Biogeochemical behaviour of geogenic As in a confined aquifer of the Sologne region, France

Battaglia-Brunet Fabienne, Naveau Aude, Cary Lise, Bueno Maïté, Briais Justine, Charron Mickael, Joulian Catherine, Thouin Hugues

PII: S0045-6535(22)01745-3
DOI: https://doi.org/10.1016/j.chemosphere.2022.135252
Reference: CHEM 135252

To appear in: ECSN

Received Date: 9 February 2022
Revised Date: 28 May 2022
Accepted Date: 3 June 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.
Credit author statement

Battaglia-Brunet Fabienne, Conceptualisation, Methodology, Writing – original draft, Funding acquisition, Naveau Aude, Conceptualisation, Investigation, Writing – review and Editing, Cary Lise, Conceptualisation, Data processing, Writing – review and Editing, Funding acquisition, Bueno Maïté, Investigation, Writing – review and Editing, Briais Justine, Investigation, Writing – review and Editing, Charron Mickael, Investigation, Joulian Catherine, Investigation, Writing – review and Editing, Thouin Hugues, Conceptualisation, Methodology, Investigation, Data processing, Writing – review and Editing.
Biogeochemical behaviour of geogenic As in a confined aquifer of the Sologne region, France

Battaglia-Brunet Fabienne¹,², Naveau Aude³, Cary Lisé⁴, Bueno Maïté⁵, Briais Justine¹,
Charron Mickael¹, Joulian Catherine¹, Thouin Hugues¹

¹ BRGM, F-45060 Orléans, France
² ISTO, UMR7327, