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ABSTRACT

Context. Regular follow-up of imaged companions to main-sequence stars often allows a projected orbital motion to be detected.
Markov chain Monte Carlo (MCMC) has become very popular recent years for fitting and constraining their orbits. Some of these
imaged companions appear to move on very eccentric, possibly unbound orbits. This is, in particular, the case for the exoplanet
Fomalhaut b and the brown dwarf companion PZ Tel B on which we focus here.
Aims. For these orbits, standard MCMC codes that assume only bound orbits may be inappropriate. Our goal is to develop a new
MCMC implementation that is able to handle both bound and unbound orbits in a continuous manner, and to apply this to the cases
of Fomalhaut b and PZ Tel B.
Methods. We present here this code, based on the use of universal Keplerian variables and Stumpff functions. We present two versions
of this code, the second one using a different set of angular variables that were designed to avoid degeneracies arising when the
projected orbital motion is quasi-radial, as is the case for PZ Tel B. We also present additional observations of PZ Tel B.
Results. The code is applied to Fomalhaut b and PZ Tel B. We confirm previous results in relation to, but we show that on the sole
basis of the astrometric data, open orbital solutions are also possible. The eccentricity distribution nevertheless still peaks around
∼0.9 in the bound regime. We present a first successful orbital fit of PZ Tel B, which shows in particular that, while both bound and
unbound orbital solutions are equally possible, the eccentricity distribution presents a sharp peak very close to e = 1, meaning a
quasi-parabolic orbit.
Conclusions. It has recently been suggested that the presence of unseen inner companions to imaged ones may lead orbital fitting
algorithms to artificially give very high eccentricities. We show that this caveat is unlikely to apply to Fomalhaut b. Concerning
PZ Tel B, we derive a possible solution, which involves an inner ∼12 MJup companion, that would mimic a e = 1 orbit, despite a real
eccentricity of around 0.7, but a dynamical analysis reveals that this type of system would not be stable. We thus conclude that our
orbital fit is robust.

Key words. planetary systems – methods: numerical – stars: individual: PZ Tel – celestial mechanics – stars: individual: Fomalhaut –
planets and satellites: dynamical evolution and stability

1. Introduction

A growing number of substellar companions are nowadays reg-
ularly discovered and characterised by direct imaging. These
objects are usually massive (larger than a few Jupiter masses)
and orbit at wide separations (typically <20 AU). Some of them
are sufficiently close to their host star to allow the detection of
their orbital motion. Astrometric follow-up then gives access to
constraints on their orbits (e.g. HR8799, Soummer et al. 2011;
Pueyo et al. 2015; Maire et al. 2016, β Pictoris, Chauvin et al.
2012; Bonnefoy et al. 2014). The use of Markov-chain Monte-
Carlo (MCMC) algorithms to fit orbits of substellar or plane-
tary companions has become common now (Ford 2006; Kalas
et al. 2013; Nelson et al. 2014; Pueyo et al. 2015). This sta-
tistical approach is particularly well-suited for directly imaged

� Based on observations collected at the European Organisation for
Astronomical Research in the Southern Hemisphere, Chile (Program
ID: 085.C-0867(B) and 085.C-0277(B)).

companions, since their orbit is usually only partially and un-
equally covered by observations (Ginski et al. 2014).

Surprisingly, some of the fitted orbits appear very eccentric.
This is for instance the case for Fomalhaut b and PZ Tel B.
Fomalhaut b is an imaged planetary companion (Kalas et al.
2008), which orbits the A3V star Fomalhaut (α Psa, HD 216956,
HIP 113368) at ∼119 AU. The physical nature of this object is
still a matter of debate. It is commonly thought to be a low-mass
planet (Janson et al. 2012; Kennedy & Wyatt 2011; Currie et al.
2012; Galicher et al. 2013), but it also has been suggested that
the Fomalhaut b image could represent starlight that is reflected
by a cloud of dust grains, possibly bound to a real planet (Kalas
et al. 2008). The first attempts to fit Fomalhaut b’s orbit, on the
basis of the available astrometric positions (Kalas et al. 2013;
Beust et al. 2014), reveal a very eccentric, possibly unbound or-
bit (e >∼ 0.8). Subsequent dynamical studies on the past history
of this planet and its interaction with the dust belt that is imaged
around the star (Faramaz et al. 2015) lead to the conclusion that
another, yet undiscovered planet must be present in this system
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to control the dynamics of the dust belt, and that Fomalhaut b
may have been formerly trapped in a mean-motion resonance
with that planet before being scattered on its present day orbit.
This, however, assumes that Fomalhaut b is actually a bound
companion. While this is likely, unbound solutions might still be
possible. According to Pearce et al. (2015), planets that are im-
aged of such small orbital arcs are compatible with bound orbital
solutions as well as unbound ones because of their unknown po-
sition and velocity along the line of sight.

The case of PZ Tel B is even more complex. PZ Tel
(HD 174429, HIP 92680), is a G5-K8 star (Spencer Jones &
Jackson 1936; Messina et al. 2010) member of the 24 ± 3 Myr
old (Bell et al. 2015, and refs. therein) β Pic moving group
(Zuckerman et al. 2001; Torres et al. 2006). A sub-stellar com-
panion, termed PZ Tel B, was independently discovered by
Mugrauer et al. (2010) and Biller et al. (2010). Its mass is esti-
mated ∼20 MJup and ∼40 MJup (Ginski et al. 2014; Schmidt et al.
2014). Therefore it is most likely a substellar object. Attempts to
fit the orbit of this companion, based on successive astrometric
positions, led to the conclusion that it must be close to edge-on
and highly eccentric (Biller et al. 2010; Mugrauer et al. 2012;
Ginski et al. 2014). The pair has been imaged regularly since
2007. PZ Tel B is moving away from the central star along a
quasi straight line. Its distance to the star increased by ∼60%
between 2007 and 2012 (Ginski et al. 2014). From the orbital
standpoint, it is not clear whether PZ Tel B is a bound com-
panion. But, in any case, its periastron must be small (<∼1 AU),
which is a major difference with Fomalhaut b. However, spectra
of PZ Tel B, which were obtained by Schmidt et al. (2014), in-
dicate that it is a young object like the star itself. This strongly
suggests that both objects are physically bound.

MCMC orbital fitting techniques are usually based on the
assumption that the orbit to fit is elliptic, making use of
corresponding Keplerian formulas. This can be problematic with
orbits with eccentricities close to 1. This can either prevent con-
vergence of the fit, or generate boundaries in the fitted orbit dis-
tributions that are not physical, but rather generated by the limi-
tation of the method. Of course, one could design an independent
MCMC code that is based on the use of open orbit formulas. But
this type of code would only try to fit open orbits. Our goal is to
design a code that can handle both kinds of orbits in a continuous
manner. Applied to the cases mentioned above, this would help
to derive, for instance, a robust estimate of a probability of being
bound. This cannot be done using standard Keplerian variables,
as the changes of formulas between bound and unbound orbits
would generate enough noise to prevent the code to converge.
Here we develop an MCMC code based on the use of universal
Keplerian variables, an elegant reformulation of Keplerian orbits
that holds for both bound as well as unbound orbits.

The organisation of the paper is the following: in Sect. 2, we
present new VLT/NACO observations of PZ Tel B that we use
with order data in our fit. Then in Sect. 3, we present the funda-
mentals of our new code that is based on universal Keplerian
variables. In Sects. 4 and 5, we present its application to the
Fomalhaut b and PZ Tel B cases respectively. In Sect. 6, we
present further modelling that is based on the suggestion by
Pearce et al. (2014) – that highly eccentric companions could
actually be less eccentric than they appear because of the pres-
ence of unseen additional inner companions. For the PZ Tel B
case, we find one configuration that could indeed generate an
apparently very high eccentricity, but we present subsequent dy-
namical modelling that shows that it is, in fact, unstable. Our
conclusions are then presented in Sect. 7.

2. New observations of PZ Tel B

2.1. Log of the observations

PZ Tel B was observed with VLT/NaCo (Lenzen et al. 2003;
Rousset et al. 2003) on September 26, 2010 in the L′-band fil-
ter (central wavelength = 3.8 μm, width = 0.62 μm) in pupil-
stabilized mode (P.I. Ehrenreich, Program 085.C-0277). The
mode was used to subtract the stellar halo using the angular dif-
ferential imaging (ADI) technique (Marois et al. 2006), despite
the companion being seen into our raw images.

The observation sequences, atmospheric conditions (seeing,
coherence time τ0), and instrument setup are summarised in
Table 1. A continuous sequence of 1200 exposures was recorded,
split into eight cubes (Nexp) of 150 images each (NDIT). The de-
tector 512 × 512 pixel windowing mode was used to allow for
short data-integration times (DIT = 0.3 s). The ND_long neutral
density (ND) was placed into the light path for the first and last
8 × 150 frames of the sequence to acquire unsaturated images
of the star to calibrate the companion photometry and astrom-
etry. The star core was in the non-linearity regime for the rest
of the 143 exposures. The parallactic angle (θ) over the ND-free
exposures ranges from θstart = 10.62◦ to θend = 53.17◦, corre-
sponding to an angular variation of 2.85 times the full-width at
half maximum (FWHM) at 350 mas.

