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ABSTRACT

Context. L1157-B1 is the brightest shocked region of the large-scale molecular outflow. It is considered the prototype of the so-called
chemically rich active outflows, being the perfect laboratory to study how shocks affect the molecular gas content. Specifically, several
deuterated molecules have previously been detected with the IRAM 30 m telescope, most of them formed on grain mantles and then
released into the gas phase due to the passage of the shock.
Aims. We aim to observationally investigate the role of the different chemical processes at work that lead to formation of the DCN
and compare it with HDCO, the two deuterated molecules imaged with an interferometer, and test the predictions of the chemical
models for their formation.
Methods. We performed high-angular-resolution observations toward L1157-B1 with the IRAM NOEMA interferometer of the
DCN (2–1) and H13CN (2–1) lines to compute the deuterated fraction, Dfrac(HCN), and compare it with previously reported Dfrac
of other molecular species.
Results. We detected emission of DCN (2–1) and H13CN (2–1) arising from L1157-B1 shock. The deuterated fraction Dfrac(HCN) is
∼4 × 10−3 and given the associated uncertainties, we did not find significant variations across the bow-shock structure. Contrary to
HDCO, whose emission delineates the region of impact between the fast jet and the ambient material, DCN is more widespread and
not limited to the impact region. This is consistent with the idea that gas-phase chemistry is playing a major role in the deuteration
of HCN in the head of the bow-shock, where HDCO is undetected as it is a product of grain-surface chemistry. The spectra of DCN
and H13CN match the spectral signature of the outflow cavity walls, suggesting that their emission results from shocked gas. The
analysis of the time-dependent gas-grain chemical model UCL_CHEM coupled with a parametric C-type shock model shows that the
observed deuterated fraction Dfrac(HCN) is reached during the post-shock phase, when the gas is at T = 80 K, matching the dynamical
timescale of the B1 shock, around ∼1100 yr.
Conclusions. Our results indicate that the presence of DCN in L1157-B1 is a combination of gas-phase chemistry that produces the
widespread DCN emission, dominating especially in the head of the bow-shock, and sputtering from grain mantles toward the jet
impact region, that can be efficient close to the brightest DCN clumps B1a.

Key words. ISM: jets and outflows – ISM: molecules – ISM: abundances – stars: formation

1. Introduction
Protostellar shocks play a crucial role in the chemical evolution
of star-forming clouds because they induce large variations of
temperature and density in the surrounding medium, which can
locally activate endothermic gas-phase reactions, ionization pro-
cesses, and evaporation/erosion of dust grains and their icy man-
tles, tremendously increasing the chemical complexity of the
ambient material (e.g., van Dishoeck & Blake 1998; Arce et al.
2007). Driven by the low-mass Class 0 protostar L1157-mm,
at a distance of 250 pc (Looney et al. 2007), L1157 is the pro-
totypical “chemically rich” outflow (Bachiller et al. 2001, and

? Based on observations carried out with the IRAM NOEMA interfer-
ometer. IRAM is supported by INSU/CNRS (France), MPG (Germany),
and IGN (Spain).
?? The fits files of DCN (2–1) and H13CN (2–1) datacubes are only
available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A20

references therein). It is associated with several shock episodes
(Gueth et al. 1996), and is considered one of the best astro-
chemical laboratories. Its brightest bow-shock L1157-B1, lo-
cated in the southern blue-shifted outflow lobe, is currently un-
der extensive investigation from the millimeter to the infrared
regime as part of the Large Programs Herschel/CHESS (Chemi-
cal HErschel Surveys of Star forming regions1; Ceccarelli et al.
2010) and IRAM 30 m/ASAI (Astrochemical Survey At IRAM2;
Lefloch et al., in prep.), as well as with interferometers such as
NOEMA (e.g., Fontani et al. 2014; Podio et al. 2017) and the
JVLA (Busquet et al., in prep.). These observations confirm a
spectacular chemical richness and a complex morphology of the
bow-shock in which different molecules peak at different po-
sitions (e.g., Benedettini et al. 2007, 2013; Codella et al. 2009,
2010; Nisini et al. 2010; Burkhardt et al. 2016).

1 http://chess.obs.ujf-grenoble.fr
2 http://www.oan.es/asai
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Using the IRAM 30 m telescope, Codella et al. (2012b,a) de-
tected toward L1157-B1 several rotational lines of deuterated
molecules (e.g., HDO, DCN, HDCO, NH2D, and CH2DOH).
The comparison between the predictions of the gas-grain chem-
ical model (Taquet et al. 2012) and the observational results led
Codella et al. (2012b,a) to conclude that the deuterated fraction
(Dfrac(X) =ratio between the column density of a deuterated
molecule and that of its main isotopolog X) of H2O, H2CO, and
CH3OH is consistent with material formed on multi-layer icy
grain mantles and then released into the gas phase after evap-
oration of part of the grain mantles’ ices due to the passage of
the shock, while HCN is likely a present-day gas-phase product.
While in cold and dense environments, deuterium enrichment
occurs through the exothermic reaction H+

3 + HD → H2D+ +
H2 + 232 K (Watson 1978; Roberts & Millar 2000), at temper-
atures above 20 K, the reverse reaction becomes important and
the enhancement of deuterated fraction, and in particular the pro-
duction of DCN, can proceed via CH+

3 + HD→ CH2D+ + H2 +
654 K (Roueff et al. 2013), as suggested by chemical models
(e.g., Roueff et al. 2007, 2013) and observations of the Orion Bar
(Leurini et al. 2006; Parise et al. 2009). In protostellar shocks,
as in L1157-B1, the gas-phase chemical composition can be ad-
ditionally affected by evaporation and/or sputtering of icy dust
mantles that release back into the gas-phase deuterated species
(among others) that were formed earlier, either on the gas-phase
and then depleted onto dust grain or formed directly on dust
grain surfaces, during the cold cloud collapse phase.

Recent high-angular-resolution observations with NOEMA
reveal that the emission of HDCO clearly delineates the im-
pact region between the shock and the ambient material
(Fontani et al. 2014), confirming the predictions of previous
works (Codella et al. 2012b). Moreover, Fontani et al. (2014)
find significant changes of Dfrac(H2CO) in L1157-B1 shock;
Dfrac(H2CO) ' 0.1 in the HDCO-emitting region and it drops
by one order of magnitude in the material in front of the
impact region (i.e., in the head of the bow-shock). The dif-
ferences in Dfrac(H2CO) reflect the dominant process of for-
mation/destruction of HDCO in the different positions of
L1157-B1: surface (cold) chemistry, which favors the formation
of HDCO; warm gas-phase chemistry, which destroys HDCO,
dominates in the head of the bow-shock.

In this work we report on observations of DCN (2–1) and
H13CN (2–1) lines conducted with the IRAM NOEMA interfer-
ometer toward L1157-B1 to fully confirm the predictions of the
chemical models and investigate whether DCN has a different
origin than HDCO: warm gas-phase chemistry versus surface
chemistry.

2. Observations

The NOEMA interferometer was used to observe the DCN (2–1)
and H13CN (2–1) molecular transitions at 144.828 GHz and
172.678 GHz, respectively, toward L1157-B1. The observations
were carried out over several days between 2014 December and
2015 April using the array in the D and C configurations. The
projected baselines range from 20.7 m to 176 m for DCN (2–1)
and from 15.8 m to 176 m for H13CN (2–1). The phase cen-
ter was α(J2000) = 20h39m10s.2; δ(J2000) = 68◦01′10′′.5, and
the local standard of rest velocity was set to 2.6 km s−1. The
primary beam (FWHM) is 34′′.8 and 29′′.2 at the frequency of
DCN (2–1) and H13CN (2–1), respectively. Typical system tem-
peratures were 100−150 K at 145 GHz and 250−300 K at
172 GHz, and the amount of precipitable water vapor was around
5 mm at 145 GHz and 1−2 mm at 172 GHz.

