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ABSTRACT

Context. Recent observations have revealed organised structures in protoplanetary discs, such as axisymmetric rings or horseshoe
concentrations, evocative of large-scale vortices. These structures are often interpreted as the result of planet-disc interactions. How-
ever, these discs are also known to be unstable to the magneto-rotational instability (MRI) which is believed to be one of the dominant
angular momentum transport mechanism in these objects. It is therefore natural to ask whether the MRI itself could produce these
structures without invoking planets.
Aims. The nonlinear evolution of the MRI is strongly affected by the low ionisation fraction in protoplanetary discs. The Hall effect in
particular, which is dominant in dense and weakly ionised parts of these objects, has been shown to spontaneously drive self-organising
flows in local, shearing box simulations. Here, we investigate the behaviour of global MRI-unstable disc models dominated by the
Hall effect and characterise their dynamics.
Methods. We validated our implementation of the Hall effect into the PLUTO code with predictions from a spectral method in
cylindrical geometry. We then performed 3D unstratified Hall-MHD simulations of Keplerian discs for a broad range of Hall, Ohmic,
and ambipolar Elsasser numbers.
Results. We confirm the transition from a turbulent to an organised state as the intensity of the Hall effect is increased. We observe
the formation of zonal flows, their number depending on the available magnetic flux and on the intensity of the Hall effect. For
intermediate Hall intensity, the flow self-organises into long-lived magnetised vortices. Neither the addition of a toroidal field nor
Ohmic or ambipolar diffusion change this picture drastically in the range of parameters we have explored.
Conclusions. Self-organisation by the Hall effect is a robust phenomenon in global non-stratified simulations. It is able to quench
turbulent transport and spontaneously produce axisymmetric rings or sustained vortices. The ability of these structures to trap dust
particles in this configuration is demonstrated. We conclude that Hall-MRI driven organisation is a plausible scenario that could
explain some of the structures found in recent observations.
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1. Introduction

Protoplanetary discs are the birthplace of planets. There are
now many observations available, from millimetre wavelengths
(Brogan et al. 2015) to the infrared (Benisty et al. 2015). Sur-
prisingly, these observations indicate that protoplanetary discs
have complex internal structures, with features like spiral
arms (Muto et al. 2012; Benisty et al. 2015), asymmetric traps
(van der Marel et al. 2013) and rings (Brogan et al. 2015).

The origin of these structures is largely unknown. Most of the
theoretical models developed to date involve at least one planet
carving a gap (van der Marel et al. 2013; Dipierro et al. 2015)
or exciting spiral density waves (Benisty et al. 2015). For this
reason, structures are usually seen as a consequence of planet
formation. However, the presence of Jupiter mass planets in
very young discs such as HL Tau is questionable since it im-
plies a very fast formation scenario. It is therefore natural to
ask whether these structures could appear without planets and
even be one of the driving mechanisms behind planet forma-
tion. To answer this question, one has to focus on the dynam-
ics of a planet-free disc, a long-standing problem in theoretical
astrophysics.

Accretion discs are believed to be subject to the magne-
torotational instability (MRI), a magnetohydrodynamic (MHD)
instability appearing spontaneously in magnetised discs in
Keplerian rotation (Balbus & Hawley 1991). The relevance of
this instability in the context of protoplanetary disc is, however,
being debated (Turner et al. 2014). In particular, these objects
are so cold that they cannot maintain a high ionisation fraction
(Gammie 1996). This has led to the concept of magnetically
“dead” zones where the ionisation fraction of the disc is so low
that the standard MHD approach breaks down and the MRI po-
tentially vanishes.

A strong effort has recently been devoted to the study of these
weakly ionised regions, typically located at radii larger than
one astronomical unit (au), and they are precisely the regions
we are now capable of resolving observationally. It has been
shown that in this regime, three “non-ideal” effects have to be
taken into account in the MHD framework (Balbus & Terquem
2001; Kunz & Balbus 2004): Ohmic diffusion, ambipolar dif-
fusion, and the Hall drift. It is well known that both Ohmic
and ambipolar diffusion act to damp and potentially eliminate
the MRI by decoupling the flow from magnetic field lines
(Blaes & Balbus 1994; Jin 1996; Papaloizou & Terquem 1997),
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hence the historical denomination of dead zones. On the other
hand, the Hall effect leads to new branches of instabilities
(Wardle 1999; Balbus & Terquem 2001; Kunz 2008) because of
its dispersive nature.

The saturation of the MRI and the outcome of a disc sub-
ject to these non-ideal effects is still the subject of intense de-
bate. Stratified models including Ohmic and ambipolar diffusion
only have shown that the disc could become essentially laminar
(i.e. not turbulent) in the midplane, with a strong magnetically
driven jet at the disc surface (Bai & Stone 2013; Simon et al.
2013; Gressel et al. 2015). For radii1 between 1 and 10 au (where
Hall effect dominates diffusive processes) a large-scale midplane
stress is found by adding the Hall effect, with a strong field polar-
ity dependence and no turbulence (Lesur et al. 2014; Bai 2014),
whereas the outer disc is found to be essentially insensitive to the
Hall effect (Bai 2015), though some polarity dependence could
persist (Simon et al. 2015).

The results of Lesur et al. (2014) and Bai (2014) and, in par-
ticular, the presence of a large-scale “laminar” stress are both
important and potentially problematic results. In effect, these
simulations were done in the stratified shearing box framework
(Hawley et al. 1995) with a very limited radial extension (typ-
ically a few scale heights), so the Lesur et al. (2014) and Bai
(2014) results indicate that the MRI is indeed active in these
simulations, but it tends to produce structures that are larger
than the simulation box. As a matter of fact, unstratified shearing
box models have already indicated that the Hall-dominated MRI
is prone to produce large-scale structures, such as zonal fields
and flows (Kunz & Lesur 2013, hereafter KL13) in wide enough
boxes. All of these elements tend to point toward the fact that
the Hall effect could be an efficient mechanism for triggering
self-organisation in protoplanetary discs.

In this paper, we explore this hypothesis using full 3D cylin-
drical models of accretion discs dominated by the Hall effect.
Our aim is not to reproduce the exact structure of a disc with
its detailed ionisation equilibrium but to test the hypothesis of
self-organisation in a global model, free of the artefacts found
in local, i.e. shearing-box simulations. We start by describing
the physical framework in detail and giving and some remark-
able facts concerning Hall dynamics. We then depict our numer-
ical model and present the tests performed to validate it along
with a reproduction and discussion of the multifluid models of
O’Keeffe & Downes (2014). Next, we move to the core of the
paper with the presentation and characterisation of several Hall-
dominated models, putting emphasis on the physical mecha-
nisms driving self-organisation. We then explore some potential
treats to these mechanisms such as diffusive effects and more
complex field configurations. We conclude by discussing the link
between these results and recent observations along with exten-
sions of this work to more realistic numerical setups.

2. Framework

2.1. Physical model

We want to model a thin disc of partially ionised gas orbiting
a central mass and threaded by a weak magnetic field. On the
scales considered, our problem fits in the non-ideal magnetohy-
drodynamic (MHD) framework. In this attempt to study the Hall

1 These radii have been computed assuming a minimum mass solar
nebula (MMSN, Hayashi 1981) for the disc density and temperature
structure. Real discs are likely to deviate significantly from this model,
so these radii should be taken with care when comparing to specific
astrophysical objects.

effect in global disc simulations, we wish to concentrate on the
midplane dynamics, thereby neglecting vertical stratification ef-
fects. Using cylindrical coordinates (r, ϕ, z), we take the gravita-
tional force as being oriented radially and assume periodicity in
the vertical direction on a scale h. Radial stratification is elimi-
nated by using an isothermal disc model with a flat density dis-
tribution and by taking the initial magnetic field to be constant
and uniformly vertical over the whole domain.

The relevant equations for our model are those of inviscid,
compressible non-ideal MHD. We denote by ρ the bulk density, u
the bulk velocity, P = c2

sρ the pressure with an isothermal sound
speed cs, and J = ∇ × B the electric current deduced from the
magnetic field B =| B | eb. Gravity is oriented along the cylindri-
cal radius as g = −(1/r2)er. The three relevant non-ideal MHD
effects, namely Ohmic dissipation, the Hall effect, and ambipo-
lar diffusion, are characterised by their diffusivities ηO, ηH, and
ηA, respectively (e.g. Wardle 2007). With these definitions, the
dynamical equations read as

∂tρ = −∇ ·
[
ρu

]
, (1)

∂t
[
ρu

]
= −∇ ·

[
ρu ⊗ u

]
− ∇P + J × B + ρg, (2)

∂t B = ∇ ×
[
u × B − ηO J − ηH J × eb + ηA J × eb × eb

]
. (3)

To characterise the intensity of the Hall induction term, we use
the Alfvén velocity uA = B/

√
ρ and introduce the dimensionless

parameter

L ≡ `H/h (4)

ratio of the Hall length `H ≡ ηH/vA as defined in KL13 and
the geometric scale height of the disc. The Hall length is very
convenient since it only depends on the microphysical properties
of the plasma and not on the field strength. In a plasma made of
electrons, singly charged ions and neutrals, the Hall length is
given by

`H =

(
c2mi

4πe2ne

)1/2(
ρ

ρi

)1/2

(5)

= 0.14
(

ρ

10−9 g cm−3

)−1/2(
ξ

10−12

)−1

au, (6)

where mi is the ion mass, ne the electron number density, and ρi is
the ion density. The numerical value has been obtained assuming
a plasma made of electrons, heavy ions, and neutral molecules
(mean molecular mass µ = 2.34 mH) with an ionisation frac-
tion ξ. The precise calculation of the Hall length involves solv-
ing a complex chemical network and depends on the presence
and size distribution of grains, which is beyond the scope of this
paper. We note, however, that typical values for L range from
L ∼ 100 at 5 au down to L ∼ 10−2 at 100 au for 1 µm size
grains (e.g. Simon et al. 2015), smaller grains leading to higher
values of L. Because the Hall effect is a dispersive term, it in-
duces a strong Courant-Friedrichs-Lewy (CFL) constraint on the
timestep of our explicit scheme. For this reason, we restrict our-
selves to simulations with L ≤ 10 to keep computation times
within reasonable bounds.

