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ABSTRACT

Context. Statistical analysis of the orbits of distant Kuiper belt objects (KBOs) has led to the suggestion that an additional planet
should reside in the solar system. According to recent models, the secular action of this body should cause orbital alignment of the
KBOs.
Aims. It was recently claimed that the KBOs affected by these dynamics are presumably trapped in mean-motion resonances with the
suspected planet. I reinvestigate here the secular model underlying this idea.
Methods. The original analysis was carried out by expanding and truncating the secular Hamiltonian. I show that this is inappropriate,
as the series expansion is not convergent. I present a study based on numerical computation of the Hamiltonian with no expansion.
Results. I show in phase-space diagrams the existence of apsidally anti-aligned, high eccentricity libration islands that were not
present in the original modelling, but match numerical simulations. These island were claimed to correspond to bodies trapped in
mean-motion resonances with the hypothetical planet and match the characteristics of the distant KBOs observed.
Conclusions. My main result is that regular secular dynamics can account for the anti-aligned particles itself as well as mean-motion
resonances. I also perform a semi-analytical study of resonant motion and show that some resonance are actually capable of producing
the same libration islands. I then discuss the relative importance of both mechanisms.

Key words. celestial mechanics – Kuiper belt: general – planets and satellites: dynamical evolution and stability

1. Introduction
The growing statistics about distant Kuiper belt objects (KBOs)
recently revived interest in the possible presence of an ad-
ditional distant planet (hereafter termed Planet 9 or P9)
in the solar system. This came out after the discovery of
2012 VP113, a large KBO with orbital parameters similar
to those of Sedna (Trujillo & Sheppard 2014). As noted by
de la Fuente Marcos & de la Fuente Marcos (2014), all such ob-
jects with large perihelia and eccentricities have arguments of
perihelia ω concentrating around 0. Even if the statistics is poor,
such a distribution is unlikely, as orbital precession induced by
the giant planets is expected to quickly randomize ω values.
This led de la Fuente Marcos & de la Fuente Marcos (2014) and
Trujillo & Sheppard (2014) to suggest that the perturbing action
of a distant super-Earth sized planet could help maintain this ap-
sidal clustering.

This issue was recently investigated in more detail by
Batygin & Brown (2016, hereafter B16). They first note that the
distant KBOs not only gather around ω = 318◦ ± 8◦, but that the
same applies to their longitudes of ascending nodes Ω, which
satisfy Ω = 113◦±13◦. As a consequence the orbits of all bodies
concerned are roughly aligned physically. Based on the idea that
this orbital confinement is due to the secular action of the sus-
pected P9, they develop a secular dynamical model to constrain
its parameters. They come to the conclusion that the planet that
best reproduces the observational data has mass m′ = 10 M⊕,
semi-major axis a′ = 700 au, and eccentricity e′ = 0.6.

Further constraints on this planet are hard to derive. Based on
the analysis of residuals in the orbital motion of Saturn recorded

by the Cassini spacecraft in the last decade, Fienga et al. (2016)
recently showed that the residuals are better explained by P9 if
we give it a current true anomaly around ∼120◦. This can indi-
cate a preferred region to try to detect this planet. Cowan et al.
(2016) claim that if it is large enough, P9 could be detected as a
30 mJy at 1 mm wavelength by existing cosmology experiments.

The purpose of this paper is to reinvestigate secular model
and conclusions of B16. More specifically, B16 first develop
a semi-analytical dynamical model of distant particles as sec-
ularly perturbed by the giant planets and hypothetical P9, and
show that if it is eccentric enough P9 can actually confine the
orbits in an apsidally aligned configuration with respect to itself.
Then they move to numerical simulations. They recover the ap-
sidally resonant islands noted in their semi-analytical study, but
note that the particles trapped there do not have high enough ec-
centricities to account for the population of distant KBOs under
consideration. Conversely, they notice the presence of new, high
eccentricity and anti-aligned libration islands in their numerical
work that did not appear in the semi-analytical work. They claim
that these anti-aligned particles are presumably trapped in mean-
motion resonances (MMRs) with P9, as resonant dynamics is not
taken into account in secular theory. They show that some parti-
cles in their numerical study exhibit resonant trapping.