The system was re-observed on June 7, 2011 using
the same instrument configuration (Program 087.C-0450, P.I.
Ehrenreich). This sequence was recorded under unstable con-
ditions. Nevertheless, the image angular resolution was high
enough to resolve the brown-dwarf companion. The observation
sequence is similar to that of September 26, 2010, although the
field rotation is reduced (17.55◦). This is summarised in Table 1.

To conclude, we recorded one additional epoch of pupil-
stabilized observations of the PZ Tel system in the Ks-band
(central wavelength = 2.18 μm, width = 0.35 μm) with NaCo
(P.I. Lagrange, Program 087.C-0431). We used the neutral den-
sity filter of the instrument (ND_Short), which was adequate for
this band, to avoid saturating the star. The field rotation was not
sufficient to take advantage of the angular differential imaging
technique.

2.2. Data reduction

The reduction of the L′-band observations was carried out by a
pipeline developed in Grenoble (Bonnefoy et al. 2011; Chauvin
et al. 2012). The pipeline first applied the basic cosmetic steps
(bad pixel removal, nodded frame subtraction) to the raw im-
ages. The star was then registered into each individual frame of
each cube using a 2D Moffat function that was adjusted onto the
non-saturated portions of the images. We applied a frame selec-
tion inside each cube based on the maximum flux, and on the
integrated flux over the PSF core. The cubes were then concate-
nated to create a master cube.

Given the relative brightness of the companion and the
amount of field rotation for the 2010 observations, we chose to
apply the smart-ADI (SADI) flux-conservative algorithm to sup-
press the stellar halo (Marois et al. 2006). For each frame of our
observation sequence, the algorithm builds a model of the stellar
halo from the other sequence images for which a companion lo-
cated at a distance R from the star has moved angularly (because
of the field rotation) by more than n× the FWHM (separation
criterion). Only the NN (NN ∈ R) frames that are the closest in
time (Depth parameter) and that respect the separation criterion
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Table 1. Observing log.

Object Date Band Density filter Camera DIT NDIT Nexp θstart/θend 〈Seeing〉 〈τ0〉 Notes
(s) (◦) (′′) (ms)

θ Orionis 24/09/2010 L′ – L27 0.3 60 7 −132.922/−133.862 0.88 0.73 Astrometric cal.
PZ Tel 26/09/2010 L′ ND_long L27 0.2 150 8 4.540/7.102 1.77 1.20 PSF
PZ Tel 26/09/2010 L′ – L27 0.3 100 143 10.624/53.175 1.83 1.03 ADI sequence
PZ Tel 26/09/2010 L′ ND_long L27 0.2 150 8 53.348/54.936 1.37 1.20 PSF

PZ Tel 03/05/2011 Ks ND_short S27 1.0 100 12 −51.868/−43.155 0.50 5.54 ADI sequence

PZ Tel 07/06/2011 L′ ND_long L27 0.2 150 8 −71.868/−70.664 2.78 0.75 PSF
PZ Tel 07/06/2011 L′ – L27 0.2 150 96 −70.317/−52.769 0.81 2.76 ADI sequence
PZ Tel 07/06/2011 L′ ND_long L27 0.2 150 7 −52.582/−50.922 0.78 2.61 PSF

Notes. Details of the cameras and filters can be found on the instrument website http://www.eso.org/sci/facilities/paranal/
instruments/naco.html

are considered. See Marois et al. (2006) and Bonnefoy et al.
(2011) for details. We found the parameters maximizing the de-
tection significance of the companion (R = 13.6 pixels, depth =
4, and 2×FWHMs) throughout these intervals: 2 ≤ Depth ≤ 12,
FWHM = 1, 1.5, 2.

Flux losses associated with the self-subtraction of the com-
panion during the ADI process were estimated using either five
artificial planets (AP) are injected at PA = 179◦, −61◦, 239◦,
210◦, and 270◦, or negative fake planets (Bonnefoy et al. 2011).
These AP were built from the non-saturated exposures of the star
taken before and after the ADI observations (see Table 1).

We derive a final contrast of ΔL′ = 5.15 ± 0.15 mag. The
error accounts for uncertainties on the flux loss estimates, on
the evolution of the PSF through the ADI sequence, and on the
method used to extract the companion photometry. This new
L′-band photometry was accounted by the up-to-date analysis
of the spectral energy distribution of the companion (Maire et al.
2016).

Images of the θ Orionis C astrometric field were acquired
with an identical setup on September, 24 2010. They were prop-
erly reduced with the Eclipse software (Devillard 1997). The
positions of the stars on the detector were compared to their po-
sition on sky measured by McCaughrean & Stauffer (1994) to
derive the instrument orientation to the North of −0.36 ± 0.11◦
and a detector plate scale of 27.13 ± 0.09 mas. We used these
measurements together with the position of PZ Tel B that was
derived from the negative fake planet injection (Bonnefoy et al.
2011) to find a PA = 59.9± 0.7◦ and a separation of 374± 5 mas
for the companion.

The second epoch of L′-band observations was reduced with
the IPAG pipeline, but using the classical imaging (CADI) algo-
rithm. The algorithm built a model of the halo valid for all the
images of the sequence from the median of all images that were
contained in the sequence. It is more appropriate than the smart-
ADI algorithms here because of the small amount of field rota-
tion. Indeed, it would not have been possible to build a model
of the halo for each frame of the sequence while respecting a
separation criterion of 1 FWHM for all the frames contained in
our sequence. The flux losses were estimated in the same way
as for the 2010 L′-band observations. We measure a contrast of
ΔL′ = 4.6± 0.6 mag. The photometry is less accurate because of
the unstable conditions during the observations.

The instrument orientation (T N = 1.33 ± 0.05◦) and plate-
scale (27.38±0.08 mas/pixel) were measured onto the images of
the binary star HD 113984 (van Dessel & Sinachopoulos 1993)
that were observed on September 2, 2011. We therefore derive

a PA = 60.0 ± 0.6◦ and a separation of 390.0 ± 5.0 mas for the
companion.

We realigned each of the Ks-band images to the North and
median-combined them to create a final image of PZ Tel AB.
The companion is seen in the images. We removed the stellar
halo at the position of the companion making an axial symme-
try of the halo around an axis that was inclined at PA = −45, 0,
or 90◦. We integrated the flux of the star and companions into
circular apertures of radii 135 mas (5 pixels) to derive a con-
trast ratio of δKs = 5.46 ± 0.07. The error bars account for the
dispersion of contrast that was found for the different choices
of duplication axis for the stellar halo removal. This contrast ra-
tio is consistent within error bars to the one that was derived
by Mugrauer et al. (2012) with the same instrumental setup. We
measure a PA = 60.0±0.6◦ and a separation of 390.0±5.0 mas for
the system. This astrometry relies on the TN and plate-scale that
was measured on March 03, 11 and reported in Chauvin et al.
(2012). The astrometry reported in this section assumes that the
TN and plate scale are stable between the observations of the
astrometric fields and our observations of PZ Tel. This seems
to be the case, according to the measurements of Chauvin et al.
(2012).

3. Fundamentals of MCMC for high eccentricity
and open orbits

3.1. MCMC for astrometric imaged companions

The fundamentals of the MCMC method applied to planets,
which have been detected with radial velocities, are described in
Ford (2005, 2006), and its application to imaged companions is,
for instance, described in Chauvin et al. (2012). The first require-
ment is to presuppose general probability distributions (com-
monly called priors) for the orbital elements. For bound orbits,
the usual orbital elements are the semi-major axis a, the eccen-
tricity e, the inclination i, the longitude of ascending node Ω,
the argument of periastron ω, and the time for periastron pas-
sage tp. The priors for these elements are generally assumed to
be uniform between natural bounds, except for a for which a
logarithmic prior (∝ln a) is often assumed, and for i for which
assume a prior ∝sin i is also of standard use. Combined with the
uniform prior for Ω, this choice ensures a uniform probability
distribution over the sphere for the direction of the orbital angu-
lar momentum vector.

In the building process of a Markov chain, successive orbital
solutions are generated from preceding ones by taking steps on
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the orbital variables and selecting or rejecting the generated new
orbits using the Metropolis-Hastings algorithm (hereafter MH;
Ford 2005). MCMC theory tells that whenever the chain grows,
it is expected to stabilise and the final statistical distribution of
orbits within the chain samples the posterior probabilistic dis-
tribution of orbital solutions. In practice several chains are run
in parallel (we use 10), and Gelman-Rubin criterion is used on
crossed variances to check for convergence (Ford 2006).