Most of our simulations neglect Ohmic and ambipolar dif-
fusion to focus on Hall-MHD. We do, however, briefly explore
the impact of these diffusion terms on our results in Sect. 6. It is
customary to quantify the importance of diffusion terms via the
Lundquist and Elsasser numbers defined by

SO,A ≡
vAh
ηO,A

, ΛO,A ≡
v2

A

ηO,AΩ
, (7)
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respectively, where the index stands for Ohmic or ambipolar dif-
fusion. When setting the value of these parameters, it will be
with respect to the initial Alfvén velocity B0/

√
ρ0.

We wish to exclude most stratification effects. Since we do
not solve for the chemistry of the disc, fixing a constant `H gives
a natural extension of the local simulations of KL13. We choose
to set ηO constant so that SO describes a disc that is either en-
tirely stable or unstable to the MRI (Jin 1996). Most previous
studies on ambipolar diffusion were conducted at a given ΛA, but
with a constant Alfvén velocity, this corresponds to a disc that
is gradually stabilised by the diffusivity ηA ∝ r3/2. We choose
instead to use a constant ion-neutral coupling time τA so that
ηA(r, t) = τAvA(r, t)2 everywhere and at all times. With an ini-
tially constant Alfvén velocity, the initial SA,0 = h/τAvA,0 is con-
stant, too, making the disc entirely unstable and facilitating com-
parison with the Ohmic case.

2.2. Simplified model of Hall dynamics

We point out some properties derived from the dynamical Eq. (3)
here and refer the reader to the Sect. 4 of KL13 for a discussion
about the following model.

After we discard the ambipolar and Ohmic terms, and assum-
ing a constant Hall length, the induction equation of Hall MHD
reads as

∂t B = ∇ × [u × B − `H J × B]
= ∇ × [u × B] − `H∇ × [∇ · (B ⊗ B)] . (8)

For illustrative purposes we use the shearing box model to re-
move curvature terms; we can then average over the periodic ver-
tical and azimuthal directions and obtain the simplified equation

∂t 〈Bz〉yz =
〈
∇ × [u × B]z

〉
− `H

〈
∇ × [∇ · (B ⊗ B)]z

〉
' ηt

∂2

∂x2 〈Bz〉 − `H
∂

∂x2

〈
BxBy

〉
(9)

where we approximated the ideal MHD term by a turbulent re-
sistivity (Lesur & Longaretti 2009). This expression shows that
in the presence of the Hall effect, the horizontal Maxwell stress
appears explicitly in the induction equation. Since this compo-
nent of the stress also drives the transport of angular momentum
(Balbus & Papaloizou 1999), this expression implies a tight con-
nection between the transport of angular momentum and that of
vertical magnetic flux tubes. These relations will prove useful in
understanding our results.

2.3. Linear stability

We recall that in Hall MHD, differentially rotating flows embed-
ded in a magnetic field can be subject to the Hall-shear instabil-
ity (HSI), different in essence from the magneto-rotational insta-
bility (Kunz 2008). Indeed, angular-momentum conservation is
central to the MRI mechanism, whereas the HSI only relies on
electric currents and needs not disturb the bulk of the flow. One
other fundamental difference is the dependence of the HSI on the
orientation of the magnetic field with respect to the rotation axis.
In the case favorable to instability (Ω · B > 0), it can be shown
(Simon et al. 2015) that the HSI develops when the local shear
frequency is higher than the whistler frequency at the considered
wavenumber k, that is,

qΩ ≥ `HvAk2 (10)

with q ≡ | dlog Ω/dlog r | = 3/2 in our non-stratified Keplerian
case. Given a constant `H, we see that the flow will be Hall-shear

stable for all wave numbers down to the minimal k0 = 2π/h for
Alfvén velocities above the critical value

vA,crit ≡
3Ω0h2

8π2`H

(
r
r0

)−3/2

· (11)

2.4. Diagnostics

We use brackets to denote space averaging, with subscript indi-
cating the coordinate over which a function is integrated:

〈 f 〉z ≡
1
h

∫ h/2

z =−h/2
f dz, (12)

〈 f 〉rϕ ≡
2

(r2
out − r2

in)∆ϕ

∫ rout

r = rin

∫ ∆ϕ

ϕ=0
f r dϕ dr, (13)

where rin and rout delimit the active computational domain, and
∆ϕ is the angular extent of the disc. Subscripts will be omitted
when obvious from the context. We use an overline for the time
averaging of an already volume-averaged quantity:

f ≡
1
T

∫ t0+T

t = t0
〈 f 〉 dt. (14)

As a characterisation of the spatial coherence of the flow, we use
the auto-correlation function

Ay,z[ f ](x) ≡

∫
f (t, y, z) f (t + x, y, z) dt∫

f (t, y, z)2 dt
(15)

and define a normalised correlation factor

Cz[ f ](r, ϕ) ≡
1
h

∫ h/2

z =−h/2
Ar,ϕ[ f ](z) dz (16)

equal to unity where the correlation length is equal to the height
h. We also use Cϕ[ f ](r, z) defined by substituting ϕ and z and
replacing h by the angular extent ∆ϕ.

Following Balbus & Papaloizou (1999), the turbulent Reyn-
olds stress tensor is defined with the velocity fluctuations about
the density-weighted averaged flow: R ≡ ρũ ⊗ ũ where ũ =
u − 〈ρu〉ϕz/〈ρ〉ϕz. The Maxwell stress tensor is simply defined
as M ≡ −B ⊗ B. We introduce two dimensionless measures
of turbulent stress, and the first one is the usual α parameter of
Shakura & Sunyaev (1973):

αSS ≡
Rrϕ +Mrϕ

ρc2
s

· (17)

Since we work in a cylindrical setup, an alternative definition for
α is possible using Ω and the characteristic length h. We thus
define

αR ≡
Rrϕ

ρΩ2h2 , αM ≡
Mrϕ

ρΩ2h2 , α ≡ αR + αM. (18)

It should be emphasised again that in a disc in true hydrostatic
equilibrium, c2

s = Ω2h2, so that αSS = α. In a cylindrical sys-
tem such as ours, this equality does not hold anymore, and one
has to pick Eq. (17) or (18). In the following, we use Eq. (18) as
our main diagnostic since the fluctuations are essentially incom-
pressible, making the sound speed less relevant physically than
the geometrical velocity Ωh.
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2.5. Units

We take the inner radius r0 and the Keplerian velocity at the inner
radius v0 as distance and velocity units, resulting in a natural fre-
quency unit Ω0 ≡ v0/r0. Time is expressed relative to the orbital
period at the inner radius T0 ≡ 2π/Ω0 and density relative to the
initial constant density ρ0. Magnetic field strength is expressed
as an Alfvén velocity B/

√
ρ0, and the initial vertical magnetic

field is always denoted B0. We also use the initial thermal pres-
sure P0 ≡ ρ0c2

s .

3. Method and validation

3.1. Description

3.1.1. Numerical scheme

The dynamical Eqs. (1)−(3) are explicitly integrated in time
with a modified version of the finite volume code PLUTO
(Mignone et al. 2007) in 3D cylindrical geometry. The mag-
netic field is evolved with the constrained transport method
(Evans & Hawley 1988), preserving ∇ · B = 0 to machine
precision.

Our implementation of the Hall effect is the same as what
is described in Appendix A of Lesur et al. (2014): the Hall in-
duction flux is incorporated in a conservative manner within a
modified HLL Riemann solver. Since the Hall effect introduces
dispersive waves, the whistler speed required when computing
Godunov fluxes is truncated on the grid scale in the direction
under consideration. The face-centred electric currents must be
provided to this solver as an external parameter. These are com-
puted by finite difference of either the volume-averaged or the
face-centred magnetic field of neighbouring cells, according to
the cylindrical expression for the curl operator.

We use a second-order accurate Runge-Kutta time-
integration scheme, a piecewise linear space reconstruction of
the fields within each cell, and the Van Leer slope limiter. The
FARGO module (Mignone et al. 2012) is employed to substan-
tially increase the initial timesteps and reduce the numerical dif-
fusivity due to the advection by the mean Keplerian flow.

3.1.2. Grid and boundary conditions

Our computational domain is cylindrical, truncated in the az-
imuthal direction to quarter discs ∆ϕ = π/2 for all runs ex-
cept one 2π full disc, saving computational time while reveal-
ing global effects already. The ratio of the cylinder height h to
its inner radius r0 is fixed to 1/4 for all simulations, consistently
with our thin disc assumption. We set the outer radius at 5r0,
giving an aspect ratio of 16. The sound speed is fixed to 10% of
the Keplerian velocity at the inner radius, so that our geometri-
cal scale height h resembles the hydrostatic pressure scale height
cs/Ω in the computational domain, which is equal at r ' 1.8r0.
This domain is meshed with 32 grid cells in the vertical direc-
tion, 512 uniformly distributed cells in the radial and azimuthal
directions (2048 azimuthal cells for the 2π run), giving a square
mesh in the (r, z) plane and an almost cubic grid at r ≈ 2.5r0.

