of the

relations (52) and (53).

4. Hamiltonian structure of the family of fluid models in terms of the

moments g0, g1, ¨ ¨ ¨ , gN

The Hamiltonian formulation of the fluid models described in Sec. 3.3310

crucially depends on the knowledge of the matrix UN and of the eigenvalues
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λ0, λ1, ¨ ¨ ¨ , λN . The existence of such matrix is guaranteed by the spectral the-

orem and this is sufficient to show the existence of the Hamiltonian structure.

However, in the absence of an explicit expression for the matrix UN and for

the eigenvalues of SN , the general expression for the Hamiltonian (71) and the315

Poisson bracket (73) cannot be determined, and one is forced to find such ma-

trix and such eigenvalues case by case, when possible, for a given N of interest.

Moreover, the general expression of the transformation (67) is not known ei-

ther. This expression is required in order to rewrite the Poisson bracket (73),

for an arbitrary N , in terms of the fluid moments g0, g1, ¨ ¨ ¨ , gN , which are the320

variables that one naturally adopts in applications.

In this Section we remedy this deficiency and provide the explicit expression

for the matrix UN and for the eigenvalues of SN , as well as the Hamiltonian for-

mulation of the fluid models (63)-(65), for arbitrary N , in terms of the moments

g0, g1, ¨ ¨ ¨ , gN .325

Indeed, in Refs. [32, 33] it was not realized that the eigenvalues of the

matrix SN correspond to the zeros of the Hermite polynomial HN`1pxq (which

is actually a well known fact, see, e.g. Ref. [41]). From the recurrence relation

xHnpxq “ Hn`1pxq ` nHn´1pxq it follows that

xĤnpxq “
?
n` 1Ĥn`1pxq `

?
nĤn´1pxq, (77)

where we defined

Ĥnpxq “
Hnpxq
?
n!

, n ě 0. (78)

Equation (77), evaluated at x “ λi, for a given eigenvalue λi P tλ0, λ1, ¨ ¨ ¨ , λNu,

yields

λiĤnpλiq “
?
n` 1Ĥn`1pλiq `

?
nĤn´1pλiq (79)

Combining Eq. (79) with the expression of SN , one sees that the vector

pĤ0pλiq, Ĥ1pλiq, ¨ ¨ ¨ , ĤN pλiqq
T is an eigenvector of SN associated with the eigen-

value λi. Because the columns of the matrix UN correspond to orthonormal

eigenvectors of SN , we have that a generic element of UN is given by

UNmn “
Ĥmpλnq

upnq
, m, n “ 0, 1, ¨ ¨ ¨ , N, (80)
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where

upnq “

g

f

f

e

N
ÿ

i“0

Ĥ2
i pλnq, n “ 0, 1, ¨ ¨ ¨ , N, (81)

are normalization constants. The expression for these constants can be simpli-

fied making use of the Christoffel-Darboux identity [42]

N
ÿ

n“0

H̄npxqH̄npyq

2nn!
“
H̄N`1pxqH̄N pyq ´ H̄N pxqH̄N`1pyq

2N`1N !px´ yq
, (82)

where H̄npxq “ 2
n
2Hnp

?
2xq are rescaled Hermite polynomials. The simpli-

fication is obtained by first taking the limit x Ñ y, with the help of the de

l’Hôpital rule, in the expression (82). Then one sets y “ λn, and given that

HN`1pλnq “ 0, one can obtain the following simplified expression [43, 41]

upnq “

c

N ` 1

N !
|HN pλnq|. (83)

Combining Eqs. (80) and (83), it follows that the explicit expression for a

generic element of the matrix UN is given by

UNmn “

c

N !

N ` 1

Ĥmpλnq

|HN pλnq|
, m, n “ 0, 1, ¨ ¨ ¨ , N, (84)

so that the generic matrix UN has the form

UN “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b

N !
N`1

Ĥ0pλ0q

|HN pλ0q|

b

N !
N`1

Ĥ0pλ1q

|HN pλ1q|
... ...

b

N !
N`1

Ĥ0pλN q

|HN pλN q|
b

N !
N`1

Ĥ1pλ0q

|HN pλ0q|

b

N !
N`1

Ĥ1pλ1q

|HN pλ1q|
... ...

b

N !
N`1

Ĥ1pλN q

|HN pλN q|

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...
b

N !
N`1

ĤN pλ0q

|HN pλ0q|

b

N !
N`1

ĤN pλ1q

|HN pλ1q|

b

N !
N`1

ĤN pλN q

|HN pλN q|

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (85)

We are now ready to provide the explicit Hamiltonian structure, in terms of

the fluid moments, for an arbitrary member of the class of reduced fluid models

under consideration. We formalize this result by means of the following
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Proposition 4.1. For any integer N ě 1, the system (63)-(65), with g0, g1, ¨ ¨ ¨ , gN P

FN , is a Hamiltonian system with Hamiltonian H P C̄8pFN q given by

Hpg0, g1, ¨ ¨ ¨ , gN q “
1

2

ż

D
d3x

˜

N
ÿ

n“0

g2n ´

c

2

βe
pg0φflrg0s ´ g1Aflrg1sq

¸

, (86)

and Poisson bracket given by

tF,Kug “

c

βe
2

N
ÿ

l,m,n“0

Wmn
pNq l

ż

D
d3x glrFgm ,Kgns

´

N
ÿ

m,n“0

SNmn

ż

D
d3xFgm

BKgn

Bz
, (87)

for F,K P C̄8pFN q, where

Wmn
pNq l “

N !

N ` 1

N
ÿ

i“0

HlpλiqHmpλiqHnpλiq

H2
N pλiq

?
l!m!n!

. (88)

In the expression (88), the numbers λ0, λ1, ¨ ¨ ¨ , λN are the eigenvalues of the330

matrix SN given in Eq. (66), and are known to correspond to the zeros of the

Hermite polynomial HN`1pvq.

Proof. The system (63)-(65) is equivalent to the system (68)-(70). In particular,

given that the orthogonal matrix UN is invertible with inverse U´1
N “ UTN , one

has a linear invertible map UN : GN Ñ FN defined by

UNz “ UNz, (89)

for z P GN , which preserves the properties of a Poisson bracket. Therefore,

in order to determine the Hamiltonian structure of the system (63)-(65), it is

sufficient to express the Hamiltonian structure of the system (68)-(70), in terms

of the variables g0, g1, ¨ ¨ ¨ , gN , making use of the transformation (67) and of its

inverse

gm “ UNmnGn, m “ 0, 1, ¨ ¨ ¨ , N. (90)

We proceed with transforming first the Hamiltonian (71). Using the orthogo-

nality of UN , and Eq. (67), one readily has that

N
ÿ

n“0

G2
n “

N
ÿ

n,i,j“0

UTNni
giU

T
Nnj

gj “
N
ÿ

n,i,j“0

gjUNjnU
T
Nni

gi “
N
ÿ

i“0

g2i , (91)
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which permits to transform the first term on the right-hand side of Eq. (71).

With regard to the remaining terms, they readily follow from the relations

UN0l
Gl “ g0 and UN1l

Gl “ g1. Thus, one has straightforwardly

HpG0, G1, ¨ ¨ ¨ , GN q “
1

2

ż

D
d3x

˜

N
ÿ

n“0

g2n ´

c

2

βe
pg0φflrg0s ´ g1Aflrg1sq

¸

“ Hpg0, g1, ¨ ¨ ¨ , gN q. (92)

With regard to the Poisson bracket, in order to transform t , uG , one needs to

transform also the functional derivatives in terms of the variables g0, g1, ¨ ¨ ¨ , gN .

This is accomplished using Eqs. (44) and (90), from which one obtains

δF̄

δGi
“ UTNij

δF

δgj
, i “ 0, 1, ¨ ¨ ¨ , N, (93)

for F̄ P C̄8pGN q and F “ F̄ ˝ U´1
N P C̄8pFN q.