Importantly, the variables on which steps are taken with MH
are not necessarily the orbital elements themselves, as listed
above, but rather combinations of them. In Chauvin et al. (2012,
βPic b) and Beust et al. (2014, Fomalhaut b), the work is done
on the parameter vector

w1 =

(
cos(ω + Ω + v0)

P
,

sin(ω + Ω + v0)
P

,
e cos(ω + Ω)√

1 − e2
,

e sin(ω + Ω)√
1 − e2

, (1 − e2)1/4 sin
i
2

cos(ω − Ω),

(1 − e2)1/4 sin
i
2

sin(ω − Ω)
)
, (1)

where P is the orbital period and v0 is the true anomaly at a refer-
ence epoch (typically that of a specific data point of a time close
to periastron passage). This choice was dictated by the following
considerations:

– As pointed out in Chauvin et al. (2012), there is a degen-
eracy in orbital solutions concerning parameters Ω and ω
when considering imaged companions. Taking one poten-
tial solution with (Ω, ω) values, the same solution but with
(Ω+π, ω+π) exactly, gives the same projected orbital motion.
The only way to lift this degeneracy is to have independent
information about which side of the projected orbit (or of the
associated disk) is on the foreground, or to have radial veloc-
ity measurements. Hence taking steps onΩ and ω in MCMC
can generate convergence difficulties with chains oscillating
between two symmetric families of solutions. To avoid this
difficulty, we consider angles ω + Ω and ω − Ω which are
unambiguously determined. It is indeed easy to express the
projected Keplerian model as a function of these angles only.

– Whenever i = 0, anglesΩ and ω are undefined (and so angle
ω − Ω), while Ω + ω is still defined. Hence we take vari-
ables ∝sin(i/2) cos(ω−Ω) and ∝sin(i/2) sin(ω−Ω) to avoid
a singularity whenever i→ 0.

– The same applies to eccentricity. When e vanishes, Ω +
ω itself is undefined. This is why we consider variables
∝e cos(Ω + ω) and ∝e sin(Ω + ω).

– ω + Ω + v0 is defined even when e = i = 0. This is why
we chose it in the remaining variables. But as much as pos-
sible, we avoid directly taking steps on angular variables
themselves, which can lead to convergence problems with
jumps around 2π and similar values. This is why we use
cos(ω+Ω+v0) and sin(ω+Ω+v0) in the remaining variables.

As explained by Ford (2006), the assumed priors are taking
into account in MH, which multiplies the basic probability
by the Jacobian of the transformation from the linear vector
(ln a, e, sin i,Ω, ω, tp) to the parameters vectors. This Jacobian
reads

J1 =
1
2

e(1 + e cos v0)
(1 − e2)3P2

· (2)

3.2. Open orbits and universal variables

The parameter vector w1 (1) is well suited to fit low eccentricity
orbits. It has nevertheless proved efficient for high eccentricity
orbits as well (Beust et al. 2014). Ford (2006) also gives alternate
sets of parameters for such orbits. However, none of them can
handle open orbits. Moreover, the validity of the fit close to the
boundary e = 1 is questionable. Our goal is to allow MCMC-
fitting to account for bound or unbound orbits in a continuous
manner as well. Some of the variables in Eqs. (1), such as the
orbital period P and

√
1 − e2 are clearly inappropriate and need

to be changed. The periastron q is conversely always defined for
any type of orbit. So changing P to q and eliminating

√
1 − e2

in Eqs. (1) could be a first solution. We designed a code based
on this idea, which turned out not to be efficient. Convergence of
Markov Chains could not be reached after billions of iterations.
The reason lies in the assumed Keplerian model. To be able to
compute the position and velocity of an orbiting companion at a
given time (and subsequently a χ2), one needs to solve Kepler’s
equation for the eccentric anomaly u as a function of the time t.
Kepler’s equation depends on the type of orbit. For an elliptical,
parabolic and hyperbolic orbit, this equation reads

u− e sin u = M,
u
2
+

u3

6
= M, and e sinh u− u = M, (3)

respectively. In the parabolic case, this equation is called
Barker’s equation, and u = tan(v/2), where v is the true anomaly.
M = n(t − tp) is the mean anomaly, while n is the mean motion.
This equation holds in all cases, but n is defined as

√
μ/a3 in

the elliptic and hyperbolic case, and as
√
μ/8q3 in the parabolic

case, where μ = GM is the dynamical mass (M is the central
mass). In the random walk process of a Markov chain, perma-
nent switching between these equations lead to instabilities that
prevent convergence. A good way to overcome this difficulty is
to move to the universal variable formulation (Danby & Burkardt
1983; Burkardt & Danby 1983; Danby 1987), which is a very
elegant way to provide a unique and continuous alternative to
Kepler’s equation that is valid for any kind of orbit. We first de-
fine the energy parameter α as

α = −2E =
μ

q
(1 − e), (4)

where E is the energy per unit mass. This expression is valid for
any orbit. Elliptical orbits are characterised by α > 0, parabolic
orbits by α = 0, and hyperbolic ones by α < 0. The eccentric
anomaly u is then replaced by the universal variable s. For non-
parabolic orbits, s is defined as

s =
u√|α| , (5)

and as

s =
u

2qn
(6)

for parabolic orbits. It can be shown that in any case, we have

s =
1 − e

q

(
t − tp

)
+

eY√
qμ(1 + e)

, (7)

where Y is the y-coordinate in a local OXY referential frame
(X axis pointing towards periastron). This shows that the defini-
tion of s is continuous, irrespective of the type of orbit. Then,
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Burkardt & Danby (1983) show that Kepler’s equation can then
be rewritten in any case as

μs3c3

(
αs2

)
+ qsc1

(
αs2

)
= t − tp, (8)

where t is the time, and the ck’s are the Stumpff functions defined
as

ck(x) =
+∞∑
n=0

(−1)n

(2n + k)!
xn. (9)

This formulation of Kepler’s equation is valid for any orbit.
Using ck(0) = 1/k!, we see that for α = 0 (parabolic orbit), this
equation is equivalent to Barker’s equation. Once this equation
is solved for s, the heliocentric distance r and the rectangular
coordinates X and Y read

X = q − μs2c2

(
αs2

)
, (10)

Y = s
√

qμ(1 + e) c1

(
αs2

)
, (11)

r = q + eμs2c2

(
αs2

)
, (12)

with these formulas applying for any type of orbit. This for-
malism was used by several authors for specific problems, such
as Aarseth (1999) for wide binaries in clusters, or Caballero
& Elipe (2001) to solve Keplerian problems with additional
disturbing potentials ∝1/r2. The Kepler advancing routines in
the popular symplectic N-body packages Swift (Levison &
Duncan 1994) and Mercury (Chambers 1999) are also coded
this way for high eccentricity and open orbits. Very recently,
Wisdom & Hernandez (2015) have proposed an alternate for-
malism that avoids the use of Stumpff functions. They claim it
to be more efficient. We have not yet tried to apply this and used
the Stumpff function theory instead.

Based on the use of Stumpff functions, we designed a new
MCMC code, using the following parameter vector:

w2 =

(
q cos(ω + Ω), q sin(ω + Ω),

sin
i
2

cos(ω −Ω), sin
i
2

sin(ω − Ω), e, s0

)
, (13)

where s0 is the universal variable at a given reference epoch.
The priors are assumed uniform for Ω, ω, e, and tp, logarithmic
for q and ∝sin i for i. The Jacobian of the transformation from
(ln q, e, sin i,Ω, ω, tp) to w2 reads

J2 =
q2

2
ds
dt
, (14)

where ds/dt can be obtained as

ds
dt
=

1
μs2c2

(
αs2

)
+ qc0

(
αs2

) , (15)

to be evaluated here at s = s0.

3.3. Transformation of angles

This new code was able to reach convergence in the Fomalhaut b
case. Convergence, however, appeared hard to reach in the
PZ Tel B case. This is due to the structure of the data (Table 2).
Indeed, the astrometric data of PZ Tel B reveal a quasi-linear
motion that is nearly aligned with the central star. PZ Tel B’s
orbit appears extremely eccentric, perhaps unbound, but with a
periastron much smaller (<∼1 AU) than the measured projected

distances. In this context, the local reference frame OXYZ may
not be well defined. Only the line of apsides OX is likely to be
well constrained by the data, while the two other directions re-
quire another, nearly arbitrary angular variable to be fixed. The
very bad constraint on that angular variable results into degen-
eracies in the constraints on angles (Ω, ω, i), which are sufficient
to prevent convergence. It thus appears necessary to isolate the
badly constrained angular variable into a specific variable. This
require us to change the parameter vector w2 (Eq. (13)).

With respect to the sky reference frame (x-axis pointing to-
wards north, y-axis towards east, and z-axis towards the Earth),
the basis vectors (eX , eY , eZ) of the local OXYZ reference frame
read

eX

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cosω cosΩ − cos i sinω sinΩ
cosω sinΩ + cos i sinω cosΩ
sinω sin i

,

eY

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− sinω cosΩ − cos i cosω sinΩ
− sinω sinΩ + cos i cosω cosΩ
cosω sin i

,

eZ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin i sinΩ
− sin i cosΩ
cos i

. (16)

According to our analysis, in the case of PZ Tel B, only eX is well
constrained by the data. This results in complex combined con-
straints on Ω, ω, and i. For instance, if eZ was well constrained
by the data, then ω would be the weakly constrained parameter,
since eZ is only function of Ω and i. The idea, therefore, is to
define new angles in a similar way as in Eq. (16), but in such a
way that eX depends on only two angles. We thus introduce new
angles i′, Ω′, and ω′ designed in such a way that eX is defined
with respect to (i′,Ω′, ω′) in the same manner as eZ is defined
with respect to (i,Ω, ω). Similarly eY will be defined like eX , and
eZ like eY . We thus write

eX

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin i′ sinΩ′

− sin i′ cosΩ′

cos i′
,

eY

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cosω′ cosΩ′ − cos i′ sinω′ sinΩ′

cosω′ sinΩ′ + cos i′ sinω′ cosΩ′

sin′ ω sin i′
,

eZ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− sinω′ cosΩ′ − cos i′ cosω′ sinΩ′

− sinω′ sinΩ′ + cos i′ cosω′ cosΩ′

cosω′ sin i′
. (17)

The comparison between formulas (16) and (17) gives the corre-
spondence between the two sets of angles. Now, the line of ap-
sides is defined by i′ and Ω′ only, and ω′, the badly constrained
angular variable, is undefined if q vanishes. It is therefore worth
modifying vector w2 according to this transformation. However,
one should not forget that vector w2 was designed to avoid the
natural degeneracy of astrometric solution between (Ω, ω) and
(Ω+π, ω+π). It can be seen from Eqs. (16) and (17) that chang-
ing (Ω, ω) to (Ω + π, ω + π) is equivalent to changing (i′, ω′)
to (π − i′,−ω′), while leaving Ω′ unchanged. This transforma-
tion leaves the first two components of eX and eY unchanged
(which explains the degeneracy of the projected orbit), as well
as the third component of eZ , while all remaining components
are changed to their opposites. The new parameter vector must
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remain unchanged with this transformation as well, to avoid
convergence difficulties. We chose the following new parameter
vector:

w3 =
(
sin i′ cosΩ′, sin i′ sinΩ′,

q sin i′ cosω′, q cos i′ sinω′, e, s0
)
. (18)

This new vector is invariant in the transformation (i′, ω′) −→
(π − i′,−ω′). Its first two components define eX unambiguously.
Its third and fourth components vanish when q = 0, i.e. when ω′
is undefined, which avoids singularities. Now, this vector can be
expressed as a function of the original angles (i,Ω, ω) directly,
so that the formal introduction of the new angles (i′,Ω′, ω′) is
unnecessary. The same vector can be written

w3 =

⎛⎜⎜⎜⎜⎝ − cosω sinΩ − sinω cos i cosΩ,

cosω cosΩ − sinω cos i sinΩ,

q cos i, q
cosω sinω sin2 i√

1 − sin2 i sin2 ω
, e, s0

⎞⎟⎟⎟⎟⎟⎠ . (19)

It can be checked that this vector is invariant in the transforma-
tion (Ω, ω) −→ (Ω+ π, ω+ π). This will be our parameter vector
for a second version of the MCMC code. The new Jacobian of
the transformation from (ln q, e, sin i,Ω, ω, tp) to w3 now reads

J3 = q2 sin2 i sin2 ω
√

1 − sin2 i sin2 ω
ds
dt
· (20)

This new version succeeded in reaching convergence for
PZ Tel B.

3.4. Implementation

The two versions of our code were written in Fortran 90,
with an additional OPEN-MP parallel treatment of the computed
Markov chains. Our basic strategy is the same is in Beust et al.
(2014). We first perform a least-square Levenberg-Marquardt fit
of the orbit. This takes only a few seconds to converge towards
a local χ2 minimum. Of course, this fit is made by starting with
a rought guess of the orbit. The same procedure is reinitiated
many times, varying the starting orbit. This allows the variety of
local χ2 minima to be probed. Among various minima, a main
one, or a series of very similar ones was reached in all the cases
described below. This main minimum was selected as a start-
ing point for the MCMC chains. This procedure turns out to
speed up the convergence of the chains. This starting point is
marked as red bars and black stars in the resulting MCMC pos-
terior plots (see below). We also tried to run the MCMC starting
from a random guess instead, and checked that the same pos-
terior distributions were reached, but slower. We also checked
in the posterior χ2 distributions that were derived from the runs
that, in all cases, the starting point, which was initially derived
with Levenberg-Marquardt, actually achieves the best χ2 in the
distribution. Strictly speaking, Levenberg-Marquardt works well
to quickly derive the best χ2 minimum. This shows that using
other least-square fitting algorithms, like downhill simplex for
instance, would not lead to a better result, as all these meth-
ods aim at finding a χ2 minimum, which is supposed to be the
best one. Afterwards, however, MCMC runs reveal that, with
sparsely sampled orbits as we are dealing with here, the very
best χ2 minimum does not always correspond to a probability
peak in the posterior distributions. This intrinsic fact is indepen-
dent of the method used to get the minimum.

The implementation of the universal variable formalism de-
scribed above requires an efficient algorithm to compute the
Stumpff functions. The series (9) defining them efficiently only
converge for sufficiently small x. We use a reduction algorithm
described in Danby (1987), which makes use of the following
set of formulas:

c0(4x) = 2 [c0(x)]2 , c1(4x) = c0(x)c1(x), (21)

c2(4x) =
1
2

[c2(x)]2 , c3(4x) =
1
4

c2(x) +
1
4

c0(x)c3(x). (22)

Any input argument x is first reduced by successive factors of 4
until it satisfies |x| < 0.1. Then the series up to order 6 are used
to get c2(x) and c3(x) only. To compute c0 and c1, the following
relations are used:

c0(x) = 1 − xc2(x), c1(x) = 1 − xc3(x). (23)

Equations (21) and (22) are then applied recursively to derive
the Stumpff functions for the original argument x. Danby (1987)
demonstrated the efficiency of this algorithm.

In the fitting routine, the universal Kepler’s Eq. (8) must be
solved numerically using a root-finding algorithm. We do it with
Newton’s quartic method or with Laguerre-Conway’s method
(Danby 1987). To compute the derivatives of the Stumpff func-
tion, we use the following relation:

dcn(x)
dx

=
1
2x

(
cn1 (x) − ncn(x)

)
, (24)

or equivalently, if we define φn(α, s) = sncn(αs2),

∂φn(α, s)
∂s

= φn−1(α, s). (25)

For the special case n = 0, we have

∂φo(α, s)
∂s

= −αφ1(α, s). (26)

The same algorithm is implemented in the symplectic N-body
integrator Swift (Levison & Duncan 1994) for high eccentric-
ity orbits. Its use turns out to be only a few times (3–4) more
consuming of computing time than that of a standard Keplerian
formalism, which is based on sine and cosine functions. But it
is worth applying this formalism to MCMC the case of very
high eccentricity and open orbits, as the use of the universal
Kepler’s Eq. (8) eliminates the instabilities because of the per-
manent switch between the various formulas (3). Thus Markov
chains converge more efficiently.

4. Results for Fomalhaut b

Fomalhaut b is known to have a very eccentric orbit, with an
eccentricity of >∼0.5, and most probably around 0.8–0.9 (Beust
et al. 2014; Pearce et al. 2015). Whether it is actually bound
to the central star may be questionable, especially because of
the very small coverage fraction of its orbit. If bound, its orbital
period is a matter of hundreds of years if not more, while the
four available astrometric points span over a period of only eight
years. Therefore, as noted by Pearce et al. (2015), what is mea-
sured is basically a projected position and a projected velocity
onto the sky plane, so that the z-coordinates (i.e. along the line
of sight) of the position and velocity are unknown. As a matter
of fact, Pearce et al. (2015) use a simple sampling method with
these data, which draws random z-coordinates for the position on
velocity. They find an eccentricity distribution that is very simi-
lar to that derived in Beust et al. (2014) with MCMC. However,
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in both cases, the orbit was supposed to be bound. The eccentric-
ity distribution of Pearce et al. (2015) nevertheless extends up to
e = 1 (that of Beust et al. (2014) stops at e � 0.98), which shows
that unbound solutions could exist as well. This justifies the use
of our new code to check this possibility.

In its first version (see above), the code was used with the
available astrometric data from Kalas et al. (2013) and listed
in Beust et al. (2014). Following the prescriptions by Ford
(2006), ten chains were run in parallel until the Gelman-Rubin
parameters R̂ and T̂ repeatedly reach convergence criteria for
all parameters in Eq. (13), i.e. R̂ < 1.01 and T̂ > 1000. We
had already used the same procedure in Chauvin et al. (2012)
and Beust et al. (2014). In Beust et al. (2014), these conver-
gence criteria were reached after 6.2 × 107 steps. Here it took
4.25 × 108 steps with the universal variable code, running on
the same data. This illustrates how the possibility for Markov
chains to extend in the unbound orbit domain increases the
complexity of the problem. We also had to fix an arbitrary up-
per limit emax = 4 for the eccentricity to ensure convergence.
Setting larger emax values results in more steps being needed
to reach convergence, but the assumed emax = 4 upper limit
has some physical justification. A large eccentricity means that
Fomalhaut b is an object passing by that is currently encounter-
ing a flyby in the Fomalhaut system. The eccentricity of a flyby
orbit cannot be arbitrarily large. For a hyperbolic orbit, the ec-
centricity is directly linked to the relative velocity at infinity v∞
by the energy balance equation

1
2
v2∞ =

GM(e − 1)
q

· (27)

An upper limit to v∞ can be given by considering a typical
dispersion velocity in the solar neighborhood, i.e. ∼20 km s−1.
Assuming q = 25 AU, i.e. the most probable value for hyperbolic
orbits in our distribution (see Fig. 1), this immediately translates
into an estimate of an upper limit for the eccentricity emax � 4.

The global statistics of the posterior orbital distribution ob-
tained from the run is shown in Fig. 1, where distribution his-
tograms for all individual elements (q, e, i, Ω, ω, tp) as well
as density maps for all combinations of them are represented.
Special enlargements of the plots concerning e and Ω are shown
in Fig. 2. In all histogram (mono-dimensional) plots, the red ver-
tical bar that is superimposed on to the plot shows the corre-
sponding value for the best fit (lowest χ2) orbit, which has been
obtained independently via a least-square Levenberg-Marquardt
procedure. The same orbital solution is marked with black stars
in all off-diagonal density plots, which combines two orbital pa-
rameters. As explained above, a least-square fit is initiated prior
to launching MCMC. The resulting best-fit model is then used
as a starting point for the Markov chains, and posterior χ2 dis-
tributions show that this solution actually achieves the minimum
of the distribution.

We first compare these plots to the corresponding ones in
Beust et al. (2014), where the fit was made over the same data
set, but limited to bound orbits only. The first striking fact is
that the eccentricity distribution extends now beyond e = 1, well
into the unbound regime. As suspected, this shows that unbound
orbital solutions for Fomalhaut b do exist. The best fit solution
is itself an unbound orbit with e � 1.9. We nevertheless note a
strong peak in the distribution at e � 0.94, which appears exactly
at the same place as in Beust et al. (2014). This clearly shows
that, for such a weakly constrained problem, MCMC is definitely
superior to least-square.

In fact, the whole eccentricity distribution below e <∼ 0.96
exactly matches the corresponding one in Beust et al. (2014).

This shows up in Fig. 2 where the eccentricity histogram was
intentionally cut at e = 1.5 to permit a better comparison. First,
this validates the present run (as the previous one was done with
another code), and second, it shows that the cutoff at e � 0.98
that appeared in the previous distribution, was not physical but
rather due to the intrinsic limitation of the code used. The tail
of the distribution extends now in the unbound regime up to the
emax = 4 limitation that was fixed in the run. The shape of this tail
can be fitted as with a e−3/2 power law. We also note (Fig. 1) that
the periastron distribution closely matches that of Beust et al.
(2014), while extending further out towards larger values. This
is clearly due to the contribution of unbound orbits, as can be
seen in the q–e probability map.

From this we can derive an estimate of the probability for
Fomalhaut b’s orbit being bound, by just counting the number
of bound orbits in the whole set. We find pbound = 0.23. This
probability actually depends on the assumed limitation emax = 4.
If we had let the eccentricity take larger values, the number of
unbound orbits in the whole set would have been larger, and
subsequently pbound would have been smaller. It is, nevertheless,
possible to estimate the ultimate pbound value that would be de-
rived if we put no upper limit on the eccentricity. Taking into
account the fact that the tail of the posterior eccentricity distribu-
tion roughly falls off as e−3/2, we can extrapolate the distribution
up to infinity, integrate it and reintroduce the missing orbits cor-
responding to e > 4 into the distribution. Our posterior sample
of orbits contains 106 solutions. Extrapolating the distribution,
we can estimate that ∼2.1 × 105, which corresponds to e > 4,
are missing in our sample. This changes our probability esti-
mate to pbound = 0.19, which can be considered as a minimum
value. However, as the emax = 4 threshold results from a phys-
ical consideration (see above), the first derived pbound value can
be regarded as robust. This is not very much above the minimum
value, which shows that the contribution of very high eccentric-
ity solutions is minor.

This probability is however onl derived from a purely mathe-
matical analysis without any consideration of likelihood. Flybys
are rare but not necessarily improbable (see example in Reche
et al. 2009). Looking now at the distribution of the other orbital
elements, we see in Fig. 2 that the location of the orbit in (Ω, i)
still closely matches that of the observed dust disk (the white
star in the plot; Kalas et al. 2005), as in Beust et al. (2014). In
other words, there is still a strong likelihood of near-coplanarity
between Fomalhaut b and the dust disk. This clearly favours a
bound configuration rather than a flyby that would have no rea-
son for being coplanar. Another possibility is that Fomalhaut b
is just being ejected from the system today. This last configura-
tion nevertheless appears improbable, regardless to the timescale
of the ejection (∼1000 yr) compared to the age of the system
(440 Myr; Mamajek 2012). To conclude, these plausibility con-
siderations, combined with our pbound � 0.23 estimate and the
clear peak of the eccentricity distribution at e = 0.94, enable
us to emphasise that Fomalhaut b is probably bound to the cen-
tral star.

The situation is less clear with the argument of periastron.
In the ω–e plot (Fig. 1), we see that, depending on whether e <
1 or e > 1, the solutions exhibit different ω values. In Beust
et al. (2014), we note that the observed dust disk corresponds
to ωdisk = −148.9◦. This still roughly matches the ω values for
bound orbits, i.e. the bound orbits are still apsidally aligned with
the disk with a few tens of degrees.

The distribution of the time of periastron passage (tp) is sim-
ilar to that of Beust et al. (2014), except that here we have an
additional tail after 1950 that corresponds to unbound orbits.
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Fig. 1. Resulting MCMC posterior distribution of the six orbital elements (q, e, i,Ω,ω, tp) of Fomalhaut b’s orbit, using the universal variable code.
The diagonal diagrams show mono-dimensional probability distributions of the individual elements. The off-diagonal plots show bi-dimensional
probability maps for the various couples of parameters. This illustrates the correlation between orbital elements. The logarithmic colour scale in
these plots is linked to the relative local density of orbital solutions. This is indicated to the side of Fig. 2. In the diagonal histograms, the red bar
indicates the location of the best χ2 solution obtained via standard least-square fitting. The location of this solution is marked with black stars in
the off-diagonal plots.

Figure 3 finally shows a few orbital solutions in projection onto
the sky plane, with bound and unbound configurations. We note
that all solutions fit the observed positions, while assuming very
different shapes. We clearly see here the effect of the bad obser-
vational orbital coverage.

5. PZ Tel B
5.1. Results

As mentioned above, orbital solutions for PZ Tel B (Biller et al.
2010; Mugrauer et al. 2012; Ginski et al. 2014) all yield very

eccentric orbits (e > 0.6). These orbital determinations were
performed assuming a bound orbit, so that no test at e ≥ 1 was
done. This assumption is, however, questionable given the or-
bital solutions found. We thus ran our universal variable MCMC
code with the available astrometric data of PZ Tel B (Table 2).
As explained above (Sect. 2), we used the second version of the
code with parameter vector w3 (Eq. (19)), which ensures a better
convergence.

Even in this case, convergence was hard to reach. Ten chains
were run in parallel. After 1.5 × 1010 steps, the Gelman-Rubin
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Fig. 2. Enlargement of eccentricity his-
togram (left) and density maps in (Ω, i)
space (right) out of Fig. 1. The colour scale
appearing on the right side of the right plot
map holds for all similar plots in Fig. 1.
The eccentricity histogram is the same as
in Fig. 1, except that is was truncated at
e = 1.5 to allow a better comparison with
Beust et al. (2014). In the Ω–i plot, the open
star shows the estimated location of the disk
plane (Kalas et al. 2005), and the black star
indicates the location of the best χ2 solution.

Table 2. Summary of astrometric positions of PZ Tel B relative to PZ Tel as observed in recent years.

Obs. date Declination (x) Right ascension (y) Separation Position Angle Reference
(mas) (mas) (mas) (mas)

Jun. 13, 2007 121.26 ± 1.20 225.01 ± 2.20 255.6 ± 2.5 61.68 ± 0.6 Mugrauer et al. (2012)
Apr. 11, 2009 169.96 ± 8.57 282.87 ± 8.57 330.0 ± 10. 59.0 ± 1.0 Biller et al. (2010)
Sep. 28, 2009 165.65 ± 0.59 293.02 ± 1.05 336.6 ± 1.2 60.52 ± 0.22 Mugrauer et al. (2012)
May 07, 2010 175.52 ± 0.60 308.23 ± 1.04 354.7 ± 1.2 60.34 ± 0.21 Mugrauer et al. (2012)
May 05, 2010 183.25 ± 1.53 309.87 ± 2.58 360.0 ± 3.0 59.4 ± 0.5 Biller et al. (2010)
Sep. 26, 2010 186.90 ± 4.10 313.52 ± 6.87 365.0 ± 8.0 59.2 ± 0.8 This work
Oct. 28, 2010 185.15 ± 0.55 319.53 ± 0.95 369.3 ± 1.1 59.91 ± 0.18 Mugrauer et al. (2012)
Mar. 25, 2011 192.02 ± 0.51 330.46 ± 0.87 382.2 ± 1.0 59.84 ± 0.19 Mugrauer et al. (2012)
May 03, 2011 194.61 ± 0.99 342.58 ± 1.74 394.0 ± 2.0 60.4 ± 0.2 This work
Jun. 06, 2011 195.97 ± 0.25 335.22 ± 0.43 388.3 ± 0.5 59.69 ± 0.1 Mugrauer et al. (2012)
Jun. 07, 2011 195.00 ± 2.51 337.75 ± 4.33 390.0 ± 5.0 60.0 ± 0.6 This work
Apr. 05, 2012 196.09 ± 4.45 345.19 ± 7.83 397.0 ± 9.0 60.4 ± 0.2 Biller et al. (2013)
Jun. 08, 2012 212.41 ± 0.10 361.75 ± 0.13 419.5 ± 0.14 59.58 ± 0.22 Ginski et al. (2014)

Fig. 3. Examples of orbital solutions for Fomalhaut b, in projection onto
the sky plane. The star is at the centre of the plot. The black square
denotes the location of the observed astrometric points. Various colours
are given to the orbits, allowing them to be easily distinguishable from
each other.

parameter R̂ values for the six variables in w3 range from be-
tween 1.006 and 1.019, while the T̂ parameter values range from
between 260 and 800. The run was stopped there to save com-
puting time, since reaching the demanded criteria (R̂ < 1.01
and T̂ > 1000 for all variables) would have demanded many
more steps. The R̂ and T̂ values reached at the stopping point
must nevertheless be considered as characteristic for an already
very good convergence, so that we can trust the resulting pos-
terior distribution. We checked indeed that the alternate pos-
terior distributions that we were able to derive by stopping

the computation earlier, i.e. at a point when the R̂ and T̂ val-
ues were somewhat further away from convergence criteria,
did not present significant differences to those presented below.
Noticeably, nothing comparable in terms of convergence criteria
was reached using the first version of the code that uses parame-
ter vector w2 (Eq. (13)).

The global statistics of the posterior orbital distribution ob-
tained from the run is shown in Fig. 4, which was built with
the same plotting conventions as Fig. 1 for Fomalhaut b. In par-
ticular, the red bar and the black star indicate the best-fit orbit
obtained via Levenberg-Marquardt. Special enlargements con-
cerning the periastron and the eccentricity are shown in Fig. 5.

The most striking feature that shows up is the eccentricity
distribution. As expected, PZ Tel B’s orbit appears extremely
eccentric, but the eccentricity distribution is drastically different
from that of Fomalhaut b. As pointed out by Pearce et al. (2015),
the temporal coverage of Fomalhaut b’s orbit is so small that
what is measured is basically a projected position and a projected
velocity, with no information about position and velocity along
the line of sight. Consequently, solutions with arbitrarily high ec-
centricities are mathematically possible. This is not the case for
PZ Tel B. Table 2 shows that the motion followed over five years
is quasilinear, but with a separation with the central star that in-
creased by more than 60%. Even if the orbital coverage is still
small (see Fig. 6), this is more than just a projected position and
project velocity measurement. Consequently, no tail extending
to arbitrarily large values is obtained with MCMC. All solutions
naturally concentrate in the range 0.91 < e < 1.23. The eccen-
tricity distribution appears extremely concentrated around e = 1.
The enlargement in Fig. 5 that is close to e = 1 reveals a peak
near e = 1.00. The median of the distribution is at e = 1.001275;
67% and 95% confidence levels are 0.965 < e < 1.024 and
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Fig. 4. Resulting MCMC posterior distribution of the six orbital elements (q, e, i, Ω, ω, tp) of PZ Tel B’s orbit using the universal variable code,
presented in the same manner as for Fomalhaut b in Fig. 1. The plotting conventions are identical.

0.906 < e < 1.157, respectively. We compare the eccentricity
distribution to that recently found by Ginski et al. (2014), who
derived 0.622 < e < 0.9991 using a least-squares Monte-Carlo
(LSMC) approach, but restricted to bound orbits. Of course our
distribution now extends beyond e = 1, but our lower bound
(e = 0.91) is significantly larger than theirs. This is due to our
additional data points rather than to the method used.

The periastron distribution shows a sharp peak around q =
0.07 AU. The q–e map (Fig. 4) actually reveals two branches
of solutions, one with a bound solution and one with unbound
solutions. But most solutions concentrate close to e = 1 and
q = 0.07 AU. The inclination shows a peak at i = 98◦. This
corresponds to a nearly edge-on configuration and could explain

the quasilinear motion. But solutions up to i = 150◦ are also
possible. The i–e map shows that the larger inclination solu-
tions actually correspond to those with e � 1. All solutions have
i > 90◦, showing that the orbit is viewed in a retrograde config-
uration from the Earth. The distribution of the time of periastron
(tp) exhibits a very sharp peak in 2002.5 that also corresponds to
orbits with e � 1.

Figure 6 shows several orbital solutions in projection onto
the sky plane. We see that the solutions actually fit the data
points, but they all have a much smaller periastron. Figure 7
shows the best χ2 orbit in a similar way, but superimposed on to
a density map that shows the predicted projected positions as of
July 22, 2003 (2003.556). Indeed, Masciadri et al. (2005) report
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Fig. 5. Enlargement of histograms and density maps out of Fig. 4 for the periastron (q) and eccentricity (e) parameters. With respect to Fig. 4, the
periastron plot (left) was truncated at q = 1 AU to make the peak at q = 0.07 appear. The right plot is a special zoom of the eccentricity distribution
around e = 1.

Fig. 6. Examples of orbital solutions for PZ Tel B, in projection onto the
sky plane. The star is at the centre of the plot. The data points appear
in the upper left corner of the plot. As in Fig. 3, colours are given to
individual orbits to allow them to be distinguished from each other.

a non-detection of PZ Tel B in a NACO image from that day.
They conclude that no giant planet was present at a separation
larger than 170 mas from the star. In Fig. 7, according to our ex-
trapolation we see that, at the corresponding epoch, PZ Tel B was
much closer to the star. In most cases, this was shortly after peri-
astron but, in any case, it was closer to the star than 170 mas. Our
extrapolation is therefore in agreement with the non-detection by
Masciadri et al. (2005).

5.2. Discussion

The exact nature of PZ Tel B’s orbit around PZ Tel is still con-
troversial. Our orbital analysis shows that both bound or un-
bound solutions are valid, but that the eccentricity distribution
is strongly peaked around e = 1. If PZ Tel B is unbound to
PZ Tel, it could be a passing-by object (a flyby). This is hard
to believe, given the very small periastron value, and also con-
sidering the fact that both the star and the companion seem to
be young objects (Schmidt et al. 2014). This cannot however
be ruled out mathematically. From Eq. (27) with M = 1.25 M�
and v∞ = 20 km s−1, we derive e = 1.012 for q = 0.07 AU and
e = 1.181 for q = 1 AU, which is still in the tail of the eccentric-
ity distribution, although not in the main peak. We nevertheless
think this possibility is very unlikely.

Still if PZ Tel B is unbound, it could be an escaping compan-
ion that was recently ejected by some gravitational perturbation.

Two problems arise with this hypothesis. First, the ejection must
have occurred very recently (a few years ago). Given the age of
the star (23 Myr, Mamajek & Bell 2014; Binks & Jeffries 2014;
Malo et al. 2014), the probability of witnessing such an event to-
day is very low, about ∼10−6 if we consider the timescale of the
ejection (∼10 yr) and the fact that this type of ejection should not
occur more than a few times in the history of the system. Second,
to efficiently perturb a 40 MJup companion, an additional object
of comparable mass (at least) is required. As of yet, no such ad-
ditional companion has been detected.