The DCN (2–1) and H13CN (2–1) lines were observed using
two spectral windows of the narrow band correlator of 40 MHz
of bandwidth with 512 spectral channels, providing a spectral
resolution of ∼0.078 MHz (∼0.15 km s−1). Bandpass calibration
was performed by observing quasar 3C 279, while 1926+611
and 1928+738 were used for calibration of the gains in phase and
amplitude. The uncertainty on the phase and amplitude of the
gains are around 10◦−20◦ and 1−2% at 145 GHz and 20◦−40◦
and 5% at 172 GHz. The absolute flux density scale was de-
termined from MWC 349 with an uncertainty ∼15%. Calibra-
tion and imaging were conducted using standard procedures of
the CLIC and MAPPING softwares of the GILDAS3 package.
The final data cubes were smoothed to a velocity resolution of
0.5 km s−1. The synthesized beam of DCN (2–1) and H13CN (2–
1) is 2′′.35 × 2′′.18 (PA = 43.5◦) and 1′′.74 × 1′′.71 (PA =
66.4◦), and the rms noise level achieved was 3.6 mJy beam−1

and 8.8 mJy beam−1 per spectral channel, respectively. The lines
detected in the other spectral units of the narrow band correlator
as well as in the Widex broadband correlator will be presented
in a forthcoming paper.

3. Results

We detected H13CN (2–1) and DCN (2–1) lines emitting in a
range of velocities from −14.9 to 6.6 km s−1 and from −7.4
to 5.1 km s−1, respectively, clearly blueshifted with respect to
the cloud systemic velocity vLSR = 2.6 km s−1 (Bachiller &
Perez Gutierrez 1997). The integrated intensity maps are shown
in Fig. 1 (left panel). The emission of DCN and H13CN presents
a clumpy morphology, with the strongest clumps located at the
eastern wall of the cavity excavated by the shock, similarly to
HCN (1–0) distribution (Benedettini et al. 2007; Burkhardt et al.
2016). There is also faint and extended emission associated
with the head of bow-shock and toward the western side of the
cavity walls coinciding with the B1b clump identified in some
molecular species (e.g., CH3CN: Codella et al. 2009; CH3OH:
Benedettini et al. 2007; CH3CHO: Codella et al. 2015). The
brightest clump of the DCN (2–1) line is found at α(J2000) =
20h39m10s.3; δ(J2000) = 68◦01′14′′.1, about 2′′ north of clump
B1a identified by Benedettini et al. (2007). This clump (B1a)
is the peak position of the high-velocity SiO (2–1) emission
(Gueth et al. 1998), indicating that B1a is the location where the
precessing jet impacts the cavity. We note that the brightest peak
in H13CN (2–1), named B1e, does not coincide with any previ-
ous identified clump by Benedettini et al. (2007, 2013).

In the right panel of Fig. 1 we present a comparison of
the two deuterated molecules observed so far with interferome-
ters, DCN (2–1) in contours and HDCO (21,1−10,1) in gray scale,
overlaid on the CH3CN emission (Codella et al. 2009) to high-
light the bow-shock structure. Overall, the emission of DCN re-
sembles that of HDCO except that it also arises from the head of
the bow-shock, where HDCO is undetected (Fontani et al. 2014).

We estimated how much flux is filtered out by NOEMA
by comparing the IRAM 30 m spectra from the ASAI project
(Mendoza et al., in prep.) of both lines with the NOEMA spec-
tra extracted within a region corresponding to the beam of the
single-dish (i.e., 17′′.4 and 14′′.6 for DCN (2–1) and H13CN (2–
1), respectively). We converted the IRAM 30 m spectra from
main beam temperature (Tmb) to flux density units (Fν), assum-
ing that the telescope beam is Gaussian and the source size is

3 The GILDAS software is developed at the IRAM and the Observa-
toire de Grenoble, and is available at http://www.iram.fr/IRAMFR/
GILDAS
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Fig. 1. Left: integrated intensity map of H13CN (2–1) line (gray scale) and DCN (2–1) line (contours) observed with NOEMA. Gray-scale levels
start at 10% of the peak and increase in steps of 10%. The contour levels range from 3 to 15 in steps of three times the rms noise of the map,
6.5 mJy beam−1 km s−1. Red, blue, yellow, green, and cyan lines depict the regions used to extract the spectra and compute Dfrac(HCN). These
delineate the eastern wall (“E-wall” or B0e) of the cavity, B1a, B1e, the “head” of the bow-shock (B1c), and B1b, respectively. The synthesized
beams of H13CN (2–1) and DCN (2–1) are shown in the bottom left and bottom right corner, respectively. Right: integrated intensity map of
HDCO (21,1−10,1) line (gray scale, Fontani et al. 2014) and DCN (2–1) line using the same contour level as in the left panel. Gray-scale levels
start at 40% of the HDCO peak and increase in steps of 10%. To highlight the bow-shock structure, we show the CH3CN (8–7) K = 0−2 image
(blue-dashed contours) from Codella et al. (2009). The synthesized beams of HDCO (21,1−10,1) and DCN (2–1) are shown in the bottom left and
bottom right corner, respectively. In both panels the red cross indicates the peak of the high-velocity SiO (2–1) emission (Gueth et al. 1998).

smaller than the beam, using the following expression:[
Fν

Jy

]
= 8.33 × 10−7

[
ν

GHz

]2
[

Θmb

arcsec

]2 [Tmb

K

]
, (1)

where Θmb is the half power beam width (HPBW) of the
IRAM 30 m telescope and ν the line rest frequency. The result-
ing spectra are displayed in Fig. 2. Within the calibration er-
rors, NOEMA recovers around 85% of the flux detected with the
IRAM 30 m telescope in DCN (2–1) and almost the total flux in
H13CN (2–1). Therefore, our estimates of Dfrac are not affected
by the missing flux.

3.1. Deuterated fraction

In order to derive Dfrac we first convolved the H13CN (2–1) chan-
nel maps to the same beam as the DCN (2–1) line and then
we extracted the spectra of DCN (2–1) and H13CN (2–1) toward
the five subregions drawn in Fig. 1. The spectra of each subre-
gion are displayed in Fig. 3. We report in Table 1 the integrated
intensity from −7.4 km s−1 to +5.1 km s−1 (i.e., the velocity
range where DCN emits) and the peak velocity of DCN (2–1)
and H13CN (2–1) lines. It should be noted that the peak veloc-
ity of H13CN (2–1) appears blueshifted by ∼2 km s−1 with re-
spect to the DCN (2–1) line. From the integrated intensities we
obtained the column densities of DCN (2–1) and H13CN (2–1)
using Eq. (A4) of Caselli et al. (2002), which assumes that all
levels are characterized by the same excitation temperature, Tex,

and lines are optically thin. Given the low abundance of deuter-
ated molecules, the assumption of optically thin DCN emis-
sion is reasonable. For the case of H13CN (2–1) we ran RADEX
(van der Tak et al. 2007) over a wide range of physical condi-
tions (Tex = 10−70 K, n(H2) = 103−107 cm−3, and N(H13CN) =
1011−1013 cm−2) and found that the emission of H13CN (2–1)
is always optically thin. We adopted Tex to be in the range of
10−70 K, based on both single-dish measurements of kinetic
temperatures from CO and HDCO observations (Lefloch et al.
2012; Codella et al. 2012b) and interferometric CH3CN obser-
vations (Codella et al. 2009). The molecular spectroscopy infor-
mation was obtained from the Cologne Database for Molecular
Spectroscopy (CDMS4, Müller et al. 2001, 2005; Endres et al.
2016).

To estimate the deuterated fraction Dfrac(HCN) = N(DCN)/
N(HCN) we adopted 12C/13C =77 (Wilson & Rood 1994). The
derived values are listed in the last column of Table 1. Over-
all, Dfrac(HCN) ranges from 3 × 10−3 to 6 × 10−3, in agree-
ment with the values reported by Codella et al. (2012b) based
on IRAM 30 m single-dish observations. The higher values are
found toward the “E-wall” and B1b clump and it decreases by
a factor of 2 in the rest of the shocked region. On the other
hand, the lower value of Dfrac(HCN) ' 0.8 × 10−3 is reached
toward clump B1e, that is, in the head of the bow-shock, as it is
the brightest clump in H13CN but marginally detected in DCN.
Considering the uncertainties of the derived column densities,

4 https://www.astro.uni-koeln.de/cdms
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Table 1. Line parameters of DCN (2–1) and H13CN (2–1) derived in the five regions depicted in Fig. 1 and from the spectra integrated over the
whole emission of DCNa. ∫

