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ABSTRACT

Aims. We aim to generate a catalogue of merging galaxies within the 5.4 sq. deg. North Ecliptic Pole over the redshift range 0.0 < z <
0.3. To do this, imaging data from the Hyper Suprime-Cam are used along with morphological parameters derived from these same
data.
Methods. The catalogue was generated using a hybrid approach. Two neural networks were trained to perform binary merger non-
merger classifications: one for galaxies with z < 0.15 and another for 0.15 ≤ z < 0.30. Each network used the image and morphological
parameters of a galaxy as input. The galaxies that were identified as merger candidates by the network were then visually checked by
experts. The resulting mergers will be used to calculate the merger fraction as a function of redshift and compared with literature
results.
Results. We found that 86.3% of galaxy mergers at z < 0.15 and 79.0% of mergers at 0.15 ≤ z < 0.30 are expected to be correctly
identified by the networks. Of the 34 264 galaxies classified by the neural networks, 10 195 were found to be merger candidates. Of
these, 2109 were visually identified to be merging galaxies. We find that the merger fraction increases with redshift, consistent with
literature results from observations and simulations, and that there is a mild star-formation rate enhancement in the merger population
of a factor of 1.102 ± 0.084.
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1. Introduction
Galaxy mergers underpin our current understanding of how
galaxies grow and evolve. In the current cold dark matter
paradigm, dark matter halos assemble hierarchically. This results
in the baryonic constituents of the dark matter halos also merg-
ing. The result is a larger galaxy living in the heart of a larger
dark matter halo (e.g. Conselice 2014; Somerville & Davé 2015).

Numerous studies have looked at how galaxy-galaxy mergers
influence the star-formation rate (SFR) or active galactic nuclei
(AGN) activity of both the progenitor and descendant galaxies.
The merger and SFR connection was raised when early infrared
observations found that the majority of infrared-bright galax-
ies were merging. The link between infrared-bright galaxies and
high SFRs resulted in the conclusion that galaxy mergers can
trigger periods of highly enhanced SFRs and starbursts (e.g.
Joseph & Wright 1985; Sanders & Mirabel 1996; Niemi et al.
2012). The increase in SFRs during a merger event has been
seen in more recent works, although not all galaxy mergers
are seen with highly enhanced SFRs that would be considered
starbursts.

The constituent galaxies of a merger are found to play a
role in the strength of star-formation enhancement. Interac-
tions between two spiral galaxies have been shown to have
an enhanced SFR, when compared to non-mergers, while little
enhancement is seen when at least one of the merging galaxies
is elliptical (Hwang et al. 2011). The strength of the interaction
also influences star-formation, with galaxies whose projected
distance to the nearest neighbour is less than a tenth of the virial
radius of the nearest neighbour experiencing greater increases
in specific SFRs, up to a factor of 4 (Hwang et al. 2011). Post-
merger galaxies are also seen to have their SFR increase by
a factor of approximately 4 when compared to a non-merging
control sample (Ellison et al. 2013). The mass of the interact-
ing galaxies is also likely to contribute to the star-formation
enhancement, with galaxies with stellar masses below 1011 M�
showing a greater enhancement than more massive mergers.
Indeed, major mergers of dwarf galaxies are found to have sim-
ilar star-formation enhancement to more massive major mergers
(Stierwalt et al. 2015).

Other studies have found weaker enhancement in star-
formation during a merger. In Knapen et al. (2015), galaxy merg-
ers are found to typically show mild star-formation enhancement,
a factor of approximately 1.9 at most, with many merging sys-
tems showing no enhancement. These enhancements, or lack
thereof, were determined by dividing the SFR of a merging
system with the median SFR of that system’s control group. Sim-
ilarly, Pearson et al. (2019a) also found mild enhancement, with
the average SFR in mergers to be only a factor of 1.2 higher
than the average SFR in non-mergers. However, the Pearson
et al. (2019a) merger sample is likely to be highly contaminated
by non-mergers due to their selection from only a neural net-
work. Reductions in SFRs during galaxy mergers can be seen in
low mass (stellar mass <109 M�) secondary galaxies of minor
mergers (Davies et al. 2015, 2016). Many dwarf starbursts, such
as blue compact dwarf galaxies, appear to be a consequence
of the strong interactions or mergers of even smaller entities.
However, these features are only observed when deep images
and complementary spectroscopic and/or radio data are avail-
able (López-Sánchez 2010; Martínez-Delgado et al. 2012; Zhang
et al. 2020). What merger studies do agree on, however, is
that not all galaxy mergers are undergoing a starburst at the
time of observation but starbursts are more common in mergers
than non-mergers (Ellison et al. 2008, 2013; Hwang et al. 2011;

Scudder et al. 2012; Patton et al. 2013; Knapen et al. 2015;
Stierwalt et al. 2015; Pearson et al. 2019a).

These observational findings agree with what is seen in sim-
ulations. Zoom-in simulations of merging galaxies allow the
SFR to be closely tracked during an entire simulated merger
with fine time-resolution. Such simulations indicate that galax-
ies go through short periods of highly enhanced star-formation
(e.g. Cox et al. 2006; Bournaud et al. 2011, 2015; Hopkins et al.
2013; Sparre & Springel 2016; Moreno et al. 2019; Rodríguez
Montero et al. 2019). These are typically seen around first close
passage and coalescence of the merging galaxies. Thus, only
short periods of a galaxy merger are able to be observed to have
highly enhanced SFRs resulting in real galaxies typically being
observed while only experiencing mild SFR enhancement.

Integral field observations have allowed resolved star-
formation, rather than global star-formation, to be traced in
mergers. With such observations, the merger triggered star-
formation has been seen to primarily occur in the centre of
a galaxy while the outer regions of the interacting galaxies
show enhancement or suppression (Thorp et al. 2019), with the
enhancement or suppression being dependent on the merger
period (Pan et al. 2019).

High infrared emission can also be linked with AGN activity,
where the AGN are known to heat the dust that surrounds them,
emitting strongly in the infrared. Galaxy mergers have been seen
to drive material onto a central black hole of a galaxy, feeding the
AGN and resulting in increased activity (e.g. Keel et al. 1985;
Silverman et al. 2011; Hwang et al. 2012; Lackner et al. 2014;
Satyapal et al. 2014; Scott & Kaviraj 2014; Weston et al. 2017;
Goulding et al. 2018; Ellison et al. 2019; Gao et al. 2020). How-
ever, this interpretation is contested, with a number of studies
finding similar fractions of AGN in and out of galaxy merg-
ers (e.g. Kocevski et al. 2012; Mechtley et al. 2016; Silva et al.
2021). This contention may be due to differences in the type of
selected AGN (e.g. obscured or unobscured; Koss et al. 2010;
Kocevski et al. 2015) or differing merger identification methods
(Lambrides et al. 2021).

The merger rate and fraction in the Universe is not constant
with redshift. Both observations and simulations typically agree
that the fraction and rate of galaxy mergers was higher in the
earlier Universe and has decreased as the Universe has aged (e.g.
Patton et al. 2002; Lin et al. 2004; Kartaltepe et al. 2007; de
Ravel et al. 2009; Lotz et al. 2011; Cotini et al. 2013; López-
Sanjuan et al. 2013; Casteels et al. 2014; Rodriguez-Gomez et al.
2015; Mundy et al. 2017; Qu et al. 2017; Moster et al. 2018;
Duncan et al. 2019; Pearson et al. 2019a; Ferreira et al. 2020;
O’Leary et al. 2021). The observationally determined merger
fraction and rate evolutions use different selection methods, pro-
viding a firm determination of the increase of these two values
with redshift. However, the exact evolution of the merger frac-
tion and merger rate differ between different studies. Indeed,
the simulations also do not agree on the evolution of these two
quantities. The Horizon-AGN cosmological simulation (Dubois
et al. 2014) finds no evolution of the merger fraction with red-
shift (Kaviraj et al. 2015), unlike other simulations that find an
increase with redshift (Rodriguez-Gomez et al. 2015; Qu et al.
2017). There is also observational evidence that the merger frac-
tion may reduce above z ≈ 2 for intermediate mass galaxies (M?

between 109 and 1010 M� Conselice et al. 2008). The difference
in the evolution of the merger rate when compared to the evolu-
tion of the merger fraction may be resolved by using an evolving
merger timescale instead of a fixed merger timescale (Snyder
et al. 2017).
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Merging galaxies are traditionally selected by identifying
close pairs, that is finding galaxies that are close both on the
sky and in redshift (e.g. Barton et al. 2000; De Propris et al.
2005; Robotham et al. 2014; Rodrigues et al. 2018; Duncan et al.
2019), or morphologically disturbed systems, identified either
visually or through parametric and non-parametric statistics (e.g.
Bershady et al. 2000; Conselice et al. 2000, 2003; Lintott et al.
2008; Kim et al., in prep.). For the latter technique, the majority
of mergers are only identifiable for part of the merger time (Lotz
et al. 2010a,b) and any study of merger rates or fractions with
such identifications assumes that the scatter into and out of the
selection is approximately equal. Visual selection, in particular,
is a time intensive task which limits the sample size of merging
galaxies that can be identified while the classifications can be
difficult to reproduce and can be incomplete (Huertas-Company
et al. 2015). This visual selection is also biased towards mergers
that are closer to a pericentric passage where the morphological
disturbance caused by the interaction is more visible (e.g.
Blumenthal et al. 2020). More recent developments have
allowed the detection of merging galaxies using machine learn-
ing which is orders of magnitude faster than visual selection (e.g.
Ackermann et al. 2018; Bottrell et al. 2019; Nevin et al. 2019;
Pearson et al. 2019a,b; Walmsley et al. 2019; Ferreira et al.
2020; Wang et al. 2020). However, such identifications are
known to suffer from impurity of the merger sample (e.g. as
shown by Bickley et al. 2021) and are limited by the quality of
the training sample. Here we aim to obtain a clean sample of
merging systems which will allow detailed follow-up studies of a
statistically large number of galaxy mergers. Thus, we combine
the speed of machine learning identification with a accuracy of
visual classification.

This paper presents a large catalogue of merging galaxies
with redshifts between 0.0 and 0.3 that is ideally suited for
studying the link between merging galaxies and rarer astrophys-
ical phenomena, such as AGN. The presented catalogue is for
galaxies within the North Ecliptic Pole (NEP), a 5.4 sq. deg. area
that has been well studied in numerous wavelength ranges (Kim
et al. 2021), including infrared data from AKARI (Murakami
et al. 2007; Kim et al. 2012), optical data from the Hyper
Suprime-Cam (HSC; Goto et al. 2017; Furusawa et al. 2018;
Kawanomoto et al. 2018; Komiyama et al. 2018; Miyazaki et al.
2018; Oi et al. 2021) and X-ray data from Chandra (Krumpe
et al. 2015). This allows for studies correlating galaxy merg-
ers with rare phenomena to be undertaken. The NEP will
also be used as the location for a deep Euclid field (Lau-
reijs et al. 2011). Thus the objects within the catalogue will
have high quality near-infrared images taken in the near future.
This catalogue will provide an excellent training sample for
automated detection of further mergers throughout the Euclid
coverage.

The catalogue presented in this work was generated using
a hybrid deep learning – human approach, as proposed by
Bickley et al. (2021). Deep learning techniques, applied to imag-
ing and morphological data, were used to generate a sample of
merger candidates. These merger candidates were then visually
inspected by professional astronomers to create a final catalogue
of galaxy mergers. The paper is structured as follows. Section 2
describes the data used to generate this catalogue. Section 3
discusses deep learning and the neural networks used to gen-
erate the merger candidates along with the human verification
process. Section 4 presents the results of the merger identifica-
tion and Sect. 5 presents discussion on these classifications. We
summarise our work in Sect. 6.

2. Data

2.1. Imaging data

For the training data, we used imaging data from the HSC Sub-
aru Strategic Program (HSC-SSP) Data Release 2 (DR2; Aihara
et al. 2018, 2019). The galaxies used for training were selected
using r-band data (see Sect. 2.3) and so HSC-SSP wide field
r-band imaging was used. Within the HSC-SSP, the wide field
r-band magnitude 5σ limit is 26.2 AB mag. The morphologi-
cal parameters were also derived from the r-band HSC-SSP data
using statmorph (Rodriguez-Gomez et al. 2019).