So, PZ Tel B is presumably a bound companion. If so, one
must explain its extremely high eccentricity. It could be the re-
sult of secular perturbation processes such as the Kozai-Lidov
mechanism (Kozai 1962; Krymolowski & Mazeh 1999; Ford
et al. 2000). This is a likely mechanism for generating very
high eccentricities. But here again, given the fairly high mass
of PZ Tel B, this would require a more massive outer companion
that should probably have already been discovered.

6. Hidden inner companions?

6.1. Fomalhaut b

Pearce et al. (2014) argue that imaged substellar companions that
appear very eccentric with a first order orbital fit could actually
be much less eccentric due to the presence of an unseen inner
companion. The reason is that the measured astrometry is nec-
essarily relative to the central star while, in the presence of a
massive enough inner companion, the Keplerian motion of the
imaged body should be considered around the centre of mass of
the system. Pearce et al. (2014) develop a fully analytical study
showing how the presence of such an unseen companion could
artificially enhance the fitted eccentricity.

Pearce et al. (2014) present a detailed study dedicated to the
case of Fomalhaut b, concluding that in any case, Fomalhaut b
must be significantly eccentric. According to them, in the
best realistic configuration, a ∼12 MJup companion orbiting
Fomalhaut at 10 AU could account for an ∼10% overestimate of
Fomalhaut b’s orbital eccentricity. This would, for instance, shift
the eccentricity peak from e = 0.94 to e = 0.85. This possibility
cannot be ruled out until the inner configuration of Fomalhaut’s
planetary system remains unconstrained. It would also be com-
patible with the scenario outlined by Faramaz et al. (2015) to
explain the origin of Fomalhaut b’s eccentricity. According to
this model, Fomalhaut b should have formerly resided at ∼60 AU
in the 5:2 mean-motion resonance with another Jupiter-sized
planet (termed Fomalhaut c) located at ∼100 AU. Then, because
of the resonant action, its eccentricity would have increased,
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Fig. 7. Density map of extrapolated projected position of PZ Tel B on July 22, 2003, superimposed to the best χ2 orbit. Left plot: large scale map
showing the data points, the orbit, the predicted position for that orbit on 2016.0, 2018.0, 2010.0 (blue points), and the cloud of positions on
July 22, 2003, computed for all solutions out of our posterior sample (shortly after periastron); right plot: enlargement of the periastron region
with the cloud of projected positions. The peak of the distribution is indicated with a black star.

and it would have been ejected towards its present-day orbit.
This is still compatible with the hypothetical presence of an-
other massive planet orbiting inside at 10 AU. The only diffi-
culty is that, with e = 0.85, Fomalhaut b’s periastron is still as
low as ∼18 AU, which is still close enough to 10 AU to raise the
question of its orbital stability versus perturbations by the hidden
companion. However, according to Faramaz et al. (2015)’s sce-
nario, Fomalhaut b’s orbit must today already cross that of the
putative Fomalhaut c planet orbiting at 100 AU. So in any case,
Fomalhaut b must today lie on a metastable orbit. Adding an-
other massive body deep inside the system does not change this
conclusion. Consequently, the presence of an additional mas-
sive planet orbiting Fomalhaut at 10 AU that would artificially
enhance Fomalhaut b’s eccentricity by ∼10% cannot be ruled
out, as being still compatible with all observational constraints.
Moreover it does not affect the dynamical scenario of Faramaz
et al. (2015).

6.2. PZ Tel B

The case of PZ Tel B is more complex. The main difference with
Fomalhaut b is that it is imaged over a more significant part of
its orbit. As noted by Pearce et al. (2015), the detected astro-
metric motion of Fomalhaut b is basically compatible with a
straight line at constant speed, so that what is measured is not
much more than a projected position and a projected velocity.
This is not the case for PZ Tel B, as the projected distance to
the star is already able to vary significantly over the observation
period (Table 2). This is actually the reason why the fitted ec-
centricity distribution does not extend towards arbitrarily large
values (Fig. 5). Consequently, an analytical study of the poten-
tial effect of an unseen companion on the fitted orbit is less easy.
Pearce et al. (2014) nevertheless calculate that a companion, at
least as massive as 130 MJup orbiting PZ Tel at 5.5 AU is required
to mimic PZ Tel B’s eccentricity. But recent imaging by Ginski
et al. (2014) exclude companions more massive than 26 MJup at
this distance.

However, as for Fomalhaut b, an unseen companion could
account only partially for PZ Tel B’s eccentricity. We decided to
perform an automated search based on this idea. Our strategy is
the following: We arbitrarily fix the characteristics of an unseen

Table 3. Characteristics of a putative PZ Tel c that leads to a less eccen-
tric solution for PZ Tel B.

Mass 12.041 ± 0.1 MJup

Semi-major axis 3.514 ± 0.0004 AU
Eccentricity 0.4691 ± 0.03
Inclination ∼0◦ (4.924 × 10−6 ± 3 deg)
Argument of periastron 30.170 ± 15 deg
Longitude of ascending node 81.660 ± 5 deg
Time of periastron passage 1951.57 ± 0.25 AD

companion (mass and orbit) that we may call it PZ Tel c. Given
these characteristics, we calculate at each time the expected po-
sition of the centre of mass of the system and recompute the
astrometric positions of PZ Tel B relative to this centre of mass.
Then we restart a least-square fit and check the eccentricity of
the best χ2 solution obtained. This process is then automatically
reinitiated many times, changing the characteristics of PZ Tel c
until a solution that yields a least-square fit with the minimal ec-
centricity is found. Of course we make several attempts, varying
the starting points. These showed that, in any case, PZ Tel B’s
eccentricity of the best χ2 solution never goes below ∼0.7.

For the most favourable configuration, the MCMC fit is
re-launched to derive the statistical distributions of orbits. We
present here one of these runs.

The characteristics of the putative PZ Tel c that correspond
to this run are listed in Table 3 and the recomputed barycentric
astrometry of PZ Tel B is given in Table 4. The main character-
istics of the result of the run (histograms of periastron, eccen-
tricity, and inclination) are shown in Fig. 8. The first thing we
note is that the putative PZ Tel c companion (12 MJup at 3.5 AU)
is compatible with the current non-detection limits (Ginski et al.
2014). Second, the difference between the computed barycentric
astrometric data and the measured data is small, often within the
error bars of Table 2. Nonetheless, the difference in the orbital
fit (Fig. 8) is striking. PZ Tel B still appears eccentric, but its
eccentricity is now confined to between 0.65 and 0.8, the best χ2

orbit (the red bar in the plots) having e � 0.68. According to this
analysis, PZ Tel B would clearly be a bound companion. Its pe-
riastron q ranges from between 8 and 24 AU, but all orbits with
q < 8 AU have been eliminated in the fitting procedure as being,
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Fig. 8. Resulting MCMC posterior distribution of the periastron q (left), the eccentricity e (middle), and the inclination i (right) of PZ Tel B’s orbit
using the universal variable code, which is based on the modified data from Table 4. The plotting conventions are the same as in Fig. 5.

Table 4. Astrometric positions of PZ Tel B relative to the centre of mass
of the PZ Tel – PZ Tel c system, computed from the data of Table 2 and
with PZ Tel c’s characteristics taken from Table 3.

Obs. date Declination (x) Right ascension (y)
(mas) (mas)

Jun. 13, 2007 120.86 ± 1.20 225.83 ± 2.20
Apr. 11, 2009 169.36 ± 8.57 282.88 ± 8.57
Sep. 28, 2009 165.30 ± 0.59 292.76 ± 1.05
May 07, 2010 175.76 ± 0.60 307.99 ± 1.04
May 05, 2010 183.50 ± 1.53 309.64 ± 2.58
Sep. 26, 2010 187.34 ± 4.10 313.61 ± 6.87
Oct. 28, 2010 185.60 ± 0.55 319.70 ± 0.95
Mar. 25, 2011 192.43 ± 0.51 330.92 ± 0.87
May 03, 2011 194.99 ± 0.99 343.11 ± 1.74
Jun. 06, 2011 196.32 ± 0.25 335.80 ± 0.43
Jun. 07, 2011 195.35 ± 2.51 338.33 ± 4.33
Apr. 05, 2012 196.11 ± 4.45 346.04 ± 7.83
Jun. 08, 2012 212.36 ± 0.10 362.62 ± 0.13

presumably, highly unstable versus gravitational perturbations
from the hypothetical PZ Tel ccompanion. Letting the periastron
distribution extend towards lower values would generate solu-
tions with larger eccentricities, but these would probably not be
physical.

