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ABSTRACT

Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection
methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-
mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision
calibration of the detector.
Aims. We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric
simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal
processing methods. The objective is an accuracy of 5 × 10−6 pixel on the location of a Nyquist sampled polychromatic point spread
function.
Methods. The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were
parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of func-
tion parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of
astrometric measurements.
Results. The calibration system yielded the pixel positions to an accuracy estimated at 4×10−4 pixel. After including the pixel position
information, an astrometric accuracy of 6 × 10−5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode
(small jitter motion of less than 1 × 10−3 pixel), a photon noise limited precision of 3 × 10−5 pixel was reached.

Key words. astrometry – space vehicles: instruments – instrumentation: high angular resolution – methods: data analysis –
techniques: interferometric

1. Introduction

The year 2014 was marked by a symbolic yet significant mile-
stone, the number of confirmed exoplanets exceeded 1000. The
pace of discoveries is accelerating: at the time of writing, the
exoplanet.eu database shows more than 3400 confirmed planets
(Schneider et al. 2011), the last recent increase being mostly due
to the success of the Kepler mission (Rowe et al. 2014). Another
interesting trend has been the discovery of increasingly smaller
planets, down to the terrestrial ones. In some specific cases, we
can detect these terrestrial planets in the habitable-zones of their
stars, for example with transits (Torres et al. 2015) or for M stars
(Bonfils et al. 2013, hereafter B13).

However, in the present state of exoplanet detection tech-
niques, most likely none of the rocky planets of the solar system
would be discovered, even around a star as close as α Centauri,
our closest Sun-like neighbor, located at the distance of 1.34 pc
(Wright & Gaudi 2013). Rocky planets would only be found if
the observer (located in a random direction near the solar system)

was lucky enough to observe their transits. Yet the rocky plan-
ets are a very strong constraint on the scenarios of formation of
planetary systems (Morbidelli et al. 2012).

While for the question of planet formation, it is possible to
rely on the power of statistics and the increasing number of de-
tections, the question of life remains unanswered. Finding po-
tentially habitable Earths twins in the Solar neighborhood would
be a major step forward for exoplanet detection and these plan-
ets would be prime targets for attempting to find life outside of
the solar system (Males et al. 2014). The next step is to search
for bio-markers in their atmospheres by spectroscopy (Seager &
Deming 2010).

Astrometry, by measuring the gravitational perturbation of
planets on their central host stars, can determine the mass of
planets and their orbits. From space, differential astrometry at
a sub micro arcsecond (µas) accuracy around nearby solar-type
stars can detect exoplanets down to one Earth mass in habitable-
zone (Malbet et al. 2014, hereafter M14).
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The angular amplitude of the gravitational perturbation (the
astrometric signal) is given by:

A = 3 µas ×
MPlanet

M⊕
×

(
MStar

M�

)−1

×
a

1 AU
×

(
D

1 pc

)−1

, (1)

where D is the distance between the Sun and the observed star,
MPlanet is the exoplanet mass, a is the exoplanet semi major axis
and MStar is the mass of the observed host star. The constant
3 µas corresponds to the signal of an exo-Earth observed from
a distance of one parsec. In order to look for exo-Earths around
Sun-like stars up to 10 pc (about one hundred targets), the signal
to be detected is 0.3 µas. A crucial advantage expected for this
method is that the astrometric jitter from stellar activity is small.
Solar observations coupled with numerical models showed that
the jitter should be smaller than the signal of an exo-Earth except
for very active stars (Makarov et al. 2010), at least five times
more active than the Sun (Lagrange et al. 2011).

Given the current biases and limitations of the two major ex-
oplanet detection techniques in use today (radial velocities and
transits), current knowledge of exoplanets around nearby stars
is still incomplete. Out of the 455 main sequence stars of the
Hipparcos catalog located at a distance of less than 20 pc from
the Sun, only 43 (9.5%) have known exoplanets. This statistic
was obtained from a crossmatch between Hipparcos and the ex-
oplanet.eu database, updated on 09 Mar. 2016 (Crouzier 2015).
The true occurrence rate of planets is significantly higher than
9.5% (Wolfgang & Laughlin 2011; Swift et al. 2013), therefore
many more planets remain to be discovered. Past surveys only
probed a small part of the orbital parameter space and we sus-
pect that most of those stars have planets.

This paper is about DICE, an interferometric calibration ex-
periment of a (visible light) detector, which primary goal is to
demonstrate the feasibility of sub-µas astrometry. The experi-
ment is carried with a testbed that was assembled and operated at
IPAG and funded by CNES in the context of the NEAT mission
proposal to ESA in 2010 (Malbet et al. 2012; Crouzier 2015).
The experiment only tackles the detector calibration issue (not
the optical aspect). We have already presented the progress of the
experiment (Crouzier et al. 2012, 2013, 2014). Here we present
the scientific context (Sect. 2), the experiment goal and principle
(Sect. 3), the data processing methods and their validation using
numerical simulations (respectively Sects. 4 and 5) and the latest
results obtained with testbed data (Sect. 6).

2. Scientific context
2.1. The case for sub micro-arcsecond astrometry

in the current context

The case for sub-µas astrometry resides in our current difficul-
ties to find exo-Earths around Sun-like stars in the solar neigh-
borhood (distance <20 pc) and to measure their masses. Next
generation RVs instruments (e.g. EXPRESSO, CODEX) aim at
a precision of 0.1 m/s (Pepe et al. 2014), which is the level re-
quired for an exo-Earth. However, below 1 m/s, the noise due
to stellar activity and stellar spots is much larger than the in-
strument noise for most targets, as is illustrated by the case of
α Cen Bb (Hatzes 2013; Rajpaul et al. 2016).

PLATO (Rauer et al. 2014) and TESS (Ricker et al. 2010)
will discover many transiting planets closer to our Sun than those
that Kepler has already found. JWST will obtain transiting and
eclipse spectra, down to a few Earth masses (Tinetti et al. 2012;
Deming et al. 2009). But for very close stars, transits are im-
paired by the geometric transit probability: there are only about

400 Sun-like stars (main sequence F, G and K spectral types)
closer than 20 pc. The frequency of Earth analogs per Sun-like
star, defined as ζ0.1, the terrestrial planet occurrence rate with
radius within 20% of Earth radius and period within 20% of
Earth period, per star, derived from the Kepler data, is still a
hotly debated number, with a wide uncertainty from 0.01 to
2 per star (Petigura et al. 2013; Foreman-Mackey et al. 2014;
Burke et al. 2015). Unless believing the extremely optimistic
range of estimates, with a transit probability of 0.5% for an Earth
analog, there may be very few or no nearby transiting exo-Earth
(around a Sun-like star) to detect. This will not prevent space
born missions to successfully survey bright stars over all the sky,
but to overcome the transit probability they have to mostly look
at targets further out than 20 pc.

At last, direct imaging: this method has the capability of both
finding our closest planetary neighbors and performing spec-
troscopy to characterize their atmospheres and surface proper-
ties. But the angular separation and contrast requirements restrict
us to close stars, at about 10 pc (Guyon et al. 2006). This dis-
tance limit still leaves only one hundred main sequence stars as
potential targets1. The most serious issue with a detection by di-
rect imaging alone is that it gives a weak constraint on the planet
mass. The radius has to be constrained from the measured flux,
assuming or guessing a planetary albedo. Then mass limits could
only be estimated from the radius, using more models and/or
mass-radius scatter diagrams of exoplanets for which both mass
and radius have been measured. The end products are highly
model dependent approximative mass limits. Having both mass
and radius gives the planet mean density and allows distinction
between rocky planets, water ocean-planets, and planets with hy-
drogen rich atmospheres. A good constraint on mass is therefore
critical to have before making exobiological statements. Given
the limitations of the other methods discussed above, astrometry
is an interesting alternative to develop.

2.2. Short-term perspectives for space astrometry

Despite the great potential of exoplanet astrometric detection, all
current astrometric instruments are still far from sub-µas accu-
racy. This is the consequence of the extreme requirement and as-
sociated technical challenge. The current cornerstone astromet-
ric mission, Gaia, is performing a global astrometric survey with
expected end of mission accuracies of 10 µas in the best cases,
for visible magnitudes between 6 and 13 (Lindegren 2010). Gaia
has a bright limit caused by saturation at Vmag = 6 (Martín-Fleitas
et al. 2014), which corresponds to the Sun at 10 pc. For faint
stars (Vmag > 13) the accuracy limited by the photon noise. The
exoplanet yield from the Gaia mission hold great promise, with
a predicted number of detections of 21 000± 6000 around Sun-
like stars (Perryman et al. 2014), plus ∼2600 around M dwarfs
(Sozzetti et al. 2014), as well as up to hundreds around bina-
ries (Sahlmann et al. 2015). The total is an order of magnitude
more than the current number of confirmed detections. However,
because of this 10 µas threshold, Gaia will only discover gas gi-
ants. There is an ongoing study to see whether a special elec-
tronic readout mode could be used to measure stars brighter than
Vmag = 6, but the accuracy would still be around the 10 µas mark,
as opposed to degraded accuracy (Sahlmann et al. 2016).

1 Based on the Hipparcos catalog (Perryman et al. 1997), which in-
cludes spectral types from A to a few early M stars for these distances.
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Fig. 1. Schematic of the NEAT formation fly-
ing spacecraft. NEAT is composed of a mirror
spacecraft and a detector spacecraft. The opti-
cal configuration is an off-axis parabola so there
is no vignetting of the FoV. Sun shades pre-
vent direct or reflected Sun light from reach-
ing the CCD. A metrology system with laser
beams launched from fibers located on the mir-
ror projects dynamic Young fringes on the de-
tector. The fringes allow a very precise calibra-
tion of the CCD. All three aspects (metrology,
no vignetting, and Sun shades) are critical to
reach micro arcsecond accuracy.

2.3. Technical developments for high precision astrometry

To find exo-Earths up to 10 pc, the requirement is an end of
mission accuracy below 1 µas, for which no instrument is cur-
rently planned. Progress was made in this direction through
multiple technology demonstrations during the preparation of
the SIM-Lite mission (Unwin et al. 2008), which was a space
interferometer capable of reaching sub-µas accuracy. SIM-Lite
was however canceled in 2010 by NASA, leaving no perspec-
tive for sub-µas astrometry in the near future. As an alternative
Malbet et al. (2012, hereafter M12) proposed the Nearby Earth
Astrometric Telescope (NEAT) to ESA in 2010. Figure 1 is a
schematic of the spacecraft, which is designed specifically for
sub-µas differential astrometry over a small field of view (FoV)
of 0.6◦. Early 2015, a revised concept for differential astrometry
called Theia has been proposed (M4 candidates), using a three
mirror Korsch configuration on a single spacecraft instead of for-
mation flying (M14).

The direct imager concepts presented above require special
kinds of calibrations to reach sub-µas accuracy. This is needed
for their advertised scientific objectives, in particular nearby exo-
Earth detection. For NEAT, a calibration of the detector is re-
quired, to control errors caused by pixel non-homogeneous re-
sponses (see Sect. 3.2). For Theia, calibration of the detector and
also the optical field distortion is necessary (Malbet et al. 2015;
Malbet et al. 2016).

3. Detector interferometric calibration experiment
(DICE)

DICE specifically uses interference fringes of a coherent source
to calibrate a visible detector. The focus of the experiment is
on astrometric performance (with enhancement by the interfer-
ometric calibration). Demonstration of a precision sufficient for
nearby exo-Earth astrometric detection is the main and original
motivation, but many other applications are possible. The same
calibration technique can also be used to characterize the gain in
photometric accuracy (e.g. for transit detection) or for high res-
olution spectrometry (e.g. for RVs). In general, this technique is
a powerful tool to finely characterize detectors.

3.1. Introduction: precursor experiments, state of the art
calibration techniques, alternatives methods

We have taken advantage of past experience at the JPL where
a similar testbed called MCT (Micropixel Centroid Testbed)
has been developed. The MCT testbed also included both artifi-
cial stars (for astrometry) and an interferometric metrology sys-
tem for calibration. With static stars (common motion of only

2.5 × 10−4 pixel), an astrometric precision of 3 × 10−5 pixel was
obtained (Nemati et al. 2011).

DICE is a very similar and successor experiment to MCT,
the main difference being in the metrology system, which is en-
tirely made of integrated components for DICE. IPAG has a lot
of experience with integrated optics and this new configuration
avoids polarization stability issues encountered by MCT. In this
context, the need for the DICE experiment was driven by mas-
tering of the technology in Europe (for ESA proposals) and to
improve upon the result obtained with MCT in order to reach
the NEAT astrometric specification.

A first experiment of stand-alone calibration (without astro-
metric simulator) using Young interference fringes was done by
Shaklan et al. (1995) and has yielded pixel positions with an
accuracy of 0.01 pixel. Prior to our experiment and its JPL ho-
mologue (MCT), this was the best known accuracy (for pixel
positions) using this technique.

Several other techniques for detector calibration exist. An
intuitive way to obtain very detailed information on the pixel
response profile (PRF) is to perform a spot scan. Kavaldjiev
& Ninkov (1998) measured a high resolution PRF of a single
pixel (plus some adjacent pixels for crosstalk), using a scanning
electron microscope to project a small light beam (Φ 0.5 µm).
However this technique is impractical to scan a large number of
pixels because it is very slow.

To mitigate the speed issue, a team located at CEA Saclay is
currently developing a different calibration technique using spot
arrays (Ketchazo et al. 2014) generated by self imaging gratings
(Guérineau et al. 2001). The goals for the calibration are more
general than precision astrometry, it includes for example pho-
tometry of diffuse objects. The technique is well suited to obtain
an intrapixel calibration (knowledge of PRFs), which is needed
to improve the photometry (Ingalls et al. 2012). However the
pixel positions cannot yet be measured at high precision with
this technique, which is still in development. The technique is
also sensitive to optics alignments.

Although it does not include any special optical device to
perform calibrations beyond flat field, the calibration process
used for the Kepler spacecraft (Quintana et al. 2010) is worth
mentioning. Because of the high signal-to-noise ratio (S/N) re-
quired to detect small transiting exoplanets, a calibration that
goes beyond the basic dark and flat fields is used. Numerous
smaller systematics or parasitic effects are removed, such as cos-
mic rays, smear, electronic undershoot/overshoot and non linear-
ity. Developing, validating and continuously maintain and up-
grading such a sophisticated model requires a highly integrated
architecture, from raw detector values to scientific observables,
with end to end simulations to validate the entire pipeline.

In the DICE experiment we tend toward this kind of ideal
situation: this is precisely why the experiment combines a
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calibration system coupled with an astrometric simulator, plus
a numerical model allowing to inject simulated data. The ulti-
mate validation of the interferometric calibration technique is to
verify that it improves the astrometric accuracy.

3.2. The calibration requirement

Actual CCD and CMOS detectors are not perfectly homoge-
neous: pixel quantum efficiency (QE) and gain are non uniform
among all pixels and the pixel layout is not perfectly regular.
QE and gain non uniformity is calibrated by the usual flat field
technique, but for sub-µas astrometry the pixel (spatial) offsets,
that is the distances between the true pixel positions and a per-
fectly regular layout, needs to be measured. The “spatial offset”
is not to be confused with pixel “electronic offsets”. When using
the term “pixel offset” we mean spatial offset, not electronic off-
set. The challenge is not so much in the need to measure these
pixel offsets, it is set by the accuracy at which both types of cal-
ibration (flat-field and offsets) must be done.

The exact calibration requirements are derived from the an-
gular accuracy needed for exo-Earth detection, the geometric
optical parameters of the telescope considered for the astromet-
ric mission and the Nyquist sampling condition. Equation (1)
gives the smallest astrometric signal to be detected: 0.3 µas, i.e
an exo-Earth at 10 pc. The corresponding end of mission accu-
racy needed is σf = 0.05 µas when considering a S/N of 6. The
number of single epoch measurements (Nmeas) can be set con-
servatively as twice the number of parameters needed for the as-
trometric fit (Nparam). Assuming an average of p = 3 planets per
star, the astrometric fit requires 5 + 7p = 26 parameters (M12).
The corresponding single epoch accuracy (σepoch) follows from
the relation:

σf =
σepoch√

Nmeas − Nparam
=

σepoch√
Nparam

· (2)

This angular value σepoch is then converted in pixel units, us-
ing the size of the pixel on the sky and the Nyquist relation:
2e = λ f /D, where e is the pixel size, f the telescope focal,
D the primary mirror diameter and λ the blue cut-off wavelength.
For the NEAT concept, the residual calibration error when cal-
culating the centroid location from the PSF must be smaller than
5 × 10−6 pixel (M12). For Theia the requirement is nearly iden-
tical: 10−5 pixel (Malbet et al. 2015; Malbet et al. 2016).

3.3. Experiment concept and simplified principle

Figure 2 is a conceptual diagram of the experiment testbed.
The metrology fibers create either vertical or horizontal Young
fringes on the detector (exactly two fibers are turned on simul-
taneously). The phase is modulated between the fibers to cre-
ate moving fringes. The pixel offsets are obtained by comparing
the phase of the sinewaves observed on individual pixels with
the phase of the global system of fringes. The pixel response
non uniformity (PRNU) could also be derived from the metrol-
ogy data, however in our experiment flat fields obtained in broad
band light are used. The details about how to measure the pseudo
stars positions, how to estimate the astrometric error, how to ob-
tain the calibration (pixels QEs and offsets) and use it to improve
the accuracy are developed in Sect. 4 (data processing).

Figure 3 explains the basic principle of the experiment. The
final astrometric accuracy is measured as the standard deviation
of the distances between the pseudo star centroids for different
positions of the detector. Each pseudo star centroid is affected by

White light source

Coherent monochromatic 
light source

Vacuum chamberPseudo stars
(object plane)

0.3 m

Metrology 
bench

0.8 m

Mirror

Light detector

Translation stage

Optical bench

Metrology baseline

D
L

L0

B

Single mode fibers
Uz

Ux

Uy

θ

Fig. 2. DICE testbed concept (top view, not to scale). The elements
associated with the metrology, the pseudo stars and the mechanical sup-
ports are respectively in red, blue and grey. The (X, Y , Z) axis indicated
on the figure will be used consistently throughout the paper to indicate
directions.

Centroid common motion

d

Fig. 3. Simplified experiment principle. The orange arrows represent
the CCD motion, which appear as a common motion of all centroids.
The final astrometric accuracy is measured as the standard deviation of
the distance. The location of each centroid is measured by “autocorre-
lation after resampling by Fourier transform”.

different pixelation errors. The pixelation error is defined as the
random astrometric shift caused by pixel sensitivities and offsets.
In order to obtain uncorrelated pixelation errors, the motion has
to be larger than the PSF diameter (∼5 pixels). Without calibra-
tion, astrometric errors larger than the requirement are expected.
The role of the calibration is precisely to provide information
about the pixels. By integrating this new information the errors
can be brought down, hopefully down to the NEAT requirement
of 5 × 10−6 pixel.

3.4. Testbed specifications and design

The design and specification presented here are a condensed
version. For more details refer to Crouzier et al. (2012) and
Crouzier (2015). The testbed configuration has seen substantial
changes, the version presented here is up to date and shows the
configuration consistent with the experimental data presented in
Sect. 6, which was obtained just before the testbed was shut
down. Table 1 summarizes the notations for the critical dimen-
sions and parameters that will be used consistently throughout
this document. The last column shows the values chosen for the
design.
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Table 1. Design parameters.

Parameter Notation Value
Distance mirror to CCD L 600 mm
Distance mirror to
pseudo star objects L0 300 mm

Min/max wavelength
of pseudo stars λmin/λmax 400 nm/800 nm

Entrance pupil diameter D 5 ± 1 mm
Mirror focal length f 200 ± 5 mm
Separation between
pseudo stars objects s 240 µm

Pseudo star pinhole diameter d 15 µm
Off axis angle (pseudo stars) θ 2◦
Metrology source wavelength λm 633 nm
Metrology baseline B from 1 to 6 mm
Pixel size e 24 µm
Size of the detector matrix Npix 80 × 80 pixels
Effective quantum well size w 200 000 e−

Figure 4 is a labeled picture of the interior of the vacuum
chamber.

3.4.1. List of high-level specifications

The complete list of specifications with associated design con-
straints and compliance tests is not presented here, it can be
found in the Ph.D. Thesis manuscript (Crouzier 2015). Only the
most critical aspects are mentioned here, for each specification
(delimited by quotes), there is a short explanation of how it was
determined. For some specifications calculations could be made,
but in other cases we had to rely on past experience at JPL.
For some of the design counter-parts, a best effort approach was
used, coupled with final compliance tests. One important goal of
the experiment is precisely to determine what are the conditions
needed to reach micro-pixel accuracy. The specifications are the
following:

– “There is only one optical surface and no vignetting of the
FoV”. Just like for the NEAT concept, beam walk errors are
avoided in this experiment. The experiment goal is to charac-
terize detector pixelation errors only, not optical distortion.

– “The thermal stability of the focal plane is below 10−2 K”.
With an expansion coefficient on the order of 3×10−6, thermal
expansion of the chip is lower than 3 × 10−8. The platescale
is calibrated directly from the centroid measurements: the fi-
nal error is caused by temperature inhomogeneities only. As
a worst case a temperature gradient of 10−2 K between the
top and the bottom of the chip is considered. The resulting
error would have a trapezoidal pattern (not corrected by the
metrology/platescale), of an amplitude of 3 × 10−8Npix/2 =

1.2 × 10−6 pixel (Npix = 80 in our setup).
– “The PSF at the focal plane is Nyquist sampled”. The centroid

measuring technique uses resampling in the Fourier space.
In order to be accurate with this method, the PSF has to be
Nyquist sampled. As the pseudo stars are in broadband light
(400 to 900 nm) we set the Nyquist condition for the short-
est wavelength at 400 nm. In practice we adapt the size of a
diaphragm on the mirror to the pixel size to have: 2e = λL/D.

– “The mechanical centroid jitter is below 10−2 pixel”. High me-
chanical stability is useful to integrate a large number of pho-
tons at a given position, with static pixellation errors and thus
keeping the overall pseudo stars processing simple. The target

is a stability of 1% of a pixel, which is significantly lower than
the PSF size (a few pixels wide at Nyquist sampling).

– “Pseudo stars (objects) are not spatially resolved”. They are
diffraction limited. To properly emulate punctual stars, the ge-
ometric image of the pinhole size and optical aberrations must
be smaller than the diffraction limit.

– “The integration time needed to reach a photon noise below
5 × 10−6 pixel is a few minutes”. To repeat the experiment
quickly and test different parameters, a high photon collect-
ing speed is needed. Both the metrology calibration and the
pseudo star photon noise must reach micro pixel photon noise
in a few minutes. Two factors can limit the integration speed,
the capacity of the detector to absorb photons (quantum well
multiplied by frame rate) or the photon flux itself. The choice
of detector, its readout electronics and the light sources has to
be made accordingly.

– “The CCD is photon noise limited”. In the final images the
dark and read noises are lower than the photon noise (the latter
is typically 30 counts or greater).

3.4.2. Subsystem design: light detector and readout
electronics

The detector is a crucial part of our experiment. Our final choice
was the “CCD39-02” from e2v. The readout electronics and soft-
ware have been developed and tested by CEA (Commissariat à
l’Énergie Atomique et aux Energies Alternatives). The CCD 39-
02 is a back illuminated visible CCD, with a frame size of 80 by
80 pixels. The physical pixel size is 24 µm by 24 µm, making for
a total sensitive area of 1.92 by 1.92 mm.

Our initial choice was to use the “CCD39-01” version of the
detector, with four amplifiers, to enable high frame rate opera-
tion (up to 1000 Hz). In this version the imaging area is split into
four square areas which are called quadrants, of 40 by 40 pixels.
Each quadrant has a separate readout channel, that is different
wires and electronics components. However electronic ghosts
generated by symmetry relative to the quadrant boundaries, at
the 1 × 10−3 relative intensity level, impaired the analysis and
forced us to reconsider this choice. The most recent data from
the experiment which is presented in this article was obtained
after a significant hardware alteration. It was done in order to
switch to the single amplifier version. The readout speed used is
108 Hz.

3.4.3. Subsystem design: pseudo stars

The object sources are a pinhole mask made in Zerodur. The
mask is coated on one face, with 12 micro holes in the coating.
The optical configuration corresponds to a magnification factor
of two and an off axis angle of two degrees. This allows the in-
stallation of the pseudo stellar sources and the detector without
any beam obstruction with some margins to accommodate the
supports. Additionally, with an aperture as small as 5 mm, a
spherical surface is sufficient to obtain optical aberrations that
produce a spot diagram smaller than the diffraction pattern in
the whole field of view.

For high stability of the pseudo stars, the pinhole mask
holder and the mirror are grouped into a single Zerodur block
(by molecular adhesion). The Zerodur bench and the CCD trans-
lation stage are held on a invar bench. Vibration damping of the
pseudo stars is based on a best effort approach. Four stages of vi-
bration damping are stacked in order to stabilize the core of the
experiment: a standard optical table with pneumatic suspension,
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Fig. 4. Optical bench inside the vacuum chamber.

damping supports between the table and the vacuum chamber,
silent blocks (another kind of damping support) between the vac-
uum chamber and the invar bench and there is a last stage of
damping between the invar and the Zerodur bench.

3.4.4. Subsystem design: flat field projector

The system consists of a high power broadband white light LED
(400 to 700 nm) connected to a multimode fiber which tip is
taped on the mirror block and oriented toward the CCD. The
light source is located outside the vacuum chamber, a custom
made feed-through enables operation in vacuum. For experimen-
tal tests and reliability (by redundancy), there are two fibers with
respectively 200 µm and 365 µm diameter cores.

An incoherent source is used because stray light is much
harder to control in coherent light than in incoherent light.
Noting I0 the direct intensity from the light source and I0 the
stray light intensity after (multiple) reflection(s), the perturba-
tion in coherent light is ∝

√
I1/I0, instead of directly proportional

to I1/I0 (Crouzier 2015). The main reason for having a multi-
mode fiber is the luminous flux needed to operate the detector
in a photon noise limited regime and to accumulate photons at
a decent rate, resulting in a total integration time similar to the
other systems (a few minutes). With a single mode fiber (SMF),
a superluminescent type of source would have been required.

3.4.5. Subsystem design: metrology

The metrology is composed of integrated components from the
laser source to the fiber tips that forms the baselines (see Fig. 6a).
The source for the metrology is a HeNe laser. The light goes
first through an electro-optic phase modulator, which operates at
3 GHz. This high frequency phase modulation creates a spec-
tral broadening, thereby reducing the coherence length to 1 cm
(which is the smallest coherence attainable with our hardware).
The limit is set by the amplitude of the radio frequency signal
injected into the modulator. This makes stray light reflections at
large optical path differences (OPD) incoherent and do not create
any adverse effect on the fringes (which have OPD < 0.2 mm).
The light is then split into two fibers, which undergo a slow dif-
ferential phase modulation through thermal effects (>0.1 Hz).
A lamp with rotating shadow is used to create a cyclic thermal

Blue 
fiber 
coil

Lamp
head

White fiber 
coil (shielded)

 Rotating 
mask

electro-optic 
modulator

Splitter

To vacuum 
chamber

Light
input

Fig. 5. Picture of the metrology box.

modulation on one fiber. This differential modulation makes the
fringes slowly sweep across the detector (back and forth).

During the metrology calibration phase, two vertically and
horizontally aligned fibers are selected successively to project
respectively horizontal and vertical dynamic Young fringes. The
baselines are chosen among the possible combinations offered
by the layout of the fiber tips on the mirror (see Fig. 6b). Linearly
polarized laser and polarization maintaining fibers are used all
the way from the laser to the fiber tips to ensure good fringe con-
trast. The fiber splitter and the electro-optic and thermal phase
modulators are packed into a box (see Fig. 5).

3.4.6. Subsystem design: light baffles

The purpose of baffling is to mitigate stray light inside the vac-
uum chamber, in priority for the metrology which is the most
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sensitive to stray light as explained in the metrology sub-section.
The situation with respects to stray light is unusual, because the
main source of light to worry about is on axis and coherent. The
attenuation factor looked for in this case is thus for on-axis light,
after diffusions inside the baffle and vacuum chamber. We have
been unable to derive useful ways to specify the baffling inside
the vacuum chamber in early phases of the testbed conception for
practical reasons (lack of local expertise), we have relied mostly
on an experimental approach using the data from the experiment
itself (trial and error process).

The baffle is modular: it is a cylindrical tube, in which we can
insert several movable vane holders. We can thus easily change
the vane configuration. A schematic of the 4th version of the
baffle is shown in Fig. 7. The geometry of the baffle is such
that there is no critical reflection of stray light (i.e. light arriv-
ing on the detector after only one diffusion), other than on the
vane edges, this is illustrated by the red rays. The vane edges
are made with standard commercial “double edge” razor blades,
which radius of curvature are less than 400 nm (verified with
an scanning electron microscope). This prevents significant crit-
ical diffusions from the edges unto the detector. These diffusions
were creating measurable effects with previous baffle versions.
The vane apertures are octagonal with a 14◦ FoV, resulting from
a trade-off between two opposite needs: opening the FoV enough
to avoid diffraction from the vane edges and preventing critical
diffusions on the inner tube wall. The tube diameter is just large
enough to allow this configuration to work, and is also close to

its maximum physical dimension limited by mechanical obstruc-
tion. Circular apertures would be more efficient for this trade-off
but would not be possible with razor blades.

The inside of the baffle and vacuum chamber are covered
with high performance diffusive-absorbent materials, with a to-
tal hemispherical reflectance of 1% in the visible2. Additionally,
during the metrology data acquisition, we clean-up the baffle
FoV of most physical elements, and in particular all elements
angularly too close to the metrology fibers. The Zerodur bench
(holding the mirror for pseudo stars) is one of these elements that
must be removed, as it produces detectable stray light, even with
complete optical protection. Thus we do not exactly use the con-
figuration intended in the initial design, as presented in Fig. 4,
we have to do a manual operation to switch between metrology
and pseudo star configurations.

4. DICE model and data processing

This section presents the formal model and the methods used
to analyze different types of data from the testbed (flat-fields,
metrology and pseudo stars). Figure 8 is a diagram summariz-
ing the different steps involved. It shows how the metrology and
pseudo star processing are linked together.

2 Acktar Metal Velvetr.
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Fig. 8. Overview of data reduction process for the NEAT testbed.
Steps 1 to 5 of the process are described in the next subsections.

4.1. Dark subtraction and flat-field correction

The first step of the data reduction is the standard dark subtrac-
tion (of a temporally averaged dark frame) and division by the
PRNU map, also called flat-field correction. For both pseudo star
and metrology data, dark subtraction is systematic, while the flat-
field correction is optional. The application to the data is straight-
forward, the reduced data cube is simply: I′ = (I − Idark)/IPRNU
(this operation is pixel-wise). The delicate part here is obtaining
a high quality PRNU map in the first place.

A raw flat-field is a data cube, that is a stack of images, with a
relatively constant illumination level (spatially and temporally).
The corrected flat-field (PRNU map), is derived from this raw
data, which can have some bias that are specific to the hard-
ware. In our case, flat-fields are obtained in broadband light. The
system consists of a multimode fiber facing the detector and a
broadband LED source. The vacuum chamber does not allow
for an integrating sphere, because the light from pseudo stars
and the metrology would be blocked. The multimode fiber pro-
duces a fairly flat intensity pattern on the detector: the intensity
profile is a Gaussian beam with a waist of about 10 cm which
is much larger than the detector field (2 mm). The detector thus
sees an intensity gradient with a possible slight curvature. The
method used to derive the PRNU map consists of the following
simple steps:

1. Dark subtraction (of each flat-field frame).
2. Temporal normalization: each frame is scaled to have an av-

erage flux equal to the average intensity level of the first
frame.

3. Calculation of the temporal mean frame.
4. Suppression of the image gradient in the mean frame.
5. Normalization of the mean pixel value to 1.

Step 2 suppresses variations of the light source. This allows a
precise estimation of experimental temporal noise, which must
be at first order equal to photon noise. Our LED broadband
source shows variations with an RSD of about 5 × 10−4 during
typical integration durations (2 min). The impact of this step on
the final result is thus very weak (the final mean is slightly dif-
ferent, as frame weights are changed). Step 4 sets the gradient
to 0. This step has no effect on the final differential astromet-
ric accuracy, as the effect of a PNRU gradient is an rigorously
homogeneous centroid offset (which cancels out in a difference).

When comparing different flat fields, or analyzing the stability of
a flat field versus time, effects like source intensity variation and
illumination gradient variations often dominate the dynamics of
any flat-field difference, while having no consequence on the dif-
ferential astrometry. Hence the choice to automatically suppress
them in the pipeline.

These dark and flat processing methods are straightforward
and do not induce significant astrometric errors. The quality
(accuracy and stability) of dark and flat-fields obtained experi-
mentally is verified, in order to estimate the amplitude of sys-
tematic errors and in fine their impact on astrometric accuracy.
More details will be given in Sect. 5 (numerical simulations) and
Sect. 6.1.1 (experimental dark/flat quality tests).

The flat has higher S/N in broadband incoherent light, than if
derived from the metrology data. Coherent stray light produces
relative intensity variations ∝

√
I1/I0, instead of ∝I1/I0, because

of interferences (I0 is the intensity of the direct beam from the
fiber, I1 is the intensity after a parasite reflection, see Appendix C
for details). The interference pattern is complex and has spatial
features unresolved by the pixels for large angular separations.
This is the case for example for reflections on the edges of the
stop apertures of the baffle. That is why we use the method pre-
sented above to derive PRNU maps instead of relying on metrol-
ogy data.

4.2. Metrology

4.2.1. Global solution

The interference pattern created at the detector with a monochro-
matic source of wavelength λmet and for given metrology base-
line B of coordinates (Bx, By) is:

I(x, y, t) ∝ 2I0

[
1 + V cos

(
φ0 + ∆φ(t) +

2π(xBx + yBy)
λmetL

)]
· (3)

Where I0 is the average intensity at the focal plane for one fiber,
L is the distance between the fibers and the detector, φ0 is a static
phase difference and ∆φ(t) is the modulation applied between the
lines. Although the exact shape of the fringes is hyperbolic, at the
first order the fringes can be considered straight and aligned with
the direction perpendicular to the metrology baseline. Assuming
that the point sources are of equal intensity and that the inten-
sity created at the focal plane is uniform gives a fringe visibility
of V = 1. In reality, the visibility is affected by the intensity
and polarization mismatch between the point sources. Each fiber
launches a Gaussian beam and the beams are not co-centered.

Because all pixels see different visibilities and different av-
erage intensities, the solution for the cube of metrology data is
written under the following form:

I(i, j, t) = B(t)ι(i, j) + A(t)α(i, j)

× sin
[
iKx(t) + jKy(t) + φ(t) + δx(i, j)Kx(t) + δy(i, j)Ky(t)

]
,

(4)

where i, j are integer pixel position indexes and δx and δy are
pixel offsets, that is the difference between the pixel true loca-
tions and an ideal regularly spaced grid. Time and spatial varia-
tions are decoupled in the equation. t has been implicitly trans-
formed into a discrete index representing a frame number (it
naturally carries the connotation of a dimension associated with
time). The meaning of all remaining variables is explained in
Table 2. The table also mention which kind of noise are absorbed
by the variables.
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Table 2. Metrology variables for data analysis.

Notation Name Absorbed noises

B(t) Average intensity Laser flux,
offset fluctuations

A(t) Amplitude Laser flux
polar. fluctuations

Kx(t) Metrology wavevector (x proj.) Laser freq. fluctuation,
thermal expansion

Ky(t) Metrology wavevector (y proj.) Laser freq. fluctuation,
thermal expansion

φ(t) Differential phase Phase jitter (thermal
and mechanical)

ι(i, j) Pixel relative intensity PRNU

α(i, j) Pixel relative amplitude PRNU,
visibility vs. space

δx(i, j) Pixel offsets (x proj.) –
δy(i, j) Pixel offsets (y proj.) –

Notes. The last columns gives the types of noises that affect the values
of each variable.

To avoid degenerated solutions, the following normalization
constraints are added:

∑n
i=1

∑m
j=1 ι(i, j) = nm∑n

i=1
∑m

j=1 α(i, j) = nm∑n
i=1

∑m
j=1 δx(i, j) = 0∑n

i=1
∑m

j=1 δy(i, j) = 0∑n
i=1

∑m
j=1 iδy(i, j) = 0∑n

i=1
∑m

j=1 jδy(i, j) = 0.

(5)

4.2.2. Minimization strategy

A set of metrology data cube has a typical size of about N2
pix ×

Nframes (number of frames), a cube can contain as many as
200 000 frames and for our CCD, the matrix size is Npix = 80.
The problem is non linear as the fringe spacing is a free param-
eter. The total number of fit parameters (80 × 80 + 5Nframes) is
not practical for a direct least square minimization of the whole
cube, that is why an iterative process is used. First a spatial fit-
ting procedure is performed on each frame to constrain the time
dependent variables and then a temporal fitting procedure in per-
formed on each pixel to constrain the space (or pixel) depen-
dent variables (see Fig. 9). This order is highly preferable as
the global phase is very noisy and can easily be fit by the spa-
tial fit, but not by the temporal fit. After four iterations conver-
gence down to 5 × 10−6 pixel of the final astrometric solution is
obtained.

– Non linear spatial 2D sine wave fit. The spatial fit is a non
linear least square minimization for the first iteration, using a
Levenberg-Marquardt optimization procedure. The fit is initial-
ized with parameters obtained from a Fourier transform of the
first frame. From one frame to the next all parameters can be
reused for initialization. The parameters being optimized at this
step are: A(t), B(t), φ(t), Kx(t) and Ky(t). For the first iteration,
all other parameters have perfect pixel case values: for all (i, j),
ι = 1, α = 1, δx = 0 and δy = 0.

From iteration number 2 until Nit, the fit can be linearized
by fixing the wavevector to its temporal average: Kx = 〈Kx(t)〉
and Ky = 〈Ky(t)〉. The pixel locations are then projected onto the
wavevector and the remaining parameters are obtained through
a process analogous to the linear 1D fit described below.

B(t)	  A(t)	  
φ(t)

1)	  Spa,al	  fringe	  fit

2)	  Temporal	  sinewave	  fit

For	  t	  =	  1:Nframes,	  fit:

Frame	  #	  t

pixel(i,j)

For	  (i,j)	  =	  1:Npix,	  fit:

t

counts

Kx(t)	  Ky(t)
(iter	  1	  only)

Linear	  least	  squares

ι(i,j)	  α(i,j)	  φ(i,j)

Itera,on	  1:	  non	  linear	  
least	  squares

Itera,on	  2..Nit:	  linear	  least	  
squares,	  pixel	  posi,ons	  
are	  projected	  on	  the	  
metrology	  wavevector

Initialization with 
Fourier transform 

Fig. 9. Iterative process used to fit the metrology fringes (step 2 in
Fig. 8). The difference between the measured phase of a pixel (φ(i, j))
and the phase expected (global fringe phase) is the phase offset caused
by the pixel offset projected in the direction of the wavevector.

– Linear temporal 1D sine wave fit. The temporal sine wave fit
is always a linear one. The method is very similar to the standard
linear least square fit of a sine wave of known period (i.e. the
optimization of average, amplitude and phase parameters only).
There is however one important difference: instead of the pe-
riod, only the phase of the 2D carrier sine wave for each frame
is known. The phase modulation is in practice a piecewise ex-
ponential function with added thermal and mechanical noise. In
fact it can be any function, as long as the wrapped phase is prop-
erly sampled between 0 and 2π. The temporal signal versus the
phase can be reconstructed as a pure sine wave after normaliza-
tion to average fringe intensity B = 〈B(t)〉 and average fringe am-
plitude A = 〈A(t)〉. The phase of the resulting sine wave carries
information on the pixel location projected along the modulation
direction:

I(i, j, t) = B ι(i, j) + Aα(i, j) sin
[
φ(t) + φ(i, j)

]
. (6)

The parameters are not solved directly, but the least square fit is
linearized by rewritting I(i, j, t):

I(i, j, t) = ai, j sin(φ(t)) + bi, j cos(φ(t)) + ci, j, (7)

where ι(i, j), α(i, j) and φ(i, j) are derived from the coefficients
ai, j, bi, j and ci, j (see Appendix B for details).

The pixel phase φ(i, j) contains information about the pixel
true location:

φ(i, j) = iKx(t) + jKy(t) + δx(i, j)Kx(t) + δy(i, j)Ky(t). (8)

– Deprojection of pixel offsets. The true pixel offset vector
δδδ = (δx(i, j), δy(i, j)) is derived from the pixel phase. The previ-
ously described metrology reduction process applies to a single
set of data with a quasi-constant K(t) = (Kx(t),Ky(t)) ≈ (Kx,Ky)
metrology wavevector. The testbed is designed to ensure that

A108, page 9 of 24

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526321&pdf_id=9


A&A 595, A108 (2016)

......................... frame stack

}

pixel offsets

Batches of frames:                one modulation period

temporal pixel fit on each batch

......................... pixel offset stack

t

group

}

Allan deviation

group

}

-------- average
group

}

------standard deviation

Change group size 
and repeat

} ...

Fig. 10. How to calculate the Allan deviations.

K is highly stable in amplitude and direction. From the first itera-
tion, we obtain K(t) so we can assess the stability experimentally.
After assuming K constant, the iKx + jKy term can be calculated
and subtracted (it corresponds to the phase offset for a location
of a perfect pixel on a regular grid). However the remaining dif-
ference is a scalar, whereas the true offset is a pair (a vector in a
2D space): δp(i, j) · K = δx(i, j)Kx + δy(i, j)Ky. In order words,
with each baseline, only the projection of the true pixel offset
onto K (noted δδδp(i, j)), can be measured.

To solve the degeneracy and retrieve δx and δy, the itera-
tive analysis presented above is repeated on two sets of metrol-
ogy fringes (with noncolinear wavectors): two maps of projected
pixel offsets are obtained (δδδp,1δδδp,2). The wavelength vectors of
each data set are not strictly perpendicular but fairly close in
practice. From this two maps, true x and y offsets (i.e. coordi-
nates in a standard orthonormal basis aligned with the pixel grid)
are derived by finding for each pixel the point that generates the
right projected offset coordinates. Expressing δx and δy as func-
tions of known parameters is a simple problem of Euclidian ge-
ometry. A figure illustrating the principle of the deprojection and
the derivation of the solution are presented in Appendix A.

4.2.3. Allan deviations

The second result given by the metrology, besides the pixel
offsets, is the temporal Allan deviation of these offsets (Allan
1966). This method gives an estimate of the precision of the
measured pixel offsets (temporal deviation) and detects the pres-
ence of correlated noise. The basic principle of the method is to
simulate having done several identical successive experiments
(instead of one) and looking how the accuracy changes with the
experiment duration. By splitting the data into several subsets,
only a single experiment is actually needed. The Allan devia-
tion result is almost insensitive to the basis in which the coordi-
nates are expressed, as long as the vectors of the basis are close
to perpendicular. Figure 10 shows how the Allan deviations are
calculated from the accumulated frames.

The analysis starts with dark subtracted frames and the fi-
nal solution of the spatial fits from the previous iterative pro-
cess. Temporal pixel fits are performed on small parts of the data
called “batches”, instead of the whole data cube. The number
of frames in each batch is calculated so that the temporal signal
seen by each pixel covers at least one sine wave period in order

to have a well constrained fit. One map of projected pixel offsets
is obtained for each batch.

For the second step, the Allan deviations per say are applied
on the cube of pixel offsets. The principle is to form groups of
pixel offsets maps (in fact group of batches), to calculate the av-
erage within each group and then the standard deviation between
the groups. The final standard deviation depends on how many
batches each group has, that is the group size.

Each group size corresponds to one point on the Allan devi-
ation plot, so the second step is repeated for different group sizes
to obtain a curve. The maximum group size is when the standard
deviation is calculated on only two groups.

To interpret the Allan deviation plot, the results have to be
compared to the photon noise limit. Let us consider a sine wave
sampled by a punctual pixel: f (r) = A sin(2πr/λ) = A sin(kr).
The value d f

dr (0) = Ak, is thus the gradient of the sine wave seen
by a pixel at position 0. This position is optimal for the mea-
surement because the photon count is most sensitive to the pixel
offset, and inversely the offset is least sensitive to photon noise.
For an individual frame and an optimally located pixel, the er-
ror on the projected pixel offset (noted ∆r) as a function of the
photon noise (noted ∆ f ) is thus: ∆r =

∆ f
Ak .

In reality a sine wave is fit on a batch of frames covering a
period. Considering that the error on the pixel position is mostly
constrained by the frame near the optimal points, we estimate
that the photon noise decrease as ∝

√
Nframes/2 to take into ac-

count that there are frames for which the gradient is near 0. This
factor of two is true (empirically verified) in our numerical sim-
ulations, the exact coefficient depends on the type of temporal
fit used, for example the application of statistical weights could
improve slightly the performance. The final relation is:

∆r =
∆ f
√

Nframes/2
Ak

· (9)

4.3. Pseudo stars

Two different centroiding methods are used. The first one is a
simple Gaussian fit with 7 parameters: background level, inten-
sity, position X, position Y , width X, width Y , angle. The sec-
ond one is needed to reach high accuracy on actual data, it is
a Fourier-resampling technique. The principle is to measure the
displacement between two images by resampling with a phase
ramp in the Fourier domain. It uses the following property of the
Fourier transform (noted FT):

FT
[
PSF(x − x0, y − y0)

]
= exp [−i2π(x0x + y0y)]FT

[
PSF(x, y)

]
.

(10)

To find the displacement between two identical PSFs, a transla-
tion vector (x0, y0) is found by a minimum search. The vector
for which the residual image between the first PSF and the re-
sampled second PSF is minimal (in the least square sens) is the
displacement:

(x0, y0) = min
xt ,yt

×
∑
x,y

[
PSF1(x, y) − FT−1

×
[
exp

(
− i2π(xt x + yty)

)
FT[PSF2(x, y)]

]]2
. (11)

In Eq. (11), the PSF1/2 notation represent the pixel values
inside each one of the fitting windows (x ∈ [xmin..xmax],
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y ∈ [ymin..ymax]), which are centered around the PSFs maximum.
At this stage the pixel values are already dark-subtracted and also
(if chosen to) flat-field corrected.

When done on Nyquist sampled data, the FT – phase ramp
– FT−1 series of operations is equivalent to a perfect interpola-
tion. Another advantage of this method is that the data itself is
used to reconstruct the PSF (no model is needed), thus avoid-
ing potential errors caused by a model/real PSF mismatch. But
this method has a drawback: it only gives relative displacement.
In order to know the distance from one centroid to another, an
autocorrelation between two distinct centroids is used. However,
because the optical configuration is with only one optical surface
and no obscuration of the FoV, the PSF is expected to be nearly
invariant. The errors of this process should be mainly caused by
the pixels, which are calibrated by the metrology plus flat-field.

To take the pixel offsets into account, an intermediate step
is added. Before calculating the offset with Eq. (11), the PSFs
are corrected by finding their theoretical shapes for null offsets.
Equation (11) is then applied between the corrected PSFs. This
is done by using the detector model, generated from the pixel
offsets. The corrected PSF (PSFc) is found by minimization of
the expression:

min
(PSFc(x),PSFc(y))

∑
x,y

[
PSF(x, y) − PRF(x, y) × PSFc(x, y)

]2
. (12)

PRF(x, y) is the pixel response function of pixel (x, y). The sec-
ond term in the sum, PRF(x, y) × PSFc(x, y), is not a straight-
forward product. Indeed, PSFc(x, y) is a scalar value, whereas
PRF(x, y) is a matrix representing the pixel response function.
The latter product notation is a simplified way to represent the
convolution products between PRF and PSFc, evaluated for each
pixel in the window (at their fixed local pixel coordinates). In
order to compute this convolution product, PSFc is first over-
sampled by FFT – zero padding – FFT−1 to match exactly with
the PRF sampling and integrated over each pixel.

4.4. Differential astrometry dispersion metrics

We have shown in the previous section how we measure the loca-
tions of the pseudo stars. These locations are expressed as pairs
of X and Y pixel coordinates. By abuse of language, we call these
locations centroids. The literal meaning of “centroid” is closer to
a geometric mean, that is a barycenter. In our case the location
is not obtained from a barycenter of pixel values (it would be an
inaccurate method), but by a more sophisticated fit. In essence
it is an improved barycenter. So the centroids are essentially the
resulting astrometric measurements.

Thus, after completion of the pseudo star processing we
have a measure of the centroids (one per star, 5 in total), ei-
ther versus time, or for several positions on the detector, depend-
ing on whether the translation stage supporting the detector was
moved between the different acquisitions or not. As previously
explained by Fig. 3 (Sect. 3.3), moving the detector produces a
common translation of all 5 centroids (we never move the CCD
during the acquisitions).

The final step of the analysis is to produce dispersion metrics
of the measured centroids. The metrics should represent accu-
rately the stability of their relative locations: the dispersion of the
absolute position of a given centroid (i.e. the position in the pixel
grid referential) gives the setup stability, in other words how
well the testbed as been stabilized against external perturbations,
such as thermal expansion or mechanical vibrations. Although
the absolute position dispersion is interesting to know, it is very

Superposition:
- X/Y translation
- X/Y scaling
- rotation

Mean 
conformation

Positions from 
pseudo star 

data

Procrustes 

residuals

1

2

3

4

Fig. 11. Diagram of the Procrustes analysis. The relative centroid posi-
tions for two geometric conformations, each corresponding to one de-
tector position, are represented respectively in red and blue. The black
conformation (plain black line at step 3) is the average between the red
and the blue ones.

different from the relative astrometric accuracy. In contrast, the
relative astrometric accuracy (or dispersion) is analogous to the
standard deviation (SD) of the distances between the centroids.
But it is not exactly that (see Procrustes analysis shortly after).

There are two useful kinds of relative dispersion (depending
if the translation stage supporting the detector was moved be-
tween the different acquisitions), so then the relative astrometric
accuracy is calculated (respectfully either versus time or versus
the detector position), it define two distinct modes of observa-
tion, which serve different purposes.

We call the first mode where the detector does not move the
single-position analysis. In this case, we obtain a measure that is
somewhat sensitive to some environmental factors such as me-
chanical stability, air turbulence etc... but if the absolute posi-
tions are stable enough, the pixelation errors are nearly constant
and therefore do not affect the measures significantly. In practice
the absolute positions are stable to better than 1% of a pixel (and
caused mostly by mechanical vibrations).

The second mode is called multi-position analysis: the cen-
troids are placed at different positions on the detector with the
translation stage. The amplitude of the motion between each po-
sition can be controlled and can range between 1% of a pixel to
several pixels. In this mode, the relative positions of the centroids
are be strongly affected by pixel responses when the distance be-
tween two detector positions is several pixels.

However there is an additional critical effect that occurs in
this case: when moved, the translation stage induces large tip-tilt
errors. This produces vertical and horizontal scale changes have
to be taken into account. To correct these a Procrustes superim-
position procedure is used. The principle is to find the geometric
transformation that results in the closest overlap of the measured
centroid positions. The residuals between the overlaps indirectly
yields the final accuracy. Five parameters are needed to define
the transformation: translation X and Y , scaling X and Y , rota-
tion. This is less than the number of data points; 2 axes × 5 cen-
troids for each position. Figure 11 illustrates how the Procrustes
analysis is done and how the residuals are obtained.

5. Numerical simulations

In addition to the data reduction process itself which yields pixel
positions and star positions (i.e. centroids) from raw images, our
set of tools also includes a numerical model, which is used for
debugging, checking the data processing for artifacts and charac-
terizing error propagation from parameters uncertainties to final
accuracy. It has been especially useful for errors that are hard to
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Fig. 12. Actual data and synthetic data flow diagram. The pseudo star
and metrology data analysis scripts both follow this architecture. An
option setting parameter can be used to switch between synthetic and
actual data.

assess analytically. Synthetic data is generated and plugged at a
specific point into the data analysis pipeline, that is right after
the dark and flat calibrations, as illustrated by Fig. 12.

5.1. Data pipeline

The numerical model does not include a detailed solution of
the detector behavior (e.g. including bias, dark current...), which
could be used to simulate some subtle effects like uniform or
non uniform (different for each pixel) changes of the bias, or of
the gain, or others complex phenomena that could result in un-
expected systematic effects in the measurements. In our numer-
ical model, photo-electron counts are directly converted from a
photon count estimation by an homogeneous scaling factor. The
photon count estimation comes directly from integrating a the-
oretical illumination pattern (either for the star or the metrol-
ogy configuration) over the pixels. In order words, we make the
working assumption that the detector is well behaved, at least to
the extent that it would not adversely affect the metrology and
astrometric measurements.

However, readout noise and PNRU noise (caused by either
by an absence of calibration or a residual error after calibra-
tion), can be simply simulated by direct application on the photo-
electron counts. Only homogeneous Gaussian PRNU noise and
readout noise are applied onto synthetic data. The treatment is
slightly different between synthetic and actual data: for the latter
additional processing steps are required, precisely dark subtrac-
tion and flat-field calibration. In the case of synthetic data, the
PRNU noise is not meant to be calibrated but is used to simulate
a possible flat-field calibration residual error. One critical point:
in this configuration, the amplitude of PRNU map errors, which
includes possible errors from imperfect flat-field processing, can
not be estimated with the numerical model. However these errors
can be derived using the difference of actual PRNU maps taken
in different conditions (e.g. source fiber position).

The core of the processing, that is the fringe fit and derivation
of pixel offsets for metrology data and the PSF resampling for
pseudo star data, is common to actual data and synthetic data.
This enables:

– a reliable debugging of the core of the processing. When syn-
thetic data is injected, the exact solution is known and is used
to determine true errors (computed solutions, i.e. outputs,
minus the exact ones, i.e. inputs). Under ideal conditions (no
noise), the true error should be close to zero, ideally within
the numerical precision.

– characterization of artifacts introduced by the processing. In
practice true errors do not have to be at numerical precision,
only below the level required for 5×10−6 pixel final error on
centroids. True errors can still be determined when any kind
of perturbation (random noises or systematics) are added to
the synthetic data. Thus the conditions under which the re-
sulting accuracy is compatible with the experiment objective
can be determined.

– confirmation and extension of the analytical model. Applied
in Monte Carlo simulations, the same error analysis process
can be used to test each noise source separately, for differ-
ent noise amplitudes, yielding empirical relations between
the noise sources and the final accuracy. The consistency be-
tween the analytical and numerical models can be checked
and more complex noise sources can be characterized.

5.2. Data generation

The element needed to generate data that incorporates pixela-
tion errors is a model of the detector, which consists of PRFs
concatenated together. We model PRFs by truncated parametric
hyper-Gaussians (Eq. (13)), which parameters vary from pixel to
pixel.

PRF(x, y) = C ∗ exp
[
(x − x0)n

2σn
x

+
(y − y0)n

2σn
y

]
· (13)

The pixel sensitivity corresponds to the sum of all the elements
in the PRF, the pixel offset corresponds to its barycenter and the
width is its standard deviation. The use of hyper-Gaussians al-
lows for an easy modeling of the pixel global parameters and
provides a smooth function with little high frequency content.
The metrology measurements are not sensitive to high frequen-
cies within pixels and are thus not relevant in the model.

Simulated metrology fringes are generated by multiplying
the detector model above with an ideal and oversampled pat-
tern of fringes. The pixel values are obtained by summing over
each pixel area. The frames are generated one by one, by shift-
ing the fringe phase. The result is a simulated metrology data
cube of moving fringes carrying the information of pixel sensi-
tivities (C), offsets (x0, y0) and widths (σx, σy).

For the generation of pseudo stars, PSFs are approximated
with Gaussian functions whose width is equivalent to an Airy
spot at the average wavelength for our experiment (about
600 nm). The reason for using a Gaussian instead of a more
complex PSF shape, such as a polychromatic sum of Airy func-
tions or a PSF derived from the data is simplicity and efficiency.
Our experiment has a highly stable optical configuration with
only one optical surface, the PSFs are quasi invariant and are
not expected to contribute significant errors, whatever their ex-
act shapes are. A simplified model is thus sufficient.

The goal of the pseudo stars model is to estimate the relations
between the uncertainties on various parameters (e.g. PRNU,
pixel offsets...) and the centroiding accuracy. This process ef-
fectively tells us what error sources dominate and should be
addressed in priority. For this we also use the detector model.
To generate pixelated pseudo stars, the product between over-
sampled Gaussian centroids and the detector model is computed
(pixel values are obtained by summing over each pixel area.).

5.3. Metrology simulation results

The metrology model is used in two ways. The first one is the
comparison between the detector model and the results from the

A108, page 12 of 24

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526321&pdf_id=12


A. Crouzier et al.: A detector interferometric calibration experiment for high precision astrometry

10
0

10
1

10
2

10
−6

10
−5

10
−4

Number of batches per group (500 frames per batch) − 0.83 sec per batch

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
s
 b

e
tw

e
e
n
 g

ro
u
p
s
 (

p
ix

e
l)

Allan deviation of pixels and blocs of pixels # 20140603 # 2−79x5−84 # vertical

 

 

167 sec

measured photon noise (pixels, 1 batch)expected std from photon noise (pixels, 1 batch)

(blocs, 1 batch)

(pixels, largest group)

(blocs, largest group)
Ind. pixels (data)
Ind. pixels average (data)

Ind. pixel average (white gaussian noise)

Blocs average (data)
Blocs average (white gaussian noise)

Fig. 13. Allan deviations of simulated data. Amplitude, visibility and photon noise of simulated fringes are adjusted to values typical of a real
experiment (B = 10 000 counts, A = 6000 counts, 1 count = 10 photo-electrons). Additional sources of noise are simulated, such as laser intensity
(1× 10−2 RSD), fringe phase (1× 10−2 radian SD) and PRNU (1× 10−5 RSD). The plot shows deviations for individuals pixels (plain green), their
average deviation (plain black) and the average for blocks of 10 by 10 pixels in (plain blue). The dotted black and blue curves are for a cube of
white noise whose standard deviation is matched to the data for groups of 1 batch. Averaging Allan deviations over pixels or blocks is important
because they tend to be noisy (plain green) when the final deviation is derived from very few groups. Horizontal dotted blue and black lines are
estimations of the photon limit for individual pixels or blocks of 10 by 10 pixels.

processing. The most important outputs here are the pixel offsets,
the goal is to make sure that the processing does not introduce
biases greater than ideally 5 × 10−6 pixel for the pixel offsets.
Since the exact solution is known, a simple subtraction between
the model and the processing output yields the bias.

The second output is the Allan deviation of pixel offsets.
When working with actual data the exact solution is not accessi-
ble, other methods have to be used. The Allan deviation analysis
gives information about the SD of the pixels offsets as a function
of the number of frames used for the fit. For photon noise limited
measures, the SD is expected to decrease proportionally with the
square root of the number of frames. Allan deviations on sim-
ulated data also provide a mean to check that the data analysis
method is well behaved: the SD should be in agreement with the
theoretical photon noise limit and should decrease as the square
root of the number of frames.

Figure 13 shows the Allan deviation obtained after analysis
of 200 000 simulated frames of metrology fringes. The goal is
to validate the processing pipeline and the number of photons
needed to reach the astrometric accuracy requirement.

For the largest groups (200 batches per group, i.e.
100 000 frames per group), the SD reaches 2 × 10−6 pixel for
blocks of 10 by 10 pixels and 2×10−5 pixel for individual pixels.
The expected SDs from photon noise are indicated by horizontal

dashed lines on the plot and they coincide almost perfectly with
the measured Allan deviations. The top black line shows what
the deviation for groups of one batch should be: as expected, it
crosses the left axis of the plot at the same place than the Allan
deviation curve (black line). There are actually two lines near the
top, nearly indistinguishable because on top on each other: the
dark one is for theoretical photon noise, the red one is for mea-
sured photon noise using the first frame of the data cube. No red
noise nor readout noise was included in the model. In the actual
experiment the readout noise is negligible compared to photon
noise.

Figure 14 shows maps of the difference between the mea-
sured pixel offsets and the true solution (pixel offset simulation
input) for different values of PRNU RSD (relative standard de-
viation). This is the ultimate metric to check the accuracy of
the result, because biases constant in time are not visible in the
Allan deviation. The latter only gives information about the sta-
bility of the pixel offset measurement. For low PRNU (RSD of
5 × 10−5), the SD of 2 × 10−5 pixel seen in Fig. 14 is in agree-
ment to the value given by Allan deviation (i.e. the photon noise
floor). However, tests with higher values of PRNU show residual
offset bias well above photon noise floor, while the Allan devia-
tion is unaffected. For a PRNU RSD of 2×10−3, the residual SD
of offsets rises to 10−4 pixel. No bias greater than 10−6 pixel has
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Fig. 14. Pixel offsets bias (in the horizontal direction) for different
PRNU RSD. The maps show the difference between the pixel offsets
found after processing and the solution of the simulation, for PRNU
RSD of 5 × 10−5 a), and 2 × 10−3 b). The residuals for a) are at the
photon noise floor, while a stronger systematic bias of 1 × 10−4 pixel is
visible for b). Both have the same photon noise.

been observed for other types of noises, like fringe phase jitter
or overall intensity variation.

5.4. Pseudo stars simulation results

The first goal is to validate the reduction process itself, as ca-
pable of reaching 5 × 10−6 pixel (centroid position error) in
ideal conditions: the final accuracy is limited by simulated pho-
ton noise, all other noises are assumed negligible or well cali-
brated (e.g. PRNU). The accuracy has been validated in this way
for both centroiding techniques (Gaussian and autocorrelation),
with correction of pixel offsets from metrology data and without.

The second goal is to explore what are the impacts of differ-
ent types of noise by injecting them one at a time into the sim-
ulated data, in Monte Carlo simulations. When using Gaussian
PSFs, we can directly compare the input centroid locations with
the fit results, thus relying on absolute positions (as opposed
to relative ones) and the Procrustes analysis is not needed. The
model was used to estimate the relations between the uncertain-
ties on various parameters (PRNU, pixel offsets, photon noise,
readout noise) and the pseudo star location error (final accuracy),
the results are summarized in Table 3.

Another useful aspect of these Monte Carlo simulations
is the estimation of the proportion of centroid errors that are

Table 3. Results from pseudo stars model.

Error type Error normalization/definition Error on
centroid

PRNU: σPRNU average pixel sensitivity = 1 0.40 σPRNU

Photon noise: σph

relative photon noise
calculated for the pixel
with the highest value

0.55 σph

Pixel offset: σoffset
offset expressed
in pixel units 0.25 σoffset

Pixel read noise: σread

relative read noise
calculated for the pixel
with the highest value

1.8 σread

Notes. The error on centroids (i.e. pseudo stars measured locations) is
always in pixel units.

absorbed by the Procrustes superimposition. Among 10 observ-
ables ((x, y) coordinates of 5 centroids), the superimposition
technique allow for a fit with 5 degrees of freedom (2 transla-
tions, 2 scalings, 1 rotation), which will inevitably lead to under-
estimate the final noise. Monte carlo simulations of stars in the
same geometrical configuration as in the real experiment with
purely random and uncorrelated astrometric jitter have shown
that Procrustes superimposition decrease uncorrelated location
errors by a factor 1.4 The final accuracy expressed after the
Procrustes superimposition is corrected (majored) to compensate
for this factor.

5.5. Conclusions from numerical simulations

5.5.1. Models convergence

In addition to the numerical models, our set of tools also in-
cluded an analytic error model (Hénault et al. 2014). The ana-
lytic error model resulted in a spreadsheet which can be used to
understand error propagation quantitatively and determine some
specifications on the stability or calibration accuracy needed on
error sources like PRNU, offsets, laser intensity and wavelength
stability. We have successfully checked for consistency between
the two models, for the errors that we could characterize with
both models, such has PRNU and offsets.

5.5.2. Error propagation coefficients

From the relations shown in Table 3 we conclude that to reach
an error below 5 × 10−6 pixel on the centroid, the following cal-
ibrations must be fulfilled:

– PRNU to better than 1.2 × 10−5 (relative QEs);
– pixels offsets to better 2 × 10−5 pixel;

Here we have considered the errors independently, of course in
the experiment the different kinds of errors will add up: it is the
sum of their contributions than must yield a final accuracy of
5 × 10−6. However the numbers presented above are meaningful
as minimal requirements.

5.5.3. Control of residual biases

Section 5.3 mentioned the presence of a bias resulting from the
data processing. There is a residual bias on the measured pixel
offsets, which depends on the amplitude of the PRNU calibra-
tion error. We have presented bias maps for two different levels
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Fig. 15. Temporal mean and noise of dark data cube.

of PRNU RSD (low and high). These levels have not been cho-
sen arbitrarily: 5 × 10−5 (low) corresponds to the measured bias
for the best sets of actual data, 2×10−3 (high) is for uncalibrated
pixels, which is characteristic of our detector. The bias discussed
above is intrinsic to the data processing and is an possible point
to improve, but a good pre-flat calibration of the actual metrol-
ogy data can ensure that pixel offset bias remains lower than
5 × 10−5 pixel. This is not an additional constraint as the bias
RSD amplitude must be lower than 1.2 × 10−5 pixel to be com-
patible with the 5 × 10−6 pixel astrometric accuracy goal.

5.5.4. Intrapixel responses

With the metrology analysis methods presented here, using only
two baselines of different directions, information of the PRF in-
side the pixel (intra-pixel calibration) can not be obtained. A
single baseline produces a pure sinusoidal pixel response, so
only the location and at best the pixel width are accessible.
Characterizing the intra pixel response requires several (aligned)
baselines (Zhai et al. 2011). Our model assumes that PRFs are
adequately represented by parametric hyper-Gaussians, but we
do not know the true shapes of PFRs. Higher frequency compo-
nents of the PRFs are expected to generate very small errors.

6. Experimental data analysis and discussion

The experimental data presented here was obtained in September
2015. For some quantities there are significant deviations lo-
calized very close to the detector edges. When this is the case
the images are cropped to avoid widening their dynamic range.
Although the physical size of the detector is exactly 80 rows by
84 columns, the images always show smaller areas. A base “sci-
ence area” (rows 2 to 79, Cols. 10 to 83) is used but for some
quantities the images must be cropped slightly further. When
numbers (e.g. a spatial STD) are associated with the images they
are always calculated on the area shown in the pictures, that is
after cropping. These issues have negligible impact on the re-
sults because the pseudo stars always stay far enough from the
problematic edges.

6.1. Experimental data

6.1.1. Dark and flat-fields

Figure 15a shows a mean dark frame. Figure 15b shows the
temporal standard deviation of the data cube which yielded the
aforementioned mean dark frame. The dark plus readout noise
(4.0 counts SD) is dominated by photon noise. The CCD is op-
erated at fractions of full well that correspond to photon noises
of 30 counts or more.

Figure 16a shows the measured PRNU, after processing of
the flat field obtained with the white LED and multimode fiber.
The measured PRNU RSD is 2.4× 10−3. The PRNU distribution
is not pure white noise, several features can be distinguished:
2 horizontal bright bands, dark pixels down to 95% efficiency
(caused by dust contamination), faint low frequency patterns and
more visible biases close to the upper and left edges.

To estimate the systematics on this result, the PRNU differ-
ence between two different fibers positions spaced by 2 cm is
computed (Fig. 16b). 2 cm correspond to 20% of the baffle field
of view (10 cm) and an angle of 1.9◦ viewed from the detec-
tor. The magnitude of the difference is 3 × 10−5, for a photon
noise limit at 2 × 10−5. Applying the Allan deviation method on
the flat field data cube did not reveal any anomalies. Using flat
fields from the metrology was attempted. But in this second case,
PRNU differences between the two different fibers positions vary
between 1 × 10−3 and 5 × 10−4 (depending on the residual level
of stray light), but in all cases are significantly higher than for
white flats.

There was a concern about the possibility of having system-
atic effects, and in particular speckles, caused by the large core
(365 µm diameter) of the multimode fiber. To estimate these ef-
fects an experiment similar to the one described above was per-
formed: a flat field difference after variation of the fiber bending
(instead of a fiber displacement) was measured. It showed the
same amplitude difference of about 3 × 10−5, ruling out a signif-
icant impact from the bending.

6.1.2. Metrology

One complete data set consists of a pair of baselines (vertical and
horizontal). The results presented are with the laser coherence
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Fig. 16. PRNU and its difference with a displacement of the fiber tip.
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Fig. 17. Pixel offsets (in pixel units) as measured by the metrology (baseline H1H4-V1V4).

control system active (coherence ≈1 cm). Figures 17a and b
show the measured pixel offsets for baseline H1H4/V1V4 (see
Fig. 6b), in respectively the horizontal and vertical directions.

Figure 18 shows the Allan deviation of projected pixel off-
sets for the vertical baseline. At the maximum integration time,
the deviation for individual pixels is 2×10−4 pixel. In spite of all
the measures used against stray light (coherence reduction and
baffling), there is no improvement. The precision is far from the
photon limit at 8×10−5 pixel and correlated noise is still present.
The result for the horizontal baseline are analogous (same final
deviation, same issues with correlated noise). This suggests that
stray light, although measurable, is not the largest source of cor-
related noise or systematics on the pixel offsets. Coherence re-
duction is expected to be ineffective if the stay light that is hav-
ing an impact on the pixel offsets has a optical path difference
smaller than 1 cm. In this case, further reduction of coherence
below 1 cm would be beneficial.

A more rigorous way to estimate the accuracy of pixel off-
sets measurements is to perform two independent analysis for
two physically different pairs of baselines and to compare the
results. Each pair have different separations, producing respec-
tively fringes spacings of 2.4 and 4 pixels on the detector, and are
located at different places in the vacuum chamber (the angles of
incidence of metrology beams are changed). The stray light bias
is different in each configuration. Figures 19a and b shows the
difference between results for baselines H1H4-V1V4 and base-
lines H2H4-V2V4, for respectively horizontal and vertical pixel
offsets.

Both the pixel offsets (Figs. 17a and b) and their differences
(Figs. 19a and b) show that the dust contamination has biased the
pixel offset measurements to at least several parts per thousand.
However the effect is localized (one or a few pixels), its effect on
astrometric measurements is identifiable and avoidable: it affects
centroids independently and at precise and known locations.
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Fig. 19. Pixel offsets differences, between two different sets of metrology baselines.

The amplitudes of the differences have standard deviations
up to 4 × 10−4 pixel, versus an Allan deviation value of 2 ×
10−4 pixel. This indicates that static systematics (constant in
time) are present in the data. In this case the visible system-
atics depend of the physical position of the metrology fibers.
Moreover, this map of the difference shows structures and speck-
les. This indicates that stray light is still an issue, but other un-
known systematics are possible as well. This data only gives a
lower bound for the amplitude of systematics in the measured
pixel offsets. The confirmation that the metrology measurements
are correct is when the addition of pixel offsets into the data
pipeline improves the astrometric accuracy (see next section).

6.1.3. Pseudo stars

The pseudo star data which yields the best results is the one pre-
sented here (taken in ambient air). The translation stage support-
ing the detector was moved into 90 different positions by small
steps of 0.17± 0.01 pixel onto a vertical line. To each detector
position corresponds a data cube of pseudo star data (the detec-
tor is not moved during acquisition). The single-position analysis
has not revealed any problem with the data. The precision ob-
tained is 6 × 10−5 pixel for all detector positions, when splitting
each data cube into 4 batches. This corresponds to the photon
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Fig. 20. Central centroid coordinates for the 26 Sep. 2015 pseudo star
dataset. The scale is much smaller for the horizontal axis. Indexes be-
tween 25 to 57 (final dataset for accuracy) are in red.

noise limit. Extrapolating the photon noise to the whole cubes
yields an expected photon noise accuracy limit at 3× 10−5 pixel.

The cause of the non uniform detector motion (±0.01 pixel,
and the line is actually not perfectly vertical and straight) is the
erratic behavior of the translation stage which uses piezoelectric
motors in an open loop. Figure 20 shows the pixel coordinates of
the central centroid from positions 1 to 90. The commands sent
to the stage for each step were identical and for a vertical axis
motion only.

The non uniformity of the translation has no major conse-
quence for the analysis. However there is another related issue
with the translation stage, which is intrinsic to its design. The
piezoelectric motors are pushing against springs. To produce a
translation, two parallel sliders are pushed by one motor each.
This design allows for rotation motion by using opposite direc-
tions with each slider. But for translation, as each motor pushes
in an irregular and unequal manner, this also creates significant
unwanted tip tilt. When discussing the astrometric accuracy, this
crucial point will be developed.

Figures 21 and 22 show the residuals obtained with a simple
barycenter method, for all positions (1 to 90). More precisely,
the residuals are the variations of the projected distances (on the
horizontal and vertical axis) between each star and the barycen-
ter of all the other ones. The large amplitude drifts of residuals
are produced by a corresponding drift of the translation stage
tip/tilt axis as a function of the position index. Correlations and
anti-correlations between the stars are based on the geometric
layout, as show by Fig. 21, where the same residuals have been
plotted in a parametric manner (X versus Y). The unwanted mo-
tion is mainly a roll, but some tip-tilt is present as well.

To minimize the impact of this issue, an area with rela-
tively small tip tilt errors was selected, corresponding to po-
sitions 25 to 57, spanning 5.4 pixels. Figure 23 shows the
Procrustes residuals for this range of indexes. The purpose of the
Procrustes method is to compensate for the geometrical effects,
after PRNU and pixel offsets corrections. After Procrustes, the
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Fig. 21. Barycenter residuals for each position (from index 1 to 90).
Each centroid has a different color (black centroid is the central one).
The relative positions between pseudo stars (illustrated by the squares)
have been downscaled to correspond to the magnitude of the residu-
als. Indexes between 25 to 57 (final dataset for accuracy) are circled in
black.

Table 4. Accuracies with different types of calibrations (in pixel units).

– No flat (pixel) Flat (pixel)

No metrology
(p) 2.1 ± 0.12 × 10−4

(g) 1.4 ± 0.27 × 10−4
(p) 1.7 ± 0.10 × 10−4

(g) 1.6 ± 0.30 × 10−4

Metrology
(p) 2.9 ± 0.17 × 10−4

(g) 2.1 ± 0.40 × 10−4
(p) 9.7 ± 0.56 × 10−5

(g) 5.9 ± 1.1 × 10−5

Notes. The (p) and (g) flags respectively indicate accuracies over posi-
tions/groups of positions.

residuals are smaller than with the simple barycenter technique:
6.9 × 10−5 pixel versus 1.3 × 10−3 pixel.

Table 4 shows the final accuracies (after Procrustes residuals)
for the 25–57 position indexes, in 4 different calibration setups.
The PRNU calibration (from flat field) and the pixel offset cali-
bration (from metrology fringes) can each be activated indepen-
dently. The final accuracy corresponding to each case is given
in the table. It is important to note that these accuracies are the
result of a multi-position analysis and not a single-position one
(these terms are defined in Sect. 4.4).

A test of spatial averaging over several detector positions
was done. Instead of considering the residuals from each posi-
tion separately, the centroids are averaged over groups of posi-
tions. The accuracy is then given by the Procrustes residuals over
the centroids corresponding to each group. The 33 positions are
binned into groups in the following way: positions 1 to 11, po-
sitions 12 to 22, positions 23 to 33, effectively forming 3 juxta-
posed segments, without interlacing. In Table 4, accuracies cor-
responding to individual positions and groups of positions are
respectively flagged by (p) and (g). For the groups, the photon
limit (3 × 10−5 for individual positions) is below 1 × 10−5.
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Fig. 22. Barycenter residuals for each position (from index 1 to 90). Each centroid has a different color (black for the central one). Plain lines are
X axis residuals, dotted lines are Y axis residuals. Indexes between 25 to 57 (final dataset for accuracy) are indicated by the vertical dotted lines.

The best result was obtained when the flat field and metrol-
ogy calibration were combined, yielding a final astrometric ac-
curacy of 9.7 ± 0.56 × 10−5 pixel for individual positions and
5.9 ± 1.1 × 10−5 pixel when binning into 3 groups. The error
bars displayed on the table are from Monte Carlo simulations
with random astrometric jitter, independent for each star, as is
expected from photon plus pixelation noise. This result is a good
upper limit of the residual pixel calibration noise of a space in-
strument with the same CCD chip and metrology system. If there
are other uncalibrated systematics caused by some shortcomings
specific to the testbed (e.g. translation stage tip-tilt), these sys-
tematics will be absent on the real instrument.

6.2. Discussion

6.2.1. Bias on pixel offsets

There are indications that stray light is a significant source of er-
rors for the pixel offset measurement:firstly flat field differences
with fiber tip motion in coherent light show high bias: speck-
les with a relative contrast up to 1 × 10−3 are visible in this
case. Secondly when comparing the pixel offsets obtained with
two different pairs of baselines, there is a difference significantly
above photon noise. While reducing the coherence length results
in a significant attenuation of the speckle contrast (about a fac-
tor 3), no gain was observed on the pixel offsets with reduced
coherence. A possible explanation to this surprising result is that
diffraction and/or diffusion on the baffle vane edges is the main
source of noise on pixel offsets. In this case the OPD between
direct and stray light is around 1 cm plus or minus a factor 2 (de-
pending on which vane is considered), so the contrast attenuation
obtained is small to non existent. Another attempt to improve the
metrology was to average the results from 9 different fiber tip po-
sitions to provide angle diversity, but no gain was obtained. More
theoretical work and simulations are needed to explain all these
observations.

The pixel offset difference is 3 times smaller than the pixel
offset SD, so useful calibration information was obtained. The

comparison of the astrometric accuracy with and without pixel
offset calibration (after PRNU correction) has confirmed this: the
accuracy was improved by about a factor two (when used with
the flat field).

6.2.2. Issue with tip-tilt error correction

A critical issue was discovered with the Procrustes technique:
it is in fact not powerful enough to correctly address the
geometrical distortions down to the required accuracy. As each
axis can change separately, plate scale changes can occur sep-
arately on the X and Y axis. The standard Procrustes technique
only has one global scaling parameter, the technique used in this
experiment is thus already a modified version with 2 independent
scaling axis. But this is still insufficient. As the light beams cor-
responding to each star are coming from different angles, the ef-
fect of tip-tilts are not strictly homogeneous plate scale changes.
A geometrical analysis of the problem reveals that the plate scale
inhomogeneity between two opposite stars is proportional to αθ,
with α the angular separation between the stars and θ the tip-
tilt amplitude (see Appendix D). Figures 22 and 21 show these
motions. Figure 21 shows a roll, which impacts the astrometric
accuracy and which is in principle not permitted by the transla-
tion stage. However this roll motion is not problematic since it is
easily subtracted. The tip-tilt is the real issue.

A way more sophisticated than Procrustes superimposition to
inverse the projection was implemented. The new method uses
6 parameters to characterize the detector position: X, Y , Z posi-
tions, and tip, tilt and roll angles. From these parameters and cen-
troid angular coordinates (2 per centroid) their positions on the
detector can be obtained through exact projection in 3D. A gradi-
ent descent method is used to simultaneously minimize the cen-
troid angular coordinates and the detector parameters for each
data cube (one data cube per detector position). The number of
parameters to fit is 10 + 6Ncubes, for 10Ncubes data points. At this
point in the development process the proper working of the de-
projection algorithm is uncertain. Monte Carlo simulations seem
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Fig. 23. Procrustes residuals for each position (from index 25 to 57). In this case the PRNU and pixel offset calibration are used. Each centroid
has a different color (black centroid is the central one). The horizontal dotted lines indicate the dispersion of the residues (±σ).

to indicate that only 5 centroids are not enough to properly re-
trieve the deprojection without overfitting. The problem may be
too poorly constrained with too many free parameters. The prob-
lem is nonlinear and the correct parameters of the geometric pro-
jection are hard to constrain because there are other errors of the
same magnitude affecting the centroids. An accurate retrieval of
the projection parameters is possible only if the tip tilt favorably
samples the tip-tilt parameter space. If two data cubes have close
projection parameters, such that the resulting difference on cen-
troids is smaller than the photon noise, they are really equivalent
to a single cube. Because the tip-tilt is caused by dry friction, it
can be the case. However it is hard to be certain, as in this case
(tip tilt parameter space not properly sampled), the retrieved val-
ues of the projection parameters are not reliable. There was no
independent mean of measuring the tip tilt to the required accu-
racy available on the experiment.

In our setup, α = 1.6×10−3 rad (separation defined as the side
of the square formed by the pseudo stars, which is 40 pixels). The
translation stage tip-tilt amplitude is about 5 × 10−3 rad (peak
to valley), as measured with both Procrustes and the projection
inversion technique. So astrometry systematic noise induced can
go up to 3 × 10−4 pixel in the worst case and between opposite
stars.

6.2.3. Effectiveness of calibrations

Table 4 displays several interesting features:

1. Spatial averaging of the centroid always improves the accu-
racy, although the gains from one configuration to the next

are unequal. However it is hard to conclude anything given
the error bars associated with these measurements.

2. PRNU calibration improves the accuracy for individual po-
sitions, and further improvement is obtained by adding the
metrology calibration.

3. Using the metrology alone deteriorates the accuracy.

Having on the same dataset observations two and three is sur-
prising, so far no explanation has been found. On most previous
data sets both the PRNU and metrology have had impacts on
the astrometric accuracy of the same sign whether used alone or
combined. Non linearities seem to arise from the biases present
in the metrology calibration result and are not well understood.
This does not question the validity of the final astrometric re-
sult, which has been checked through numerical simulations and
on other datasets. However the simplifying assumptions used
in the numerical simulations are limiting the ability to interpret
the observations. Another startling result is the accuracy before
PRNU, which is already good. From a PRNU RSD measured
at 2.4 × 10−3, this was not expected. This result has been con-
sistently obtained over all datasets. It seems that the good pixel
to pixel homogeneity of the back-illuminated CCD chosen as a
detector allow for a good baseline astrometric accuracy (without
calibration). With the flat field only, an accuracy of 1.7 × 10−4 is
reached. A possible explanation for this good pre-flat accuracy
is that the PRNU measured has a non Gaussian distribution (dust
contamination, detector edge effects), it could thus have a differ-
ent impact on astrometry than expected. The astrometric impact
is minimized if the PSF stays clear of the dust and edges.

The gain in astrometric accuracy obtained from the flat
field plus pixel offset calibrations (without spatial averaging)
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is moderate: a factor 2.2. One possible reason for this moder-
ate gain is the spectral dependency of the pixel responses: the
pixel offsets are measured at 633 nm whereas the pseudo stars
cover all of the visible spectrum. CCDs, and in particular back-
illuminated CCDs are known to show measurable spectral de-
pendency (Robinson 1995). This spectral effect was not investi-
gated in the experiment, the metrology system was designed for
operation at 633 nm and the only source available was the HeNe
laser.

6.2.4. Spatial averaging

The experimental results show that astrometric accuracy can be
increased by spatial averaging, thus spreading the pixelation er-
rors over more pixels than would be allowed by a single PSF.
The gain is however limited, for example from 9.7 × 10−5 to
5.9× 10−5 pixel with all calibrations active. A much more useful
data set for this technique would be a grid with a large number
of detector positions. In fact an analysis was done over such a
dataset (a grid of 340 positions, spacing step of one pixel), with
an otherwise identical experimental setup, and using the same
method as described in Sect. 6.1.3. A gain in accuracy of about
a factor 30 (from 2.4 × 10−3 to 7 × 10−5 pixel) with groups of
interlaced positions was obtained. With a spacing as small as
1 pixel, a good fraction of systematics cancels out in the differ-
ential astrometry, including in particular pixelation and tip tilt
errors. Because of poor starting accuracy in this case (large tip
tilt errors), the final accuracy after spatial averaging is not bet-
ter than for the other dataset. It does however suggest a way to
mitigate pixelation systematics for a space mission. The differ-
ential astrometric measurement of each epoch can be an average
of several different astrometric measurements done with centroid
at different places on the CCD.

7. Conclusion

The calibration system yielded the pixel positions to an accu-
racy estimated at 4 × 10−4 pixel. After including the pixel posi-
tion information, an astrometric accuracy of 6 × 10−5 pixel was
obtained, for a PSF motion over more than 5 pixels. Without
the (flat and metrology) calibrations the astrometric accuracy is
1.4× 10−4 pixel (all other things equal). With the single-position
mode (small jitter motion of less than 1 × 10−3 pixel), a photon
noise limited precision of 3 × 10−5 pixel was reached.

The single-position result shows that the detector and elec-
tronics dark and readout noises are well behaved and do not
prevent reaching higher accuracies. The number that is relevant
for an astrometric mission is the multi-position analysis result:
6 × 10−5 pixel. It characterizes the residual noise from pixela-
tion errors after calibrations. As this accuracy was obtained for
a motion over 5.4 pixels, a distance larger than the PSF diame-
ter, it can be extrapolated to the whole CCD, considering only
pixelation noise and assuming no spatial correlation of pixels
properties. In the DICE experiment the translation stage tip tilt is
responsible for the larger errors associated with wider motions.

The single-position results confirm that turbulence (in the
closed vacuum chamber) is not an issue. A photon noise of
3 × 10−5 pixel was reached for individual data cubes (results
in Sect. 6.1.3), which correspond to the expected photon noise.
This first test on the main dataset presented here validates the ab-
sence of a lot systematics that could have been an issue, before
even considering the multi-position analysis, but still has a pho-
ton limit higher than the final requirement. Other tests on spe-
cial datasets, also in air, and with much longer acquisition time

showed that this single-position precision can be improved fur-
ther, at least to 10−5 pixel, while remaining at the photon limit.
Some of the earlier datasets were taken in air and in vacuum, all
other conditions unchanged, but no gain on the final astrometric
accuracy was measured when going from air to vacuum.

One of the main sources of noise for the metrology seems to
be stray light, even after numerous baffle upgrades attempted to
solve the issue. More work is needed to identify other possible
sources of systematics and to understand what are the best ways
to mitigate stray light. The limited effectiveness of the metrology
calibration on astrometric accuracy (∼2 fold improvement) could
be caused by a spectral dependency of the PRFs. To first quan-
titatively assess and then mitigate the issue the same interfero-
metric calibration should be performed at several wavelengths
distributed across the visible spectrum.

The final objective was set at 5 × 10−6 pixel. In reality, the
exact requirement depends on the spacecraft parameters and sci-
entific objectives. For the new mission concept Theia, it is lightly
easier: 10−5 pixel (Malbet et al. 2015; Malbet et al. 2016). Theia
can still detect nearby habitable Earths, even if it is restricted
to slightly fewer and closer stars. Further progress is needed to
reach the required Theia accuracy, but several leads have been
identified to improve the metrology calibration. Additionally, as
the experimental data showed, it could be possible to signifi-
cantly enhance the final accuracy by averaging the relative star
coordinates over several detector positions (previously refereed
to as spatial averaging). In a real mission, one can reasonably
conceive that up to 100 different positions (per epoch) could be
used, resulting in the best case into a relaxing of the specifica-
tion up to a factor 10 (the maximum gain is given by the square
root of the number of positions). However spatial averaging is
not desirable as a first approach to increase accuracy as it could
impose significant additional constraints on the instrument capa-
bilities, such as fast re-pointing, higher bandwidth or on-board
processing (e.g. to “shift and add” images) and could decrease
the overall instrument efficiency, by impacting the number of ob-
servable targets, or percentage of time spent collecting photons
versus doing maneuvers). The experiment was put into storage
in October 2015, but it is still functional and can be restarted if
interest arises, for example in the context of a mission phase A
study.
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Fig. A.1. Illustration of the deprojection problem.
−−−→
OM1 and

−−−→
OM2 are

the wave vectors normalized to a length of one pixel. The points P1 and
P2 represent the measured offsets (δp,1δp,1δp,1, δp,2δp,2δp,2), i.e. the projections of the
true pixel offset (point I), unto the lines generated by the wave vectors.
The axis units are in pixels. Simply summing the projected offsets gives
a wrong answer (point F).

Kx

Ky
Modulation direction

Uy
Ux

K

Fig. A.2. Definition of the wave vector. For a given metrology orienta-
tion, the wave vector is defined as K = (Kx(t),Ky(t)), for a plane wave
of the form: I(x, y, t) ∝ sin(xKx(t) + yKy(t) + φ(t)). The wave vector is
by definition perpendicular to the fringes and aligned with the modu-
lation direction, i.e. the apparent motion of the fringes when the phase
changes. The default distance unit is the pixel, so the magnitude of the
vector is |K| = 2π/λ, with lambda in pixel units.

Appendix A: Deprojection of pixel offsets

Figure A.1 illustrates the “deprojection” problem, the solution is
found by straightforward application of Euclidean geometry in
the detector plane. The definition of the wavevector in shown by
Fig. A.2).

The goal is to transform a set of two non-aligned projected
offsets into X,Y offset coordinates. Let (α1, α2) be the coeffi-
cients such that

−−−→
OP1 = α1

−−−→
OM1 and

−−−→
OP2 = α2

−−−→
OM2: they are

the offsets measured by the metrology. The wave vectors K1K1K1, K2K2K2
and the projections α1, α2 are known, we search the Cartesian
coordinates of the point I = (x, y) which by construction lies at
the intersection of lines (D1) and (D2) in Fig. A.1. One can not
use a simple base change: it would yield the coordinates of the
point F =

−−−→
OP1 +

−−−→
OP2, which has a different location than I if the

metrology baselines are not orthogonal.
Let the coordinates of the normalized wave vectors be

kx,1, ky,1, kx,2, ky,2, for respectively metrology cube 1 (first

baseline and corresponding orientation) and cube 2 (second
baseline and corresponding orientation). The direction vectors
of lines (D1) and (D2) are noted cx/y,1/2 and have trivial relations
with the wave vectors coordinates:

cx,1 = ky,1
cy,1 = −kx,1
cx,2 = ky,2
cy,2 = −kx,2.

(A.1)

The lines (D1) and (D2) are passing thought respectively P1 =
(dx,1, dy,1) and P2 = (dx,2, dy,2), of coordinates:

dx,1 = kx,1α1
dy,1 = ky,1α1
dx,2 = kx,2α2
dy,2 = ky,2α2.

(A.2)

The parametric equation of line (D1), passing thought P1, of di-
rection vector (cx,1, cy,1), is:{

x = cx,1t + dx,1
y = cy,1t + dy,1.

(A.3)

t is removed from the system above:{
cy,1x = cy,1cx,1t + cy,1dx,1
cx,1y = cx,1cy,1t + cx,1dy,1

⇒ cy,1x − cx,1y = cy,1dx,1 − cx,1dy,1.

The second line has the same equation, but with index 2. The
coordinates of the point P is at the lines intersection and thus
verifies the system:{

cy,1x − cx,1y = cy,1dx,1 − cx,1dy,1
cy,2x − cx,2y = cy,2dx,2 − cx,2dy,2.

(A.4)

In Eq. (A.4), by multiplying line 1 by cx,2 and line 2 by cx,1, we
find x:

⇒ x(cx,2cy,1 − cx,1cy,2) = cy,1cx,2dx,1 − cy,2cx,1dx,2 (A.5)

⇒ x =
cx,2cx,1dy,2 + cy,1cx,2dx,1 − cy,2cx,1dx,2 − cx,2cx,1dy,1

cx,2cy,1 − cx,1cy,2
·

(A.6)

The solution for y is analog (indexes 1 and 2 are switched). The
final solution is:

x =
cx,2cx,1dy,2 + cy,1cx,2dx,1 − cy,2cx,1dx,2 − cx,2cx,1dy,1

cx,2cy,1 − cx,1cy,2
(A.7)

y =
cx,1cx,2dy,1 + cy,2cx,1dx,2 − cy,1cx,2dx,1 − cx,1cx,2dy,2

cx,1cy,2 − cx,2cy,1
· (A.8)

Appendix B: Linear sine wave fit

In Eq. (6), the sine wave is rewritten as a sine + cosine functions.
To simplify formulas, we assume A = 1 and B = 1 (this does not
impact the generality of the result).

I(i, j, t) = ι(i, j) + α(i, j) sin
[
φ(t) + φ(i, j)

]
= ai, j sin(φ(t)) + bi, j cos(φ(t)) + ci, j. (B.1)

A least square minimization of the sum:

S i, j =

N−1∑
t=0

[
I(i, j, t) − ai, j sin(φ(t)) − bi, j cos(φ(t)) − ci, j

]2
. (B.2)
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yields the values for a, b and c from which α(i, j), φ(i, j) and
ι(i, j) are derived for each pixel.

For each pixel, we have introduced three coefficients
(a, b, c) ∈ R3. The equality is obtained when a, b, c verify:

a = α cos φi, j
b = α sin φi, j
c = ι.

(B.3)

For simplicity we have dropped most of the i, j indexes and have
rewritten the phases φ(i, j) = φi, j and φ(t) = φt. The system
above is equivalent to: α =

√
a2 + b2

φi, j = arctan2(b, a)
ι = c.

(B.4)

We fit the constants (a, b, c) by minimizing S, the sum of the
quadratic errors between the model and the data points: S =∑N−1

t=0 ((It) − (a sin(φt) + b cos(φt) + c))2. The minimum verifies:
∂S
∂c = 0
∂S
∂a = 0
∂S
∂b = 0

⇔


∑N−1

t=0 In − a sin(φt) − b cos(φt) − c = 0∑N−1
t=0 sin(φt)(In − a sin(φt) − b cos(φt) − c) = 0∑N−1
t=0 cos(φt)(In − a sin(φt) − b cos(φt) − c) = 0.

⇔

 1
∑t−1

t=0 sin(φt)
∑t−1

i=0 cos(φt)∑t−1
t=0 sin(φt)

∑t−1
i=0 sin2(φt)

∑n−1
i=0 cos(φt) sin(φt)∑t−1

t=0 cos(φt)
∑t−1

i=0 cos(φt) sin(φt)
∑n−1

i=0 cos2(φt)

 ×
ca
b

 .

=


∑n−1

t=0 In∑n−1
t=0 In sin(φt)∑n−1
t=0 In cos(φt)

 . (B.5)

Appendix C: Coherent and incoherent stray light

In the case of incoherent light, we have: S/N ∝ I0
I1

, where I0

is the light intensity from the source (direct path) and I1 is the
stray light intensity, that is after reflection(s) inside the vacuum
chamber or the baffle.

The stray light is a much more sensitive issue when the light
is coherent: consider the fringe pattern created by two beams
of respective intensities I0 and I1, the resulting intensity can be
written as:

I0 + I1 + 2
√

I0I1 cos(2πδ12(M)).

Here δ12(M) is the path-length difference between the beams 1
and 2 and the point M.

Mirror 
center

CCD

α

θ

12

s cos(θ-α) s

s cos(θ+α)

Central star

Bottom star

Top star

Fig. D.1. Illustration of the non-homogeneous projection effect.

In the case I0 � I1, where I0 is the main beam and I1 is
the stray light (the intensity, after (multiple) reflection(s), on the

CCD), we have: S/N ≈ I0

2
√

I0I1
= 1

2

√
I0
I1
. I0 is the intensity created

by the main beam and 2
√

I0I1 is the secondary fringe pattern
created by the stray light. This means that this kind of stray light
must be taken care off very minutely.

Appendix D: Scaling inhomogeneity caused
by 3D projection

The αθ inhomogeneity of scaling is illustrated by Fig. D.1, where
α and s are the separation between the stars (in respectively an-
gular and pixel units) and θ is the tilt with respect to the normal
configuration. s0 is a reference length (in pixels). When the CCD
is tilted from position 1 (normal) to position 2 (tilt = θ), the ef-
fective separations measured on the CCD are modified in the
following way:

– Between the top and central star, the effective separation stop
is scaled by:
γtop = 1/ cos(θ − α) ≈ 1 + θ2

2 − αθ + α2

2 .

– Between the bottom and central star, the effective separation
sbot is scaled by:
γbot = 1/ cos(θ + α) ≈ 1 + θ2

2 + αθ + α2

2 .

The non homogeneity of the scaling is thus given at the first or-
der by

∣∣∣sbot/stop
∣∣∣ ≈ 2αθ. There is a θ2

2 term affecting the whole
field uniformly, but the additional 2αθ term originating by the
star separation produces another non uniform scaling effect. In
the example above, the upper part of the CCD FoV undergoes a
slight differential scale up, and vice versa for the lower part.
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