For identifying galaxy mergers within NEP, HSC data from
the HSC survey of NEP were used (HSC-NEP; Goto et al. 2017;
Oi et al. 2021). Here, we again used the r-band data, which
reaches a median 5σ depth of 27.3 AB mag, to match the band
used for the training data. This choice of band is despite the
HSC-NEP r-band having poorer seeing than other HSC-NEP
optical bands: 1.26 arcsec in the r-band compared to 0.68 arcsec
in the g-band (Oi et al. 2021). Galaxy positions and magnitudes
were derived by Oi et al. (2021) using the HSC data analysis
pipeline version 4.0.1 (Bosch et al. 2018). The photometric red-
shifts for the NEP galaxies were derived in Ho et al. (2021)
using the Canada France Hawaii Telescope MegaPrime u-band
(Boulade et al. 2003; Oi et al. 2014; Huang et al. 2020), HSC
g, r, i, z, and y-bands, and the Spitzer Infrared Array Camera
bands 1 and 2 (Fazio et al. 2004; Nayyeri et al. 2018) using
LePhare (Arnouts et al. 1999; Ilbert et al. 2006). The photo-
metric redshifts have a weighted dispersion of σ∆z/(1+z) = 0.053
and catastrophic error fraction of 11.3%. Spectroscopic redshifts
were derived from optical spectroscopy (Shim et al. 2013; Oi
et al. 2017; Kim et al. 2018; Ohyama et al. 2018). The galaxy
sample that was checked for mergers were chosen where their
photometric redshift, or spectroscopic redshift where available,
is less than z = 0.30. Above this redshift, the quality of the neural
networks used to identify the galaxy mergers rapidly deterio-
rated. Of the 34 264 galaxies from HSC-NEP with z < 0.30, 736
have spectroscopic redshifts and the remaining 33 528 have pho-
tometric redshifts. Morphological parameters were again derived
using statmorph using the r-band images and segmentation
maps were created using SExtractor (Bertin & Arnouts 1996).

2.2. Morphological parameters

To supplement the imaging data, morphological parameters of
the galaxies were also used to help identify galaxy mergers. The
morphological parameters used in this work were all derived
from the HSC r-band images using the statmorph python
package. These parameters are described below.

The concentration (C; Kent 1985; Abraham et al. 1994;
Bershady et al. 2000; Conselice 2003) describes the ratio
between amount of light towards the centre of a galaxy with the
amount of light within a larger radius. The statmorph pack-
age follows Lotz et al. (2004) and compares the ratio of the
radius that contains 20% of the light and the radius that contains
80% of the light. Larger values of C indicate that more light is
concentrated in the centre of the galaxy.

The asymmetry (A; Abraham et al. 1996; Conselice et al.
2000) measures the rotational symmetry of a galaxy, the cal-
culation of which again follows Lotz et al. (2004). An image
is rotated by 180◦ and this rotated image is subtracted from the
original image. The residual values in the pixels are summed to
give the final value of asymmetry. Larger values of asymmetry
indicate that a galaxy is less rotationally symmetric.
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The smoothness (S; Takamiya 1999; Conselice 2003) deter-
mination in statmorph follows the definition of Lotz et al.
(2004). A smoothed image is created by applying a smoothing
filter of fixed size to the original image. The new image is sub-
tracted from the original image, leaving only the high frequency
disturbances. This residual image is then summed, with higher
values indicating a less smooth (more clumpy) galaxy.

The Gini coefficient (Abraham et al. 2003) describes the dis-
tribution of light among pixels. If the Gini value is 1, all the
light is in a single pixel, while if Gini is 0, all the light is shared
equally across all pixels. Gini provides a description of how
concentrated the light is within an image, independent of the
spatial distribution of that light. Gini is calculated following Lotz
et al. (2004) by determining the mean of the absolute difference
between all pixels.

M20 (Lotz et al. 2004) describes the second-order moment of
the brightest 20% of a galaxy’s pixels normalised by the second-
order moment of the entire galaxy. Again, statmorph follows
Lotz et al. (2004) and calculates the second-order moment by
summing the distance of a pixel to the centre of a galaxy multi-
plied by the flux of the pixel. Less negative M20 implies a galaxy
is more concentrated, although there is no requirement that this
concentration is in the centre of a galaxy.

The Gini-M20 bulge parameter (GMB; Snyder et al. 2015b;
Rodriguez-Gomez et al. 2019) is five times the perpendicular
distance from a galaxy to the line that separates early and late
type galaxies in the Gini-M20 plane. The definition used by
statmorph is that of Rodriguez-Gomez et al. (2019):

GMB = −0.693 M20 + 4.95 Gini − 3.96. (1)

Larger GMB imply a greater bulge domination while a lower
GMB implies greater disk domination. GMB is less sensitive to
dust and mergers than M20, concentration or the Sérsic index
(Snyder et al. 2015b).

Gini-M20 merger parameter (GMM; Lotz et al. 2004, 2008;
Snyder et al. 2015b; Rodriguez-Gomez et al. 2019) is similar to
GMB. It is the position along a line that lies perpendicular to
the line that separates merging from non-merging galaxies in the
Gini-M20 plane. Thus, GMM is defined as:

GMM = 0.139 M20 + 0.990 Gini − 0.327. (2)

This formulation adopts the Gini-M20 merger classification of
Lotz et al. (2008), which should allow better application over a
larger range of redshifts than the Lotz et al. (2004) classification
(Snyder et al. 2015a,b).

The multimode statistic (M) is the ratio of the area between
the two brightest regions of a galaxy (Freeman et al. 2013; Peth
et al. 2016). The bright regions are determined by cutting at a
flux threshold and finding the two brightest regions above the
threshold. This is repeated with different flux thresholds and the
multimode statistic is then the largest ratio. If this ratio is closer
to 1, the object is more likely to contain two nuclei.

The intensity statistic (I) is similar to the multimode. Here,
the ratio of the fluxes of the brightest two regions is taken
(Freeman et al. 2013; Peth et al. 2016). The two brightest regions
are defined by finding local maxima of a smoothed image of the
galaxy, identified by following the gradient of the flux. If the
intensity is closer to 1, the galaxy is more clumpy.

The deviation statistic (D) is calculated by determining the
distance between the galaxy intensity centroid and the centre of
the brightest region (Freeman et al. 2013; Peth et al. 2016). A
high value for deviation implies that the galaxy is clumpy and

the bright regions are significantly separated from the intensity
centroid.

The ellipticity asymmetry (Eli A) and centroid (Eli Cen) are
the ellipticity of the galaxy relative to the point that minimises
the asymmetry or relative to the centroid. Similarly, the elonga-
tion asymmetry (Elo A) and centroid (Elo Cen) are the elonga-
tion of the source relative to the point that minimises asymmetry
or relative to the centroid of the galaxy (Rodriguez-Gomez et al.
2019).

The Sérsic index (n) is the best fit power law index for the
Sérsic profile (Sérsic 1963; Graham & Driver 2005) that has been
fitted to the light profile of an entire galaxy. Larger Sérsic indices
imply a more bulge dominated galaxy, although it is possible to
find bulge dominated galaxies with low Sérsic indices (Graham
& Guzmán 2003). The Sérsic amplitude (SA) is the amplitude
of the Sérsic profile at the effective (half-light) radius while the
Sérsic ellipticity (SE) is the ellipticity of the profile.

While the above parameters are not all completely inde-
pendent of one another, for example the Sérsic index will be
monotonically related to the concentration if a Sérsic profile is
a good description of a galaxy’s light profile (Graham et al.
2001; Sahu et al. 2020), they do all individually describe slightly
different properties of a galaxy. However, GMB and GMM are
both derived from combinations of Gini and M20 and so will
not be independent of combinations of Gini and M20. Thus
a neural network may be able to discern differences between
these parameters that are subtle but aid in merger identification.
The morphological parameters for the HSC-NEP galaxies are
presented in Table 1 and Fig. 1.

2.3. Known mergers and non-mergers

For supervised learning, it is necessary to have a sample of
objects with known labels, here merger or non-merger, to use
to train a machine learning algorithm. For this we used the same
sample of merging and non-merging galaxies used as a training
set in Pearson et al. (2019a). This training sample was selected
in Pearson et al. (2019a) using results from the GAMA-KiDS
Galaxy Zoo project (Lintott et al. 2008; Driver et al. 2009; de
Jong et al. 2013a,b; Holwerda et al. 2019, Kelvin et al. in prep)
along with an A-S cut (Conselice 2003) with the A and S param-
eters used in this selection derived from KiDS r-band imaging.
These galaxies have a redshift below 0.15. Pearson et al. (2019a)
define a merger to be a galaxy with mergers_neither_frac
from Galaxy Zoo to be less than 0.5, that is less than half
the citizen scientists determined a galaxy had no evidence of
tidal tails or evidence of a merger, and had A > 0.35S + 0.02.
Non-mergers were defined by Pearson et al. (2019a) to have
mergers_neither_frac > 0.5 and A < 0.35S + 0.02.

We limited the sample of galaxies we used to those that
lie in both the GAMA-KiDS coverage as well as the HSC-SSP
coverage so that all training objects have HSC data avail-
able. As such, the sample is smaller than the sample used by
Pearson et al. (2019a) as the HSC-SSP DR2 does not cover all of
the area covered by GAMA-KiDS. The resulting sample, which
is intentionally class balanced, is 1 683 merging galaxies with
1 683 non-merging galaxies. This balance was achieved by ran-
domly removing galaxies from the larger class until there were
the same number of merging and non-merging galaxies. The
HSC r magnitude distribution for the whole training sample is
presented as a function of redshift in Fig. 2. For use while train-
ing the networks that will be employed in this work, r-band
cutouts of 128× 128 pixels, corresponding to approximately
21.5× 21.5 arcsec, were made. The morphological parameters
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Table 1. Ten rows of the morphology catalogue for galaxies in NEP.

HSC_ID A C D Eli A Eli Cen Elo A Elo Cen Gini GMB

79666794322744899 0.033 2.735 0.046 0.194 0.194 1.241 1.24 0.532 −0.108
79671166599467769 0.036 2.988 0.012 0.291 0.291 1.411 1.411 0.519 −0.130
79671179484351321 −0.035 2.597 0.045 0.094 0.094 1.104 1.103 0.513 −0.231
79218331017565336 0.017 3.243 0.027 0.208 0.208 1.263 1.263 0.553 0.103
80093924525370378 −0.271 2.574 0.030 0.065 0.062 1.007 1.066 0.416 −1.175
79671029160501625 −0.091 2.683 0.061 0.439 0.44 1.783 1.786 0.508 −0.397
80093108481580765 0.023 2.500 0.038 0.061 0.061 1.065 1.065 0.474 −0.468
79670625433569331 0.023 2.662 0.023 0.285 0.285 1.398 1.398 0.474 −0.414
80093112776555761 0.021 2.843 0.037 0.094 0.094 1.104 1.104 0.525 −0.129
79666506559929228 −0.03 2.372 0.008 0.256 0.255 1.343 1.343 0.448 −0.624

... ... ... ... ... ... ... ... ... ...

HSC_ID GMM I M20 M SA SE n S

79666794322744899 −0.046 −1.761 0.02 0.507 0.159 1.242 0.007 0.033
79671166599467769 −0.065 −1.816 0.004 0.706 0.385 1.702 0.024 0.036
79671179484351321 −0.058 −1.716 0.008 0.283 0.138 1.254 0.032 −0.035
79218331017565336 −0.046 −1.916 0.001 4.547 0.229 2.05 0.014 0.017
80093924525370378 −0.060 −1.045 1.000 0.098 0.065 1.000 −0.960 −0.271
79671029160501625 −0.034 −1.511 1.000 0.236 0.579 0.744 0.003 −0.091
80093108481580765 −0.088 −1.656 0.000 0.954 0.126 0.927 0.053 0.023
79670625433569331 −0.099 −1.735 0.004 1.892 0.362 1.134 0.005 0.023
80093112776555761 −0.054 −1.777 0.005 0.858 0.188 1.535 0.005 0.021
79666506559929228 −0.109 −1.617 0.005 0.343 0.333 0.711 −0.001 −0.030

... ... ... ... ... ... ... ... ...

Notes. The full table is available at the CDS.

used within the networks were derived from these cutouts using
the statmorph Python package. The square root of the HSC
variance maps were used as the weight maps for statmorph.
The morphological parameters can be seen in Fig. 1.

As the selection of merging galaxies was aided by the A-
S cut, it is likely that the non-merging galaxies have little or
no visible structure, a result of the A-S cut splitting featured
and non-featured galaxies (Conselice 2003). However, as the
merging galaxies are visually selected with Galaxy Zoo, these
are likely to be galaxies with the visual appearance of mergers.
As a result, the non-mergers selected by a network trained with
this data have the potential to be selected due to their lack of
features. This provides further justification of visual confirma-
tion of the mergers selected by the neural networks used in this
work, beyond the non-merger contamination expected from any
machine learning technique.

This work also identified galaxies at redshifts between 0.15
and 0.30. For this, the galaxies used at z < 0.15 were augmented
to appear like higher redshift galaxies. This was done as there is
not a sample of known galaxy mergers between these redshifts in
GAMA-KiDS or NEP. A random redshift between 0.15 and 0.30
was selected and assigned to each galaxy and the apparent r-band
magnitude of each galaxy dimmed to match that redshift. For any
galaxies whose new apparent magnitude was greater than 26 AB,
the approximate r-band magnitude limit for the HSC-SSP, 0.15
was added to the original redshift of the galaxy and the apparent
magnitude re-calculated. Galaxies whose apparent magnitudes
were still above 26 AB were removed. The physical resolutions
of the remaining galaxies were adjusted to match their new red-
shift. Galaxy cutouts that were 256× 256 pixels were rebinned to
reduce blank space around the resized, 128× 128 pixel images

that were used for training the networks. Synthetic, Gaussian
noise was then added to the image, which also filled any blank
space around the resized images. The standard deviation of the
synthetic noise was determined by calculating the standard devi-
ation of the original image, before redshift dimming, after 3σ
clipping 100 times. The clipping derived noise is approximately
a factor of 10 larger than the HSC weight maps (that is the maps
of the 1σ values of each pixel). This larger noise will not be a
perfect representation of the real images and so provides further
requirement for a visual check to confirm the merger candidates
from the neural networks are real mergers. The size of the images
was still 128× 128 pixels and the synthetic noise was used to
fill the empty space around the re-binned image. Segmenta-
tion maps were generated using SExtractor and morphological
parameters re-derived using statmorph, using the square root
of appropriately scaled version of the HSC variance maps as
the weight maps, and can be seen in Fig. 1. The scaling of the
weight maps includes both the resolution scaling and synthetic
noise contribution. The higher noise may also influence the mor-
phological parameters from statmorph. This sample was again
class balanced by random removal of galaxies in the larger class.