Using the relations (67) and (93) in the expression (73), for F̄ , K̄ P C̄8pGN q,

yields

tF̄ , K̄uG “

c

βe
2

N
ÿ

i“0

N
ÿ

l,m,n“0

1

UN0i

UTNil
UTNim

UTNin

ż

D
d3x glrFgm ,Kgns (94)

´

N
ÿ

i“0

N
ÿ

m,n“0

λiU
T
Nim

UTNin

ż

D
d3xFgm

BKgn

Bz

“

c

βe
2

N
ÿ

l,m,n“0

N
ÿ

i“0

upiq
Ĥlpλiq

upiq

Ĥmpλiq

upiq

Ĥnpλiq

upiq

ż

D
d3x glrFgm ,Kgns (95)

´

N
ÿ

i“0

N
ÿ

m,n“0

λi
Ĥmpλiq

upiq

Ĥnpλiq

upiq

ż

D
d3xFgm

BKgn

Bz
(96)

“

c

βe
2

N
ÿ

l,m,n“0

N !

N ` 1

N
ÿ

i“0

HlpλiqHmpλiqHnpλiq

H2
N pλiq

?
l!m!n!

ż

D
d3x glrFgm ,Kgns (97)

´
N !

N ` 1

N
ÿ

m,n“0

N
ÿ

i“0

λi
HmpλiqHnpλiq

H2
N pλiq

?
m!n!

ż

D
d3xFgm

BKgn

Bz
, (98)

where F “ F̄ ˝ U´1
N , K “ K̄ ˝ U´1

N , and where in the steps (94)-(98), we made

use of the expressions (83) and (84).335

Given the definition (88), we see that the expression (97) is already in the

desired form. We focus then on the expression (98). Making use of the formula
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(77) we obtain

N !

N ` 1

N
ÿ

i“0

λi
HmpλiqHnpλiq

H2
N pλiq

?
m!n!

“

N
ÿ

m,n“0

N
ÿ

i“0

c

N !

N ` 1

p
?
m` 1Ĥm`1pλiq `

?
mĤm´1pλiqqĤnpλiq

HN pλiq

c

N !

N ` 1

Ĥnpλiq

HN pλiq

“

N
ÿ

i“0

p
?
m` 1UNm`1 i

UTNin
`
?
mUNm´1 i

UTNin
q

“ p
?
m` 1δm`1,n `

?
mδm´1,nq “ SNmn . (99)

Using the expression (88) and the result (99) in the two final steps of (94)-(98)

yields

tF̄ , K̄uG “

c

βe
2

N
ÿ

l,m,n“0

Wmn
pNq l

ż

D
d3x glrFgm ,Kgns

´

N
ÿ

m,n“0

SNmn

ż

D
d3xFgm

BKgn

Bz
(100)

“ tF,Kug,

which completes the proof.

Remark 4.1. The Poisson bracket (87) generalizes, up to the normalization,

various Poisson brackets present in the literature. For instance, for N “ 1, it

reduces to the bracket for the electron dynamics of the models of Refs. [24, 25,340

44] and to the bracket of the model of Ref. [12] in the cold-ion limit. For N “ 2

one retrieves the bracket for the ion gyrofluid dynamics of the model of Ref.

[26], whereas for N “ 3, in the 2D limit, the bracket pertaining to the electron

dynamics with heat flux of Ref. [27] is obtained.

Remark 4.2. Comparing Eq. (87) with Eq. (73), i.e. the expressions of the

Poisson bracket in terms of the fluid moments g0, g1, ¨ ¨ ¨ , gN and in terms of

the variables G0, G1, ¨ ¨ ¨ , GN , respectively, it emerges that the Poisson bracket

takes a much simpler form in terms of the latter variables. In particular, when
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considering the perpendicular component tF,KuGK , one sees that this is the

direct sum of independent Poisson brackets of the form

ci

ż

D
d3xGirFGi ,KGis, (101)

with constant coefficients c0, c1, ¨ ¨ ¨ , cN . The direct sum is one of the ways in345

which one can build a Lie-Poisson bracket by extension [20]. As a consequence,

the proof of the Jacobi indentity is much easier when the bracket is expressed

in terms of the variables G0, G1, ¨ ¨ ¨ , GN . This represents one of the main

advantages of introducing such variables.

5. Comparison with the approach based on a truncated series350

In this Section we compare the Hamiltonian (86) and the Poisson bracket

(87) with the functionals and the bilinear form, respectively, that one derives

from the parent drift-kinetic Hamiltonian (49) and Poisson bracket (50), upon

replacing, as dynamical variable, the generalized perturbed distribution function

g with its truncated series retaining only the first N ` 1 Hermite moments. In355

order to carry out the comparison, we first present, with the next Proposition

5.2, a reformulation of the Poisson bracket (87). The proof of Proposition 5.2

is preceded by the following

Lemma 5.1. For every integer N ě 1, the coefficients Wmn
pNq l in Eq. (88)

possess the following properties:360

(a) Wmn
pNq l “ 0 if l `m` n is an odd number,

(b) For fixed integers l,m, n, one has W
σpmqσpnq
N σplq “Wmn

pNq l, where σ : tl,m, nu Ñ

tl,m, nu is a permutation of the integers l,m, n.

The proof of Lemma 5.1 is provided in AppendixA.

Remark 5.1. We observe that the property Wmn
pNq l “ Wnm

pNq l, following from365

Lemma 5.1 (b), is required by the antisymmetry of the Poisson bracket t , ug

[20].
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We now proceed with re-expressing the Poisson bracket t , ug in a way that

will facilitate its comparison with the bilinear form obtained from the truncated

series, which will be derived in Sec. 5.1. In order to formulate the correspond-

ing Proposition, it is convenient to the define, for a given integer N ě 1, the

following sets AN and BN :

AN “ tpl,m, nq P Z3
ě0 | l,m, n ď N , l `m` n is even,

m` n ě l , n` l ě m, l `m ě nu, (102)

BN “ tpl,m, nq P Z3
ě0 | l,m, n ď N , l `m` n is even,

m` n ą N ` 1 , n` l ą N ` 1 , l `m ą N ` 1u. (103)

The set BN is thus a subset of AN .

Also, for two given positive integers m and n, such that m` n ą N ` 1, we

introduce the number rNmn
defined by

rNmn
“ minpRNmn

q, (104)

where

RNmn
“ tr P Zą0 : pm` n´N ´ 1q{2 ď r ď minpm,nqu. (105)

We can now formulate the following

Proposition 5.2. Given two functionals F,K P C̄8pFN q, the Poisson bracket

t , ug can be expressed in the following way:

tF,Kug “ tF,KugK ` tF,Kug‖ . (106)

In the expression (106) one has

tF,KugK “

c

βe
2

N
ÿ

l,m,n“0

Wmn
pNq l

ż

D
d3x glrFgm ,Kgns, (107)
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where

Wmn
pNq l “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
, if pl,m, nq P ANzBN ,

N !

N ` 1

N
ÿ

i“0

Hlpλiq

H2
N pλiq

rNmn´1
ÿ

r“0

m!

pm´ rq!

n!

pn´ rq!r!

Hm`n´2rpλiq
?
l!m!n!

`

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
, if pl,m, nq P BN ,

0 otherwise

(108)

and

tF,Kug‖ “ ´
N
ÿ

m,n“0

SNmn

ż

D
d3xFgm

BKgn

Bz
. (109)

The proof of Proposition 5.2 is provided in AppendixB.370

5.1. Poisson bracket t , ug vs. bilinear structure obtained from truncated series

The closed fluid system (63)-(65) can be obtained from the drift-kinetic

system (2)-(4), assuming that g, at any time t, is a truncated Hermite series,

retaining only the moments from order 0 up to order N . Therefore it is natural

to ask whether the Hamiltonian and the Poisson bracket of the fluid model375

(63)-(65) can be obtained from those of the drift-kinetic model, by replacing

g, in the latter, with its truncated series, or, more precisely, by restricting

the Poisson algebra of observables, to functionals of Hermite series truncated

at the moment of order N , and then expressing the outcome of the resulting

restricted algebra in terms of the fluid moment variables. A delicate point in380

this operation concerns the Poisson bracket. Indeed, in order for the set of

functionals of the truncated Hermite series to be closed under the restricted

bilinear algebra operation (descending from the drift-kinetic Poisson bracket),

one has to restrict the Poisson operator of the drift-kinetic bracket, taking its

composition with the projector onto the subspace of truncated Hermite series.385

Because this operation is not invertible, the resulting bilinear form can fail to

satisfy the Jacobi identity and therefore not be a Poisson bracket.
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In order to carry out this analysis, let us first introduce the operator PN :

G Ñ ΓN defined by

PN pgq “
N
ÿ

n“0

gn
Hn
?
n!
Feq. (110)

The operator PN projects a generalized perturbed distribution function g onto

the subspace

ΓN “ tg P G| gi “ 0 @i ě N ` 1u, (111)

whose elements are the truncated Hermite series. Each g̃ P ΓN can be written

as

g̃px, vq “
N
ÿ

n“0

gnpxq
Hnpvq
?
n!