All runs are initialised with a density ρ = ρ0 on the whole
domain, a Keplerian azimuthal velocity field vϕ = r−1/2, and uni-
form Bz = B0. The vertical and azimuthal boundary conditions
are periodic. Special care was taken with the radial boundary
conditions, for they can drastically affect the physics in the com-
putational domain. The same type of conditions is imposed at
the two radial boundaries. Unless otherwise stated, they are as
follows: the radial and vertical velocities vanish as do the radial

derivative of the density; the azimuthal velocity is set to its initial
Keplerian value; the azimuthal component of the magnetic field
is forced to zero; the vertical component is set to B0; the radial
component follows from the divergence free condition.

Boundary conditions alone allow the development of large-
scale quasi-steady spiral waves within the domain in a purely
hydrodynamical setup. These undesirable effects appeared for
a variety of boundary conditions, so we chose to add damping
buffer zones to smooth the transition from the active domain to
the boundaries and smooth these structures out. The buffers span
a radial extent h from both radial boundaries, where all hydrody-
namical fields are linearly relaxed over time. They are excluded
from all subsequent space averagings.

In the half of the buffer closest to the boundary, all velocity
components are brought back to their initial value with an expo-
nential relaxation of u 7→ u − S 1(r)(u − u0)δt/τ, with a character-
istic time scale of τ = 0.125/Ω(r) and with a linear modulation
S 1(r) such that the relaxation is fully active at the boundary and
vanishes at the middle of the buffer.

In the whole buffer, the density is relaxed in the following
manner. First, the average radial density distribution 〈ρ〉ϕz (r) is
computed. Let rb be the radius of the edge of the current buffer.
In each cell the density is relaxed exponentially in time to the
arithmetic mean between the local average density and the aver-
age at the edge of the buffer:

ρ(r, ϕ, z) 7→ ρ(r, ϕ, z) − S 2(r)
[
〈ρ〉 (r) − 〈ρ〉 (rb)

] δt
2τ
, (19)

where S 2(r) is again a linear modulation equal to one at the
boundary and zero at rb.

This separation into two sub-buffers helps to prevent an ac-
cumulation of mass between the buffer and the active domain,
avoiding the formation of a local minimum of potential vorticity
and keeping the flow Rossby stable (Lovelace et al. 1999). Also,
relaxing the density to its average value from the active domain
mimics outflow conditions and allows long time behaviour such
as a density drop by accretion, to take place.

We impose a constant resistivity ηb = 4× 10−4 in the buffers,
stabilizing the MRI for typical magnetic field intensities without
affecting the CFL condition. Moreover, in Hall MHD simula-
tions we linearly decrease the Hall length from the active domain
and make it vanish at the boundaries, avoiding unnecessary Hall
drift waves at the interface.

Finally, after a first round of simulations, we found that mag-
netic flux losses were sometimes too large to maintain a near
statistically steady system. This prevented us from computing
proper time averages and comparing our results with previous
works. Part of this monotonic decrease in net flux comes from
turbulent accretion or excretion of mass out of the computational
domain, but it is amplified by the Hall term

∂t〈Bz〉rϕ '

∮
`Hdl · (∇ ·M), (20)

which is always negative since we damp the Maxwell stress in
the buffers with Ohmic diffusion. This term inputs negative flux
from the boundaries, which spreads to the active domain and
progressively stabilises the flow. We thus renormalise the to-
tal vertical magnetic flux at each timestep in the active domain
Bz(r, ϕ, z) 7→ Bz(r, ϕ, z)− 〈Bz〉+ 〈B0〉. This way, we obtain quasi-
steady states in all of our regimes. In the ideal-MHD case, the
amount of magnetic flux thus added varies between 10% and
30% of the initial magnetic flux over 200T0, the larger flux losses
corresponding to the higher transport rates, which occurs for
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Fig. 1. Radial profiles of the fastest growing cylindrical MRI eigenmode
for B0 = 2 × 10−3, ηO = 3 × 10−3, and `H = 1.0; comparison between
the predictions (solid lines) and DNS (squares).

higher initial net flux. In the strong-Hall regime, less than 5% of
the total flux is lost from 50T0 to 200T0 in the organised phase.
These flux losses are small on a dynamical time scale, and we
verified that the maximal turbulent stress attained in time were
the same with and without this procedure. The qualitative level
of self-organisation was also consistent between runs with and
without the flux renormalisation.

One caveat of this method is that mass losses should enhance
the turbulent stress in time as the relative importance of magnetic
to thermal pressure increases (Hawley et al. 1995).

3.2. Validation

We developed a Chebyshev pseudo-spectral method to compute
the MRI eigenmodes in axisymmetric cylindrical coordinates,
described in Appendix A. It includes viscosity and all three non-
ideal MHD effects, and was tested in ideal, Ohmic, Hall, and
Ohmic plus Hall configurations.

The method returns the axisymmetric eigenmodes of
the non-ideal MHD equations, linearised about a stationary
Keplerian flow with uniform vertical magnetic field. In this sec-
tion, we take the computational domain to be the unit square
(r, z) ∈ [1, 2]2. The boundary conditions are periodic in z, with
vanishing vr, vϕ, and Bϕ, ∂rvz and ∂rBz at the radial boundaries.

We compared the profiles predicted with a resolution of
256 spectral modes to the result of direct numerical simula-
tions (DNS) on a 2562 grid. The initial and boundary conditions
implemented in PLUTO are the same as those of the spectral
method, with a white noise of amplitude δv/cs < 10−10 seeded
in the vr and vz fields. The fastest growing MRI mode rapidly
dominates, and the growth is slow enough that we can extract the
radial profiles at a given height, normalise them so that they have
the same amplitude, and compare them to linear predictions.

We show in Fig. 1 a comparison of the MRI linear modes
including both Ohmic diffusion and the Hall effect. This setup
has B0 = 2 × 10−3, ηO = 3 × 10−3, and `H = 1.0 and would be
linearly stable in the absence of the Hall effect because of Ohmic
damping with SO < 1 (Jin 1996). Five of these normalised radial
profiles are drawn in Fig. 1. These profiles show that our DNS
implementation accurately reproduces the spectral predictions,
with an average error of the order of 10−3.

0 50 100 150 200 250 300

t/T0
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−20
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0
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r
)]

γ = 0.0988Ω0

Fig. 2. Exponential growth of the perturbed magnetic field Br.

For this particular setup, the measured growth rate γ =
0.0988 matches the predicted rate γ0 = 0.0989 (see Fig. 2). In
all our tests, the relative error between predicted and measured
growth rates was less than 10−3. The same linear analysis was
performed in 3D cylindrical coordinates with only one compu-
tational grid cell in the azimuthal direction, so that we preserved
the axisymmetric conditions while testing the 3D implementa-
tion of the code. Finally, we ensured that the 2D and 3D imple-
mentations gave similar results in the non-linear phase for simi-
lar initial conditions.

3.3. Comparison with previous works

The only global simulations that include the Hall effect pub-
lished to date are those of O’Keeffe & Downes (2014). Since
their setup is similar to ours, it it is natural to begin our report
with a comparative study. We wish to reproduce their highest res-
olution simulations for the two orientations of the initially axial
magnetic field with respect to the rotation axis: Up for aligned
(corresponding to run “res4-mf”) and Down for oppositely di-
rected (corresponding to their run “480-mf-minusbz”).

We first converted their units into ours and get the following
values (see Appendix B): the computational domain is (r, ϕ, z) ∈
[1, 5.2]× [0, π/2]× [0, 0.39], meshed with a grid 480× 480× 36.
The isothermal sound speed is fixed to cs = 4.35 × 10−2, the
initial magnetic field is B0 = 2.2 × 10−3, and the Hall length
is `H = 5.5 × 10−3. We integrated the dynamical equations
on a longer time interval of 130 inner orbits in order to see
if the total magnetic energy grows exponentially as seen by
O’Keeffe & Downes (2014) in their Fig. 13. They also report
the appearance of transient waves exciting resonant modes from
the radial boundaries, motivating the inclusion of damping buffer
zones. We used similar buffers of width 0.2r0 where the hydro-
dynamical variables ρ and u are relaxed to their initial values on
a characteristic time of one local orbital period. In addition, we
chose to maintain the total vertical magnetic flux and mass con-
stant within the active domain, using the procedure described in
Sect. 3.1.2 for both Bz and ρ. This modification of the original
setup was necessary in order to keep a quasi-steady turbulent
state and measure a statistically meaningful difference between
the two runs; otherwise, mass and flux losses were about twice
larger in the first stage of run Up compared to run Down, after
which both runs had a compatible level of turbulent stress slowly
decreasing with time.
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Fig. 3. Space-averaged αSS parameter (upper panel) and total magnetic
energy (lower panel) over time, in the active domain for the two com-
parison runs Up (solid red) and Down (dashed blue).

We show in Fig. 3 the evolution in time of the space-averaged
〈αSS〉 and the total magnetic energy for the two runs, correspond-
ing to the Figs. 12 and 13 from O’Keeffe & Downes (2014).

We find a slightly lower linear growth rate in run Down, in
agreement with the fact that axisymmetric configurations are sta-
bilised by the Hall effect when the magnetic field is anti-aligned
with respect to the rotation axis (Balbus & Terquem 2001). Dur-
ing the steady turbulent phase from 60T0 to 130T0, we measure
αSS = (1.5 ± 0.2) × 10−1 in run Up and αSS = (7.4 ± 0.5) × 10−2

in run Down, greater than the results of O’Keeffe & Downes
(2014) by a factor 2 for run Up and a factor 8 for run Down.
However, we can compare these values with the local Hall-
MHD simulations Z2L and Z4L of Sano & Stone (2002), where
they used similar input parameters in extended shearing boxes:
B0 = ±2.5 × 10−3, `H ' vA/Ω ≈ 5.5 × 10−3 at radius 1.8r0, plus
an additional resistivity such that ΛO = 100, so high enough to
affect the saturation level of the turbulence only in a minor way.
These two runs yielded αSS ≈ 2 × 10−1 in Z2L (Up case) and
αSS ≈ 8 × 10−2 in Z4L (Down case), similar to our results both
in magnitude and ratio.