K-correction was not applied to these redshifted images.
Using the average spectral energy distribution template of Chary
& Elbaz (2001), an increase in redshift by 0.15, from z = 0.075
to z = 0.225, would require a K-correction of approximately a
factor of 1 for the r-band (i.e. no correction is required). The
same factor is seen using the Wuyts et al. (2008) template while
the average SWIRE Template Library template (Polletta et al.
2007) has a factor of ∼0.9. The exact K-correction will dif-
fer between specific galaxies but this difference is not expected
to be large. For the same redshift change, the magnitude is

A52, page 5 of 26



A&A 661, A52 (2022)

Fig. 1. Distributions of morphological parameters for NEP-SCP galaxies (blue), training data for the z < 0.15 network (red) and training data for
the 0.15 ≤ z < 0.30 network (green). The range shown is that used for training (see Sect. 3.2 and Table 2).
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Fig. 2. Density plot of HSC-SSP r band magnitude against GAMA
spectroscopic redshift for the 3366 training galaxies, both merging
and non-merging, binned by r band magnitude and redshift. Blue bins
have fewer galaxies and red bins have a larger number of galaxies.
Left and upper panels show the r magnitude and redshift distributions,
respectively, of the non-merger (red) and merger (blue) galaxies.

Fig. 3. Example of augmentation of a galaxy to a higher redshift. The
original galaxy is shown in panel a, the physically rebinned and dimmed
galaxy is shown in panel b and the final image, with added Gaus-
sian noise, is shown in panel c. All panels have asinh scaling and are
128× 128 pixels.

changed by approximately 2.5 or the flux is changed by a factor
of approximately 10.

For generating synthetic seeing in the redshifted galaxies,
four options were considered. The original image could be
deconvolved with the point-spread function (PSF), the image
resized and this new image re-convolved with the PSF, which is
not possible as deconvolving a noisy image results in the destruc-
tion of the image. A second PSF could be calculated to re-create
the original PSF in the rescaled images. The resized image could
be convolved with the PSF, which would result in over-distortion.
Or no alteration could be done, which would result in an under-
distorted image. Here we performed no convolution and accept
that the resulting images will be under-distorted. The PSF of
the original, non-redshifted image was used within statmorph
when deriving the morphological parameters. As this is likely
to introduce errors in the morphological parameters and cause
the images to not be a perfect representation of the real images,
this provides further requirement for visual confirmation of the
merger candidates from the neural network.

2.4. Mass completeness

For application of the merger sample derived in this work
(Sect. 5) it is necessary to determine the mass completeness
limit. This mass completeness estimate was done empirically
following Pozzetti et al. (2010):

log(Mlim) = log(M?) − 0.4(rlim − r), (3)

where M? is the stellar mass of a galaxy in M�, rlim is the lim-
iting r-band magnitude, here set to 26, r is the measured r-band
magnitude of the galaxy and Mlim is the lowest mass that can
be observed for this object at the r-band magnitude limit. The
limiting mass within a redshift bin is then the Mlim value that
90% of the faintest 20% of galaxies have masses below. The
masses of each galaxy were determined at the same time as their
photometric redshifts through spectral energy distribution fitting
using LePhare (Arnouts et al. 1999; Ilbert et al. 2006; Ho et al.
2021). While this calculation of the completeness limit was for
the I-band in Pozzetti et al. (2010), we find that using the r-band
provides a more conservative mass limit. As the galaxy selec-
tion, morphologies, and classifications are based on r-band data,
it was decided to use the more conservative r-band mass limit
over the I-band limit.

3. Deep learning

Deep learning is a subset of machine learning that aims to
loosely mimic how biological neural networks process data. This
work employs a convolutional neural network (CNN) combined
with a traditional neural network. CNNs are designed to bet-
ter process multi-dimensional data, such as images, by reducing
the number of trainable parameters within a network. Here, we
specifically perform supervised learning, where the truth values
for the training data are known. The training data are typically
sub-divided into three subsets: a ‘training set’, which typically
contains 70% to 90% of the training data, used to train the net-
work; a ‘validation set’, which typically contains 5% to 15% of
the training data, used to evaluate the performance of a network
as it is trained; and a ‘test set’, which again typically contains 5%
to 15% of the training data, that are not shown to a network dur-
ing training and only used once to test a network once training is
complete. The exact split between the three data sets is a matter
of choice and varies between studies: here we use 80% for the
training set, 10% for the validation set and 10% for the test set.
For ease of communication, neural networks that are not CNNs
will be referred to as fully connected networks (FCN).

3.1. Neural network architecture

For this work, we employed a hybrid neural network containing
a FCN and a CNN, the output of which are combined to form a
final result (e.g. Zhou & Hauser 2017; Dobbels et al. 2019). The
FCN side of the network has morphological parameters passed
into it while the CNN has an r-band image of the galaxy being
classified passed into it. Each part of the network could be used
to determine if a galaxy is a merger or non-merger, however
we found that the combination of both provides better results
(see Sect. 4.2.1). Unless otherwise stated, the hyper-parameters
for the layers, activations, batch normalisations, drop out and
optimiser were left at the TensorFlow default values.

The FCN side comprises two layers containing 128 neurons.
The output layer of this network comprises two neurons, one
each for the merger and non-merger probabilities. Rectified lin-
ear units (ReLU; Nair & Hinton 2010) are used for activation in
the two layers of 128 neurons while softmax activation is used on
the output layer when training. Softmax provides output values
between zero and one, whose values from each neuron in a layer
sum to unity. We note that as the output of the two output neurons
sum to unity, it is also possible to achieve the same result with
a single output neuron. Also for the layers of 128 neurons, batch
normalisation (Ioffe & Szegedy 2015) is applied before ReLU
activation, while dropout (Srivastava et al. 2014) is applied after
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Fig. 4. Visual schematic for the full neural network. White regions are the CNN, light shaded regions are the FCN and the dark shaded regions are
the Top Network. The input to the CNN is a single band, 128× 128 pixel image while the input to the FCN is the 17 morphological parameters. Both
of these inputs are on the left of their corresponding part of the network. The output from the full network is on the right as a two neuron, binary
classification. The sizes of the kernels for the CNN (red) and fully connected layers for all parts of the network are shown. The blue line between
layers represent the batch normalisation, ReLU activation and dropout that is applied between layers. The CNN has 67 652 128 trainable parameters,
the FCN has 19 328 trainable parameters and the Top Network has 66 818 trainable parameters. The full network has a total of 67 738 274 trainable
parameters.

activation in these layers, with a dropout rate of 20%. All layers
are fully connected, that is all the neurons in a layer take all the
outputs from the layer below as an input. The FCN has 19 328
trainable parameters.

The architecture of the CNN side is based on the CNN of
Pearson et al. (2019a,b), itself based on the Dieleman et al. (2015)
architecture. The lowest four layers, the four layers to the left of
the CNN section of Fig. 4, are convolutional layers while the top
two layers, the right most CNN layers in Fig. 4, are fully con-
nected layers. The lowest layer, the left most in Fig. 4, comprises
32 6× 6 kernels, followed by a layer of 64 5× 5 kernels and then
two layers with 128 3× 3 kernels. All convolutional layers use
a stride of 1. As with the FCN, batch normalisation is applied
before ReLU activation and 20% dropout is applied after activa-
tion for all convolutional layers. After the first, second and fourth
convolutional layers, 2× 2 max-pooling is performed.

After the convolutional layers, two fully connected layers are
used, with 2048 and 128 neurons. As with the FCN, batch nor-
malisation is applied before ReLU activation and 20% dropout
is applied after activation for both fully connected layers. For
training this part of the full network, the output layer is again
composed of two neurons, one for the merger classification and
one for the non-merger classification. As with this FCN, soft-
max activation is used in this layer with no batch normalisation
or dropout. The CNN has 67 652 128 trainable parameters.

The outputs from the last layers of the FCN and CNN are
concatenated to form a single layer of 256 values. These are then
passed into the Top Network that comprises a fully connected
layer of 256 neurons. As with the FCN and fully connected part
of the CNN, batch normalisation is applied before ReLU activa-
tion. This is followed by 20% dropout while training. The output

from the Top Network is a layer with two neurons, one each
for the merger and non-merger classes, with softmax activation.
The Top Network has 66 818 trainable parameters. The full net-
work can be seen in Fig. 4 and has a total of 67 738 274 trainable
parameters.

The CNN, FCN, and Top Network were trained separately
(see Sect. 3.2). For each part of the network, the loss of the net-
work was determined using categorical cross-entropy and was
optimised using the Adam algorithm (Kingma & Ba 2015). The
initial learning rate was 5× 10−5 for the FCN, 5× 10−6 for the
CNN and 5× 10−3 for the Top Network. The networks them-
selves were built using Tensorflow 2.3 (Abadi et al. 2015) and
are available on GitHub1 along with the learnt parameters.

For the FCN, a number of different hyper-parameter val-
ues were explored. Three layer and four layer architectures were
tested, with no improvement over the used two layer structure.
Also, 256 and 1024 neurons per layer were also tested, again with
no improvement over the current architecture. As fewer neurons
require less data to effectively train, the smaller size of a two
layer network with 128 neurons per layer was chosen.

Few different hyper-parameters were explored for the CNN,
as this architecture has been found to perform well in identify-
ing galaxy mergers with data from a number of different surveys
(Pearson et al. 2019a,b). However, the number of neurons in the
fully connected layers in the CNN were explored, testing 1024
and 4096 neurons in the left most fully connected layer in Fig. 4
with no marked improvement to performance.

While testing different architectures for the FCN, the size of
the last fully connected layer in the CNN was also changed. As

1 https://github.com/wjpearson/NEP-mergers
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Table 2. Minimum and maximum values used to scale the morphologi-
cal parameters.

Parameter Minimum Maximum

Asymmetry (A) −4.0 4.0
Concentration (C) 0.0 6.0

Deviation (D) 0.0 3.0
Ellipticity asymmetry (Eli A) 0.0 1.0
Ellipticity centroid (Eli Cen) 0.0 1.0

Elongation asymmetry (Elo A) 1.0 8.0
Elongation centroid (Elo Cen) 1.0 8.0

Gini 0.0 1.0
Gini-M20 bulge (GMB) −3.0 3.0

Gini-M20 merger (GMM) −1.0 1.0
Intensity (I) 0.0 1.0

M20 −4.0 0.0
Multimode (M) 0.0 1.0

Sérsic amplitude (SA) 0.0 200.0
Sérsic ellipticity (SE) −6.0 3.0

Sérsic index (n) 0.0 50.0
Smoothness (S) −0.4 0.4

the right most layers of the CNN and FCN (in Fig. 4) are the
same size, 256 and 1024 neurons in this layer were also tested,
again showing no change over the architecture used here. The
last layers in the FCN and CNN were chosen to be the same size
to potentially allow equal weight to be placed on both the mor-
phological parameters and the images. The size of the first layer
in the Top Network was matched to the size of the concatenated
last layers of the FCN and CNN, and so a layer with 1024 and
2058 neurons was also tested, again showing no improvement
over the current architecture.

For all three networks, different initial learning rates for
the Adam optimiser were also tested. Here, rates of 5× 10−2,
5× 10−3, 5× 10−4, 5× 10−5, 5× 10−6 and 5× 10−7 were tested.
The best performing initial learning rate, one for each part of the
network, was then chosen.

3.2. Training, validation, and testing

The FCN, CNN, and full network were trained independently.
The FCN and CNN were trained first using the galaxy morpholo-
gies and images, respectively. The two-neuron output layers were
then removed and the trained weights and biases of the FCN and
CNN were fixed. The top layers of the FCN and CNN were then
concatenated and the results passed into the Top Network, which
was then trained. The output of the full network, the FCN, CNN
and Top Network, was then the prediction for if a galaxy is a
merger or not.

The training data described in Sect. 2.3 were split into three
groups. For the z < 0.15 networks, 2692 galaxies were used to
train the network, 338 were used to validate the network as it
trained, and a final 336 were used to test the network. For the
0.15 < z < 0.30 network, 2514 were used to train the network,
314 were used to validate the network and 314 were used to test
the network. The same galaxy samples were used to train each
part of the network.