Feqpvq, (112)

with pg0, g1, ¨ ¨ ¨ , gN q P FN satisfying

gn “
1
?
n!

ż `8

´8

dv Hn g̃, n “ 0, 1, ¨ ¨ ¨ , N. (113)

We want to identify the restriction of the Poisson algebra of observables of

the drift-kinetic system, consisting of C̄8pGq, to the algebra C̄8pΓN q of the

truncated Hermite series, with the corresponding restricted bilinear algebra op-

eration. In particular, we want to determine the expression of the restricted

Hamiltonian functional H : FN Ñ R defined by

Hpg0, g1, ¨ ¨ ¨ , gN q “ Hdk ˝ PN pgq “ Hdkpg̃q, (114)

for g̃ P ΓN given by Eq. (112), and of the bilinear operator J , K : C̄8pFN q ˆ

C̄8pFN q Ñ C̄8pFN q given by

JF,KK “
〈
δF̄ ˝ PN pgq

δg
, Jdk ˝ PN pgq

δK̄ ˝ PN pgq
δg

〉
“

〈
δF̄

δg̃
, Jdkpg̃q

δK̄

δg̃

〉
(115)

where F̄ , K̄ P C̄8pΓN q and F pg0, g1, ¨ ¨ ¨ , gN q “ F̄˝PN pgq “ F̄ pg̃q, Kpg0, g1, ¨ ¨ ¨ , gN q “

K̄ ˝ PN pgq “ K̄pg̃q, with g̃ P ΓN .

In Eqs. (114) and (115), the functional Hdk, the Poisson bracket t , udk390

and the Poisson operator Jdk are those of the drift-kinetic model given by Eqs.

(49), (50) and (54), respectively. In Eq. (115), as above mentioned, we are
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considering a bilinear form involving the composition of the Poisson operator

Jdk, with the projector PN . The composition of these two operators, in general,

is not a Poisson operator. Therefore, the bilinear form (115) is not guaranteed395

to be a Poisson bracket.

After having defined the restricted Hamiltonian functional (114) and bilinear

algebra operation (115), we intend to find their explicit expressions in terms of

the fluid moments g0, g1, ¨ ¨ ¨ , gN , in order to compare them with the Hamilto-

nian (86) and the Poisson bracket (106) of the fluid model.400

The wanted expressions for H and J , K are provided by the next two Propo-

sitions.

Proposition 5.3. The functional H, defined by the relation (114), coincides

with the Hamiltonian functional H of the fluid model given in Eq. (86) of

Proposition 4.1.405

Proof. From Eqs. (114), (49) and (112) one has

Hpg0, g1, ¨ ¨ ¨ , gN q “ Hdkpg̃q “
1

2

ż

D
d3x

ż `8

´8

dv

˜

N
ÿ

n,n1“0

gn
Hn
?
n!
gn1

Hn1
?
n1!
Feq

(116)

´

c

2

βe

N
ÿ

n“0

gn
Hn
?
n!
Feq

˜

φdk

«

N
ÿ

n1“0

gn1
Hn1
?
n1!
Feq

ff

´ vAdk

«

N
ÿ

n1“0

gn1
Hn1
?
n1!
Feq

ff¸¸

(117)

“
1

2

ż

D
d3x

˜

N
ÿ

n“0

g2n ´

c

2

βe
pg0φflrg0s ´ g1Aflrg1sq

¸

“ Hpg0, g1, ¨ ¨ ¨ , gN q.

(118)

To go from the expressions (116)-(117) to the expressions (118) we made use of

the orthogonality relation (20) for Hermite polynomials and of the relations (41),

permitting to express electromagnetic potentials in terms of fluid moments.

Proposition 5.4. Given two functionals F,K P C̄8pFN q, the bilinear operator
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J , K, defined by the relation (115), can be written as

JF,KK “ JF,KKK ` JF,KK‖, (119)

where

JF,KKK “

c

βe
2

N
ÿ

l,m,n“0

Wmn
pNq l

ż

D
d3x glrFgm ,Kgns, (120)

with

Wmn
pNq l “

$

’

’

’

’

’

&

’

’

’

’

’

%

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
, if pl,m, nq P AN ,

0 otherwise

(121)

and

JF,KK‖ “ ´
N
ÿ

m,n“0

SNmn

ż

D
d3xFgm

BKgn

Bz
. (122)

Proof. From Eq. (115), using Eqs. (50) and (112), we obtain

JF,KK “
〈
δF̄

δg̃
, Jdkpg̃q

δK̄

δg̃

〉
“

ż

D
d3x

ż `8

´8

dv

˜

c

βe
2
g̃rF̄g̃, K̄g̃s ´ vFeqF̄g̃

BK̄g̃

Bz

¸

. (123)

From the definitions of functional derivatives (42) and (44), using also the rela-

tions (112) and (113), one obtains the following chain rule for functional deriva-

tives:
δF̄

δg̃
px, vq “

N
ÿ

n“0

Hnpvq
?
n!

δF

δgn
pxq, (124)

for F̄ pg̃q “ F pg0, g1, ¨ ¨ ¨ , gN q. Inserting the expressions (112) and (124) into Eq.

(123) yields

JF,KK “
ż

D
d3x

ż `8

´8

dv

˜

c

βe
2

N
ÿ

l,m,n“0

Feq
HlHmHn
?
l!m!n!

glrFgm ,Kgns

´

N
ÿ

m,n“0

Feq
H1HmHn
?
m!n!

Fgm
BKgn

Bz

¸

, (125)

where we also made use of the relation v “ H1pvq.410
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At this point, we can apply to the expression (125) the following identity for

Hermite polynomials [45]:

ż `8

´8

dv Feqpvq
HlpvqHmpvqHnpvq

?
l!m!n!

(126)

“

$

’

’

’

’

’

&

’

’

’

’

’

%

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
, if l `m` n is even and l `m ě n, m` n ě l, n` l ě m

0 otherwise.

(127)

In particular, with regard to the expression in the second line of Eq. (125), we

have that

ż `8

´8

dv Feq
H1HmHn
?
m!n!

“

?
m!n!

`

1`m´n
2

˘

!
`

m`n´1
2

˘

!
`

n`1´m
2

˘

!
(128)

when m` n` 1 is even and the three conditions

1`m ě n, m` n ě 1, n` 1 ě m, (129)

are satisfied. Otherwise,

ż `8

´8

dv Feq
H1HmHn
?
m!n!

“ 0. (130)

The conditions (129), together with the constraint for m` n` 1 of being even,

imply

m´ 1 ď n ď m` 1. (131)

From the relation (131) it follows that the integral (128) can be non-zero only

if n “ m ´ 1, n “ m or n “ m ` 1. However, the case n “ m implies that

m ` n ` 1 “ 2m ` 1 is odd. Therefore, also in this case the integral is zero.

Using Eq. (128), it follows that

ż `8

´8

dv Feq
H1HmHn
?
m!n!

“
?
m` 1δm`1,n `

?
mδm´1,n “ SNmn . (132)

Using Eqs. (126) (recalling that l,m and n go from 0 to N) and (132) into Eq.
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(125), we can write

JF,KK “

c

βe
2

N
ÿ

l,m,n“0

Wmn
pNq l

ż

D
d3x glrFgm ,Kgns

´

N
ÿ

m,n“0

SNmn

ż

D
d3xFgm

BKgn

Bz
, (133)

where

Wmn
pNq l “

$

’

’

’

’

’

&

’

’

’

’

’

%

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
, if pl,m, nq P AN ,

0 otherwise.

(134)

Therefore we can conclude

JF,KK “ JF,KKK ` JF,KK‖. (135)

From Proposition 5.3 it follows that, for any N , the Hamiltonian of the

fluid model can be derived from the Hamiltonian of the drift-kinetic model, by

replacing, in the latter, the generalized perturbed distribution function with its

truncated series of order N . On the other hand, Proposition 5.4 shows that the

Poisson bracket of the fluid model cannot be obtained from the Poisson bracket

of the drift-kinetic model, by considering a Poisson operator depending only on

truncated Hermite series, and by restricting the set of observables to C̄8pFN q.

More in detail, by comparing Proposition 5.2 with Proposition 5.4 one sees that

t , ug‖ “ J , K‖. (136)

However, the difference arises in the ”perpendicular’ components t , ugK and

J , KK, characterized by the coefficients Wmn
pNq l and Wmn

pNq l. More specifically, one

sees that in general Wmn
pNq l “ Wmn

pNq l except when pl,m, nq P BN , i.e. when l,

m and n are all sufficiently ’large’. For most of the values of l, m and n, the415

coefficients of the bilinear form, obtained from the truncated series, and the
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Figure 1: Plot illustrating, in the lmn space, the points where Wmn
pNq l

“ Wmn
pNq l

“ 0, the points

of the set AN zBN and the points of the set BN , for the case N “ 5. The yellow points are

those for which Wmn
pNq l

“ Wmn
pNq l

“ 0. The blue points are the points of the set AN zBN . At

such points one has Wmn
pNq l

“ Wmn
pNq l

. The red color indicate the points of the set BN . At

such points Wmn
pNq l

‰ Wmn
pNq l

. It is at such points that the coefficients of t , ugK differ from

those of J , KK.

coefficients of the Poisson bracket, are nevertheless identical. It is in this sense,

that we previously stated that the bilinear form J , K and the Poisson bracket

t , ug are ”very similar”. Note also that the expression for the coefficients Wmn
pNq l,

given by Eq. (121), does not depend on N , whereas this is the case for Wmn
pNq l420

when pl,m, nq P BN , as shown by Eq. (108).

The distribution, in the lmn space, of the points where Wmn
pNq l “ Wmn

pNq l “ 0, of

the points of ANzBN (where Wmn
pNq l “ Wmn

pNq l) and of the points of BN (where

Wmn
pNq l ‰ Wmn

pNq l) is illustrated, for the case N “ 5, in Fig. 1.

6. Example : a three-moment model425

In order to exemplify the results presented in Secs. 4 and 5, we treat here in

detail the case N “ 2. In this case, the resulting fluid model evolves the three

moments g0, g1 and g2, which, as anticipated in 3.1, are proportional to the

fluctuations of electron gyrocenter density, parallel canonical momentum and

parallel temperature, respectively. The closure adopted in this case is g3 “ 0,430
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which amounts to set the parallel heat flux fluctuations of the electron gyrocen-

ters equal to zero.

The matrix S2 reads

S2 “

¨

˚

˚

˚

˝

0 1 0

1 0
?

2

0
?

2 0

˛

‹

‹

‹

‚

, (137)

and its eigenvalues, corresponding to the zeros of H3pxq “ x3 ´ 3x, are

pλ0, λ1, λ2q “ p´
?

3, 0,
?

3q. (138)

From Eq. (86) of Proposition 4.1, we have that the Hamiltonian of the fluid

model is given by

Hpg0, g1, g2q “
1

2

ż

D
d3x

ˆ

g20 ` g
2
1 ` g

2
2 ´

c

2

βe
pg0φflrg0s ´ g1Aflrg1sq

˙

.

(139)

For the Poisson bracket, we consider the expression following from Eq. (106)

of Proposition 5.2. For two functionals F,K P C̄8pF2q the Poisson bracket can

thus be written as

tF,Kug “

c

βe
2

2
ÿ

l,m,n“0

Wmn
p2q l

ż

D
d3x glrFgm ,Kgns

´

2
ÿ

m,n“0

S2mn

ż

D
d3xFgm

BKgn

Bz
, (140)

where

Wmn
p2q l “ 0, for 0 ď l,m, n ď 2 except for

W 00
p2q 0 “ 1,

W 11
p2q 0 “W 10

p2q 1 “W 01
p2q 1 “ 1,

W 22
p2q 0 “W 20

p2q 2 “W 02
p2q 2 “ 1, (141)

W 11
p2q 2 “W 12

p2q 1 “W 21
p2q 1 “

?
2,

W 22
p2q 2 “

1
?

2
.
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In a less compact form, the Poisson bracket (140) can be written as

tF,Kug “

ż

D
d3x

˜

c

βe
2
pg0prFg0 ,Kg0s ` rFg1 ,Kg1s ` rFg2 ,Kg2sq

`g1prFg0 ,Kg1s ` rFg1 ,Kg0s `
?

2rFg1 ,Kg2s `
?

2rFg2 ,Kg1sq

`g2prFg0 ,Kg2s ` rFg2 ,Kg0s `
?

2rFg1 ,Kg1s `
1
?

2
rFg2 ,Kg2sqq (142)

´Fg0
BKg1

Bz
´ Fg1

BKg0

Bz
´
?

2Fg1
BKg2

Bz
´
?

2Fg2
BKg1

Bz

˙

.

The Hamiltonian (139) and the Poisson bracket (142) yield the following equa-

tions of motion:

Bg0
Bt
` rφ, g0s ´ rA, g1s `

Bg1
Bz

`

c

2

βe

BA

Bz
“ 0,

Bg1
Bt
` rφ, g1s ´ rA, g0s ´

?
2rA, g2s `

Bg0
Bz

`
?

2
Bg2
Bz

´

c

2

βe

Bφ

Bz
“ 0, (143)

Bg2
Bt
` rφ, g2s ´

?
2rA, g1s `

?
2
Bg1
Bz

`
?

2

c

2

βe

BA

Bz
“ 0,

where φ “ φflrg0s and A “ Aflrg1s. The system (143) coincides namely with

the fluid system (63) in the case N “ 2, obtained by truncating the hierarchy

of equations (56)-(59) with g3 “ 0.435

Also, from Eq. (85) one obtains

U2 “

¨

˚

˚

˚

˝

1?
6

b

2
3

1?
6

´ 1?
2

0 1?
2

1?
3

´ 1?
3

1?
3

˛

‹

‹

‹

‚

, (144)

(note a difference with respect to Eq. (87) of Ref. [33], due to a different num-

bering of the eigenvalues and a different choice in the normalization constant).

From the matrix U2 one can, by means of Eq. (67), obtain the expressions for

the variables pG0, G1, G2q P G2, which read

G0 “
g0
?

6
´

g1
?

2
`

g2
?

3
,

G1 “

c

2

3
g0 ´

g2
?

3
, (145)

G2 “
g0
?

6
`

g1
?

2
`

g2
?

3
.
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In terms of these variables, following Eqs. (68)-(70), the system (143) can be

rewritten as

BG0

Bt
` rφ`

?
3A,G0s ´

?
3
BG0

Bz
`

c

2

βe

B

Bz

˜

c

3

2
A`

φ
?

2

¸

“ 0,

BG1

Bt
` rφ,G1s “ 0, (146)

BG2

Bt
` rφ´

?
3A,G2s `

?
3
BG2

Bz
`

c

2

βe

B

Bz

˜

c

3

2
A´

φ
?

2

¸

“ 0,

where φ “ φflrU20lGls and A “ AflrU21lGls.

The formulation (146) puts in evidence the existence of a Lagrangian in-

variant, corresponding to G1, which is simply transported by the velocity field

vEˆB “ ẑ ˆ∇φ, (147)

which identifies with the so-called E ˆ B velocity field. We note that, on the

basis of our definitions of the fluid moments, G1 is proportional to ne ´ T‖e{2,

where ne and T‖e are normalized fluctuations of electron gyrocenter density

and parallel temperature, respectively. We observe that the relation T‖e “440

2ne (implying G1 “ 0) expresses an adiabatic law for the parallel electron

temperature. Therefore, if T‖e “ 2ne at t “ 0, G1 “ 0 is a solution of Eq. (146),

which expresses the adiabatic relation between parallel electron temperature

and density at all times. If T‖e ‰ 2ne at t “ 0, on the other hand, such initial

departure from adiabaticity is conserved along the flow of the EˆB velocity at445

all times. From Eqs. (146) it can also be seen that, in the 2D limit in which the

fields G0, G1 and G2 do not depend on the z coordinate, all these three fields

become Lagrangian invariants, as already pointed out in Refs. [32, 33].

We now apply, to the caseN “ 2, the approach based on the truncated series.

From Proposition 5.3 we obtain that the truncated Hermite series g̃ P Γ2, given

by

g̃px, vq “
2
ÿ

n“0

gnpxq
Hnpvq
?
n!

Feqpvq, (148)

when inserted into the drift-kinetic Hamiltonian Hdk, yields the functional

Hpg0, g1, g2q “ Hpg0, g1, g2q, where H is the fluid Hamiltonian (139). On
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the other hand, the expression of the bilinear form J , K, for two functionals

F,K P C̄8pF2q, follows from Proposition 5.4 and is given by

JF,KK “

c

βe
2

2
ÿ

l,m,n“0

Wmn
p2q l

ż

D
d3x glrFgm ,Kgns

´

2
ÿ

m,n“0

S2mn

ż

D
d3xFgm

BKgn

Bz
, (149)

where

Wmn
p2q l “ 0, for 0 ď l,m, n ď 2 except for

W00
p2q 0 “ 1,

W11
p2q 0 “ W10

p2q 1 “ W01
p2q 1 “ 1,

W22
p2q 0 “ W20

p2q 2 “ W02
p2q 2 “ 1, (150)

W11
p2q 2 “ W12

p2q 1 “ W21
p2q 1 “

?
2,

W22
p2q 2 “ 2

?
2.

Comparing Eq. (142) with Eq. (149) and Eq. (141) with Eq. (150), it emerges

that the bilinear form J , K differs from the Poisson bracket t , ug only by the450

coefficient W22
p2q 2 “ 2

?
2, which is not equal to W 22

p2q 2 “ 1{
?

2. Indeed, the set

B2 is given by B2 “ tp2, 2, 2qu and, from Eq. (108) of Proposition 5.2, it follows

that only the expression for W 22
p2q 2 “ 1{

?
2 differs from the expression of the

corresponding coefficient of J , K.

Remark 6.1. It turns out that the bilinear form (149) is antisymmetric, satisfies

the Leibniz rule but it does not satisfy the Jacobi identity. Therefore, the form

(149) is not a Poisson bracket. In order to see this, we first remark that the

Jacobi identity for the bilinear form J , K can be written as

JJF,KKK, EKK ` JJF,KKK, EK‖ ` JJF,KK‖, EKK ` JJF,KK‖, EK‖` ö“ 0, (151)

where the symbol ö indicates the additional terms obtained by cyclic permu-455

tation of F,K and E. The identity (151) must be valid for all functionals

F,K,E P C̄8pF2q.
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In order to investigate the relation (151) we can make use of a result pre-

sented in Sec. 3.2 of Ref. [23]. According to such result, one has that

JJF,KK‖, EKK ` JJF,KK‖, EK‖` ö“ 0, (152)

which follows from the fact that J , K‖ is itself a Poisson bracket with constant

Poisson operator. With regard to the expression

JJF,KKK, EK‖` ö, (153)

it vanishes for all F,K,E P C̄8pF2q if and only if the condition

S2inWjm
p2q i “ S2ijWmn

p2q i “ S2imWnj
p2q i, for 0 ď j,m, n ď 2, (154)

(where the sum over the repeated index i is understood) is satisfied. However, if

we consider the case j “ 2,m “ 2, n “ 1, from Eqs. (137) and (150), we obtain

S2i1W22
p2q i “ 5, S2i2W21

p2q i “ 2. (155)

Therefore S2i1W22
p2q i ‰ S2i2W21

p2q i and the condition (154) is not satisfied. Thus,

the expression (153) does not vanish for all F,K,E P C̄8pF2q. Similarly, one

can show that the

JJF,KKK, EKK` ö“ 0, (156)

does not hold for all F,K,E P C̄8pF2q. An effective way to see this is to

take advantage from a result in Sec. 2.3 of Ref. [20] (actually, the result of

Ref. [20] refers to a purely 2D domain, but this difference is irrelevant for the

present purpose). According to this result, for a given N , antisymmetric bilinear

operations of the form (120) satisfy the Jacobi identity if and only if all the N`1

matrices Wpkq, whose elements of row i and column j are defined by

Wpkqij “ Wjk
pNq i, i, j, k “ 0, ¨ ¨ ¨ , N, (157)

pairwise commute.

In the present case N “ 2, from Eq. (150), one obtains that the three
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matrices Wp0q,Wp1q and Wp2q are given by

Wp0q “

¨

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‚

, Wp1q “

¨

˚

˚

˚

˝

0 1 0

1 0
?

2

0
?

2 0

˛

‹

‹

‹

‚

, Wp2q “

¨

˚

˚

˚

˝

0 0 1

0
?

2 0

1 0 2
?

2

˛

‹

‹

‹

‚

.

(158)

Clearly, both Wp1q and Wp2q commute with Wp0q, which is the identity matrix.

However, one has

Wp1qWp2q “

¨

˚

˚

˚

˝

0
?

2 0
?

2 0 5

0 2 0

˛

‹

‹

‹

‚

, Wp2qWp1q “

¨

˚

˚

˚

˝

0
?

2 0
?

2 0 2

0 5 0

˛

‹

‹

‹

‚

. (159)

Therefore, Wp1q and Wp2q do not commute and, consequently, the condition (156)

is not satisfied for all F,K,E P C̄8pF2q, which, in turn, implies that J , KK is460

not a Poisson bracket on its own. We finally remark that the sum of the two

contributions JJF,KKK, EKK` ö and JJF,KKK, EK‖` ö cannot vanish either,

for any choice of F,K and E, because JJF,KKK, EK‖` ö explicitly contains

partial derivatives with respect to z of functional derivatives of F,K and E,

whereas JJF,KKK, EK‖` ö does not contain this type of derivatives. Therefore,465

there cannot be cancellation between these two contributions, for any choice of

F,K and E. In conclusion, the Jacobi identity (151) is not satisfied.

We also remark that, if one had replaced the value 2
?

2 of W22
p2q 2 with the

value 1{
?

2, corresponding to W 22
p2q 2, the condition (154) would have been satis-

fied and the three matrices Wp0q, Wp1q and Wp2q would have pairwise commuted.470

Thus, the Jacobi identity would have been satisfied, which confirms that t , ug

is a valid Poisson bracket.

The additional term, with respect to the expression (121), present in Eq.

(108) for pl,m, nq P BN , is what ’corrects’ the coefficient Wmn
pNq l in order to

modify the form J , K into a Poisson bracket. In particular, it modifies the per-475

pendicular form J , KK turning it into t , ugK , which is a Poisson bracket obtained

by extension of a Lie-Poisson bracket [20].
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Finally, we note that, had one naively (and not correctly) used the bilinear

form (149) as a Poisson bracket, and derived a set of equations using the formula

9gi “ Jgi, HK, for i “ 0, 1, 2, with H given by Eq. (139), one would have never-480

theless obtained the correct equations of motion (143). Indeed, the coefficient

W22
p2q 2, which spoils the Jacobi identity, would have produced no finite terms

in the equations of motion. Therefore, this is one of the examples that points

out subtleties existing in the identification of Poisson brackets among ’almost

identical’ antisymmetric bilinear forms. These can indeed yield the same equa-485

tions of motion from the same Hamiltonian, but they are not Poisson brackets

because they do not satisfy the Jacobi identity. It also shows how truncations

can spoil the Hamiltonian structure of a model.

7. Physical interpretations of the variables G0, G1, ¨ ¨ ¨ , GN . Analogy

with the problem of the quantum harmonic oscillator490

The set of variables G0, G1, ¨ ¨ ¨ , GN introduced with Eq. (67), proved to be

useful [32] in order to find the Poisson bracket for the fluid models which, in

terms of these variables, takes the simple form (73). Such variables are related

to the Casimir invariants of the perpendicular Poisson bracket t , ugK , i.e. to

observables C P C̄8pGN q such that

tC,F uGK “ 0, @F P C̄8pGN q. (160)

More precisely, one has that the observables Ci P C̄
8pGN q, with i “ 0, 1, ¨ ¨ ¨ , N,

and defined by

Ci “

ż

D
d3x CipGiq, for i “ 0, 1, ¨ ¨ ¨ , N, (161)

with C1, C2, ¨ ¨ ¨ , CN arbitrary smooth functions, are infinite families of Casimir

invariants for t , uGK . Casimir invariants of this form have been found in the

2D limit of a number of reduced fluid models, as for instance in those of Refs.

[46, 24, 25, 26, 27]. The associated variables G0, G1, ¨ ¨ ¨ , GN have also been

used to investigate simulations of collisionless magnetic reconnection [11, 46,495
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27, 10, 47] or directions of spectral cascades in 2D plasma turbulence [48]. In

the 2D limit, such Casimir invariants are analogous to the Casimir invariants

of the 2D Euler equation for an incompressible fluid [30]. However, in spite

of their frequent occurrence in reduced fluid models for plasmas, a complete

physical interpretation of the variables G0, G1, ¨ ¨ ¨ , GN , associated with such500

Casimir invariants, still appears to be lacking. Here we provide an attempt to

remedy this gap.

We begin by recalling, as stated at the beginning of Sec. 5.1, that the N`1-

moment fluid model (63)-(65) can be obtained from the parent drift-kinetic

system (2)-(4) by replacing g with its truncated Hermite series

g̃px, v, tq “
N
ÿ

m“0

gmpx, tq
Hmpvq
?
m!

Feqpvq. (162)

Using the relation gm “ UNmnGn, Eq. (162) can be rewritten as

g̃px, v, tq “
N
ÿ

m,n“0

UNmnGnpx, tq
Hmpvq
?
m!

Feqpvq. (163)

Evaluating Eq. (163) at v “ λi, for i “ 0, 1, ¨ ¨ ¨ , N and using the relation

N !

N ` 1

N
ÿ

i“0

HipλjqHipλkq

|HN pλjq||HN pλkq|i!
“ δj,k, (164)

which, analogously to Eq. (B.3), follows from the orthogonality between UN

and UTN , one obtains the relation

g̃px, λi, tq “

c

N ` 1

N !
|HN pλiq|Gipx, tqFeqpλiq, for i “ 0, 1, ¨ ¨ ¨ , N. (165)

This relation can alternatively be written as

Gipx, tq “ αN,λi
g̃px, λi, tq, for i “ 0, 1, ¨ ¨ ¨ , N, (166)

where

αN,λi “

c

N !

N ` 1

1

|HN pλiq|Feqpλiq
. (167)

From the relation (166) one can then interpret each Gi as a field providing, up

to the multiplicative constant factor αN,λi
, the spatial and temporal evolution
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of the truncated distribution function related to electrons with parallel velocity505

v “ λi.

Using Eq. (80), the evolution equation (68) for a given Gi, can be written

as

BGi
Bt
`rφ´λiA,Gis`λi

BGi
Bz

`

c

2

βe

c

N !

N ` 1

λi
|HN pλiq|

B

Bz
pλiA´φq “ 0, (168)

where φ “ φflrUN0l
Gls and A “ AflrUN1l

Gls. Upon defining

g̃λi
px, tq “ g̃px, λi, tq, (169)

one obtains, through Eq. (165), the evolution equation for g̃λi
, which reads

Bg̃λi

Bt
` rφ´ λiA, g̃λi

s ` λi
Bg̃λi

Bz
`

c

2

βe
Feqpλiqλi

B

Bz
pλiA´ φq “ 0. (170)

We remark that analogies between the dynamics of variables Gi in fluid models

(for N “ 1) and the dynamics of the electron drift-kinetic distribution function

was observed by means of numerical simulations of magnetic reconnection in

Refs. [34, 35, 36].510

From the relation (165) it follows that, knowing the location of λi (i.e. of the

zeros of HN`1pxq), tells what are the particular values of v for which the trun-

cated generalized perturbed distribution function is proportional to Gi. From

the properties of the zeros of Hermite polynomials, some information about the

location of the eigenvalues λi can actually be inferred.515

We proceed by recalling some known properties about zeros of Hermite poly-

nomials, from which we also draw some conclusions on the dynamics described

by the reduced fluid models, and their relation with the parent drift-kinetic

model.

First, for a given N , the eigenvalues λi are distinct [42]. Moreover, as already

noticed in Sec. 5, they are symmetrically distributed around x “ 0, and, when

N is even, there exists one m such that λm “ 0. Therefore, for fluid models

with even N (i.e. evolving an odd number of moments), one has

BGm
Bt

` rφ,Gms “ 0, (171)
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i.e., there exists one, and only one field Gm, which is purely advected by the

EˆB velocity field (this was the case, for instance, of G1 in Eq. (146)). This

reflects the fact that, when N is even, the Poisson bracket (73) can be written

as

tF,KuG “
N
ÿ

i“0
i‰m

˜

c

βe
2

1

UN0i

ż

D
d3xGirFGi

,KGi
s ´ λi

ż

D
d3xFGi

BKGi

Bz

¸

`

c

βe
2

1

UN0m

ż

D
d3xGmrFGm

,KGm
s. (172)

Casimir invariants of the bracket (172) are given by

Ci “

ż

D
d3xGi, i “ 0, ¨ ¨ ¨ , N, i ‰ m, (173)

Cm “

ż

D
d3x CmpGmq, (174)

where Cm is an arbitrary smooth function. Therefore, when the number of520

retained moments is odd, the system admits, even in 3D, an infinite number

of Casimir invariants, corresponding to the family Cm, in addition to the finite

number of Casimir invariants Ci, with i “ 0, ¨ ¨ ¨ , N and i ‰ m. A similar feature

was encountered also in the Casimir invariants of the model described in Ref.

[28].525

A different situation occurs when the number of moments is even (i.e. N is

odd). In this case, λi ‰ 0 for all i and the Poisson bracket reads

tF,KuG “
N
ÿ

i“0

˜

c

βe
2

1

UN0i

ż

D
d3xGirFGi

,KGi
s ´ λi

ż

D
d3xFGi

BKGi

Bz

¸

.

(175)

Casimir invariants thus reduce to

Ci “

ż

D
d3xGi, i “ 0, ¨ ¨ ¨ , N, (176)

and remain in a finite number.

The explicit form of the matrix UN provided in the present paper, makes

it also now possible to easily express Casimir invariants in terms of the fluid

moments, for arbitrary N . This becomes particularly relevant in the 2D case,
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where the evolution equations of the fluid moments can be recast in the form of530

advection equations for the Lagrangian invariants G0, G1, ¨ ¨ ¨ , GN .

More in general, as it emerges from Eq. (68), the eigenvalues λi express the

weight of the magnetic contribution, relative to the EˆB contribution, of the

generalized velocity fields

vi “ ẑ ˆ∇pφ` λiAq, i “ 0, 1, ¨ ¨ ¨ , N. (177)

The incompressible velocity fields vi are those that advect the fields Gi in the

plane perpendicular to the guide field.

Another property of zeros of Hermite polynomials is that they interlace (see,

e.g. Ref. [49]). This means that, if λ0, λ1, ¨ ¨ ¨ , λN are the zeros of HN`1 and

λ10, λ
1
1, ¨ ¨ ¨ , λ

1
N`1 are the zeros of HN`2, one has

λ10 ă λ0 ă λ11 ă ¨ ¨ ¨ ă λN ă λ1N`1. (178)

Therefore, between two consecutive eigenvalues λi and λi`1 of SN , there will

always be one eigenvalue λ1i`1 of SN`1. Also, for a given interval v1 ď v ď v2,535

one can always find an eigenvalue that belongs to that interval, provided N is

large enough. This suggests how the relative weight of magnetic vs. E ˆ B

contributions, in the generalized velocity fields vi, evolves, as N increases. We

point out that the arguments discussed in this Section, about the eigenvalues

λi, hold for N arbitrarily large but finite. In particular, although, as just stated,540

for sufficiently large N , one can find an eigenvalue λi arbitrarily close to a given

value of v, not all the real values of v are eigenvalues of SN , even for N arbitrarily

large. Indeed, because the eigenvalues are zeros of polynomials with rational

coefficients, there exists no N , for which λi “ v, for some i ď N , when v is a

transcendental number (see also Ref. [43]). From this, we can infer a limitation545

in the approximation of the drift-kinetic dynamics with that of the reduced fluid

models. Indeed, reduced fluid models with the adopted Hamiltonian closure,

as mentioned at the beginning of Sec. 5.1, replace the actual dynamics of g

with that of a truncated series. Through the relation (166), one has a direct

correspondence between the variables Gi of the fluid model, and a truncated550
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series of g, for a discrete set of v P tλ0, λ1, ¨ ¨ ¨ , λNu. Thus, the dynamics of the

fields Gi can be seen as an approximation of the dynamics of the actual function

g, for a discrete set of values of v. However, because of the above remark on the

non-transcendental character of the eigenvalues λi, we can conclude that there

cannot be an approximation of g, by means of a certain Gi, for transcendental555

values of v, no matter how large N is.

We remark that the infinite hierarchy of equations (56)-(59), obtained from

the drift-kinetic system without truncations, can be written as

Bgm
Bt

` rφ, gms ´ SmnrA, gns ` Smn
Bgn
Bz

`

c

2

βe

B

Bz

´?
m!pδm0 ` δm2qA´ δm1φ

¯

“ 0, m P Zě0, (179)

where Smn “
?
mδm,n`1`

?
m` 1δm,n´1 are the elements of the infinite matrix

S “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 ... 0 ...

1 0
?

2 0 ... 0 ...

0
?

2 0
?

3 ... 0 ...

0 0
?

3 0 ... 0 ...

... ... ...

... ... ...

0 0 0 ... 0
?
N ...

0 0 0 ...
?
N 0 ...

... ... ... ... ... ... ...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (180)

One can recognize, up to multiplicative constant factors, the matrix S as the

Jacobi matrix of the position operator x̂ for a quantum harmonic oscillator in

the orthonormal basis consisting of eigenvectors of the number operator N̂ . The

matrix S, in particular, can be written as S “ aT ` a, where aT and a are ma-560

trices of elements aTmn “
?
mδm,n`1 and amn “

?
m` 1δm,n´1. The matrices

aT and a are associated with the ladder operators â: and â, respectively. In

terms of this analogy, one could interpret, from the first line Eq. (179), the

temporal variation of the moment gm as influenced by the action of such two

operators. One of them (analogous to the ”creation” operator â:) corresponds565
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to
?
m` 1gm`1 and the second one (analogous to the ”annihilation” operator

â) corresponds to
?
mgm´1. We point out that a connection between creation-

annihilation operators and the dynamics of moments obtained from the Vlasov

equation was investigated in Ref. [50]. In this context, we also find it interesting

to mention that our approach for closing the infinite hierarchy (179), by replac-570

ing the infinite matrix S with a finite matrix SN , is analogous to the procedure

adopted in quantum mechanics for approximating the behavior of a quantum

harmonic oscillator by a truncated quantum harmonic oscillator [43, 41]. Indeed,

the matrices SN correspond to those associated with the position operators of

truncated harmonic oscillators. The analogy with the quantum harmonic oscil-575

lator relies on the choice of the Hermite polynomials as basis for representing

the generalized perturbed distribution function g. Therefore, we believe that

the analogy would fail if a different basis were chosen for representing g.

8. Conclusions

We presented new results concerning an infinite class of Hamiltonian nonlin-580

ear reduced fluid models describing the dynamics of plasma and electromagnetic

fields in the presence of a strong magnetic guide field. The Hamiltonian struc-

ture of all these models is now available in an explicit form, thus completing

the results of Refs. [32, 33] about the existence of such structure. Although the

Hamiltonian reduced fluid models can be obtained from the parent drift-kinetic585

model, by truncating the Hermite series expansion of the generalized perturbed

distribution function, we showed that this approach cannot be applied in order

to derive the Hamiltonian structure of the fluid models from that of the parent

model. Indeed, by this approach, one does not retrieve the Poisson bracket of

the fluid models, but a different (although, interestingly, ”very similar”) bilinear590

operator which we showed, with a counterexample, not to satisfy, in general,

the Jacobi identity. Such truncations are thus shown not to preserve the Hamil-

tonian structure. In order to derive the Hamiltonian structure of fluid models

from that of a parent kinetic model, alternative approaches should be followed.
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Examples of fluid reductions from kinetic systems, that preserve a Hamiltonian595

structure, are provided in Refs. [51, 52, 53, 54, 55, 56].

From a more physical perspective, we showed the existence of a relation (so

far unknown, to the best of our knowledge), between the variablesG0, G1, ¨ ¨ ¨ , GN

and the truncated generalized perturbed distribution function. Also, we put in

evidence some features of the dynamics of the reduced fluid models, inferred600

from properties of the zeros of Hermite polynomials. A limitation in the capa-

bility of a reduced fluid model to approximate the dynamics of the drift-kinetic

model was also identified. Furthermore, we pointed out an analogy between the

hierarchy of fluid equations and the problem of the quantum harmonic oscilla-

tor. In particular, the closure problem in the plasma physics context, shares605

similarities with the problem of the truncated harmonic oscillator in quantum

mechanics.

In our opinion, the present paper motivates further research in various direc-

tions. On one hand, given the above mentioned failure in deriving the Poisson

brackets of the reduced fluid models, by the truncated series approach, the prob-610

lem of the derivation of such Poisson brackets remains open. The identification,

carried out in Sec. 5, of the terms that ’correct’ the coefficients Wmn
pNq l, turning

them into the coefficients Wmn
pNq l of the Poisson bracket, might give some hint

on how the Lie algebra underlying the Poisson bracket t , ug descends from that

of the parent Poisson bracket t , udk.615

A further natural direction of investigation, potentially leading to a number

of applications in terms of modelling plasmas with strong anisotropies, concerns

the identification of Hamiltonian closures for reduced fluid models accounting,

in addition to the evolution of moments involving the coordinate v, also mo-

ments with respect to the perpendicular velocity coordinate. In Ref. [33] finite620

Larmor radius effects involving the perpendicular velocity (or, equivalently, the

magnetic moment) coordinate, were taken into account. However, no general

Hamiltonian closure was found for models evolving also moments with respect

to such coordinate.

Finally, we believe it could be useful to deepen the investigation of the anal-625
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ogy between the present hierarchy of fluid models and the quantum harmonic

oscillator. In particular, it might be interesting to see whether the techniques

adopted to approximate the quantum harmonic oscillator by a truncated oscil-

lator, as done in Ref. [41], could be transferred to the problem of approximating

a drift-kinetic system by a reduced fluid model.630
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AppendixA. Proof of Lemma 5.1

Proof. In order to prove the statement (a) it is convenient to introduce the

function

θNlmn
pxq “

N !

N ` 1

HlpxqHmpxqHnpxq

H2
N pxq

?
l!m!n!

, (A.1)

so that

Wmn
pNq l “

N
ÿ

i“0

θNlmn
pλiq. (A.2)

Because an Hermite polynomial Hnpxq is an even (odd) function of x if n is an635

even (odd) number, it follows from the definition (A.1) that, if l`m`n is odd,

the function θNlmn
is odd. Moreover, the elements λ0, λ1, ¨ ¨ ¨ , λN , which are

the zeros of the Hermite polynomial HN`1pxq, are symmetrically distributed

around x “ 0 on the real axis, so that if λi is a zero, also ´λi is. In particular

one has λi “ 0, for a certain i, when HN`1 is an odd function, i.e. when N is640

even.

We first consider the case when N is odd. In this case λi ‰ 0 for i “

0, 1, ¨ ¨ ¨ , N . We sort the eigenvalues λi in increasing order so that λ0 ă λ1 ă

¨ ¨ ¨ ă λN . Due to the above mentioned symmetry property around x “ 0, we

have that

tλ0, λ1, ¨ ¨ ¨ , λN´1
2
, λN`1

2
, ¨ ¨ ¨ , λN´1, λNu

“ t´λN ,´λN´1, ¨ ¨ ¨ ,´λN`1
2
, λN`1

2
, ¨ ¨ ¨ , λN´1, λNu. (A.3)
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Thus, from Eq. (A.2), considering that θNlmn
is an odd function when l`m`n

is odd, one has

Wmn
pNq l “

N´1
2
ÿ

i“0

θNlmn
pλiq `

N
ÿ

i“N`1
2

θNlmn
pλiq

“

N
ÿ

i“N`1
2

pθNlmn
p´λiq ` θNlmn

pλiqq “
N
ÿ

i“N`1
2

p´θNlmn
pλiq ` θNlmn

pλiqq “ 0.