Concerning the total magnetic energy, we do not observe
a long-term growth as reported by O’Keeffe & Downes (2014).
The total magnetic energy is about twice more in run Up com-
pared to run Down, scaling as the ratio of stresses in accordance
with previous studies of MRI-induced turbulence in local ideal
MHD simulations (see e.g. Minoshima et al. 2015, Fig. 2). The
mean magnetic energy density is 1.2 × 10−1ρ0c2

s in run Down,
comparable again to run Z4 of Sano & Stone (2002) (see their
Fig. 1). It is possible that the long-term exponential growth found
by O’Keeffe & Downes (2014) both in turbulent stress and in
magnetic energy (their Figs. 12 to 15) reflects a state that is not
converged yet, whence our higher values for αSS.

We do observe the formation of structures such as gaps close
to the inner and outer boundaries, but we attribute them to the
damping buffer zones for the density accumulates precisely at
the edge between the the inner buffer and the active domain. This
is the kind of density structures we want to avoid when imple-
menting our own buffers, as described in Sect. 3.1.2. Finally, we
note that the strong turbulent activity (αSS ∼ 10−1) is due to the
large geometrical thickness of the disc compared to its pressure
scale height near the inner boundary (Ωh � cs). For this reason,
turbulence becomes transonic and strong density waves develop.

Fig. 4. Vertical magnetic field in the turbulent flow when switching on
the Hall effect, at t = 50T0.

This unrealistic feature is absent from our other 3D runs, for
which we enforce Ωh . cs.

4. Results

4.1. Numerical protocol

All of the global simulations to date have been computed in the
weak Hall regime (`H/h � 1), which only moderately affect the
dynamics of the system. However, discs are known to exhibit
regions with a much stronger Hall effect, in particular in the so-
called dead zone between 1 and 10 au (Lesur et al. 2014). In
these regions, we expect `H/h to be of the order of 10 in the
disc midplane. In this section we focus on this regime and on its
impact on the overall disc dynamics.

The integration time varied from one run to the next de-
pending on the steadiness of the flow, with a default lower
bound of 200 inner orbits, which is about 18 orbits at the
outer radius. The boundary conditions are those described in
Sect. 3.1.2. We ensured that the purely hydrodynamic case was
stable, with only faint spiral waves coming from the inner bound-
ary (δvr/cs ∼ δρ/ρ0 . 10−4).

Since we are mostly interested in the non-linear evolution of
the system, we initialised the flow in a specific way. We started
from a Keplerian flow in ideal MHD, threaded by a constant ver-
tical magnetic field B0 = 10−3. Perturbations were added to the
three components of the velocity field with a large amplitude
δv/cs = 10%, so that MRI modes rapidly develop on the en-
tire domain. After t ≈ 30T0, the MRI saturates, and we stop the
simulation at t = 50T0 in a fully turbulent configuration, as il-
lustrated in Fig. 4. Only 3% of the total mass has left the box at
that moment, equally from the inner and outer radial boundaries.
The radial profile of 〈ρ〉ϕz is decreased by about 10% close to the
radial boundaries, and density waves create fluctuations of about
0.1ρ0 in the active domain. The turbulent state thus obtained is
not subject to a radial density stratification.

All subsequent runs are launched from this configuration,
with non-ideal effects switched on and with the net magnetic
flux fixed to the desired value. Apart from saving 50T0 of com-
putational time, this method allows us to have the same initial
conditions for all runs, and to have initial conditions that are tur-
bulent over the whole domain so that self-organisation processes
cannot be attributed to an excessively symmetric initial state. The
parameters used in the following 3D Hall MHD runs are listed
in Table 1.

We have not systematically explored negative mean field
configurations B0 · Ω < 0. In effect, the Hall effect is known
to be sensitive to the field polarity. In particular, the vertical field
configuration we present is known to be stable for negative weak
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Table 1. Simulations with net vertical magnetic flux.

Name ∆ϕ Ts B0 L α State
B3L0 π/2 200 10−3 0 5.6 × 10−2 turbulent
B3L1 π/2 200 10−3 0.02 7.8 × 10−2 turbulent
B3L2 π/2 200 10−3 0.04 9.8 × 10−2 turbulent
B3L3 π/2 200 10−3 0.1 1.4 × 10−1 turbulent
B3L4 π/2 200 10−3 0.2 8.2 × 10−2 turbulent
B3L5 π/2 200 10−3 0.4 1.6 × 10−2 1 band
B3L6 π/2 300 10−3 1 4.8 × 10−4 4 bands
2πL4 2π 200 10−3 0.2 1.7 × 10−1 turbulence
2πL5 2π 400 10−3 0.4 1.8 × 10−2 vortex
2πL6 2π 200 10−3 1 1.2 × 10−3 3 bands
B4L0 π/2 200 10−4 0 3.8 × 10−3 turbulent
B4L1 π/2 300 10−4 0.02 1.7 × 10−2 turbulent
B4L2 π/2 200 10−4 0.04 3.7 × 10−2 turbulent
B4L3 π/2 200 10−4 0.1 8.2 × 10−2 turbulent
B4L4 π/2 200 10−4 0.2 6.2 × 10−2 turbulent
B4L5 π/2 400 10−4 0.4 1.7 × 10−2 vortex
B4L6 π/2 300 10−4 1 3.8 × 10−4 1 band
B4L7 π/2 300 10−4 2 5.1 × 10−4 3 bands
B5L1 π/2 200 10−5 0.1 7.6 × 10−2 turbulent
B5L2 π/2 200 10−5 0.2 6.4 × 10−2 turbulent
B5L3 π/2 300 10−5 0.4 1.1 × 10−2 vortex
B5L4 π/2 300 10−5 1 4.4 × 10−4 1 band
B5L5 π/2 200 10−5 2 8.5 × 10−4 3 bands
B5L6 π/2 200 10−5 4 2.5 × 10−4 5 bands
B5L7 π/2 200 10−5 10 3.7 × 10−4 3 bands

Notes. Parameters for the 3D Hall MHD runs: label of the run, integra-
tion time Ts, mean vertical magnetic field B0, Hall parameter L, total
turbulent stress α, and final state of the flow.

field strengths (Balbus & Terquem 2001):

|vA| <
Ω`H

2
STABILITY. (21)

This implies that sub-equipartition magnetic fields are necessar-
ily stable in the negative polarity configuration when L = O(1).
We have checked successfully that it was the case in our nu-
merical simulations, so we do not discuss this case any further.
Configurations with a strong mean toroidal field, however, can
still become unstable, as demonstrated by Simon et al. (2015).

4.2. Turbulence

Our study starts by sampling L for different values of the large-
scale magnetic flux. We wish to find whether the transition from
high to low transport states found in KL13 still occurs in cylin-
drical geometry, and how it depends on the available net flux,
and to characterise these states in terms of turbulent stress and
critical L.

Figure 5 presents the profiles of normalised Reynolds and
Maxwell stress for the ideal-MHD run B3L0 and the Hall MHD
run B3L3. Since we kill the MRI within the buffer zones, the
stress has to vanish at the boundaries of the active domain, at-
taining its maximum near 3.5r0. We note a local increase in
Reynolds stress near the outer boundary, possibly due to a char-
acteristic damping time that is too long in the outer buffer. The
profile of Maxwell stress is essentially shifted by a factor two
higher by the Hall effect; the Reynolds stress does not increase as
much, but we show in the lower panel that the ratio of Maxwell
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Fig. 5. Upper panel: radial profiles of the magnetic (red) and kinetic
(blue) contribution to α in runs B3L3 (solid line) and B3L0 (dashed
line); lower panel: ratio of Maxwell to Reynolds stress in the same runs.
The time averaging is performed between 100T0 and 200T0.
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Fig. 6. Time-averaged total turbulent stress α as a function of the Hall
parameter L for runs B3 (red), B4 (green) and B5 (blue). The bars in-
dicate the standard deviation over the averaging time interval. The final
state of the flow is represented by stars for turbulence (filled orange
region), diamonds for vortex (filled red region) and squares for zonal
flows (filled blue region).

to Reynolds stress profiles roughly remains constant with ra-
dius in both runs with a value M/R ≈ 2 in ideal MHD and 3
in Hall-MHD, comparable to previous shearing-box simulations
(see e.g. Hawley et al. 1995).

For all the runs with L ∈ [0, 1], we approximately reached
a statistically steady state at the end of the simulation, and aver-
aged the total turbulent stress in time over at least 50T0 (100T0
in most cases). These values of α are presented in Fig. 6 against
the corresponding value of L. We find a good qualitative agree-
ment with Fig. 11 of KL13: the turbulent activity is enhanced
for small L (orange region in Fig. 6), reaching its peak value
for L ≈ 0.1 at all B0, beyond which the system forks to a low-
transport state with a mean stress that is significantly lower than
in the ideal MHD case. We also find that the stress increases
with B0 for L < 0.1 in accordance with previous ideal-MHD
local simulations (e.g. Sano & Stone 2002).
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Fig. 7. Vertical magnetic field in the run B3L6 at t = 300T0.