To train the FCN, the morphological parameters were scaled
between zero and one by subtracting the minimum value in
Table 2 and dividing by the range between the minimum and
maximum values in Table 2. We note that the values presented in

Table 2 do not necessarily directly correspond to the maximum
and minimum values of the training data, as seen in Fig. 1.
The FCN was trained for 5000 epochs with the epoch that pro-
vided the lowest validation loss being used for training the Top
Network and classification. To train the CNN, the images were
used. These images were linearly scaled, randomly rotated by 0◦,
90◦, 180◦, or 270◦, randomly flipped vertically, then randomly
flipped horizontally as they were passed into the network. CNN
are known to not be rotationally invariant (e.g. Gong et al. 2014;
Mopuri & Babu 2015; Chandrasekhar et al. 2016), while the mor-
phology of a galaxy is independent of rotations in the plane of
the sky. Thus this rotation and flipping will help generalisabil-
ity of the network (e.g. Dieleman et al. 2015; Huertas-Company
et al. 2018). Redshifts of the galaxies were not used inside the
networks as the networks would need to be designed with a spe-
cific number of redshifts to be passed into it. As the number of
galaxies (background and foreground) within each image will
be different, some images will have more galaxies than a speci-
fied number and others fewer, it was decided to not include these
data. The CNN was trained for 200 epochs with the epoch that
provided the lowest validation loss being used for training the
Top Network and classification. The Top Network was trained for
1000 epochs with the epoch that provided the lowest validation
loss being used for classification.

4. Results

4.1. Morphological parameters

Here we examine the morphological parameters that were used
to train the neural networks. As can be seen in Fig. 1, some of the
derived asymmetries are negative; due to the asymmetry being
a sum of residuals, it should always be positive. In theory, the
intrinsic asymmetry of a galaxy should be positive but it can-
not be measured directly due to the presence of noise. As an
attempt to remove the contribution of the background, the cor-
rected asymmetry Acorr = Aobs – Abkg is typically used (Conselice
et al. 2000), where Aobs is the uncorrected asymmetry and Abkg is
the asymmetry of the background. Therefore, negative asymme-
tries are mathematically allowed as a result of over-correcting for
the asymmetry of the background. In general, correctly account-
ing for noise when measuring the asymmetry parameter is a
non-trivial task and is still the topic of active research (e.g. Thorp
et al. 2021). Large fractions of negative asymmetry, and smooth-
ness as also seen here, are also found in other observational
works (e.g. Rodriguez-Gomez et al. 2019; Sazonova et al. 2020).
Inspection of the positioning of the skyboxes, used to estimate
the background noise, and the segmentation maps for a random
sample of objects with negative asymmetry did not greatly dif-
fer from a random sample of galaxies with positive asymmetry.
Thus, we deem the asymmetry and smoothness to be adequate
for this work.

We also note that there are negative Sérsic ellipticities in
Fig. 1 as well as values above unity. While the Sérsic elliptic-
ity should lie between zero and unity, statmorph allows for
fitting to values outside of this range. These can be converted
to an equivalent ellipticity (SE′) within the range [0, 1] using
SE′ = min(SE, 2-SE) for SE > 1 or SE′ = max(SE, SE/(SE-1))
for SE < 0. As these conversions are simple we elected to use the
Sérsic ellipticity from statmorph in this work without conver-
sion. Use of the Sérsic ellipticity in the presented with this paper
in future works should use these conversions.

To check the validity of the morphologies used to train the
networks, the morphological parameters of the z < 0.15 training
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Table 3. Comparison between morphological parameters derived from
HSC-SSP images used to train the low redshift network in this work and
derived from GAMA-KiDS data in Pearson et al. (2019b).

Parameter Mean δ Std δ Outliers

Asymmetry (A) −0.060 0.087 22
Concentration (C) −0.052 0.299 26

Deviation (D) 0.011 0.097 28
Ellipticity asymmetry (Eli A) −0.003 0.095 22
Ellipticity centroid (Eli Cen) −0.003 0.096 22

Elongation asymmetry (Elo A) 0.073 2.882 4
Elongation centroid (Elo Cen) 0.051 2.694 2

Gini 0.010 0.052 21
Gini-M20 bulge (GMB) 0.027 0.235 14

Gini-M20 merger (GMM) 0.013 0.068 24
Intensity (I) −0.023 0.160 38

M20 0.029 0.200 28
Multimode (M) 0.000 0.158 55

Sérsic amplitude (a) (SA) 0.330 1.077 21
Sérsic ellipticity (SE) −0.044 0.150 33

Sérsic index (n) −0.433 6.744 9
Smoothness (S) −0.039 0.367 24

Notes. These differences are expressed the value from HSC-SSP mor-
phological parameters subtracted from the GAMA-KiDS morphologies
(δ): negative means imply that HSC-SSP morphologies are larger
than GAMA-KiDS. (a)Comparison is made with surface brightness
(mag arcsec−2), not the counts reported in Table 1 and Pearson et al.
(2019a).

data derived from the HSC-SSP images were compared to those
derived from GAMA-KiDS data in Pearson et al. (2019a). This
allows the comparison of the morphologies of the same galax-
ies using different data. The morphological parameters from the
HSC-SSP data were subtracted from those of the GAMA-KiDS
data, with the resulting differences (δ) presented in Table 3. Out-
liers are defined as galaxies whose morphological parameters
are outside of 5σ of the mean, where σ is the sample standard
deviation.

Generally, the results using the HSC-SSP are in good agree-
ment with the morphologies from GAMA-KiDS. For the Sérsic
amplitude, as the photometric zero-points and pixel areas are dif-
ferent for HSC-SSP and KiDS, the comparison is made with the
surface brightness in mag arcsec−2 and not the counts, the lat-
ter of which are presented in Table 1 and Pearson et al. (2019a).
Thus, the positive mean δ for SA indicates that the HSC-SSP
values are brighter than the GAMA-KiDS values.

None of the resulting distributions are Gaussian, thus we
cannot use the expected number of 5σ outliers to check the close-
ness of fit. Chebyshev’s inequality restricts the number of objects
more than 5σ from the mean to be 1/25 of the total number of
objects, that is no more than 134 of the 3366 galaxies can be
classified as outliers. For all but Multimode and Intensity, there
are fewer outliers than a quarter of this value. Multimode and
Intensity also have the most non-Gaussian distributions so the
higher numbers of outliers may be expected.

Elongation asymmetry, elongation centroid, and Sérsic index
have large standard deviations. For the elongation asymmetry
and centroid, these large standard deviations are driven by large
values from the GAMA-KiDS morphologies; all outliers have
large parameter values compared to the rest of the population.
For the Sérsic index, the large standard deviation is driven by
a small number of galaxies with a large Sérsic index in either
the HSC-SSP data or GAMA-KiDS, with four out of nine of the

outliers being due to large n in GAMA-KiDS and five being due
to large HSC-SSP n.

4.2. Galaxy mergers

In this section, we present the results of our model’s test perfor-
mance and outline our visual inspection programme. An example
of the final catalogue is presented in Table 4. The results from
the neural networks are given as the probability that a galaxy is
a merger or non-merger, frac_merger and frac_nonmerger
respectively. It also has the classification from visual inspec-
tion as vis_merger (see Sect. 4.2.2 below). Randomly selected
examples of HSC-NEP galaxies identified as non-mergers by the
networks, as mergers by the networks but not visual inspection,
and as mergers by visual inspection are presented in Fig. 5. Here,
we take galaxies with frac_merger> 0.5 to be identified as
mergers by the networks (hereafter merger candidates).

4.2.1. Neural networks

In determining the architecture of the neural network, it was
found that combining a FCN and CNN had better performance
than a FCN or CNN alone. Tests with the z < 0.15 data set,
the validation of the best FCN had a loss of 0.301 and accu-
racy of 88.8% while the validation of the best CNN had a loss
of 0.473 and accuracy of 79.3%. When combining the FCN and
CNN, as described in Sect. 3.1, the validation of the final full
network for z < 0.15 galaxies has a loss of 0.260 and accuracy of
91.7%. It would be expected that there is information contained
in the images that is not present in the morphological parame-
ters: the morphological parameters can be seen as a compression
of the information of the images. However, this result suggests
that there is information in the morphological parameters that is
not present in the images, or more likely the information in the
morphological parameters is more easily extracted by a neural
network than the information in the images. This difficulty may
lie in the noise or background of the image confusing the net-
work. The same noise or background may present a similar issue
for the morphological parameter extraction but the network itself
is presented the pre-extracted parameters. Thus, combining the
images and morphologies allows the network to supplement the
more easily interpreted morphological parameters with further,
harder to extract information contained within the images. As
a result, it is not entirely surprising that the network performs
better combining the images with the morphological parameters
than either alone despite both containing similar information.

The quality of the two full networks, one for z < 0.15 and one
for 0.15 ≤ z < 0.30, can be determined by the results presented
in Table 5. Due to the training set being class balanced while
mergers are expected to be in the minority of real galaxies, we
caution the use of accuracy alone to determine the quality of a
network when applied to non-class balanced data.

The trained networks described in Sects. 3.1 and 3.2 were
applied to galaxies in the North Ecliptic Pole. Taking a galaxy
with frac_merger greater than 0.5 as a merger candidate, these
classifications resulted in 1477 of 6965 galaxies at z < 0.15 and
8718 of 27 299 galaxies at 0.15 ≤ z < 0.30 being identified as
galaxy merger candidates. This results in a merger candidate
fraction of 21.2% for the lower redshift range and 31.9% for the
higher redshift range.

4.2.2. Visual inspection

As we expect there to be a large number of falsely identified
galaxy mergers in the merger candidates identified by our full
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Table 4. Ten rows of the catalogue of merging galaxies in NEP.

HSC_ID RA Dec frac_merger frac_nonmerger vis_merger

79217643822780147 270.743 65.328 0.572 0.428 False
79217643822780325 270.782 65.341 0.988 0.012 False
79217643822780333 270.789 65.343 0.025 0.975 False
79217643822780337 270.795 65.340 0.056 0.944 False
79217643822781103 270.745 65.346 0.088 0.912 False
79217648117743947 270.775 65.386 0.182 0.818 False
79217648117753062 270.734 65.374 0.056 0.944 False
79217648117753093 270.758 65.361 0.145 0.855 False
79217648117753463 270.737 65.374 0.286 0.714 False
79666772847897740 267.434 65.748 0.959 0.041 True

... ... ... ... ... ...

Notes. The full table is available at the CDS.

Fig. 5. Randomly selected HSC-NEP galaxies as example for galaxies
selected by the networks as non-mergers (top row), galaxies selected
as merger candidates by the networks but not identified as mergers by
visual inspection (middle row), and galaxies selected as galaxy mergers
by visual inspection (bottom row). The classified galaxy lies in the cen-
tre of the 128× 128 pixel (≈21.5× 21.5 arcsec) image and the images are
shown with asinh scaling.

networks, the galaxies identified as galaxy merger candidates by
the full network were visually checked by two authors, the major-
ity by WJP and a minority by LES. Discussion of the quality
of the visual classifiers can be found in Appendix B. The visual
classification includes considering the redshifts of galaxies close
to the merger candidate to check for close companions. If both
WJP and LES inspected a merger candidate, a galaxy was only
considered a merger if both WJP and LES considered the galaxy
to be a merger. This resulted in 251 of 1477 being true mergers at
z < 0.15 and 1858 of 8718 being true mergers at 0.15 ≤ z < 0.30.
This results in a merger fraction of 3.6% for z < 0.15 and 6.8%
for 0.15 ≤ z < 0.30. However, due to the difficulties in visual
classification, it is possible that some of the galaxies identified
as merger candidates by the networks could truly be mergers but
misclassified as non-mergers during visual inspection.

Table 5. Performance statistics from the neural networks.

Redshift Statistic Value

z < 0.15

Accuracy 0.884
Recall 0.863

Precision 0.901
Specificity 0.905

NPV (a) 0.869

0.15 ≤ z < 0.30

Accuracy 0.850
Recall 0.790

Precision 0.899
Specificity 0.911

NPV (a) 0.812

Notes. All values calculated with the class balanced test data set.
(a)Negative predictive value Defenitions of the statistics can be found
in Appendix A.

With the large number of non-merging galaxies that would
need to be visually checked, it was deemed too time costly to
visually confirm all non-mergers. As the number of mergers is
expected to be low and the recall of the network is high, very
few true mergers (approximately 13.7% at z < 0.15 and 21.0% at
0.15 ≤ z < 0.30) are expected to be classified as non-mergers and
so few mergers are expected to be missed. Using the recall of the
two full networks presented in Table 5 and the number of visually
confirmed mergers, we expect to miss approximately 40 mergers
at z < 0.15 and approximately 494 at 0.15 ≤ z < 0.30.

However, as discussed in Appendix B, the visual classifica-
tions are not complete with a recall of 0.45. If we combine this
with the network performances presented in Table 5, we expect
the final visually selected merger samples to be 38.8% complete
at z < 0.15 and 35.6% complete at 0.15 ≤ z < 0.30. The test
merger candidate samples contain 9.5% and 8.9% of all non-
mergers at z < 0.15 and 0.15 ≤ z < 0.30, respectively. Again
combining these with the average specificity of the visual clas-
sifiers, the visually selected merger samples contain 1.9% and
1.8% of all non-mergers at z < 0.15 and 0.15 ≤ z < 0.30, respec-
tively. If we take the true merger fractions to be 3.6% at z < 0.15
and 6.8% at 0.15 ≤ z < 0.30, this implies the visually confirmed
merger samples are 43.3% pure at z < 0.15 and 59.0% pure at
0.15 ≤ z < 0.30. However, as the visual classification was done
on a pre-selected sample of merger candidates while the dis-
cussion in Appendix B was performed with a class balanced
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Table 6. Summary of the number of galaxies identified as non-mergers,
merger candidates and visually confirmed mergers.

Total
galaxies

Merger
candidate

Confirmed
mergerRedshift Non-merger

z < 0.15 6965 5488 1477 251
0.15 ≤ z < 0.30 27 299 18 581 8718 1858

Fig. 6. Examples of visually confirmed non-mergers with visible struc-
ture. The top row shows non-mergers detected by the z < 0.15 network
and the bottom row shows non-mergers detected by the 0.15 ≤ z < 0.30
network.

sample of mergers and non-mergers with no pre-selection on
morphologies, the quality of the visual classifiers may be lower
than presented, a result of a pre-selected sample likely being
harder to differentiate between mergers and non-mergers than an
unselected sample.

We also visually inspected a small sample of galaxies iden-
tified as non-mergers, 100 from the z < 0.15 network and 100
from the 0.15 ≤ z < 0.30 network. Within both of these samples
we found no obvious misclassifications, supporting the expecta-
tion that very few mergers were misclassified as non-mergers by
the networks. A summary of the number of galaxies identified as
non-merger, merger candidates and visually selected mergers is
presented in Table 6.

During visual inspection, the non-mergers were also briefly
checked for true non-merging galaxies with visible structure.
This is due to the training sample possibly causing the networks
to be trained on structureless and structured galaxies, and not
mergers and non-mergers, as discussed in Sect. 2.3. The brief
visual inspection found that there were galaxies identified as
non-mergers that did contain resolvable structure, such as spi-
ral arms, as can be seen in Fig. 6. Similarly, there are merger
candidate galaxies that have no visible structure, as shown in
Appendix C. Thus, the networks have not been inadvertently
trained to find structured and non-structured galaxies.

5. Discussion

5.1. False positives

While it is expected that there will be false positive (FP) detec-
tions from the networks, that is galaxies that are identified by the
full network as a merger which are non-mergers, it is informative
to understand why such galaxies are misclassified.

5.1.1. Image occlusion

To understand which visual properties of the FP galaxies were
being identified for galaxies at z < 0.15, occlusion experiments
(e.g. Zeiler & Fergus 2014; Ancona et al. 2018; Pearson et al.
2019b; Wang et al. 2020) were performed on four FP galax-
ies with frac_merger≈ 0.76 (galaxies b, d, j, and l in Fig. 7)
and four with frac_merger≈ 0.99 (galaxies f, h, n, and p in
Fig. 7). Eight true positive (TP) galaxies were also selected for
occlusion experiments: four with frac_merger≈ 0.76 (galax-
ies a, c, i, and k) and four with frac_merger≈ 0.99 (galaxies e,
g, m, and o). For this experiment, a 16× 16 pixel region of the
images were set to zero. The 16× 16 pixel zero region was trans-
lated across the image by one pixel such that there were a total
of 12 769 copies of the galaxy with a different 16× 16 pixel
regions set to zero. These occluded images were then passed
through the full network with the morphological parameters left
unchanged. The occluded galaxy images are treated as a normal
galaxy by the networks and so are scaled by the networks to be
between zero, the faintest pixel in the occluded image, and one,
the brightest pixel in the occluded image. Heat maps were then
generated by taking the average classification for when each pixel
was occluded. Figure 7 shows these heat-maps along with the
original image of the galaxy.

The heat-maps in Figs. 7a and 8 indicate the regions that
are important for the CNN part of the network to identify a
merging galaxy. Each pixel within these images indicates the
average change of classification when the pixel is occluded. As
the average is of up to 256 values, large changes when the pixel
is occluded will be suppressed. This means that Figs. 7 and 8 are
primarily useful for qualitative analysis. Thus, while no galaxies
seen in these figures show a change in classification and suggest
the classification is primarily driven by the morphologies, these
plots cannot be used for such definitive statements.

For all FPs, the presence of the second galaxy in the frame is
an important component used for classification. These secondary
galaxies are not physically associated with the primary galax-
ies in the centre of the image due to their different redshifts.
Occlusion of these secondary galaxies reveals that the full net-
work is interpreting them as potential merging companions. As
the redshift information is not passed into the network, this is a
somewhat understandable mistake. However, the weak reliance
on the images by the full network means the presence of the
secondary galaxy in the image is not of great importance overall.

The secondary galaxy influencing classification is also seen
with the TPs (a), (e), (i), (k), and (m). For the remaining TPs,
instead of being influenced by a secondary galaxy the network
is identifying faint features around the primary galaxy, likely
signatures of tidal disruption.

From the comparison of the FP and TP, there is the sugges-
tion that including the redshift of the primary and secondary
galaxies may aid in determining if two galaxies are indeed
merging or are just close in projection but are not physically
associated. This was not done due to the reasons previously
outlined in Sect. 3.2.

The majority of galaxies show that the primary galaxy is also
used in determining the classification. Only galaxies (i), (j), (l),
(m), and (p) do not show this behaviour. It is unclear why obscur-
ing the primary galaxy makes a galaxy more likely to be seen to
contain a merger. Hiding of the central source may make fainter
structures around the galaxy more apparent and hence easier to
identify as a merger, but this is speculation.

For the higher redshift network, the image occlusion pro-
vides similar results, as seen in Fig. 8. All FP galaxies show the
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Fig. 7. Galaxy images and associated feature importance heatmaps for sixteen galaxies at z < 0.15. The sixteen galaxies comprise of four TP
galaxies with frac_merger≈ 0.76, four TP galaxies with frac_merger≈ 0.99, four FP galaxies with frac_merger≈ 0.76, and four FP galaxies
with frac_merger≈ 0.99, as indicated in the upper left corners of the galaxy images. The panels to the right of the galaxy images contain the heat
maps for feature importance, with pixels that when obscured cause the galaxy to have lower frac_merger in dark purple and pixels that cause the
galaxy to have a higher frac_merger in light yellow. The orange line in the colour bar indicates the frac_merger of the un-occluded galaxy.

presence of a secondary galaxy is important for classification,
with an apparent reduction in frac_mergerwhen it is obscured.
Only the TP (i) and (m) galaxies do not see a reduction when a
secondary galaxy is obscured. In the case of (i), the merging
galaxies are very close to one another making obscuration of a
single galaxy of the pair difficult. The high redshift network also
sees an influence to classification when the primary galaxy is
obscured for galaxies (a), (d), (g), (h), (j), (l), (m), (n), and (p),
similar to the low redshift network.

However, none of the sixteen, higher redshift galaxies that
had the occlusion experiment performed show the importance
of faint structures. This does not mean that such structures are
not important to the network, just that such structures are not

important for the sixteen galaxies shown. Galaxy (i) also exhibits
occlusion behaviour that is opposite to what is seen in all other
galaxies at both redshifts. For galaxy (i), the occlusion of the
primary galaxy reduces frac_mergerwhile the occlusion of the
bright object in the field of view increases frac_merger.

We also fully occluded all galaxies, that is we passed an array
of zeros in place of the image into the network, and compared
the resulting frac_merger with the original classification. As
can be seen in Fig. 9a, the low redshift network’s new classifica-
tions are typically slightly higher for the fully occluded images
at lower frac_merger before becoming consistent at higher
frac_merger. There is a positive correlation between the two
classifications, although with a large scatter of approximately
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Fig. 8. Same as Fig. 7 but for the 0.15 ≤ z < 0.30 network. Galaxy images and associated feature importance heatmaps for sixteen galaxies at
0.15 ≤ z < 0.30. The sixteen galaxies comprise of four TP galaxies with frac_merger≈ 0.76, four TP galaxies with frac_merger≈ 0.99, four
FP galaxies with frac_merger≈ 0.76, and four FP galaxies with frac_merger≈ 0.99, as indicated in the upper left corners of the galaxy images.
The panels to the right of the galaxy images contain the heat maps for feature importance, with pixels that when obscured cause the galaxy to have
lower frac_merger in dark purple and pixels that cause the galaxy to have a higher frac_merger in light yellow. The orange line in the colour
bar indicates the frac_merger of the un-occluded galaxy.

0.1. This suggests that, while useful in determining classifica-
tion, the images are not a strong influence on the classifica-
tion when compared to the morphologies being fully occluded
(Sect. 5.1.2).

For the high redshift network, there is good agreement
between the original frac_merger and the image occluded
frac_merger at low frac_merger. As frac_merger
increases, the occluded frac_merger typically has a lower
value, as can be seen in Fig. 9b. There is a large number of
objects with the occluded frac_merger close to zero while
the un-occluded frac_merger is much larger, a trend not seen
in the lower network. This suggests that the images have more

importance for the classification than the lower redshift network.
However, the correlation between the original frac_merger
and the occluded frac_merger suggests that the images still
play a minor role in classification. The morphological parameter
occlusion discussed below is in support of the minor importance
of the images for the higher redshift network.

5.1.2. Morphological parameter occlusion

Occlusion experiments similar to those applied to the images are
difficult to perform with the morphological parameters. The low-
est input morphological value into the full network is zero by
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Fig. 9. frac_merger when the image is occluded as a function of the
original frac_merger for all galaxies classified by the low redshift net-
work (panel a) and the high redshift network (panel b). Number density
of galaxies is shown from low (dark blue) to high (red). The 1-to-1 line
is shown in red.

design (see Sect. 3.2) and passing negative values could result in
unpredictable and non-interpretable behaviour. Instead of setting
each morphological parameter to zero, we instead change the
value of each parameter. The range of each parameter in Table 2
was split into 802 equally spaced steps. For each of the 32 galax-
ies in Figs. 7 and 8, each morphological parameter was set to
each of these 802 values one at a time. For example, the asym-
metry was set to –4 while all other parameters and the image
were left alone. As GMB and GMM are linear combinations of
Gini and M20, we also alter Gini or M20 as described above and
perform the corresponding change to GMB and GMM following
Eqs. (1) and (2), respectively. These are presented in Figs. 10
and 11 as ‘Gini (with GMB, GMM)’ and ‘M20 (with GMB,
GMM)’. While altering Gini, M20, GMB or GMM individually
is not representative of real world applications, we make these
comparisons for completeness. These galaxies with modified
morphological parameters were then classified by the full net-
work so the change in classification as each parameter is changed
can be studied. The resulting changes in frac_merger as the
morphological parameters are changed are shown in Fig. 10 for
the z < 0.15 network and Fig. 11 for the 0.15 ≤ z < 0.30 network.

Changing the morphological parameters alters
frac_merger in all cases. However, changes in D, Gini,
M20, I, SE and M20 (with GMB, GMM) do not result in a change
of classification for any of the 16 z < 0.15 galaxies studied.
Thus, these parameters are the least important in this network
for determining the classification of the galaxy. For a further
five parameters, C, Eli Cen, Elo Cen, M, and n, only one of the
sixteen galaxies sees a change in classification, again indicating
that these parameters play a minor role in classification for the
z < 0.15 network. For these parameters, the galaxies that see a
change in classification are all FP with frac_merger≈ 0.76.

While Gini and M20 are often used to identify galaxy merg-
ers (e.g. Lotz et al. 2004, 2008), as the training sample was not
selected using these parameters it is perhaps not surprising that
these two parameters have little importance. This is also not due
to the presence of linear combinations of Gini and M20 in GMB
and GMM. When GMB and GMM are changed along with Gini
or M20 as per their definitions, changing M20 (with GMB, GMM)
does not result in a change in classification for any of the sixteen
galaxies while changing Gini (with GMB, GMM) only sees a
change in classification for two of the galaxies.

In the other extreme, only changing A changed the classifi-
cation of all sixteen galaxies at z < 0.15, indicating that this is a
powerful morphological parameter for identifying merging sys-
tems. The Elo A also sees changes in classifications for half of
the galaxies studied in detail, further indicating the importance
of an asymmetric light distribution in identifying merging galax-
ies. The Eli A, however, sees changes for fewer galaxies: only
three of the sixteen galaxies see a change to classification.

For the remaining parameters for the z < 0.15 galaxies, the
SA sees a change in classification for half of the sixteen galax-
ies, indicating that it is an important parameter for this network.
The S parameter sees a change in the classification for two
TP frac_merger≈ 0.76 galaxies and one FP frac_merger≈
0.76 galaxy. The GMB shows a change in classification for one
FP frac_merger≈ 0.76 galaxy and one FP frac_merger≈
0.99 galaxy, while GMM sees a change in classification for two
galaxies. We reiterate that changing GMB or GMM indepen-
dently of Gini or M20 is not representative of the real world and
so limited understanding can be gained from changing these two
parameters in isolation.

For the higher redshift network, only changes in D and n do
not result in a classification change for all 16 galaxies. In the
other extreme, only changing the Elo Cen changes the classifica-
tion for the 0.15 ≤ z < 0.30 galaxies studied. Like the z < 0.15
network, asymmetry is again important for classification for the
0.15 ≤ z < 0.30 network, with only two FP frac_merger≈ 0.99
and two TP frac_merger≈ 0.99 galaxies not showing a change
in classification. Elo A is again shows a change in classification,
here for ten of the galaxies. The galaxies that do not see change
to the classification all have frac_merger≈ 0.99. This again
highlights the importance of an asymmetric light distribution in
identifying merging galaxies.

Concentration is more important for the higher redshift
network than the lower redshift network, with only two FP
frac_merger≈ 0.99 and two TP frac_merger≈ 0.99 galax-
ies seeing no change in classification. Gini and M20 are also
more important in the higher redshift network than the lower
redshift network, with Gini causing a change in classification to
nine galaxies and M20 causing a change to four galaxies. GMM
and GMB also cause changes to classifications in more galaxies
in the higher redshift network than the lower redshift network.
Again, changing these four parameters in isolation is not realis-
tic. Changing Gini and M20 with GMB and GMM also shows a
greater influence on the classification than the lower redshift net-
work. Gini (with GMB, GMM) sees a change in classification
for five of the sixteen galaxies while M20 (with GMB, GMM)
sees a change for seven of the galaxies. This again indicates the
stronger reliance on Gini and M20 for the higher redsift network
compared to the lower redshift network.

The changes in frac_merger for the morphological param-
eters were much larger than seen in the occlusion experiments.
This supports the idea that the morphological parameters are
more important to the full networks than the images for both
the z < 0.15 and 0.15 ≤ z < 0.30 networks. Generally, the higher
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Fig. 10. Change in frac_merger due to change in the morphological parameters for sixteen galaxies at z < 0.15: four TP galaxies with
frac_merger≈ 0.76 (dot-dashed lines), four TP galaxies with frac_merger≈ 0.99 (dashed lines), four FP galaxies with frac_merger≈ 0.76
(dotted lines), and four FP galaxies with frac_merger≈ 0.99 (solid lines). The horizontal line indicates the decision threshold with the merger
class being above and the non-merger class being below the line. The sixteen galaxies correspond to the sixteen galaxies in Fig. 7.
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Fig. 11. Same as Fig. 10 but for the 0.15 ≤ z < 0.30 network. Change in frac_merger due to change in the morphological parameters for sixteen
galaxies: four TP galaxies with frac_merger≈ 0.76 (dot-dashed lines), four TP galaxies with frac_merger≈ 0.99 (dashed lines), four FP galaxies
with frac_merger≈ 0.76 (dotted lines), and four FP galaxies with frac_merger≈ 0.99 (solid lines). The horizontal line indicates the decision
threshold with the merger class being above and the non-merger class being below the line. The sixteen galaxies correspond to the sixteen galaxies
in Fig. 8.
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Fig. 12. frac_mergerwhen all morphological parameters are occluded
as a function of the original frac_merger for all galaxies classified
by the low redshift network (panel a) and the high redshift network
(panel b). Number density of galaxies is shown from low (dark blue) to
high (red).

redshift network appears to rely on a number of different param-
eters for the classification of galaxies while the lower redshift
network primarily sees changes for the parameters that measure
the asymmetry of the light distribution. We note caution, how-
ever, as these examinations have only been conducted with a
small number of galaxies.

As with the images, we have also occluded the morpholo-
gies for all galaxies by setting each morphological parameter to
the minimum value in Table 2 in place of the correct parameter
value. For the low redshift network, this sets the frac_merger
for all galaxies close to unity, as can be seen in Fig. 12a.
As the image occlusion resulted in a changed but correlated
new frac_merger value, it is apparent that the morphology
is the main component used for classification of the galaxies
as occluding the morphology has a much larger impact on the
resulting frac_merger. If the images provided no information
for classification, then all the galaxies would all have the same
frac_merger when the morphologies are occluded.

A similar trend is seen with the high redshift network.
When the morphological parameters are to the minimum value
in Table 2, the frac_merger of all galaxies becomes close
to unity, as can be seen in Fig. 12b. Again, the large change
in frac_merger when the morphologies are occluded while
the changes to frac_merger due to image occlusion are not
as severe implies that the high redshift network is primar-
ily using information from the morphologies to determine the
classification.

5.2. Merger fraction

As a simple application of the catalogue, it is possible to examine
how the merger fraction changes as a function of redshift using
the visually confirmed mergers. Here we used redshift bins with

Fig. 13. Stellar mass as a function of redshift. The number of galaxies
in each mass-redshift bin is from low in blue to high in red. The mass
limits calculated following Sect. 2.4 are shown as a red line.

Fig. 14. Merger fraction from the neural networks (red circles) and
visual classification (blue circles) as a function of redshift. The merger
fraction of the visually confirmed galaxies rises out to z ≈ 0.238 before
falling slightly. The error on the redshift is the standard deviation of the
redshift within the redshift bin. The error on the merger fraction is the
statistical error. Merger fractions from Cotini et al. (2013, purple dia-
monds), Pearson et al. (2019a, green and orange triangles), Kartaltepe
et al. (2007, brown stars) and Lotz et al. (2011, dot-dashed purple
line) are also shown along with the merger fraction trend from the
EAGLE simulation (Qu et al. 2017, solid red line), Illustris simulation
(Rodriguez-Gomez et al. 2015, dashed green line), and the pair fraction
trend from the EMERGE simulation (O’Leary et al. 2021, dotted blue
line).

width 0.025 and determine the mass completeness within each
redshift bin as outlined in Sect. 2.4 and shown in Fig. 13. Once
the sample of galaxies within each redshift bin is mass com-
plete, we selected redshift bins with more than 100 galaxies and
determined the merger fraction for these bins using the visually
confirmed mergers. Errors on the merger fractions are Poisson
binomial errors. These results can be found in Fig. 14. As can be
seen, the merger fraction generally rises from 2.1± 0.7% at z ≈
0.039 to 7.9± 0.5% at z ≈ 0.238. However, between z ≈ 0.088
and z ≈ 0.138, the merger fraction appears to plateau as well as
at redshifts above z ≈ 0.238. Thus generally speaking, mergers
are more common in the earlier Universe than we see in the later
Universe. This is consistent with theoretical works (e.g. Hopkins
et al. 2010a,b).

An increasing merger fraction with redshift is consistent
with other observational works. Using mergers identified by a
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CNN, Pearson et al. (2019a) find an increasing merger frac-
tion as redshift increases, over 0.0 < z < 4.0 using data from
the Sloan Digital Sky Survey (York et al. 2000), KiDS and the
Cosmic Assembly Near-infrared Deep Extragalactic Legacy Sur-
vey (Grogin et al. 2011; Koekemoer et al. 2011). An increase in
the merger fraction with redshift is also seen with close pairs,
galaxies with projected separations between 5 and 20 kpc, from
z = 0.1 to z = 1.2 Kartaltepe et al. (2007). Using non-parametric
statistics, Cotini et al. (2013) also find that the merger fraction
increases with redshift at z < 0.03. Similar results were found by
Lotz et al. (2011), finding that the fraction of mergers and the
fraction of close pair galaxies increases with redshift. Lotz et al.
(2011) use a Gini-M20 cut, asymmetry cut and select close pairs
in Hubble Space Telescope data for galaxies with stellar masses
above 1010 M�.

We converted the merger rates of Lotz et al. (2011) into
a merger fraction using their merger observability timescale
of 0.2 Gyr for comparison with our results. We present their
extrapolation to lower redshifts used in this work in Fig. 14
as the dot-dashed purple line, with their errors shown by the
purple shaded region. At higher redshifts, the visually selected
mergers are in agreement with the Lotz et al. (2011) merger frac-
tions. At lower redshifts, the visually selected merger fraction
is lower than that of Lotz et al. (2011). This may be due to the
extrapolation required to reach these lower redshifts as the low-
est redshift data point of Lotz et al. (2011) is at z = 0.3. The
observability timescale of Lotz et al. (2011) has slight redshift
dependence which is not presented in the paper. Thus the use
of constant timescale may be causing an increase in the Lotz
et al. (2011) merger fraction presented here at lower redshifts.
The merger candidate fraction is much higher than the Lotz et al.
(2011) merger fraction. As we expect the merger candidates to
be contaminated with a large number of non-mergers, this is
expected.

Pearson et al. (2019a) has a much higher merger fraction
than this work. This is likely a result of their pure CNN identifi-
cation of galaxy mergers leaving many false merger detections
in the merger sample. This will increase the merger fraction
due to the prevalence of non-merging galaxies in the Universe
compared to merging galaxies, hence there being more false
merger detections than false non-merger detections. Indeed, the
merger fraction from the KiDS sample in Pearson et al. (2019a)
is consistent with the merger candidate fraction found by the
neural network in this work, before visual confirmation. This
consistency between the merger fractions found only with neural
networks and these fractions being much larger than the visually
selected merger fractions is a strong indication that merger iden-
tifications from current neural networks are highly contaminated
with non-mergers.

The merger fractions of Cotini et al. (2013) are larger than
the visually inspected merger fractions found in this work. The
mergers presented in Cotini et al. (2013) have been visually
checked, like in this work, so there are unlikely to be mis-
classified non-mergers. However, the size of the merger and
non-merger samples are small, a few tens of non-mergers and
a few mergers, so these fractions may suffer from low num-
ber statistics and so have large uncertainties as seen in Fig. 14.
Kartaltepe et al. (2007) find merger fractions that are lower than
this work, as can be seen in Fig. 14. As Kartaltepe et al. (2007)
use close pairs, it is possible that earlier stage mergers are missed
that the hybrid neural-network – human classification can find.
To add to this, the close pair method misses mergers that are
coalescence and post-coalescence which can be detected by the
method presented in this work. As a result, it would be expected

that the merger fractions presented here are larger than those in
Kartaltepe et al. (2007).

Simulations also provide similar results. O’Leary et al.
(2021) find the merger fraction increasing with redshift, at least
at z < 1, in the EMERGE cosmological simulation (Moster et al.
2018). This is also seen in the Illustris (Vogelsberger et al. 2014;
Rodriguez-Gomez et al. 2015) and the Evolution and Assembly
of Galaxies and their Environments (EAGLE; Schaye et al. 2015;
Qu et al. 2017) hydrodynamical, cosmological simulations. How-
ever, the Horizon-AGN cosmological simulation (Dubois et al.
2014) finds no evolution of the merger fraction with redshift
(Kaviraj et al. 2015).

The results presented in this paper show similar merger frac-
tions to the EAGLE results for galaxies with stellar masses above
1010 M�, at the lower redshifts presented in this work. At higher
redshifts we find higher merger fractions than EAGLE. Higher
merger fractions than EAGLE are expected. As our mass limits
are lower than EAGLE at all redshifts, the largest mass limit in
this work is less than 109 M�, we expect to find higher merger
fractions (Stott et al. 2013). This is likely due to a greater frac-
tion of lower mass galaxies are undergoing a merger compared to
higher mass galaxies (Stott et al. 2013; Casteels et al. 2014; Wang
et al. 2020). If the redshift evolution of the merger fraction in
EAGLE and the visually selected mergers in this work were the
same, it would be expected that the merger fraction of EAGLE
and this work would converge towards higher masses, where the
mass limit of this work becomes closer to that of EAGLE. As the
opposite is seen, we find a faster increase in merger fraction with
redshift compared to EAGLE if the same mass limits are used.

The Illustris simulation shows a similar merger fraction
trend to the EAGLE simulation. Using the merger rate given
by Rodriguez-Gomez et al. (2015) and assuming a merger ratio
of 1/42 and a descendant mass of 1010 M�3, the merger rate is
converted to a merger fraction by assuming an average obser-
vational timescale (Tobs) of 0.65 Gyr (Lotz et al. 2011). The
Illustris merger fraction is consistent with the visually selected
merger fraction at z < 0.15. The visually selected merger fraction
increases at a faster rate with redshift than the Illustris merger
fraction and so the visually selected merger fraction rises above
the Illustris merger fraction at z > 0.15.

The EMERGE simulation finds a larger pair fraction than the
visually selected merger fraction. In Fig. 14, we show the pair
fraction from O’Leary et al. (2021) for simulated galaxy pairs
with M? ≥ 1010.3 M� and projected distances between 5 and
50 kpc. As with the Illustris merger rate, the EMERGE merger
rate has been multiplied by a Tobs of 0.65 Gyr to get the merger
fraction. The EMERGE merger fraction is slightly larger than
the visually selected merger fraction of this work, as can be seen
in Fig. 14. However, the merger rate derived in O’Leary et al.
(2021) does not apply a correction factor to account for not all
galaxy pairs resulting in a merger. If a typical correction fac-
tor of 0.6 is applied (e.g. Conselice 2014), the EMERGE merger
fraction is in good agreement with the visually selected merger
fraction of this work. On the other hand, as pair samples miss
post-coalescence galaxies, approximately half of all mergers, the
EMERGE pair fraction as presented in O’Leary et al. (2021) is
likely to be close to the true merger fraction of pre and post-
merger galaxies. This is a result of the factor of 0.6 reduction
not applied in O’Leary et al. (2021) being almost entirely offset
by the approximate factor of 2 needed to account for the missing
post-coalescence galaxies.

2 Larger merger ratios increase the merger fraction.
3 Larger descendent masses increase the merger fraction.
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Fig. 15. M?-SFR plane for the galaxies classified by the neural net-
works. The number of galaxies in each M?-SFR bin is from low in blue
to high in red. The orange line indicates the Pearson et al. (2018) main-
sequence at z = 0.24 while the red line indicated three times the scatter
below the main-sequence. Galaxies are classified as star-forming if they
lie above the red line.

The comparisons with other works presented here are not
exhaustive. There is a wealth of similar studies onto the merger
fraction and merger rates in the Universe from a number of dif-
ferent surveys and data sources. They do, however, typically all
indicate that the merger fraction increases with redshift, although
the evolution with redshift does differ (e.g. Patton et al. 2002;
Lin et al. 2004; de Ravel et al. 2009; López-Sanjuan et al. 2013;
Casteels et al. 2014; Mundy et al. 2017; Ferreira et al. 2020).
Moreover, Conselice et al. (2008) has an increasing merger frac-
tion at lower redshifts but a decreasing fraction at high redshifts
of z ' 2.5.

5.3. Star-formation enhancement

A second simple application of the catalogue allows the study of
the star-formation enhancement, or lack thereof, due to galaxy
mergers. For this, we compared the SFRs in the merger candi-
dates and visually verified mergers with the SFRs in a control
sample for star-forming galaxies.

Star-forming galaxies were selected based on their position
relative to the galaxy main-sequence (MS), a tight correla-
tion between the M? and SFR of star-forming galaxies (e.g.
Brinchmann et al. 2004; Noeske et al. 2007; Elbaz et al. 2007;
Speagle et al. 2014). We use the redshift dependent main-
sequence of Pearson et al. (2018) at z = 0.24 (orange line in
Fig. 15), the mean redshift of the mass complete sample defined
in Sect. 5.2. The empirical scatter in this MS is σMS = 0.23 dex.
We consider galaxies above MS−3σMS as part of the MS (red
line in Fig. 15).

The control galaxies were selected from the non-merging
samples, defined as galaxies with frac_merger < 0.5 for both
the merger candidates and the visually selected mergers. For
each merger (candidate), non-merging galaxies within 0.05 dex
in M? and 0.005 in redshift were identified. Where at least one
matching non-merger was found, each merger (candidate) was
assigned a unique non-merger control. If no match was found,
the matching distance was then increased by 0.05 dex in M?

and 0.005 in redshift and the matching process repeated for
any unmatched merging galaxies. The matching distance was
repeatedly increased until the M? matching distance was over
0.3 dex or the redshift matching distance was over 0.05, the typi-
cal weighted dispersion of the photometric redshifts. Any merger
(candidates) that had not been matched were then removed.
Matching was done independently for the merger candidates and

visually confirmed mergers. This process resulted in 2905 of the
3342 mass complete merger candidates and 801 of the 803 mass
complete mergers having a matched control galaxy. The mass
and redshift distributions for the merger candidates, mergers and
their respective controls are shown in Fig. 16. The environment
in which a galaxy lies, for example in a group, cluster or the field,
can influence the SFR of a galaxy independent of if the galaxy
is interacting or not, with high density regions having lower typ-
ical SFR (e.g. Lewis et al. 2002; Peng et al. 2010; Vázquez-Mata
et al. 2020). For this work, the environment in which the galaxy
mergers and non-merger controls lie was not considered when
matching mergers with their controls.

We find that for the merger candidates, the SFR of the control
sample is only slightly lower than that of the merger candidate
sample. Here we subtract the log(SFR/M� yr−1) of the control
galaxies from the log(SFR/M� yr−1) of their matched merger
candidate. The average of these differences is

∆log(SFR/M� yr−1) = 0.071 ± 0.014 dex (4)

with a sample standard deviation in ∆log(SFR/M� yr−1) of

σ∆log(SFR/M� yr−1) = 0.733 ± 0.010 dex. (5)

The errors on σ∆log(SFR/M� yr−1) are the standard error for the
standard deviation. Thus, the average SFR enhancement is in 5σ
tension of being zero. The average enhancement of the visually
confirmed merger sample, derived in the same manner, is smaller
than that of the merger candidates, with an average change to
log(SFR/M� yr−1) being

∆log(SFR/M� yr−1) = 0.040 ± 0.025 dex (6)

and a sample standard deviation of

σ∆log(SFR/M� yr−1) = 0.696 ± 0.017 dex. (7)

For the visually selected mergers, therefore, the average enhance-
ment is in 1σ tension of being zero.

We know that the merger candidate sample is contami-
nated with non-mergers and the visually selected sample is also
likely to be contaminated. If non-mergers have a lower SFR
than merging galaxies, this contamination will act to reduce the
SFR enhancement seen when comparing the mergers with non-
mergers. The merger candidate and visually confirmed samples
are likely to have a large fraction of widely separated galax-
ies. This is a result of widely separated galaxies being easier to
identify by eye, and the training sample being based on visual
selection and the visual confirmation being visual by design.
Closely separated galaxies may show more merger-like features,
but two very close galactic cores can be indistinguishable from
a single galactic core. This makes the choice between a merging
galaxy or an irregular galaxy difficult. More closely separated
galaxies are more likely to have higher SFRs (e.g. Davies et al.
2015; Moreno et al. 2019) so a high fraction of widely spaced
galaxies can weaken any SFR enhancement. To add to this, if
our control sample is primarily selected from lower density envi-
ronments while the mergers are in higher density environments,
this will act to suppress the apparent SFR enhancement for the
merging systems. These factors could be combining to give such
a marginal enhancement in both samples.

These results are qualitatively in line with other works in that
the enhancement we see to SFR is less than a factor of two. The
low SFR enhancement is consistent with Silva et al. (2018), who
find no significant SFR enhancement in merging galaxies when

A52, page 20 of 26



W. J. Pearson et al.: North Ecliptic Pole merging galaxy catalogue

Fig. 16. Stellar mass (left panel) and redshift (right panel) distributions for merger candidates (blue) and visually confirmed mergers (dashed purple)
and their selected non-merging control galaxies (red and dashed orange for candidate and visually confirmed merger controls, respectively).

compared to non-mergers. Knapen et al. (2015) find a typical
increase in SFR by up to a factor of 1.9 for the most highly
interacting and closest pair galaxies with a reduction in SFR
enhancement as the galaxies are more widely separated. Hwang
et al. (2011) also see an increase in SFR of a factor of approx-
imately 2 for merging galaxies when compared to non-merging
counterparts. Ellison et al. (2013) find an increase in SFR by a
factor of 2 for pre-merger galaxies and 3.5 for post mergers. They
also find that the enhancement is greater for galaxy pairs with
smaller separation. In this work, we do not distinguish between
pre and post-mergers nor do we determine the separation of the
galaxy pairs. However, as the enhancement of the merger galax-
ies is much less than the 3.5 seen for post-merger galaxies in
Ellison et al. (2013), it suggests that the sample of galaxies herein
identified are primarily pre-merger galaxies. The visual confir-
mation of the galaxy mergers did not directly record the type
of merger, pre-merger or post-merger, but a brief reinspection
shows the identified galaxies are more likely to be pre-merger
systems. The visual identifier WJP is not biased towards pre-
merger or post-merger systems while LES has a slight bias
towards post-merger systems, see Appendix B, suggesting the
greater number of pre-mergers is not a result of visual classifier
selection bias. The larger SFR enhancement seen in Ellison et al.
(2013) may be a result of their controlling for environment. The
environment controlled sample of Ellison et al. (2013) will not
suffer from the potential environmental influence that may be
influencing our results, as noted above.

The work of Pearson et al. (2019a) provides an interesting
comparison to this work. Both this work and that of Pearson
et al. (2019a) identify galaxy mergers using neural networks, a
CNN in Pearson et al. (2019a) and a CNN-FCN-human hybrid
here. Pearson et al. (2019a) find a typical enhancement to SFR
of a factor of 1.15 ± 0.12 while we find an enhancement of a
factor of 1.178 ± 0.065 for the merger candidates, the closest
comparison. Evidently, these two values are consistent within
the standard errors in the means. Both the Pearson et al. (2019a)
merger sample and the merger candidates of this work are likely
to be contaminated with non-merging galaxies. If mergers are
typically of higher SFR than non-mergers it would be expected
that the increase in SFR for a merger sample with fewer con-
taminants would have a larger change in SFR. However, this is
not what is seen in this work, indeed a smaller enhancement to
SFR is seen with the visually confirmed merger sample. Thus, it
may be expected that cleaning the Pearson et al. (2019a) merger

sample may similarly see a smaller SFR enhancement. We note,
however, that Pearson et al. (2019a) compare the average SFR
of their mergers with the average SFR of the non-mergers while
here we compare the difference in SFR between a merger and its
matched control.

6. Summary

In this paper, we present a catalogue of galaxy mergers in the
North Ecliptic Pole field using optical data from the Hyper
Suprime-Cam. The merger identification is a hybrid of auto-
mated and human classification: a neural network is used to
identify merger candidates which are then visually inspected.
The neural networks used a combination of both images and mor-
phological parameters, which was found to provide better results
than just images or morphological parameters alone. From the
hybrid approach for merger identification, the final catalogue
contains 2 109 merging galaxies out of a total of 34264 galaxies
with redshifts between 0.0 and 0.3.

Studying the networks and how they classify the galaxies,
it appears that both the networks will miss-classify galaxies as
merging that have a companion that is close in projection but not
physically associated. Both networks appear to primarily rely on
the morphological parameters for classification with parameters
that examine the asymmetry of the light distribution being a key
component.

As test applications of the catalogue, we performed an anal-
ysis of the merger fraction as a function of redshift and examine
the SFR enhancement due to galaxy mergers. We find that the
evolution of the merger fraction is qualitatively consistent with
merger fraction evolutions found in other observational surveys
as well as cosmological simulations. For the SFR enhancement,
we find a mild increase by a factor of 1.178 ± 0.065 for the
merger candidates and a factor of 1.096 ± 0.063 for the visually
confirmed mergers, consistent with other works.

The resulting catalogue is well placed to be exploited for fur-
ther use within the NEP field. It is also in a prime position to
be used as a training set for the upcoming Euclid Northern deep
field. Due to the scale of the upcoming surveys, such a catalogue
could prove to be invaluable as a training sample for automated
merger detection over larger regions of the sky.
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Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193
Peth, M. A., Lotz, J. M., Freeman, P. E., et al. 2016, MNRAS, 458, 963
Pillepich, A., Nelson, D., Hernquist, L., et al. 2018, MNRAS, 475, 648
Polletta, M., Tajer, M., Maraschi, L., et al. 2007, ApJ, 663, 81
Pozzetti, L., Bolzonella, M., Zucca, E., et al. 2010, A&A, 523, A13
Qu, Y., Helly, J. C., Bower, R. G., et al. 2017, MNRAS, 464, 1659
Robotham, A. S. G., Driver, S. P., Davies, L. J. M., et al. 2014, MNRAS, 444,

3986

Rodrigues, M., Puech, M., Flores, H., Hammer, F., & Pirzkal, N. 2018, MNRAS,
475, 5133

Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., et al. 2015, MNRAS, 449,
49

Rodriguez-Gomez, V., Snyder, G. F., Lotz, J. M., et al. 2019, MNRAS, 483, 4140
Rodríguez Montero, F., Davé, R., Wild, V., Anglés-Alcázar, D., & Narayanan, D.

2019, MNRAS, 490, 2139
Sahu, N., Graham, A. W., & Davis, B. L. 2020, ApJ, 903, 97
Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
Satyapal, S., Ellison, S. L., McAlpine, W., et al. 2014, MNRAS, 441, 1297
Sazonova, E., Alatalo, K., Lotz, J., et al. 2020, ApJ, 899, 85
Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521
Scott, C., & Kaviraj, S. 2014, MNRAS, 437, 2137
Scudder, J. M., Ellison, S. L., Torrey, P., Patton, D. R., & Mendel, J. T. 2012,

MNRAS, 426, 549
Sérsic, J. L. 1963, Bol. Asoc. Argentina Astron. Plata Argentina, 6, 41
Shim, H., Im, M., Ko, J., et al. 2013, ApJS, 207, 37
Silva, A., Marchesini, D., Silverman, J. D., et al. 2018, ApJ, 868, 46
Silva, A., Marchesini, D., Silverman, J. D., et al. 2021, ApJ, 909, 124
Silverman, J. D., Kampczyk, P., Jahnke, K., et al. 2011, ApJ, 743, 2
Snyder, G. F., Lotz, J., Moody, C., et al. 2015a, MNRAS, 451, 4290
Snyder, G. F., Torrey, P., Lotz, J. M., et al. 2015b, MNRAS, 454, 1886
Snyder, G. F., Lotz, J. M., Rodriguez-Gomez, V., et al. 2017, MNRAS, 468,

207
Somerville, R. S., & Davé, R. 2015, ARA&A, 53, 51
Sparre, M., & Springel, V. 2016, MNRAS, 462, 2418
Speagle, J. S., Steinhardt, C. L., Capak, P. L., & Silverman, J. D. 2014, ApJS,

214, 15
Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

2014, J. Mach. Learn. Res., 15, 1929
Stierwalt, S., Besla, G., Patton, D., et al. 2015, ApJ, 805, 2
Stott, J. P., Sobral, D., Smail, I., et al. 2013, MNRAS, 430, 1158
Takamiya, M. 1999, ApJS, 122, 109
Thorp, M. D., Ellison, S. L., Simard, L., Sánchez, S. F., & Antonio, B. 2019,

MNRAS, 482, L55
Thorp, M. D., Bluck, A. F. L., Ellison, S. L., et al. 2021, MNRAS, 507, 886
Vázquez-Mata, J. A., Loveday, J., Riggs, S. D., et al. 2020, MNRAS, 499, 631
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, MNRAS, 444, 1518
Walmsley, M., Ferguson, A. M. N., Mann, R. G., & Lintott, C. J. 2019, MNRAS,

483, 2968
Wang, L., Pearson, W. J., & Rodriguez-Gomez, V. 2020, A&A, 644, A87
Weston, M. E., McIntosh, D. H., Brodwin, M., et al. 2017, MNRAS, 464, 3882
Wuyts, S., Labbé, I., Förster Schreiber, N. M., et al. 2008, ApJ, 682, 985
York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579
Zeiler, M. D., & Fergus, R. 2014, in Computer Vision – ECCV 2014, ed.

D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Cham: Springer International
Publishing), 818

Zhang, H.-X., Smith, R., Oh, S.-H., et al. 2020, ApJ, 900, 152
Zhou, Y., & Hauser, K. 2017, in 2017 IEEE International Conference on Robotics

and Automation (ICRA), 2177

A52, page 23 of 26

http://linker.aanda.org/10.1051/0004-6361/202141013/93
http://linker.aanda.org/10.1051/0004-6361/202141013/94
http://linker.aanda.org/10.1051/0004-6361/202141013/95
http://linker.aanda.org/10.1051/0004-6361/202141013/96
http://linker.aanda.org/10.1051/0004-6361/202141013/97
http://linker.aanda.org/10.1051/0004-6361/202141013/98
http://linker.aanda.org/10.1051/0004-6361/202141013/99
http://linker.aanda.org/10.1051/0004-6361/202141013/100
http://linker.aanda.org/10.1051/0004-6361/202141013/101
http://linker.aanda.org/10.1051/0004-6361/202141013/101
http://linker.aanda.org/10.1051/0004-6361/202141013/102
http://linker.aanda.org/10.1051/0004-6361/202141013/103
http://linker.aanda.org/10.1051/0004-6361/202141013/104
http://linker.aanda.org/10.1051/0004-6361/202141013/104
http://linker.aanda.org/10.1051/0004-6361/202141013/105
http://linker.aanda.org/10.1051/0004-6361/202141013/106
http://linker.aanda.org/10.1051/0004-6361/202141013/107
http://linker.aanda.org/10.1051/0004-6361/202141013/108
http://linker.aanda.org/10.1051/0004-6361/202141013/109
http://linker.aanda.org/10.1051/0004-6361/202141013/110
http://linker.aanda.org/10.1051/0004-6361/202141013/110
http://linker.aanda.org/10.1051/0004-6361/202141013/111
http://linker.aanda.org/10.1051/0004-6361/202141013/112
http://linker.aanda.org/10.1051/0004-6361/202141013/113
http://linker.aanda.org/10.1051/0004-6361/202141013/113
http://linker.aanda.org/10.1051/0004-6361/202141013/114
http://linker.aanda.org/10.1051/0004-6361/202141013/115
http://linker.aanda.org/10.1051/0004-6361/202141013/115
http://linker.aanda.org/10.1051/0004-6361/202141013/116
http://linker.aanda.org/10.1051/0004-6361/202141013/117
http://linker.aanda.org/10.1051/0004-6361/202141013/118
http://linker.aanda.org/10.1051/0004-6361/202141013/119
http://linker.aanda.org/10.1051/0004-6361/202141013/120
http://linker.aanda.org/10.1051/0004-6361/202141013/121
http://linker.aanda.org/10.1051/0004-6361/202141013/121
http://linker.aanda.org/10.1051/0004-6361/202141013/122
http://linker.aanda.org/10.1051/0004-6361/202141013/123
http://linker.aanda.org/10.1051/0004-6361/202141013/124
http://linker.aanda.org/10.1051/0004-6361/202141013/125
http://linker.aanda.org/10.1051/0004-6361/202141013/126
http://linker.aanda.org/10.1051/0004-6361/202141013/127
http://linker.aanda.org/10.1051/0004-6361/202141013/128
http://linker.aanda.org/10.1051/0004-6361/202141013/129
http://linker.aanda.org/10.1051/0004-6361/202141013/130
http://linker.aanda.org/10.1051/0004-6361/202141013/131
http://linker.aanda.org/10.1051/0004-6361/202141013/132
http://linker.aanda.org/10.1051/0004-6361/202141013/133
http://linker.aanda.org/10.1051/0004-6361/202141013/134
http://linker.aanda.org/10.1051/0004-6361/202141013/134
http://linker.aanda.org/10.1051/0004-6361/202141013/135
http://linker.aanda.org/10.1051/0004-6361/202141013/135
http://linker.aanda.org/10.1051/0004-6361/202141013/136
http://linker.aanda.org/10.1051/0004-6361/202141013/136
http://linker.aanda.org/10.1051/0004-6361/202141013/137
http://linker.aanda.org/10.1051/0004-6361/202141013/138
http://linker.aanda.org/10.1051/0004-6361/202141013/139
http://linker.aanda.org/10.1051/0004-6361/202141013/140
http://linker.aanda.org/10.1051/0004-6361/202141013/141
http://linker.aanda.org/10.1051/0004-6361/202141013/142
http://linker.aanda.org/10.1051/0004-6361/202141013/143
http://linker.aanda.org/10.1051/0004-6361/202141013/144
http://linker.aanda.org/10.1051/0004-6361/202141013/145
http://linker.aanda.org/10.1051/0004-6361/202141013/146
http://linker.aanda.org/10.1051/0004-6361/202141013/147
http://linker.aanda.org/10.1051/0004-6361/202141013/148
http://linker.aanda.org/10.1051/0004-6361/202141013/149
http://linker.aanda.org/10.1051/0004-6361/202141013/150
http://linker.aanda.org/10.1051/0004-6361/202141013/151
http://linker.aanda.org/10.1051/0004-6361/202141013/152
http://linker.aanda.org/10.1051/0004-6361/202141013/153
http://linker.aanda.org/10.1051/0004-6361/202141013/153
http://linker.aanda.org/10.1051/0004-6361/202141013/154
http://linker.aanda.org/10.1051/0004-6361/202141013/155
http://linker.aanda.org/10.1051/0004-6361/202141013/156
http://linker.aanda.org/10.1051/0004-6361/202141013/156
http://linker.aanda.org/10.1051/0004-6361/202141013/157
http://linker.aanda.org/10.1051/0004-6361/202141013/158
http://linker.aanda.org/10.1051/0004-6361/202141013/159
http://linker.aanda.org/10.1051/0004-6361/202141013/160
http://linker.aanda.org/10.1051/0004-6361/202141013/161
http://linker.aanda.org/10.1051/0004-6361/202141013/162
http://linker.aanda.org/10.1051/0004-6361/202141013/163
http://linker.aanda.org/10.1051/0004-6361/202141013/164
http://linker.aanda.org/10.1051/0004-6361/202141013/165
http://linker.aanda.org/10.1051/0004-6361/202141013/166
http://linker.aanda.org/10.1051/0004-6361/202141013/166
http://linker.aanda.org/10.1051/0004-6361/202141013/167
http://linker.aanda.org/10.1051/0004-6361/202141013/168
http://linker.aanda.org/10.1051/0004-6361/202141013/169
http://linker.aanda.org/10.1051/0004-6361/202141013/170
http://linker.aanda.org/10.1051/0004-6361/202141013/171
http://linker.aanda.org/10.1051/0004-6361/202141013/172
http://linker.aanda.org/10.1051/0004-6361/202141013/173
http://linker.aanda.org/10.1051/0004-6361/202141013/173


A&A 661, A52 (2022)

Appendix A: CNN performance definitions

The terms used to describe the performance of the neural net-
works presented in this work may be an alternate nomenclature
to other works or may be unfamiliar. To avoid confusion we
present the definitions used in this work in Table A.1.

Appendix B: Visual inspection performance

To check the performance of the two authors’ merger identifica-
tion, images of mergers and non-mergers from the Illustris TNG
simulation (Marinacci et al. 2018; Naiman et al. 2018; Nelson
et al. 2018; Pillepich et al. 2018; Springel et al. 2018; Nelson
et al. 2019) were used. A sample of 100 major merger galax-
ies were selected, along with a further 100 non-mergers, from
snapshot 87 (z = 0.15). Here, a major merger is defined to have
merged in the last 500 Myr or will merge in the next 1000 Myr
and have a mass ratio of < 4 : 1 (Wang et al. 2020). This
mass ratio is derived from the stellar masses of the two merg-
ing galaxies at the snapshot when the secondary galaxy reached
its maximum stellar mass (Rodriguez-Gomez et al. 2015). The
simulated galaxies were then convolved with the point-spread
function of the HSC-NEP images before being embedded into
the HSC-NEP images to add realistic noise and chance projec-
tions. The position in the image where the simulated galaxies
were embedded were selected such that there were no sources
in the HSC-NEP catalogue within 10 arcsec (64 pixels). These
mock galaxy observations were then classified by WJP and LES,
with neither knowing if the galaxy was truly a merger or non-
merger, only that the sample had an equal number of each. The
results of the performance test can be found in Table B.1.

As can be seen, the performance of WJP and LES is lower
than that of the neural networks presented in this work but both
are similar. WJP has fewer FP than LES (21 compared to 18) but
also has more TP (45 compared to 41). However, both authors
correctly identify fewer than half of the merging galaxies. For the
FN, there is no clear trend with time before or after the merger, as
shown in Fig. B.1. WJP has a larger fraction of missed mergers
that are close to the merger event (here defined as the snapshot
when two galaxies are tracked as one in the simulation) than LES
while LES has a larger fraction of missed mergers with longer
times until the merger event will take place. Thus WJP is likely
to miss merging galaxies that are physically close to one another
or have just merged. On the other hand, LES is likely to miss
galaxies that are at the early stages of a merger.

Appendix C: Examples of differet galaxy
classification

Further to the discussion in the main body of the paper, in this
appendix we study, in more detail, if the neural network has
been inadvertantly trained to identify structured and unstructured
galaxies. To this end, we present 16 randomly selected non-
mergers in Fig. C.1 and 16 randomly selected merger candidates
(both TP and FP) in Fig. C.2. While the non-mergers presented
in Fig. C.1 are predominantly unstructured galaxies, the same is
also true of the merger candidates presented in Fig. C.2. Exam-
ples of structured non-mergers are presented in Fig. 6 above. The
images of unstructured merger candidates do typically contain
other galaxies or stars in close projection, although later may be
found to be unassociated during visual inspection. If the neural
networks had been trained to identify structured and unstruc-
tured galaxies, very few merger candidates would be expected to
not have structure regardless of whether there are other objects

Fig. B.1. Plot of correctly and incorrectly identified images of simu-
lated mergers as a function of snapshot when the merger occurred. The
blue and red lines indicate the TP and FN, respectively, classified by
WJP while the purple and orange dashed lines indicate the TP and FN,
respectively, classified by LES. The Green line indicates the total num-
ber of mergers used from Illustris TNG while the vertical brown line
indicates the snapshot of observation (87, z = 0.15).

in close projection. As this is not the case, we conclude that
the networks are indeed identifying mergers and non-mergers as
intended. For comparison, we also present 16 randomly selected
visually confirmed mergers in Fig. C.3.
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Table A.1. Terms used when describing the performance of neural networks from Pearson et al. (2019b)

Term Definition
True Positive (TP) An object known to be a merger that is identified by a network as a

merger.
False Positive (FP) An object known to be a non-merger that is identified by a network as a

merger.
True Negative (TN) An object known to be a non-merger that is identified by a network as a

non-merger.
False Negative (FN) An object known to be a merger that is identified by a network as a

non-merger.
Recall Fraction of objects correctly identified by a network as a merger with

respect to the total number of objects classified in the catalogues as
mergers.

TP / (TP+FN)

Specificity Fraction of objects correctly identified by a network as a non-merger
with respect to the total number of objects classified in the catalogues
as non-mergers.

TN / (TN+FP)

Precision Fraction of objects correctly identified by a network as a merger with
respect to the total number of objects identified by a network as a
merger.

TP / (TP+FP)

Negative Predictive
Value (NPV)

Fraction of objects correctly identified by a network as a non-merger
with respect to the total number of objects identified by a network as a
non-merger.

TN / (TN+FN)

Accuracy Fraction of objects, both merger and non-merger, correctly identified by
a network.

(TP+TN) / (TP+FP+TN+FN)

Table B.1. Performance statistics of WJP and LES classifying simulated
observations of merging and non-merging galaxies.

Statistic WJP LES
Accuracy 0.620 0.630
Recall 0.450 0.440
Precision 0.682 0.710
Specificity 0.790 0.820
NPV (a) 0.590 0.594

Notes. (a)Negative predictive value
Defenitions of the statistics can be found in Appendix A.

Fig. C.1. Sixteen randomly selected galaxies identified as non-mergers
by the neural networks with frac_merger in the upper left corner of
the image.
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Fig. C.2. Sixteen randomly selected galaxies identified as mergers by
the neural networks with frac_merger in the upper left corner of the
image and if they are TP or FP in the top right corner.

Fig. C.3. Sixteen randomly selected galaxies visually confirmed to be
mergers with frac_merger in the upper left corner of the image.
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