This issue was further investigated by who found that the
orbital periods of the main distant KBOs present commensura-
bilities that could indicate resonant configurations with P9. Ac-
cording to Malhotra et al. (2016), Sedna is putatively trapped in
3:2 MMR with P9.
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I reinvestigate here the latter hypothesis. I show that the
semi-analytical analysis of B16 is inappropriate to the present
case. This is because of the assumed expansion of the secular
Hamiltonian that is not convergent. I thus perform a full numer-
ical computation of the secular Hamiltonian and show that anti-
aligned, high eccentricity libration islands that were not present
in the simplified analysis appear in the non-resonant phase-space
maps. Hence invoking resonant trapping might not be necessary.
I subsequently investigate the resonant dynamics in a similar
semi-analytical manner and show that various MMRs can ac-
tually also generate high eccentricity, anti-aligned librating par-
ticles as well, as suggested by B16. I discuss and compare the
relevance of both mechanisms.

2. Non-resonant secular dynamics
Consider a massless particle test orbiting the Sun, perturbed by
Planet 9. In the following, all applications are carried out with
the following parameters for P9: m′ = 10 M⊕, a′ = 700 au and
e′ = 0.6, as this appears to be the best model quoted by B16. As
long as MMRs are not concerned, the long-term behaviour of the
orbit of the particle is well described with the secular Hamilto-
nian, which is obtained by taking the time average of the instan-
taneous interaction Hamiltonian over both orbits independently,

Hsec = −
Gm′

4π2

∫ 2π

0

∫ 2π

0

(
1

|r − r′|
−

r · r′

r′3

)
dl dl′

−
1
4

GM
a

(
1 − e2

)−3/2
4∑

i = 1

mia2
i

Ma2 + $̇′
√

GMa
(
1 −
√

1 − e2
)
, (1)

where M is the mass of the Sun; r and r′ are the instantaneous
heliocentric radius vectors of the particle and of P9, respectively;
l and l′ are their mean anomalies; a is the semi-major axis of the
particle and e its eccentricity. See Appendix A for the derivation
of this expression. The last two terms account for the perturbing
action of the known giant planets on the particle and on P9. In the
second term, the sum extends over the four giant planets, each of
which have mass mi and semi-major axis ai; $̇′ is the precession
rate of perihelion of P9 caused by the same planets.

This Hamiltonian cannot be expressed in closed form
though. However, taking advantage of the fact that the orbit of
the particle lies inside the orbit of P9, the disturbing function can
be expanded in ascending powers of a/a′. The integral appearing
in Eq. (1) can be written as

−
Gm′

4π2

∫ 2π

0

∫ 2π

0

(
1

|r − r′|
−

r · r′

r′3

)
dl dl′ = −

Gm′

a′

+∞∑
k = 2

hk, (2)

where the hks are dimensionless coefficients that can be ex-
pressed in closed form (Laskar & Boué 2010). Each hk is propor-
tional to (a/a′)k. For coplanar orbits, they are also functions of e,
e′, and of ∆$ = $′−$ only, where $ and $′ are the longitudes
of periastron of the particle and of P9, respectively. Whenever
a < a′, the hks are generally assumed to decrease with increas-
ing order k, so that the expansion can be truncated to some finite
order n. The Hamiltonian given in Eq. (4) of B16 corresponds to
a truncation at n = 3 order (octupole approximation).

Two potential problems may arise with this approach if one
wants the truncated Hsec to accurately represent the actual dy-
namics of the particle. First, to ensure the validity of the sec-
ular model, the particle must not be trapped in any MMR and
must remain protected from close encounters. Beust et al. (2014)
showed however that even in the case of crossing orbits, secular
theory provides a relevant description of the dynamics as long

Table 1. Numerical values of hks for various values of orbital parame-
ters corresponding to configurations tested by B16.

a 450 au 450 au 150 au 150 au
e 0.1 0.6 0.1 0.6

h2 −0.046 0.311 2.27 × 10−2 3.45 × 10−2

h3 −0.046 −0.348 −1.70 × 10−3 −1.29 × 10−2

h4 0.189 0.690 2.33 × 10−3 8.52 × 10−3

h5 −0.105 −1.28 −4.32 × 10−4 −5.26 × 10−3

h10 1.15 55.0 1.94 × 10−5 9.32 × 10−4

h20 110.6 2.55 × 105 3.17 × 10−8 7.32 × 10−5

h50 7.35 × 108 1.33 × 1017 1.02 × 10−15 1.86 × 10−7

Notes. In all cases, I assume ∆$ = 0, a′ = 700 au and e′ = 0.6.

as a close encounter does not occur. Second, one must ensure
that the series expansion of the secular Hamiltonian is conver-
gent and that the truncation order is large enough to allow the
truncation to accurately approximate to the full sum.

Convergence of the series expansion is usually ensured for
small enough a/a′ ratio. In the configurations described in B16
with orbits that sometimes cross, this is far from obvious. Table 1
lists various numerical values of hks computed for different con-
figurations of the orbit of the particle. For configurations with
a = 150 au, the orbit of the particle lies well inside that of the
planet, whilst when a = 450 au, both orbits clearly cross. In the
former case, the hks rapidly decrease, ensuring convergence of
the expansion, but in the latter case it is obviously divergent.

An alternate way to avoid the expansion is to compute nu-
merically the double integral appearing in Eq. (1). The integral
is computed using Gauss-Legendre numerical quadrature with
70 × 70 points and taking special care of the regions where the
orbits cross. This technique was already applied to the semi-
analytic study of Fomalhaut b dynamics in Beust et al. (2014).
The result is shown in Fig. 1. This figure was built assuming the
same input conditions as Fig. 3 from B16, except that the latter
was computed assuming octupolar approximation. On each plot,
the red curve indicates the separation between regions where
both orbits actually cross and regions where they do not.

Although the general shape of the various phase portraits
agree in both cases, there are nevertheless striking differences.
In all situations, libration islands around ∆$ = 0◦ (i.e. apsidal
alignment) appear, but for large a, they are systematically nar-
rower and centred around a secular equilibrium located at lower
eccentricity than in the octupolar approximation. Moreover, for
a ≥ 250 au, new libration islands appear around ∆$ = 180◦
(i.e. anti-alignment) at high eccentricity. These are not present in
Fig. 3 from B16.

My phase portraits appear to match the results of the numer-
ical exploration of B16 (their Fig. 4) much more closely than
their original maps. The apsidally aligned libration islands now
appear at the right eccentricity with corresponding widths. More-
over, the anti-aligned libration islands reported by B16 in their
numerical exploration exactly match those I obtain in my phase
portaits. These anti-aligned librating particles are of prime im-
portance in the discussion by B16, as they suggest that the apsi-
dally confined distant KBOs could be trapped in this dynamical
state.

The authors of B16 claimed that the particles exhibiting this
behaviour in their numerical exploration were actually trapped
in a MMR with the perturbing planet. Resonant dynamics in in-
deed not described by the secular theory, irrespective of whether
the Hamiltonian is truncated or not. Indeed, in their simulations,
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Fig. 1. Phase portraits of untruncated, secular averaged Hamiltonian (1) in (∆$, e) space, computed in the same conditions as B16, i.e. assuming
parameters m′ = 10 M⊕, a′ = 700 au and e′ = 0.6 for P9. Plots are drawn for various semi-major axis values listed on top of the panels. On
each plot, the red curve separates regions where both orbits cross from regions where they do not. In the a = 50 au case, the orbits never cross;
for a = 150 au and a = 250 au, the orbits cross in the regions located above the red curves around ∆$ = 180◦; for a = 350 au, a = 450 au and
a = 550 au, the orbits cross in most configurations, except above the red curves centred around ∆$ = 0◦ where both orbits remain nested.

B16 show some particles that appear to be trapped in MMRs, at
least temporarily. Whilst there is no doubt about the reality of
resonant behaviours, I claim here that secular dynamics is able
to generate the anti-aligned, high eccentricity librating particles
that B16 find in their numerical exploration as well.

3. Resonant dynamics
In this section, I explore, in a similar semi-analytic way, the
dynamics of particles trapped in (p + q : p) MMR with P9
(p and q are integers) and perturbed by the giant planets,
as detailed above. Appendix B describes the way the secu-
lar resonant Hamiltonian is obtained. This derivation proceeds
through the introduction of the critical argument of the resonance
σ = ((p + q)/p) λ′ − (p/q) λ −$, where λ and λ′ are the mean
longitudes of the particle and of P9, respectively. As before, I
treat the interaction with the known planet in a secular way. Af-
ter some algebra (see Appendix B), the instantaneous resonant
Hamiltonian can be written as

Hres = −
GM
2a
−Gm′

(
1

|r − r′|
−

r · r′

r′3

)
−

p + q
p

n′
√

aGM

−
1
4

GM
a(1 − e2)3/2

4∑
i = 1

mia2
i

Ma2 + $̇′
√

aGM
(

p + q
p
−
√

1 − e2

)
, (3)

where n′ = dλ′/dt is the mean angular velocity of P9. As a re-
sult of the resonant configuration, the Hamiltonian cannot be av-
eraged over both orbital motions independently, but the critial

angle σ is a slow varying variable. Hres can then be averaged
for fixed σ over the orbital motion of P9. This leaves an au-
tonomous two degrees of freedom Hamiltonian describing the
resonant motion.

When e′ = 0, the resulting Hamiltonian does not depend on
∆$. In that case, the conjugate action to ∆$

N =
√

aGM
(
√

1 − e2 −
p + q

p

)
, (4)

is a constant of motion and the planar problem becomes in-
tegrable (Moons & Morbidelli 1995). The resonant motion is
characterized by libration of σ around a secular equilibrium,
combined with eccentricity and semi-major axis oscillations,
but the orbit of P9 is eccentric. It can nevertheless be shown
(Morbidelli & Moons 1993) that the motion is still characterized
by coupled libations of σ, a, and e. The action N is no longer a
constant and its value is subject to changes on a longer timescale.
This slower drift of N can drive the particle towards high eccen-
tricity regime.

The slower drift of N is characterized by the preservation of
a new action J (Morbidelli & Moons 1993; Henrard 1990) that
is related to the amplitude of the σ libration. A good way to
investigate the dynamics is then to consider negligible libration
amplitude orbits. The preservation of J ensures that an orbit with
small initial libration amplitude maintains this amplitude during
the N-drift process. For such orbits, the semi-major axis remains
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Fig. 2. Phase portraits of resonant Hamiltonian (3) in (∆$, e) space after averaging over the orbital motion of P9, for particles with zero resonant
amplitude libration (see text), with the same input parameters in Fig. 1. Each map corresponds to a specific MMR that is specified on top of the
plot together with the corresponding semi-major axis value. The red curve has the same meaning as in Fig. 1.

unchanged. After averaging, the resonant Hamiltonian (3) re-
duces thus to one degree of freedom so that phase portraits can be
drawn. This technique was first used by Yoshikawa (1989) to ex-
plore the dynamics of inner resonances with Jupiter and, further-
more, by Beust & Morbidelli (1996) to study dynamical routes
that may generate star-grazing comets in the β Pictoris system.

I present in Fig. 2 phase portraits for a selection of MMRs,
which are all computed still assuming the same parameters for
P9, except that I have set the semi-major axis of P9 to 665 au
instead of 700 au. This makes the 3:2 MMR fall at a = 507 au,
the semi-major axis value quoted by Malhotra et al. (2016) for
Sedna, who suggest indeed that Sedna could be trapped in that
MMR with P9. I have tested many more MMRs. Those pre-
sented here were selected because they fall in the suitable range
of semi-major axis, and because they present anti-aligned libra-
tion islands at high eccentricity. Some other resonances, such as
9:5, 8:5, and 7:5 also present similar libration islands. Particles
trapped in these MMRs evolving in the quoted anti-aligned is-
lands could well match the particles depicted by B16 in their
simulations.

4. Discussion
The high eccentricity, anti-aligned librating particles quoted by
B16 as representative for the distant KBOs in relationship with
the hypothetical P9 could well correspond to bodies trapped
in some of the MMRs listed above. They could also be non-
resonant particles, however, subject to regular secular dynam-
ics as shown in Fig. 1. It is difficult to state which process is
dominant. Contrary to resonances, non-resonant configurations
have the advantage that they are not confined to specific semi-
major axis locations with respect to P9. They may therefore con-
cern many more particles. However, the particles in the anti-
aligned libration islands move on orbits that cross that of P9.
They are thus subject to possible ejection via close encounters,
but this may occur after a long time. Numerical simulations by
Beust et al. (2014) applied to the case of Fomalhaut showed that
particles moving on orbits that cross that of an eccentric ∼10 M⊕
planet may survive hundreds of Myrs before they are ejected.
The planet considered in the Fomalhaut simulations had an or-
bital period of 1000 yr. With a′ = 700 au, the hypothetical P9
has a similar mass, but a period of 15 000 yr. The survival time
of any particle crossing its orbit should thus scale similarly and
could be comparable to the age of the solar system.

Figure 1 also shows aligned libration islands (∆$ = 0)
next to anti-aligned libration islands. Bodies trapped in these
islands are potentially longer-lived than anti-aligned bodies,
as they move in non-crossing regions of phase-space (see the
red curves in Fig. 1). However, as pointed out by B16, these
islands are located too low in eccentricity to match the ob-
served distant KBOs. Nonetheless, if P9 is real, numerous bodies
should be present in these islands, but these are beyond observ-
ing capabilities.

Conversely, as suggested by B16, the survival of resonant
particles despite crossing orbits is facilitated by the phase pro-
tection mechanism. More specifically, the confinement of the
critical angle σ around an equibrium position prevents the par-
ticle from encountering the planet at the time it crosses its or-
bit (Morbidelli & Moons 1993; Moons & Morbidelli 1995). In
some cases, however, this situation may not last forever. Ow-
ing to perturbations by other planets, particles can have large
libration amplitudes and be extracted from resonances. Indeed,
B16 note this in their simulations particles exhibiting temporary
resonant trapping.

It turns out that any of the two mechanisms outlined here
has its own advantages and disadvantages. It is difficult to state
which of these is dominant because it should depend on the spe-
cific configuration. The constraints on the hypothetical P9 are
still too weak to conclude, but I stress here that the anti-aligned
librating particles quoted by B16 are not necessarily resonant,
but could reside there thanks to regular secular dynamics as well.
Hopefully, a better statistics on distant KBOs will help refine this
analysis in the next future.
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Appendix A: The non-resonant secular Hamiltonian

I describe here the averaging and expansion process of the non-
resonant secular Hamiltonian. In the framework of the restricted
three-body problem, the instantaneous interaction Hamiltonian
between the particle and P9 reads

H = −
GM
2a
−Gm′

(
1

|r − r′|
−

r · r′

r′3

)
, (A.1)

where M is the mass of the Sun, a is the semi-major axis of
the particle, and r and r′ are the heliocentric radius vectors of
the particle and of P9, respectively. The secular Hamiltonian is
obtained taking the time average of H over both orbits indepen-
dently. This reads

Hsec,0 = −
GM
2a
−

Gm′

4π2

∫ 2π

0

∫ 2π

0

(
1

|r − r′|
−

r · r′

r′3

)
dl dl′, (A.2)

where l and l′ are the mean anomalies of the particle and P9,
respectively. I note that a is now a secular invariant. This a con-
sequence of the averaging process, as the secular Hamiltonian
does not depend of the mean longitudes.

Then, as explained by B16, terms must be added to Hsec,0 to
account for the perturbing action of the giant planets. I first add
the direct term, so that we have now

Hsec,1 = Hsec,0 −
1
4

GM
a

(
1 − e2

)−3/2
4∑

i = 1

mia2
i

Ma2 · (A.3)

This Hamiltonian is implicitly expressed as a function of the
canonically conjugate planar Delaunay orbital elements of the
particle, namely

Q =

(
λ
$

)
P =

√aGM
√

aGM
(√

1 − e2 − 1
)
≡ Φ

 . (A.4)

As the semi-major axis is a secular invariant, Hsec,1 reduces to
one degree of freedom with ($,Φ) as conjugate variable. The
constant Keplerian term −GM/2a can also be removed from it.
Nevertheless, Hsec,1 is time dependent as $′ is not constant. I
thus perform a canonical transformation, changing $ to ∆$. To
do this, I use the generating function S = −Φ$ = −Φ(∆$+$′).
The new momentum conjugate to ∆$ is still Φ, and the new
autonomous Hamiltonian reads