A significant fraction of mass is lost in these simulations: up
to 50% in run B3L3. The ratio of accreted to excreted mass is ap-
proximately 1 in runs B3L0 to B3L2, increases to 1.8 in B3L3,
1.5 in B3L4, and decreases to 0.8 in B3L5 and only 25% in
B3L6. In this last run, the excreted mass is transported by spiral
density waves propagating through the entire domain, whereas
turbulent accretion is totally suppressed. The same general trend
is observed for all values of B0. Despite this significant amount
of mass lost, imposing a constant mean magnetic field made it
possible to reach quasi-steady states over several hundred inner
orbits.

4.3. Zonal flows

4.3.1. Characterisation

We move our attention to the structural properties of the system,
starting with Hall-induced zonal flows. As indicated in Table 1,
we find that the flow self-organises to long-lived axisymmetric
structures whenever L & 1 (blue region in Fig. 6). At a given L,
the number of bands depends on the initially available magnetic
flux, more flux producing a larger number of bands. Recipro-
cally, at a given B0 the number of bands is found to increase
with L, the exception being run B5L7, where the flow instan-
taneously crystalised into three positive and negative magnetic
field bands.

We show in Fig. 7 the state of run B3L6 at time 300T0. The
vertical magnetic field appears to be organised in four axisym-
metric bands, with little to no apparent vertical structure, leaving
the rest of the domain almost field-free.

4.3.2. Physical origin

The dynamics of these zonal fields or bands have been explored
by KL13, and we recover here a similar qualitative picture. We
first emphasise that the zonal field regions are dynamically sta-
ble. As demonstrated in Fig. 8, the vertical field strength in
each band is so strong that it quenches the linear HSI. This ex-
plains why a stronger mean initial vertical flux leads to more
bands of similar width. That being said, since the bands have
a limited radial extent, they should smear out radially because
of diffusion (either numerical, physical, or turbulent), reducing
the field strength in the band and ultimately making the whole
band HSI unstable again. This is not observed in our simula-
tions, and instead we find a confinement effect that calls for a
proper explanation.

The zonal field confinement takes its roots in the HSI at
the boundary of each bands: the vertical flux is weaker but
non-zero, allowing localised HSI modes to develop. This leads

Fig. 8. HSI linear growth rates for the mode with vertical wave vector
kz = 2π/h (blue color + contour lines), and local vertical Alfvén velocity
(red) in run B3L6 averaged from 200T0 to 300T0.

to the generation of a localised Maxwell stress at the border
of each band, as illustrated in Fig. 9. However, in Hall-MHD,
the Maxwell stress appears explicitly in the induction Eq. (9)
through the Hall term. This equation predicts that a local max-
imum of the Maxwell stress pushes away positive vertical flux
tubes. As a result, the growth of HSI modes at the border of
each band pushes the vertical magnetic flux back in the band,
thereby confining the flux in the HSI-stable region. This confine-
ment mechanism by the Maxwell stress is sketched in Fig. 10 and
explains the global organisation observed in these simulations.

The bifurcation to such a self-organised state from a fully
turbulent state occurs when confinement overcomes diffusion.
KL13 show from Eq. (9) that the transition happens near a crit-
ical L0 that depends on the stabilising Alfvén velocity (11) and
on the turbulent magnetic Prandtl number Pm ≡ ηt/αΩh2 via

L0 '
1

Pm

vA,crit

Ωh
· (22)

Using Pm ≈ 2 as measured in local simulations
(Lesur & Longaretti 2009), they deduce L0 ≈ 0.2. The
same argument holds in our case, and the fact that the transition
still happens near this critical value translates into a turbulent
magnetic Prandtl number of order unity again in a global,
non-stratified setup.

Looking at the Reynolds component of the stress, we show
in Fig. 9 that it is the dominant component of the total stress in
this organised configuration, by a factor ten above the Maxwell
stress. The physical origin of this stress resides in large-scale spi-
ral waves, unaffected by the presence of zonal fields. We found a
plateau of total stress when increasing L beyond unity although
the Maxwell stress kept decreasing below αM < 10−4 near the
end of the simulation. After ruling out a possible defect of our
inner damping regions, we think these waves may be excited by
residual turbulence and local minima of potential vorticity near
the zonal flows.

4.4. Vortices

4.4.1. Characterisation

For intermediate Hall strengths, the level of turbulent stress re-
mains quite high but the aspect of the turbulent structures gets
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Fig. 10. Bz confinement mechanism by belts of Maxwell stressMrϕ: the
magnetic field decreases in regions of negative second derivative ofM,
and increases where the curvature ofM is positive.

more clumpier as L is increased (red region in Fig. 6). We quan-
tify this structural transition in Fig. 11, with the median value
(over the radial extent of the disc) of the normalised correlation
lengths of δBz ≡ Bz−B0 in the vertical and azimuthal directions.
The change from small to large-scale fluctuations occurs rapidly
for L & 0.2, and when L ≥ 1, the correlation factor is stalled
near unity.

During the transition L ≈ 0.4, the turbulent fluctuations
merge to form a sustained patch of magnetic field in runs B4L5
and B5L5. One band was formed in run B3L5 with the same L;
Fig. 6 shows that it is affected by large fluctuations in stress over
time, indicating that the structure is not steady. To test its stabil-
ity, we ran the full-disc simulation 2πL5 and found that the band
would actually break and instead form a large patch as illustrated
in Fig. 12. In this run the average vertical field is Bz ≈ 8 × 10−3

inside the patch. Similar to the zonal flows of Sect. 4.3, this re-
gion displays no structure in the vertical direction. We verified
that these magnetic islands were not a mere product of the large-
scale flux adjustment procedure (see Sect. 3.1.2). These large
scale patches have not been observed in KL13 local simulations
probably because their horizontal extension covers several geo-
metrical scale heights h in radius and azimuth. For larger L & 1,
the bands are stable in the full-disc configuration as confirmed
in run 2πL6. The formation of a band in run B3L5 is facili-
tated by the smaller angular extent of the domain, and therefore
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Fig. 11. Median value of the vertical (upper panel) and azimuthal (lower
panel) auto-correlation profiles of the vertical magnetic field δBz, mea-
sured at the end of the quarter-disc runs B3 (red plus), B4 (green cross)
and B5 (blue circles); the orange, red and blue regions correspond re-
spectively to a turbulent, vortex and zonal flow final state.

Fig. 12. Vertical magnetic field in run 2πL5 at time 300T0.

accidental. We also confirm with run 2πL4 that lower values for
L . 0.2 keep the flow turbulent in 2π disc simulations.

In the limit of incompressible Hall-MHD, the canonical
vorticity

$ ≡ ∇ × u + B/ρ`H (23)

is a conserved quantity (see equation 7 of KL13). An increase in
magnetic flux therefore comes with a decrease in vorticity flux.
We show in Fig. 13 the vertical component of the vorticity fluctu-
ation from the initial Keplerian flow: δω ≡ ∇×(u−r−1/2eϕ), aver-
aged in time over 40 inner orbits for better discernibility. We ob-
serve that the accumulation of magnetic flux is indeed balanced
by a decrease in vorticity flux: δωz ' −δBz/ρ`H ≈ 3 × 10−2,
making this patch a true vortex and attesting to the role of the
Hall effect in its formation. Its centre is localised near 3.8r0, and
the ratio of its major to minor axis is χ ≈ 5.2; the corresponding
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Fig. 13. Vertical vorticity fluctuation δωz in the (ϕ, r) plane of run 2πL5,
centred on the vortex, averaged in the vertical direction and in time with
five snapshots between 250T0 and 290T0. The vertical axis δr/r0 is the
radial distance to the measured centre of the vortex.

proper rotation period is

δt '
2π
δωz

1 + χ2

χ
≈ 180T0, (24)

or approximately 25 local orbits. This turn-over time is longer
than the local dynamical time scale, which is why our time aver-
ages suffer from random fluctuations.

4.4.2. Confinement mechanism

The radial confinement of the vortex obeys the same mechanism
as for the zonal flows; we can address it with a one-dimensional
approach similar to the axisymmetric model of Sect. 2.2. In the
case of zonal flows, a band of magnetic field is pushed from both
its inner and outer sides by the (r, ϕ) component of the Maxwell
stress Mrϕ, which is the product of the magnetic field compo-
nent along the streamlines Bϕ with the component perpendicular
to the streamlines −Br. A vortex is defined by closed streamlines,
dragging and wrapping the horizontal magnetic field around. In
a frame following the vortex at its local Keplerian velocity, one
can use the magnetic field components along (B‖) and perpen-
dicular (−B⊥) to the velocity streamlines. The product of these
components defines a projected Maxwell stressM⊥‖; this stress
appears at the boundary of the magnetic patch and pushes mag-
netic flux in the perpendicular direction −e⊥, thus confining the
vortex from all directions.

We confirm this picture by showing the averaged map of pro-
jected Maxwell stressM⊥‖ of run 2πL5 in Fig. 14. We find that
it is negligibly small inside the vortex, attesting to the MHD sta-
bility of this region, while the overall positive stress around the
vortex provides the required confinement.

5. Dust trapping

An important question is the ability of the previous structures
to accumulate dust particles in the process of planetary forma-
tion. It is known that aerodynamic drag make dust grains mi-
grate outwards in super-Keplerian regions and migrate inwards
in sub-Keplerian regions (Weidenschilling 1977). A disc region
trapped between a super-Keplerian part at its inner side and a

Fig. 14. Projected stress in the (ϕ, r) plane of run 2πL5, centered on the
vortex, averaged in the vertical direction and in time with five snapshots
between 250T0 and 290T0; the vertical axis δr/r0 is the radial distance
to the measured centre of the vortex.

sub-Keplerian part at its outer side therefore constitute a dust
trap2 where dust grains accumulate.

In the incompressible Hall-MHD limit, an increase in mag-
netic flux should come with a decrease in vorticity flux, so that
the flux of canonical vorticity defined by Eq. (23) is conserved.
This is equivalent to a velocity profile steepened in regions of
accumulated magnetic field and flattened outside, making both
zonal flows and vortices potential dust traps.