Tmbdv vLSR N Dfrac
b

(×1011 cm−2) (×10−2)
(K km s−1) ( km s−1) 10–70 K 10–70 K

E-wall (B0e)
DCN (2–1) 0.71(0.11) 0.15 2.7(0.4)−7.2(1.1) 0.47(0.12)−0.54(0.14)
H13CN (2–1) 2.33(0.41) −1.86 7.5(1.3)−17.1(2.8)
B1a
DCN (2–1) 0.79(0.12) 1.16 3.0(0.5)−8.0(1.2) 0.32(0.07)−0.37(0.08)
H13CN (2–1) 3.84(0.65) −0.95 12.4(2.1)−28.2(4.8)
B1e
DCN (2–1) 0.24(0.05) 1.15 0.9(0.3)−2.4(0.4) 0.08(0.03)−0.09(0.03)
H13CN (2–1) 4.83(0.75) −0.89 15.6(2.5)−35.5(5.7)
B1c
DCN (2–1) 0.57(0.09) 1.13 2.2(0.3)−5.8(0.9) 0.26(0.06)−0.30(0.07)
H13CN (2–1) 3.42(0.56) 1.06 11.1(1.8)−25.1(3.9)
B1b
DCN (2–1) 0.27(0.05) 1.13 1.5(0.2)−4.1(0.5) 0.48(0.12)−0.56(0.15)
H13CN (2–1) 1.29(0.28) −0.88 4.2(1.1)−9.5(2.4)
Total
DCN (2–1) 0.44(0.07) 1.15 1.7(0.3)−4.5(0.7) 0.32(0.07)−0.37(0.09)
H13CN (2–1) 2.11(0.37) 1.04 6.8(1.2)−15.5(2.8)

Notes. (a) Uncertainties are reported in parentheses and include the statistical error and the uncertainty in the flux calibration. (b) Dfrac(HCN) =
N(DCN)/N(HCN) computed using 12C/13C = 77 (Wilson & Rood 1994) to obtain N(HCN) from N(H13CN).

Fig. 2. Top: spectrum of H13CN (2–1) obtained with the IRAM 30 m
telescope (black histogram) toward L1157-B1, and NOEMA spectrum
(red histogram) extracted from a circular region equal to the IRAM 30 m
HPBW (14′′.6). Bottom: same as top panel for DCN (2–1). In this case
the IRAM 30 m HPBW is 17′′.4. All spectra have been smoothed to
1.4 km s−1 velocity resolution. The vertical dotted line depicts the sys-
temic velocity vLSR = 2.6 km s−1.

we affirm that the deuterated fraction of HCN, Dfrac(HCN), does
not have significant variations among the different parts of the
bow-shock structure. Conversely, Fontani et al. (2014) find a sig-
nificant variation of Dfrac derived from H2CO, which is about
Dfrac(H2CO) ' 0.1 in the emitting region (in the rear part of the
bow-shock) and drops one order of magnitude in the head of the
bow-shock.

3.2. The spectral signature of DCN and H13CN

Previous studies have revealed the presence of multiple
excitation components coexisting in the L1157-B1 shock
(Benedettini et al. 2012; Lefloch et al. 2012; Busquet et al.
2014). Specifically, Lefloch et al. (2012) showed that the line
profiles of the CO J- ladder (from J = 1 up to J = 16) are
well reproduced by a linear combination of three exponential
laws I(v) ∝ exp(−|v/v0|), where v0 defines a characteristic veloc-
ity, specific for each physical component of the outflow. These
three components were tentatively identified as the jet impact
shock region associated with a partly-dissociative J-type shock
(labeled g1), the cavity walls of the L1157-B1 bow-shock (la-
beled g2), and the cavity walls from the earlier ejection episode
that produced the B2 bow-shock (labeled g3).

We extracted the spectra of DCN (2–1) and H13CN (2–1)
over all the emitting region to search for the presence of
the spectral signature. Figure 4 shows that both DCN (2–1)
and H13CN (2–1) are well described by an exponential law
with v0 = 4.4 km s−1, consistent with the analysis of H13CN
lines observed with the IRAM 30 m telescope as part of the
ASAI survey (Mendoza et al., in prep.). This slope corresponds
to the spectral signature of the outflow cavity of L1157-B1
(i.e., the g2 component). The presence of this component has
been identified not only in CO but in other molecular lines
such as CS (Benedettini et al. 2013; Gómez-Ruiz et al. 2015),
H2CS (Holdship et al. 2016), and PN (Lefloch et al. 2016). The
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Fig. 3. Spectra of DCN (2–1) and H13CN (2–1) integrated over the red, blue, yellow, green, and cyan contours (from left to right) shown in Fig. 1.
The vertical dotted line depicts the systemic velocity, vLSR = 2.6 km s−1. We note that DCN and H13CN have a different vertical scale.
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Fig. 4. Spectral profile of DCN J = 2−1 (black thin line) and H13CN J =
2−1 (red thick line) extracted over the whole emitting region displayed
in linear-logarithmic scale. The thin/thick dashed lines show the fit to
the spectral slope Tmb ∝ exp(−|v/v0|) for DCN and H13CN, respec-
tively, with v0 = 4.4 km s−1, which corresponds to the signature of the
g2 outflow component identified by Lefloch et al. (2012).

association of H13CN (2–1) and DCN (2–1) lines with the spec-
tral signature of the outflow cavity walls supports the idea that
both lines arise from gas that has been shocked.

4. Analysis and discussion

The results presented in the previous section indicate that all the
positions of the L1157-B1 shock show similar Dfrac(HCN) '
(3−6) × 10−3 except in the external walls of the cavity close
to the head of the bow-shock (i.e., in the B1e clump), where
Dfrac(HCN) is significantly lower. Toward the protostar L1157-
mm, Bachiller & Perez Gutierrez (1997) obtain Dfrac(HCN) ∼
0.02, one order of magnitude higher than toward the B1 shock
position. The deuterium enrichment is thus more efficient to-
ward the cold and dense envelope than toward warm regions of
shocked material. Moreover, the deuteration of HCN is at least
one order of magnitude smaller than the deuteration of H2CO

and CH3OH (Codella et al. 2012b; Fontani et al. 2014). Actu-
ally, HDCO and CH2DOH are found preferentially at the inter-
face between the shock and the ambient material (Fontani et al.
2014), where the evaporation/erosion of grain mantles is maxi-
mum, while DCN is more widespread because it is not limited
to the impact region, suggesting that the origin of DCN is not
the same as HDCO. In the following we explore and discuss the
origin of DCN using a chemical model.

4.1. Chemical modeling

In order to investigate the origin of DCN (i.e., warm gas-phase
chemistry versus surface chemistry) we used the shock model
of Viti et al. (2011), which couples the time dependent gas-
grain chemical model UCL_CHEM (Viti et al. 2004) with the
parametric C-type shock model of Jiménez-Serra et al. (2008).
This model has been successfully applied to explain the abun-
dance of several molecular species toward the L1157-B1 shock
(Viti et al. 2011; Codella et al. 2012b, 2013; Lefloch et al. 2016;
Holdship et al. 2016).

In brief, the model consists of a two-phase calculation.
Phase I starts from a diffuse medium (∼100 cm−3) in neutral
atomic form (apart from a fraction of atomic hydrogen already
in H2) that undergoes collapse to simulate the formation of a
high-density clump. We adopted initial solar abundances for all
species (Asplund et al. 2009), apart from the metals and sulfur
which we deplete by a factor of 100 for consistency with previ-
ous modeling work on L1157-B1. We assumed a standard value
for the cosmic ionization rate of ζ = 1.3 × 10−17 s−1, although
we also run a model with a cosmic ray ionization rate higher by
a factor of 10, as in Codella et al. (2013), which is close to the
value derived by Podio et al. (2014), ζ = 3 × 10−16 s−1, based
on observations of molecular ions. During this phase, atoms and
molecules from the gas freeze on the dust grains and hydrogenate
when possible. The sticking efficiency for all species is assumed
to be 100% but the rate of depletion is a function of density
(as in Rawlings et al. 1992). The density at the end of phase I
corresponds to the pre-shock density. In Phase II we follow the
chemical evolution of gas and icy mantles during the passage of
a C-type shock. During this phase, both thermal desorption and
sputtering of the icy mantles are included. A full description of
the model can be found in Viti et al. (2011) and Holdship et al.
(2017).
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Fig. 5. DCN/HCN abundance ratio in logarithmic scale as a function
of time (Phase II) as predicted by our model with a pre-shock density
of n(H2) = 105 cm−3 and a shock velocity vs = 40 km s−1. The thin
red line displays the neutral gas temperature profile and the dotted red
line the temperature of the ions. Black thick solid line depicts the model
with the standard value of the cosmic ionization rate while the thick
dashed-line shows the model with ζ = 1.3 × 10−16 s−1. The gray area
shows the range of observed values.

Our non-deuterated gas-phase chemical network is taken
from UMIST 125 (McElroy et al. 2013). The deuterated network
is taken from the model in Esplugues et al. (2013). In our model
the pre-shock density was set to n(H2) = 105 cm−3 and the shock
velocity is vs = 40 km s−1, to be consistent with the results found
in previous studies (e.g., Viti et al. 2011; Lefloch et al. 2016).
For this model, the maximum temperature reached during the
shock passage is 4000 K.

Figure 5 presents the evolution of the DCN/HCN abundance
ratio as a function of time during the passage of the shock for
the two models differing in the cosmic ionization rate. We also
show in Fig. 5 the neutral gas temperature profile Tn (thin red
line) and the temperature profile of ions Ti (dotted red line). We
note that the temperature profile of neutrals and ions is the same
for both models differing in the cosmic ionization rate. The trend
for the two models is exactly the same, and only during the lat-
ter time steps is there a perceptible difference, with the model
with higher cosmic ionization rate displaying slightly lower val-
ues of Dfrac(HCN). We can see in Fig. 5 that Dfrac(HCN) does
indeed vary with the passage of the shock6. The sharp increase
of Dfrac(HCN) around t ' 5 yr is a consequence of the re-
lease of DCN from grain mantles due to sputtering, which oc-
curs once the dynamical age across the C-shock reaches the
saturation time tsat ' 4.6 yr. Sputtering of HCN also occurs
at the same saturation time. The relative increase is, however,
much larger for DCN than HCN, yielding to the high values
of Dfrac(HCN) shown in Fig. 5. Sputtering of DCN from grain
mantles could thus occur toward the jet impact region, which is
close to the brightest clump in DCN (i.e., towards B1a, we refer
to Fig. 1). Later on, the deuterated fraction, Dfrac(HCN), shows
constant values until t ' 25 yr, and then drops as the tempera-
ture of the neutrals increases. When the gas cools down in the
post-shock phase, there is an increase of Dfrac(HCN). Our model
matches the observations during the pre-shock phase and dur-
ing the post-shock phase, independently from the value used for
the cosmic ionization rate, indicating that the Dfrac(HCN) cannot

5 http://udfa.ajmarkwick.net
6 t = 0 is when the shock starts.

discriminate the value of the cosmic ionization rate. However, as
shown in Sect. 3.2, the spectral signature of the DCN and H13CN
gas corresponds to the cavity walls of L1157-B1 shock, that is,
shocked material at a temperature of ∼70 K (Lefloch et al. 2012).
Therefore, we favor the solution found around t ∼ 1000 yr,
for which the observed Dfrac(HCN) matches the post-shock gas
material, which, interestingly, is the dynamical timescale of the
B1 shock, tdyn ' 1100 yr (Podio et al. 2016).

In order to qualitatively understand the variation in the
DCN/HCN ratio we have looked at the reactions involving the
formation and destruction of DCN as a function of the passage
of the shock. The increase in Dfrac(HCN) coincides with a slight
increase in temperature and remains high up to a temperature
of ∼1200 K. As explained above, such a high ratio (∼10−2)
is a consequence of an increase in the DCN fractional abun-
dance due to sputtering, while HCN remains at an approximately
constant abundance. The reaction responsible for the plateau in
Dfrac(HCN) is DCNH+ + NH3 → NH+

4 + DCN, which becomes
more efficient due to the increase in the ammonia abundance (we
refer to Viti et al. 2011). During this plateau, the dominant de-
struction route of DCN is DCN + H → HCN + D. However,
as temperature increases, the main formation route becomes the
deuteration of HCN which is quickly reversed leading to another
decrease of the DCN fractional abundance through the reaction
DCN + H→ HCN + D as well as due to reactions of molecular
hydrogen with CN (H2 + CN → HCN + H), which efficiently
form HCN and dominate the drop of Dfrac(HCN). During the
post-shock phase (i.e., when the gas cools down) Dfrac(HCN)
increases again as DCN is efficiently formed from HCN, while
HCN remains at an approximately constant abundance.

4.2. Gas-phase versus grain-surface chemistry

Our results indicate that the deuterated fraction, Dfrac(HCN),
in L1157-B1 is consistent with gas that has been shocked and
cooled down to 80 K that displays the spectral signature of the
outflow cavity walls of L1157-B1 bow-shock. The presence of
faint and extended DCN emission in the head of the bow-shock,
as revealed by the morphology of DCN emission, is consis-
tent with the idea already pointed out by Fontani et al. (2014)
that gas-phase chemistry is the dominant process responsible of
the production of DCN. Unlike most molecules, for which the
deuteration process in the gas-phase is not efficient at temper-
atures above 20 K, the formation of DCN is supposed to start
from reactions which can be efficient up to temperatures above
70 K (i.e., CH+

3 + HD → CH2D+ + H2 + 654 K, Roueff et al.
2013). An alternative scenario that could explain the presence of
DCN in the head of the bow-shock has recently been proposed
by Codella et al. (2017) to account for the presence of NH2CHO
in L1157-B1. In this case, the head of the bow-shock corre-
sponds to gas that was already processed at an earlier time and
is characterized by a lower Dfrac(HCN) such as in B1e and B1c
(see Table 1), where we found hints of lower deuterated fraction.
Moreover, additional mechanisms such as evaporation and/or
sputtering, releasing mantle species in the gas phase, may also
be responsible for the presence of DCN in L1157-B1 shock.
This process may be specially efficient close to the jet impact
regions, that is, towards B1a, the brightest DCN clump where
(presumably) the jet is impacting (Podio et al. 2016; Busquet
et al., in prep.). Therefore, while gas-phase chemistry contributes
to the extended DCN emission associated with the head of the
bow-shock, the abundance of DCN may be locally enhanced as
a result of the sputtering process. The exact contribution cannot
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be constrained from the current data and further observations are
required to support/dismiss the proposed scenarios.

5. Conclusions

We have presented observations of DCN (2–1) and H13CN (2–1)
toward the L1157-B1 protostellar shock using the NOEMA in-
terferometer in order to investigate the role of the different chem-
ical processes at work in a shocked region that lead to the deuter-
ation of HCN, and compare this with the deuteration of H2CO.
The emission of DCN is more extended than that of HDCO, and
is clearly detected in the head of the bow-shock, where HDCO is
not detected. While HDCO and CH2DOH are found at the inter-
face between the shock and the ambient material, the emission of
DCN is more widespread and not limited to the shock-impact re-
gion. The spectral signature of both DCN (2–1) and H13CN (2–1)
lines corresponds to the outflow cavity walls of L1157-B1, indi-
cating that both lines originate from shocked gas. The deuterated
fraction, Dfrac(HCN) ' 4 × 10−3, is at least one order of magni-
tude lower than the deuteration of H2CO and CH3OH, whose
deuterated species are formed on grain mantles and then release
into the gas-phase due to the passage of the shock.

Using the time-dependent gas-grain chemical model
UCL_CHEM coupled with the parametric C-type shock model,
adopting a pre-shock density of 105 cm−3 and a shock veloc-
ity of 40 km s−1, we confirmed that Dfrac(HCN) shows sig-
nificant variations during the passage of the shock. Indepen-
dently from the value used for the cosmic ionization rate, our
model matches the observations around the dynamical age of
the B1 shock, around t ∼ 1100 yr. Moreover, our model indi-
cates that Dfrac(HCN) cannot be used to discern values of the
cosmic ionization rate.

Therefore, the morphology of DCN together with the shock
model suggest that the presence of DCN is a combination of
sputtering, which could be important toward the jet impact re-
gion (i.e., toward the B1a clump), and gas-phase chemistry pro-
ducing a widespread DCN emission, and dominating especially
toward the head of the bow-shock. Follow-up observations at
higher angular resolution and sensitivity with NOEMA will al-
low us to spatially separate the contribution of the different pro-
cesses at work, providing additional insight into the origin of
DCN in shocked regions.
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