Hsec = Hsec,1 +
∂S
∂t

= Hsec,1 + Φ$̇′, (A.5)

which is Eq. (1) from the text.
Unfortunately, the above expression cannot be computed in

closed form, so that to get a closed form expression, expansion
of the disturbing function is required before averaging. If the
orbit of the particle lies inside the orbit of P9 (which is the situ-
ation supposed here), then the instantaneous Hamiltonian can be
expanded using Legendre polynomials Pk (k ≥ 0),

H = −
GM
2a
−

Gm′

r′

1 +

+∞∑
k=2

( r
r′

)k
Pk(cos β)

 , (A.6)

where β is the angle between radius vectors r and r′. Each term
of the sum can then be averaged over both orbital motions inde-
pendently. The result reads

Hsec,2 = −
1
4

GM
a

(
1 − e2

)−3/2
4∑

i=1

mia2
i

Ma2

+ Φ$̇′ −
Gm′

a′

1 +

+∞∑
k=2

hk

 , (A.7)

where

hk =
1

4π2

∫ 2π

0

∫ 2π

0

( r
a

)k
(

r′

a′

)−k−1

Pk(cos β) dl dl′. (A.8)

Each hk is proportional to (a/a′)k and can be expressed in closed
form as a function of the orbital elements of both orbits with
growing complexity, making use of so-called Hansen coeffi-
cients. Details about this process are given in Laskar & Boué
(2010) with explicit expressions of the hks up to k = 10. In the
case of coplanar orbits, apart from being proportional to (a/a′)k,
the hks are function of e, e′, and of ∆$ = $′ −$ only, where $
and $′ are the longitudes of periastron of the particle and of P9,
respectively. As an example, the first hks read

h2 =
1
4

( a
a′

)2 (3/2)e2 + 1
(1 − e′2)3/2 , (A.9)

h3 = −
3
16

( a
a′

)3
e e′

(15/4)e2 + 5
(1 − e′2)5/2 cos (∆$) , (A.10)

h4 =

( a
a′

)4 1
(1 − e′2)7/2

[
15

256

(
21
2

e2 + 1
)

e2 e′2 cos (2∆$)

+
9
64

(
15
8

e4 + 5e2 + 1
) (

1 +
3
2

e′2
)]
. (A.11)

Appendix B: The resonant secular Hamiltonian
I consider now a situation where the particle is trapped in
(p + q : p) MMR with P9 and perturbed by the giant planets. As
above I treat the interaction with the giant planet in a secular
way, so that my starting instantaneous Hamiltonian reads

Hres,0 = −
1
4

GM
a

(
1 − e2

)−3/2
4∑

i=1

mia2
i

Ma2

−
GM
2a
−Gm′

(
1

|r − r′|
−

r · r′

r′3

)
, (B.1)

This Hamiltonian is still implicitly expressed as a function of
the Delaunay elements (A.4), but now it does not immediately
reduce to one degree of freedom. Owing to the resonance, the
semi-major axis can indeed have secular variations. Hres,0 cannot
thus be averaged over both orbits independently. I introduce now
the critical argument of the resonance

σ =
p + q

p
λ′ −

p
q
λ −$, (B.2)

and the new coordinate vector Q1 = (σ,∆$). I have Q1 = AQ +
B(t), where

A =

(
−p/q −1
0 1

)
and B(t) =

(
−(p + q)/q λ′
−$′

)
. (B.3)

Considering now the generating function S (P,Q1) = −tPQ =
−tPA−1(Q1 − B(t)), I perform a canonical transformation with
Q1 as new coordinate vector, and P1 = tA−1P as new momenta
vector,

Q1 =

(
σ
∆$

)
P1 =

−(q/p)
√

aGM
√

aGM
(√

1 − e2 − (p + q)/p
)  . (B.4)

The new Hamiltonian then reads

Hres = Hres,0 +
∂S
∂t

= H0 −
tPA−1 ∂B

∂t
= Hres,0 −

tP1
∂B
∂t

= Hres,0+$̇′
√

aGM
(

p + q
p
−
√

1 − e2

)
−

p + q
p

n′
√

aGM, (B.5)

where n′ = dλ′/dt is the mean angular velocity of the perturbing
planet. This corresponds to Eq. (3) from the text.
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