5.1. Capture by zonal flows

To see how the conservation of the canonical vorticity flux is al-
tered in our compressible case, we draw in Fig. 15 the deviation
from a Keplerian rotation profile in run B3L6. We observe a tran-
sition from super to sub-Keplerian rotation speed only in the first
two bands. In the outer half, the initially turbulent state plus the
steady mass excretion by spiral waves have reduced the average
density to about 10% of its initial value and slightly increased it
in the centre of the radial domain. This global density (and there-
fore pressure) gradient is sufficient to maintain a sub-Keplerian
flow in the outer part of the disc, preventing dust trapping in the
last two bands.

In general, protoplanetary discs are expected to be globally
sub-Keplerian thanks to a mean negative pressure gradient3. This
deviation from Keplerian rotation can be computed by consider-
ing the radial equilibrium

Ω

ΩK
=

(
1 +

∂rP
ρRΩ2

K

)1/2

· (25)

The average pressure gradient entering this equation can be es-
timated from the aspect ratio of the disc ε = cs/RΩK so that

2 These regions are sometimes refered to as pressure bumps. As a re-
sult of the radial geostrophic equilibrium, the trap we describe neces-
sarily corresponds to a pressure bump, but we prefer avoiding this ter-
minology since dust grains are only sensitive to the gas velocity and not
to the gas pressure.
3 This aspect has not been included in our non-stratified model.
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tical magnetic field (dashed red) in run B3L6, averaged in time be-
tween 260T0 and 300T0. The arrows indicate regions of favoured dust
accumulation.

one expects

Ω

ΩK
− 1 ' −

1
2
ε2. (26)

Assuming a typical value of ε = 0.1, we find that the deviations
to Keplerian rotation driven by our zonal flows in Fig. 15 are
marginally sufficient to create super-Keplerian regions (and thus
dust traps) when this mean pressure gradient is included. For
this reason, we expect that only a few of these zonal flows (the
strongest ones) can trap dust in models including a realistic mean
pressure gradient.

5.2. Capture by vortices

The possible role of hydrodynamic vortices as dust traps in pro-
toplanetary discs was highlighted by Barge & Sommeria (1995)
and Tanga et al. (1996), and has now received both analytical
and numerical investigations (e.g. Johansen et al. 2004; Chavanis
2000). We focus on the necessary condition for a vortex to be a
dust trap: that it is over-pressured with respect to the surround-
ing flow (see footnote 2). In our globally isothermal simulations,
this translates into an over-density in the vortex.

We show in Fig. 16 a snapshot of the density distribution in
run 2πL5 at time 300T0. Comparing with Fig. 12, there is clearly
an over-density at the location of the vortex, with mean value
1.5ρ0 inside at 300T0, so this vortex would be able to trap dust
particles.

6. Threats to self-organisation

The simulations presented so far were done in the Hall MHD
regime with an imposed mean vertical magnetic field. However,
stratified shearing box models (e.g. Lesur et al. 2014) also indi-
cate that the magnetic field could be essentially toroidal in the
midplane of protoplanetary discs, which could in turn affect the
formation and stability of zonal flows. Besides, ionisation mod-
els (e.g. Simon et al. 2015) suggest that the Hall effect is only
dominant in the intermediate regions (1 au . r . 30 au) of pro-
toplanetary discs, the inner and outer regions being dominated
by Ohmic and ambipolar diffusion, respectively (Turner et al.
2014). These diffusive processes could prevent the formation
of sharp magnetic accumulations. We investigate the robustness

Fig. 16. Density distribution in run 2πL5 at time 300T0.

Table 2. Simulations with net vertical and toroidal magnetic flux.

Name B0 L α State
T3L0 10−3 0 6.2 × 10−2 turbulent
T3L1 10−3 0.1 1.4 × 10−1 turbulent
T3L2 10−3 0.4 1.0 × 10−2 vortex
T3L3 10−3 1 1.1 × 10−3 3 bands
T4L0 10−4 0 4.9 × 10−3 turbulent
T4L1 10−4 0.1 7.9 × 10−2 turbulent
T4L2 10−4 0.4 7.3 × 10−3 turbulent
T4L3 10−4 1 3.3 × 10−3 1 band

Notes. Parameters for the 3D Hall MHD runs with toroidal field: la-
bel of the run, mean vertical magnetic field B0, Hall parameter L, total
averaged turbulent stress α, and final state.

of our previous findings against these effects in the three next
sections.

6.1. Toroidal field

6.1.1. Method

We ran eight simulations where both the vertical and azimuthal
magnetic fluxes are imposed and adjusted at each timestep. As
before, we let a disc evolve over 50T0 from a Keplerian flow
with initial magnetic field B = B0ez + Bϕeϕ to a fully turbu-
lent flow, where B0 = Bϕ = 10−3 is initially constant over the
whole domain. This choice of initial conditions does not corre-
spond to an MHD equilibrium, but the intensity of the magnetic
field is weak enough to reach a steady turbulence in an overall
Keplerian flow. We activated the Hall effect from this starting
point in all eight runs and lowered the average vertical magnetic
field to B0 = 10−4 for half of them, keeping Bϕ = 10−3. The stop-
ping time is set to 300T0 for runs T3L3 and T4L2 and to 200T0
for the others. The parameters of these runs are given in Table 2.
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Fig. 17. Time-averaged stress α as a function of the Hall parameter L,
with and without a toroidal field (blue and red, respectively), with mean
vertical field B0 = 10−3 (circles) and B0 = 10−4 (squares); the bars
represent standard deviations of 〈α〉 over time.

6.1.2. Results

From the last column of Table 2, we notice minor differences
in the final state of these simulation compared to the case of a
purely vertical mean field: run T3L3 produced three bands in-
stead of four, and run T4L2 did not produce a distinct vortex but
only short-lived patchy magnetic islands.

We then compare the average stress in these toroidal runs
with the previous vertical ones in Fig. 17. The addition of a
toroidal magnetic field is seen to have no significant impact on
the stress. In particular, the transition from high to low transport
states near L ≈ 0.1 is preserved. Only the run T4L3 shows a
turbulent stress significantly higher than the analogue run with
zero net toroidal flux. This stress comes essentially from the
Reynolds component: in all the runs with L = 1 the Maxwell
stress kept decreasing below αM < 10−4 at the end of the simu-
lation, but since the Reynolds stress was statistically steady at a
much higher values we did not prolong these runs further.

These differences attest to the presence of a slightly stronger
turbulent activity that is able to weaken magnetic structuring but
not drastically change the picture.

6.2. Ohmic diffusion

6.2.1. Linear stability

The presence of Ohmic resistivity narrows the range of acces-
sible HSI modes. In the strong Hall limit, the marginal stability
of axisymmetric Hall-shear modes with wave vector k in a back-
ground vertical field requires (Balbus & Terquem 2001):

`HvA

(
`HvAk2 − qΩ

)
+ η2

Ok2 = 0. (27)

The addition of resistivity affects the two bounds between which
instability occurs:

2`HvAk2

qΩ
= 1 ±

√
1 −

(
2ηOk2

qΩ

)2

· (28)

To study self-organisation, the system must initially be between
these two bounds. A minimum magnetic field intensity is nec-
essary for linear instability and the possibility of sustaining tur-
bulence. In the other limit, the field intensity required to damp

Table 3. Simulations with Ohmic diffusion.

Name B0 SO (RO) L α State
O3N0 10−3 25 (119Ω) 0.4 1.2 × 10−2 vortex
O3N1 10−3 25 (119Ω) 1 5.2 × 10−4 2 bands
O3N2 10−3 2.5 (12Ω) 1 1.2 × 10−3 1 band
O4N3 10−4 2.5 (119Ω) 1 9.6 × 10−4 1 band

Notes. Parameters for the 3D Hall+Ohm MHD runs with toroidal field:
label of the run, mean vertical magnetic field B0, magnetic Lundquist
numbers SO and corresponding Reynolds number RO, Hall parameter
L, turbulent stress α and final state of the flow.

the largest scales k0 = 2π/h is lowered by diffusivity, which may
help the formation of Hall-shear stable regions and favour self-
organisation. We tune this range of unstable magnetic fields with
the magnetic Reynolds number RO ≡ qΩ/2ηOk2

0.

6.2.2. Method

The numerical setup used in this section is the same as in Sect. 4,
but with a constant resistivity ηO in the active domain (and al-
ways the resistivity ηb in the damping buffer zones). We sampled
two values of magnetic Lundquist numbers SO = {2.5, 25}, and
the magnetic Reynolds number RO is appreciably close to unity
only in the small SO = 2.5 case. These values should be low
enough to produce observable effects in our runs, but not prevent
self-organisation by immediately damping any perturbation. All
four runs are integrated in time from 50T0 to 200T0.

6.2.3. Results

We see in Table 3 that resistivity does affect the number of zonal
flows produced in our simulations: two in O3N1 and one in
O3N2, instead of four in the ηO = 0 case of run B3L6. How-
ever, the outcome of runs O3N0 and O4N1 is the same as their
non-resistive versions: a vortex in the former case and one band
in the latter.

It is worth noting that from run O3N1 to O3N2, increasing
the resistivity by a factor ten resulted in an increase in Maxwell
stress by a factor two. Similarly, the total stress is twice higher in
O4N3 than in the non-resistive equivalent scenario B4L6. This
behaviour comes from the diffusive broadening of the bands,
leaving a wider region linearly unstable at their edges and main-
taining a larger fraction of the domain unstable to the MRI.