6.3. Dynamical analysis

Figure 8 also reveals that PZ Tel B’s orbital inclination is
very close to 90◦, meaning an almost edge-on viewed orbit.
Simultaneously, PZ Tel c’s inclination appears extremely low
(Table 3), meaning a pole-on orbit. This allows us to ques-
tion the dynamical stability of such a system. According to
our fit, PZ Tel B’s periastron is most probably around ∼10 AU,
which is ∼3 times larger than the semi-major axis of PZ Tel c’s
semi-major axis. This is, in principle, marginally enough to en-
sure the dynamical stability of the whole. But here both or-
bits are nearly perpendicular. In this context, the inner orbit is
likely to be trapped in the Kozai-Lidov mechanism (Kozai 1962;
Krymolowski & Mazeh 1999; Ford et al. 2000) that is charac-
terised by huge eccentricity changes. This could trigger orbital
instability.

We thus decided to numerically investigate the dynamical
stability of this three body system, starting from the best χ2 so-
lution for PZ Tel B, in Fig. 8, and with the orbital solution from
Table 3. As the fitted orbit of PZ Tel B is barycentric, we used our
HJS symplectic code (Beust 2003) that naturally works in Jacobi
coordinates, which is the case here. The result is presented in

Fig. 9, which shows the orbital evolution of the system over
106 yr. The regular evolution pattern is an indication of stabil-
ity. In fact, the integration was carried out up to 107 yr, which
reveals the same behaviour as in the first 106 yr. Moreover, the
semi-major axes of both planets (not shown here) appeared to
be remarkably stable, which confirms the stability. Nonetheless,
PZ Tel c’s eccentricity exhibits large amplitude oscillations cou-
pled with oscillation of the mutual inclination between both or-
bital planes. This behaviour is characteristic of a strong Kozai
resonance. We note, however, that in high eccentricity phases,
the mutual inclination does not drop down to 0 but up towards
180◦ (retrograde orbits). This is thus an example of retrograde
Kozai resonance.

This picture is however very probably erroneous. In fact,
given the almost perfectly perpendicular initial configuration of
the orbits, the Kozai cycles drive PZ Tel c up to very high ec-
centricity values. The peak eccentricity in the cycles is actually
close to ∼0.998. Considering that PZ Tel c’s semi-major axis
is nearly constant, its periastron must drop down to very small
values during peak eccentricity phases. The right plot of Fig. 9
confirms this fact. The minimum periastron value in the peaks
ranges between 104 AU and 10−3 AU. With a mass of 1.25 M�,
PZ Tel’s radius can be estimated at 9×105 km, i.e., 6×10−3 AU.
PZ Tel c is thus, potentially, subject to collision with the central
star. However, when the periastron decreases in high eccentric-
ity phases, PZ Tel c is very probably affected by tides from the
central star that may prevent physical collisions. Tides were not
taken into account in the run described in Fig. 9, so that this
picture does not hold.

We thus recomputed the secular evolution of the same three-
body system, but now taking tides between the central star and
PZ Tel c into account. The computation was done using a spe-
cial version of the HJS integrator, to which we added tides and
relativistic post-Newtonian corrections. The details of this code
are presented in Beust et al. (2012) with an application to the
GJ 436 system. Tides mainly depend on the assumed tidal dis-
sipation parameter Qp for the planet, a dimensionless parameter
that is related to the rate of energy dissipated through tides per
orbital period (Barker & Ogilvie 2009). The smaller the Qp, the
more efficient the tidal dissipation is. Qp is very hard to estimate,
but typical values for giant planets range around 105 within one
order or magnitude (Zhang & Hamilton 2008).

Figure 10 shows the result of this kind of simulation, assum-
ing Qp = 105 for PZ Tel c. The difference with the previous run
is striking. PZ Tel c’s semi-major axis appears to remain constant
for ∼3 × 104 yr, and to suddenly drop thereafter. During the first
phase (before 3 × 104 yr), the eccentricity gradually increases
before decreasing, and the mutual inclination decreases before
stabilising. The explanation is as follows: in the first phase, the
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Fig. 9. Orbital evolution of the PZ Tel B+c system, as computed with pure Newtonian dynamics over 106 yr, using HJS integrator. Left: eccentrici-
ties of both orbits; red is for PZ Tel c and green for PZ Tel B; middle: mutual inclination between both orbital planes; right: periastron of PZ Tel c,
in logarithmic scale

Fig. 10. Orbital evolution of the PZ Tel c system in a similar configuration as in Fig. 9 with respect to PZ Tel B, but with tides taken into account,
assuming Q = 105 quality factor. The computation was made using the HJS integrator to which tides and post-Newtonian corrections were added.
Left: semi-major axis; middle: eccentricity; right: mutual inclination between both orbital planes

periastron remains too large to allow tides to be active. But the
Kozai mechanism causes an eccentricity increase until a point
where tides act at periastron. The subsequent energy dissipation
then causes a rapid decay of PZ Tel c’s orbit and a subsequent
circularisation. This scenario is actually similar to the one de-
picted in Beust et al. (2012) for GJ 436 and by Fabrycky &
Tremaine (2007). In the latter cases, several Kozai-Lidov oscil-
lations, together with tidal friction, first occur before the inner
orbit starts to decay. Here this state is reached at the very first
eccentricity peak, thanks to very strong tides when the perias-
tron gets very close to the stellar surface.

The consequence is that tides prevent the deduced orbital
configuration between PZ Tel B and PZ Tel c from being stable,
since the hypothetical PZ Tel c inevitably migrates to a much
closer orbit after only 3 × 104 yr. This result obviously depends
on the assumed Qp value. We thus tried other runs with increased
Qp values (106 and above) to reduce the strength of tides. This
appeared to only delay the time of the orbital decay without
changing the basic scenario. In any case, PZ Tel c ends up on
a tight orbit (<0.1 AU), on a timescale in any case much lower
than the age of the system.

Our conclusion is that the PZ Tel c scenario that is de-
picted here to account for the apparent very high eccentricity of
PZ Tel B does not hold, since it would require an orbital config-
uration that cannot be stable. We are thus back to our conclusion
that PZ Tel B’s orbit is really very close to a parabolic state, as
deduced from our initial MCMC analysis.

7. Conclusion

We have developed a new MCMC code based on the use of uni-
versal Keplerian variables, which is dedicated to the orbital fit

of imaged companions with very high eccentricities or unbound
orbits. This code was successfully applied to the specific cases
of Fomalhaut b and PZ Tel B. As far as Fomalhaut b is con-
cerned, we confirm our orbital determination of Beust et al.
(2014), but we show that the eccentricity distribution can extend
above e = 1 in the unbound regime. This is in agreement with
the analysis of Pearce et al. (2015) who show that, for compan-
ions that are imaged over a very small orbital arc, the unknown
radial velocity renders unbound orbits possible. We, however,
think that Fomalhaut b is very probably a bound companion, al-
though very eccentric. The case of PZ Tel B is more complex.
Our code reveals a very different eccentricity distribution than
for Fomalhaut b. Indeed, PZ Tel B’s eccentric distribution ex-
hibits a very sharp peak around e = 1.

According to Pearce et al. (2014), imaged companions can
appear much more eccentric than they are actually, thanks to the
presence of hidden inner companions that affect that astromet-
ric data. Pearce et al. (2014) have already shown that this model
cannot account for Fomalhaut b’s eccentricity. For PZ Tel B, we
show that a hidden ∼12 MJup companion orbiting at ∼3.5 AU in a
pole-on configuration (contrary to the edge-on orbit of PZ Tel B)
could mimic an almost unbound orbit despite a real eccentricity
around ∼0.7. However, because of the combination of tides and
a Kozai-Lidov mechanism, this configuration is dynamically un-
stable. We are thus back to the conclusion that PZ Tel B has very
high eccentricity and is a possible unbound companion.

The dynamical origin of Fomalhaut b and its configuration
relative to the dust disk that orbits Fomalhaut was recently in-
vestigated by Faramaz et al. (2015). According to this model, the
Fomalhaut system should harbour another, more massive planet
that controls the shape of the disk. Fomalhaut b could have for-
merly resided in a mean-motion resonance with that planet, and
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could have been put on its present day eccentricity via a gradual
eccentricity increase and one or several close encounters. The
case of PZ Tel B is more complex. According to our orbital de-
termination, its eccentricity is, in any case, very close to 1 if not
above. The planet passed through a very close (<0.1 AU) peri-
astron in 2002, consistent with its non-detection in 2003 NaCo
images (Masciadri et al. 2005). Highly eccentric orbits with very
small periastron are usually triggered by a Kozai-Lidov mecha-
nism or by mean-motion resonance with a moderately eccentric
outer companion (such as, in the so-called Falling Evaporating
Body scenario in the βPictoris system Beust & Morbidelli 2000).
But, given the estimated mass of PZ Tel B, this would require a
perturbing companion in the low stellar mass regime. This kind
of companion would have already been detected. Apart from a
very peculiar past encounter event, there is therefore no obvious
explanation for the unusual orbital configuration of PZ Tel B.
Further monitoring of this system will increase our understand-
ing of it.
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