(A.4)

The case when N is even proceeds in a similar way, with the difference that the

eigenvalue λi “ 0 must be taken into account. Therefore one has

tλ0, λ1, ¨ ¨ ¨ , λN
2 ´1, λN

2
, λN

2 `1, ¨ ¨ ¨ , λN´1, λNu

“ t´λN ,´λN´1, ¨ ¨ ¨ ,´λN
2 `1, 0, λN

2 `1, ¨ ¨ ¨ , λN´1, λNu. (A.5)

Analogously to Eq. (A.4), the expression for the coefficients Wmn
pNq l is given by

Wmn
pNq l “

N
2 ´1
ÿ

i“0

θNlmn
pλiq `

N
ÿ

i“N
2 `1

θNlmn
pλiq ` θNlmn

pλN
2
q

“

N
ÿ

i“N
2 `1

pθNlmn
p´λiq ` θNlmn

pλiqq ` θNlmn
p0q “

N
ÿ

i“N`1
2

p´θNlmn
pλiq ` θNlmn

pλiqq “ 0,

(A.6)

where θNlmn
p0q “ 0 because θNlmn

is an odd function.

With regard to the statement (b), it follows straightforwardly from com-

mutativity under multiplication, which implies ĤσplqĤσpmqĤσpnq “ ĤlĤmĤn.

Consequently, from the expression (88), we obtain

W
σpmqσpnq
pNqσplq “

N !

N ` 1

N
ÿ

i“0

ĤσplqpλiqĤσpmqpλiqĤσpnqpλiq

H2
N pλiq

“
N !

N ` 1

N
ÿ

i“0

ĤlpλiqĤmpλiqĤnpλiq

H2
N pλiq

“Wmn
pNq l. (A.7)
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AppendixB. Proof of Proposition 5.2

Proof. Comparing the expressions (106), (107) and (109) with the expression645

(87), it immediately follows that, in order to prove the Proposition, it suffices

to prove the relation (108). Also, because of Lemma 5.1 (a), we only need

to consider 3-ples pl,m, nq such that l ` m ` n is even. Moreover, by virtue

of Lemma 5.1 (b), once we obtain an expression for Wmn
pNq l, we automatically

obtain the expressions for all the coefficients obtained by permutations of l,m650

and n.

To obtain the required expression for the coefficients Wmn
pNq l we first recall

the following identity for Hermite polynomials (which can be obtained from Eq.

p2.01q of Ref. [57]):

HmpxqHnpxq “

minpm,nq
ÿ

r“0

r!

ˆ

m

r

˙ˆ

n

r

˙

Hm`n´2rpxq. (B.1)

From Eq. (88), it follows that the coefficients Wmn
pNq l can then be rewritten as

Wmn
pNq l “

N !

N ` 1

N
ÿ

i“0

Hlpλiq

H2
N pλiq

minpm,nq
ÿ

r“0

m!

pm´ rq!

n!

pn´ rq!r!

Hm`n´2rpλiq
?
l!m!n!

. (B.2)

Due to the orthogonality of the matrices U and UT , from the expression (85),

one obtains the following relation:

N !

N ` 1

N
ÿ

i“0

HjpλiqHkpλiq

H2
N pλiq

?
j!k!

“ δj,k, (B.3)

Now we consider a coefficient Wmn
pNq l for a fixed 3-ple pl,m, nq and proceed by

separating the analysis in two cases.

Case I : In a given 3-ple pl,m, nq, the elements l,m, n are such that655

l ` m ` n is even and there exist at least two elements such that their sum

is less than or equal to N ` 1

Let us suppose that m and n are such that m ` n ď N ` 1. Due to the

orthogonality relation (B.3), when the condition m ` n ´ 2r “ l (with 0 ď
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r ď minpm,nq) is satisfied, the right-hand side of Eq. (B.2) yields a finite

contribution. Note also that, if m ` n “ N ` 1, the contribution coming from

Hm`npλiq “ HN`1pλiq, corresponding to r “ 0, vanishes. This contribution,

actually, is not determined by the relation (B.3), because such relation involves

only Hermite polynomials up to order N . However, one has that HN`1pλiq “ 0,

because, as recalled before Eq. (77), λi is a zero of HN`1 for all i “ 0, 1, ¨ ¨ ¨ , N .

Therefore, the case m`n “ N `1 provides at most only one finite contribution

to Wmn
pNq l, as does the case m ` n ă N ` 1. The non-zero contribution occurs

for

r “
m` n´ l

2
, (B.4)

(recall that we are considering l `m` n even, so that m` n´ l is also even),

provided that

m` n´ l

2
ě 0, m ě

m` n´ l

2
, n ě

m` n´ l

2
. (B.5)

The conditions (B.5) can be reformulated as

m` n ě l, l `m ě n, n` l ě m. (B.6)

If these conditions are fulfilled, from Eq. (B.2), using Eq. (B.3), one obtains

Wmn
pNq l “

?
l!m!n!

`

m´ m`n´l
2

˘

!
`

n´ m`n´l
2

˘

!
`

m`n´l
2

˘

!

“

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
.

If any of the three conditions (B.6) is not satisfied, then Wmn
pNq l “ 0, because

there would be no r, with 0 ď r ď minpm,nq, such to provide a non-zero660

contribution in the right-hand side of Eq. (B.2), due to Eq. (B.3). The 3-ples

pl,m, nq belonging to Case I and yielding Wmn
pNq l ‰ 0 are thus those given by

pl,m, nq P ANzBN .

Note that, due to the invariance of the coefficients Wmn
pNq l under permuta-

tion, one can easily determine the coefficients in Case I also when the sum of665

two indices is greater than N ` 1. For instance, if one is in Case I and wants to

compute Wnl
pNqm, with n ` l ą N ` 1, l `m ą N ` 1 and m ` n ď N ` 1, it
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suffices to permute the indices and, due to Wnl
pNqm “Wmn

pNq l, one can follow the

above procedure carried out for Wmn
pNq l.

670

Case II : In a given 3-ple pl,m, nq, the elements l,m, n are such that l`m`n

is even and l `m ą N ` 1, m` n ą N ` 1, n` l ą N ` 1

We are thus referring to the case pl,m, nq P BN . The sum on r on the

right-hand side of Eq. (B.2) involves the Hermite polynomials Hm`n, Hm`n´2,

Hm`n´4, ¨ ¨ ¨ , Hm`n´2minpm,nq. We denote with rNmn the smallest integer r,

with 0 ă r ď minpm,nq, such that m ` n ´ 2rNmn
ď N ` 1. This corresponds

to the definition (104). We can then split the sum on r, in Eq. (B.2), into two

parts, in the following way:

Wmn
pNq l “

N !

N ` 1

N
ÿ

i“0

Hlpλiq

H2
N pλiq

˜

rNmn´1
ÿ

r“0

m!

pm´ rq!

n!

pn´ rq!r!

Hm`n´2rpλiq
?
l!m!n!

(B.7)

`

minpm,nq
ÿ

r“rNmn

m!

pm´ rq!

n!

pn´ rq!r!

Hm`n´2rpλiq
?
l!m!n!

˛

‚. (B.8)

The sum from r “ rNmn
to r “ minpm,nq, in the expression (B.8), involves

only Hermite polynomials of order at most equal to N ` 1. Therefore, although

m`n ą N ` 1, this expression can be treated in the same way as Case I, using

the relation (B.3). On the other hand, the sum from r “ 0 to r “ rNmn
´ 1, in

the expression (B.7), involves only Hermite polynomials of order greater than

N`1 (and thus greater than l). For such polynomials, the orthogonality relation

(B.3) does not apply. However, the terms in the expression (B.7), in general,

can provide additional finite contributions to Wmn
pNq l. It follows that, from Eq.

(B.7)-(B.8), the expression for Wmn
pNq l in Case II can be written as

Wmn
pNq l “

N !

N ` 1

N
ÿ

i“0

Hlpλiq

H2
N pλiq

rNmn´1
ÿ

r“0

m!

pm´ rq!

n!

pn´ rq!r!

Hm`n´2rpλiq
?
l!m!n!

`

?
l!m!n!

`

l`m´n
2

˘

!
`

n`l´m
2

˘

!
`

m`n´l
2

˘

!
. (B.9)

Equation (B.9) thus yields the required expression for Wmn
pNq l when pl,m, nq P

BN .675
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