We thus find that for magnetic Lundquist numbers SO & 1,
Ohmic diffusion can reduce the number of zonal flows, but the
system keeps self-organising. A similar final state is obtained
when resuming the organised run B3L6 with resistivity: dif-
fusion overcomes concentration between the bands and allows
them to merge. That a band remains at the end of the simula-
tion suggests that this merging process is halted once the bands
are too far to share magnetic flux. At this point, Ohmic diffusion
adds to turbulent diffusion in Eq. (9), balancing the confinement
by Maxwell stress.

6.3. Ambipolar diffusion

We finally look at the impact of ambipolar diffusion on self-
organisation. With its non-linear dependence on B, this ef-
fect may lead to more complex behaviours than Ohmic diffu-
sion. The region of protoplanetary discs dynamically affected by
ambipolar diffusion is expected to overlap the Hall-dominated
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Table 4. Simulations with ambipolar diffusion.

Name 104B0 SA (Λ0
A) L α State

A3N0 10 25 (0.1) 1 1.0 × 10−3 2 bands
A3N1 10 25 (0.1) 2 1.1 × 10−3 3 bands
A3N2 10 2.5 (0.01) 1 7.3 × 10−4 2 bands
A3N3 10 2.5 (0.01) 0.4 9.6 × 10−4 2 bands
A3N4 10 2.5 (0.01) 0.2 1.5 × 10−3 2 bands
A4N5 1 25 (0.01) 1 1.3 × 10−3 channel
A4N6 1 25 (0.01) 4 1.1 × 10−3 3 bands
ABS 18 139Ω (1) 0 4.2 × 10−3 turbulent

Notes. Parameters for the 3D Hall+Ambipolar MHD runs. Columns:
label of the run, mean vertical magnetic field B0; ambipolar Lundquist
number SA; corresponding ambipolar Elsasser number Λ0

A at the inner
radius r0 = 1; Hall parameters L; total turbulent stress α; and final
state of the flow. “Channel” describes a computational domain filled
with linear HSI modes. Only run ABS has a diffusivity scaling as r3/2,
corresponding to a constant ambipolar Elsasser number ΛA = 1.

region, with typical ambipolar Elsasser numbers ΛA below unity
(Simon et al. 2015). We first test the robustness of Hall self-
organisation against ambipolar diffusion, then turn our atten-
tion to a configuration in which Bai & Stone (2014) report self-
organisation without the Hall effect, and finally compare it to our
Hall-dominated simulations.

As previously, we activate ambipolar diffusion and the Hall
effect simultaneously at 50T0 and integrate until 200T0 with
various values for the large-scale magnetic flux, the ambipolar
Lundquist number SA via the ratio ηA/v

2
A, and the Hall parame-

ter. The ambipolar Lundquist numbers are similar to the Ohmic
Lundquist numbers of the previous section, and the correspond-
ing Elsasser numbers range from 0.01 to 1.

6.3.1. Hall+Ambipolar MHD

We see in Table 4 that the total turbulent stress is not signifi-
cantly affected by ambipolar diffusion in the low-transport state,
since the magnetic contribution is still negligibly small. Com-
pared to the non-diffusive case, we find a smaller number of
zonal flows with ambipolar diffusion in runs A3N0 to A3N2,
but it is larger than the case of an equivalent Ohmic Lundquist
number (see Table 3). An inefficient merging of magnetic bands
may be explained by the fact that ambipolar diffusion has little
influence on the field-free region between the bands.

When lowering the average magnetic flux in run A4N5, we
obtain a disc filled with large-scale channel modes and no zonal
field. Since the average magnetic field is far below the threshold
for HSI stabilisation, linear modes develop until the ambipolar
diffusive damping rate, of order ηA/h2, balances their growth
rate. The resulting stress has an almost flat radial profile, pro-
viding no confinement at the scale of our computational domain.
Run A4N6 proves that when increasingL at the same field inten-
sity, the Hall effect becomes competitive again, and we recover
several zonal fields.

A new feature is the possibility of forming zonal fields at
lower L < 1, as demonstrated by runs A3N3 and A3N4. We
show in Fig. 18 the radial profile of vertical magnetic field in run
A3N4 and the contributions of both non-ideal effects to the in-
duction Eq. (3) in the vertical direction. The variations in Bz have
a much smaller amplitude than in Hall-only runs (see Fig. 9),
but they still show a clear anti-correlation with the variations in
Maxwell stress. As previously, we find that the Hall effect tries to

0.4

0.6

0.8

1.0

1.2

1.4

1.6

〈B
z
〉/

B
0

〈Bz〉 /B0 107 × M

2.0 2.5 3.0 3.5 4.0 4.5

r/r0

−3

−2

−1

0

1

2

3

10
3
×

〈∂
tB

z
〉/

Ω
0
B

0

Hall ambipolar

0

1

2

3

4

10
7
×

M

Fig. 18. Radial profiles in run A3N4, averaged in the vertical and
azimuthal directions, and in time between 150T0 and 250T0. Upper
panel: vertical magnetic field (solid red) and Maxwell stress (dashed
blue); lower panel: contributions of the Hall (solid black) and ambipo-
lar (dashed green) drifts to the induction of vertical magnetic field ∂tBz.

increase Bz in the bands and decrease it between. The ambipolar
drift does precisely the opposite: it tries to smooth out the profile
of Bz, and both contributions appear to cancel out on average.

Since the Hall effect now balances ambipolar rather than
turbulent diffusion, the self-organisation threshold given by
Eq. (22) no longer needs to hold. Ambipolar diffusion acts to
damp fluctuations in magnetic field, so the turbulent diffusiv-
ity ηt entering Eq. (9) must eventually decrease when the am-
bipolar diffusivity is increased. In the limit of strong ambipolar
diffusion, the bifurcation to a self-organised state should depend
on ηA alone. That we observe two bands at L = 0.2 may re-
sult from an effective diffusivity ηt + ηA that is less than in the
Hall-only case, due to the decrease in ηt as a function of ηA.

We conclude that self-organisation holds for ambipolar
Elsasser numbers down to ΛA = 0.01 and that ambipolar diffu-
sion can enable the formation of zonal flows for L as low as 0.2.

6.3.2. Self-organisation with only ambipolar diffusion

Magnetic self-organisation was also reported by Bai & Stone
(2014) in local simulations of MRI turbulent flows without the
Hall effect. Since ambipolar diffusion was found to enhance
magnetic flux concentration, we only included this non-ideal ef-
fect and tried to reproduce the physical conditions of their run
AD-4-64 within our global setup in run ABS. The initial mag-
netic field is set to B0 =

√
2c2ρ0/6400 ≈ 1.8×10−3, and the am-

bipolar Elsasser number ΛA = 1 is constant throughout the com-
putational domain, so that both setups should match at the inner
boundary. Considering the narrowness of the magnetic structures
observed by Bai & Stone (2014), we used the HLLD approxi-
mate Riemann solver to reduce numerical diffusivity in this run
alone.

In comparison to their Fig. 7, we confirm in our Fig. 19 that
the vertical magnetic flux does concentrate into bands. They are
most clearly visible in the inner half of the disc, where they live
a few tens of orbits before being disrupted and formed again in
the turbulent flow. Averaging this profile in time, we find mean
fluctuations of about 0.3B0 revealing five bands at radii 1.5, 1.9,
2.2, 2.6, and 3.2r0. We note a broadening of these bands with
radius, suggesting some self-similar scaling λ2 ∼ η̃/Ω of the
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Fig. 19. Normalised vertical magnetic field 〈Bz〉 /B0 in run ABS.
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Fig. 20. Radial profiles of averaged vertical (solid red) and azimuthal
(dashed blue) correlations lengths for the fluctuation in vertical mag-
netic field δBz in run ABS at time 200T0.

characteristic concentration length scale λ with the local time
scale for some effective anti-diffusivity η̃, and not a constant con-
centration length of order h as for the Hall effect.

We show in Fig. 20 the correlation profiles of δBz in run ABS
at time 200T0. The median values are 0.3 and 0.08 for the vertical
and azimuthal correlation lengths, respectively, with peak values
up to 0.5 in azimuthal correlation at the location of each spot-
ted band. These median values are consistent with those from a
fully turbulent state (see Fig. 11). In particular there is no strong
vertical coherence in the bands, confirming that these magnetic
concentrations can never stabilise the flow in the full height of
the disc. In comparison, the zonal fields produced by the Hall ef-
fect are always Hall-shear stable with vertical correlation factors
close to unity.

We conclude that the self-organisation process observed by
Bai & Stone (2014) is fundamentally different from the Hall-
induced self-organisation mechanism presented in this paper.

7. Summary and discussion

We have presented a number of non-ideal MHD simulations ded-
icated to the Hall-dominated regions of protoplanetary discs. We
employed a global non-stratified model designed to naturally ex-
tend results from local shearing box simulations. For this pur-
pose, we have extended the PLUTO code to include the Hall
effect in cylindrical geometry and validated our implementation
in the linear regime of the resistive MRI. We then performed a
series of global Hall-MHD simulations, focusing on the different
stages of self-organisation found as the intensity of the Hall ef-
fect is increased. Finally, we addressed the consequences of a net
toroidal magnetic flux, as well as Ohmic or ambipolar diffusion,
in this picture of Hall-induced self-organisation.

We can summarise our main findings as follows:

1. We confirmed the transition from enhanced to lowered turbu-
lent transport states when increasing the intensity of the Hall
effect; the turning point is found at L ≈ 0.1, comparable to
the estimate of KL13.

2. In the strong Hall limit L & 1, self-organisation leads to the
formation of stationary zonal flows in cylindrical geometry;
as the Hall length or the available magnetic flux is increased,
so does the number of zonal flows, until the computational
domain is filled with bands of accumulated magnetic field
with typical width h.

3. When increasing L from zero, the transition from a small-
scale turbulence to axisymmetric zonal flows is accompanied
by the formation of large-scale magnetised vortices, a feature
barely accessible in local simulations for it requires a large
aspect ratio in the radial over vertical directions.

4. Both the vortices and the zonal flows caused by the Hall ef-
fect may play a role in the process of planetary formation,
since they can affect the rotation profile of the gas sufficiently
to trap dust particles.

5. The self-organisation mechanism described in this paper
holds when including a net toroidal field, Ohmic, or ambipo-
lar diffusion; both diffusive effects cause the magnetic struc-
tures to merge over time, but do not change the total torque
exerted on the disc significantly; ambipolar diffusion is found
to enable self-organisation at lower Hall parameter L.

These results demonstrate that Hall-MRI is a very promising
mechanism through which large-scale structures can form and
be observed. One should, however, keep in mind that these sim-
ulations are still very simplified and leave many questions open.
First, we neglected vertical stratification entirely and simplified
the radial structure to keep relatively constant diffusion param-
eters. Vertical stratification can be very important because it
drives surface winds and accretion thanks to magnetic torques.
Stratified shearing box models including the Hall effect have not
shown any obvious self-organisation, but this is likely due to the
limited radial extension of these boxes. The mechanism we pro-
pose for the self organisation is relatively simple and robust as it
only relies on three hypotheses: 1- the disc is ionised sufficiently
to be MRI/HSI unstable; 2- the r − φ component of the Maxwell
stress vanishes for strong enough field strengths; and 3- the Hall
length scale is close to the disc scale height. Hypotheses 1 and 3
are usually satisfied in the midplane of stratified models. How-
ever, hypothesis 2 can be violated when a strong large-scale wind
is present, as the Maxwell stress is not only due to local physics
but also to the global wind dynamics. Testing self-organisation
in global stratified models is therefore essential to confirm this
picture.
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It is also worth pointing out that several of our simulations
exhibit stable magnetised vortices. This might look surprising
since vortices are known to be strongly unstable in magnetised
discs due to magneto-elliptic instabilities (Mizerski & Bajer
2009). We have not investigated the stability of these objects ex-
tensively, but the presence of a strong field in the vortex core
is most certainly the key to their stability, because this tends to
rigidify flow motions and prevent fluid particles from entering
into a resonance with the vortex turnover frequency.

Whether the structures produced in our simulations can be
observed is yet another open question. It is clear that some of
these structures are dust traps, so should accumulate millimetre-
sized dust particles. However, this dust might also react on the
flow and even affect the ionisation structure, thereby changing
the dynamics. This complex interplay between MHD, dust, and
chemistry has not been included in our models so as not to com-
plicate them too much, but this step will be required if one is to
predict the dust-density contrast in rings and vortices and predict
observational properties of these features.
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Appendix A: Spectral method for linear non-ideal
MHD in axisymmetric configuration

We start with the full set of equations describing a magnetised
fluid in non-ideal compressible magnetohydrodynamics:

∂tρ + ∇ ·
[
ρu

]
= 0 (A.1)

ρ (∂tu + u · ∇u) = −∇P + J × B + υ∆u − ρ∇Φ (A.2)
∂t B =∇ ×

[
u × B − η∇ × B

−`H (∇ × B) × B + γ ((∇ × B) × B) × B
]

(A.3)

completed by the closures J = ∇ × B and P = c2
sρ where ρ

is the fluid density, u is its velocity, B the magnetic field, P the
pressure, J the electric current density, η the Ohmic diffusivity, υ
the kinematic viscosity, `H the Hall length, and γ the ambipolar
diffusion coefficient. Here, Φ is a gravitational potential ∝r−1 in
cylindrical coordinates (r, ϕ, z).

These equations are linearised about the stationary solution
ρ̄ = ρ0, B̄ = B0ez, v̄ = Ωreϕ where Ω(r) ∝ rq and q = −3/2
in the Keplerian case. We restrict ourselves to axisymmetric per-
turbations: ∂ϕ = 0. Defining Dr ≡

1
r + ∂r, the equation for the

perturbed density reads as

∂tρ
′ = −ρ0

(
Drv

′
r + ∂zv

′
z

)
, (A.4)

and the perturbed velocity as

∂tv
′
r = −

c2
s

ρ0
∂rρ

′ + υ

(
∂2

r +
1
r
∂r

) [
v′r
]

+ 2Ωv′ϕ +
B0

ρ0

(
∂zB′r − ∂rB′z

)
(A.5)

∂tv
′
ϕ = − (2 + q) Ωv′r +

B0

ρ0
∂zB′ϕ (A.6)

∂tv
′
z = −

c2
s

ρ0
∂zρ
′ + υ∂2

z v
′
z. (A.7)

Finally for the perturbed magnetic field,

∂t B′ = ∇ ×
[
Ωreϕ × B′ − B0ez × u

′ − η∇ × B′

+ `HB0ez ×
(
∇ × B′

)
+ γB2

0ez × ez ×
(
∇ × B′

)]
. (A.8)

Since we look for axisymmetric configurations, we can reduce
the number of variables and naturally ensure the ∇ · B = 0 con-
dition using the vector potential Aϕ such that Br = −∂zAϕ and
Bz = DrAϕ. The linearised induction equations become

∂tB′ϕ = B0∂zv
′
ϕ + σ∂2

z B′ϕ

+`HB0∂z

(
∂2

z − ∂rDr − ∂r [Ωr]
) [

A′ϕ
]

+η

(
∂2

r +
1
r
∂r −

1
r2

) [
B′ϕ

]
∂t

[
−∂zA′ϕ

]
= B0∂zv

′
r − σ∂z

(
∂2

z + ∂rDr

) [
A′ϕ

]
+ `HB0∂zB′ϕ (A.9)

with σ ≡ η + γB2
0. At this stage, we have a linear sys-

tem of partial differential equations for the the six fields ξ ≡
(ρ′, v′r, v

′
ϕ, v
′
z, B

′
ϕ, A

′
ϕ), which we can write as ∂t ξ = ∆ · ξ. Notic-

ing that the periodic z coordinate appears only in derivatives, we
can replace it by a parameter ikz and reduce the problem to a sys-
tem of one-dimensional equations. Expanding over a finite set of
Chebyshev polynomials, the extraction of eigenmodes amounts
to solving the generalised eigenvalue problem ∆ · ξk = ωkΓ · ξk,

100 101

kz

10−2

10−1

B
0

0.2620.250
0.225

0.200
0.175

0.150
0.125

0.100
0.075

0.050

0.025

0.005

Fig. A.1. Stability map with the parameters from Kersalé et al. (2004).
Our maximum growth rate is indicated with a black dot, theirs with a
red cross.

where Γ is almost the identity matrix, in which a few lines are
used to implement boundary conditions.

To test this method, we tried to reproduce the stability map
from Fig. 3a of Kersalé et al. (2004). The setup is the same as
the one described in Sect. 3.2, including viscosity and Ohmic
resistivity with diffusivities ν = η = 0.003 and no Hall effect.
The maximum growth rate is computed for different values of
the background magnetic field B0 and vertical wave number kz
of the eigenmode. The spectral resolution used for this map is
set to 32 modes after checking on several points that resolutions
of 256, 64, or even 16 spectral modes gave the same eigenvalue
to better than 10−4 relative accuracy.

The resulting map is shown in Fig. A.1. Our unstable domain
is geometrically very similar to the one of Kersalé et al. (2004),
but extends over a larger portion of the (kz, B0) plane and dis-
plays higher growth rates. This comes from our different choice
of boundary conditions for vϕ and Bϕ. Our maximum growth rate
γM ≈ 0.266Ω0 at kz = 4.64r−1

0 , B0 = 0.10 is nevertheless very
close to the one they found in this plane.

Appendix B: Numerical setup
of O’Keeffe & Downes (2014)

We present here the numerical setup of O’Keeffe & Downes
(2014) and make the connection of their parameters real units
to our dimensionless parameters.

O’Keeffe & Downes (2014) use a cubic box of size Lx =
Ly = 2.6 and Lz = 0.195. The setup is a quarter disc with
rint = 0.5 and rext = 2.58. The units are such that 1 numerical
length unit corresponds to 5.2 au (O’Keefe 2013, p. 80). This
means that the disc extends from r0 = 2.6 au to r1 = 13.4 au.

This cylindrical disc is filled with a flow of uniform initial
density with ρ = 1.17×10−11 g cm−3 and a mean molecular mass
mn = mH that gives a number density n = 7 × 1012 cm−3. The
ionisation fraction is assumed to be 4 × 10−11, which implies a
electron density of ne = 2.82 × 102 cm−3.

The initial field strength is chosen to be 50 mG, so that the
Alfvén speed is

VA =
B√
4πρ

= 4.12 × 103 cm s−1. (B.1)
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The sound speed is not mentioned in O’Keeffe & Downes (2014)
but may be found in O’Keefe (2013), p. 81: cs = 8.04 ×
104 cm s−1. This sound speed is coherent with a gas made of H2
at T = 130 K.

With the values quoted above, we get the following dimen-
sionless parameters

h
r0

= 0.39, (B.2)

cs

Ω0r0
= 4.35 × 10−2, (B.3)

VA

Ω0r0
= 2.23 × 10−3, (B.4)

`H

r0
≡

c
√
ρπ

2πeneh
= 5.5 × 10−3. (B.5)

The surprisingly low relative strength of the Hall effect
(`H/h = 1.4×10−2 � 1) comes from the high ionisation fraction
and the low midplane density compared to other models (e.g.
Wardle 2007) and the large geometrical thickness compared to
the pressure scale height (hΩ0/cs = 9).
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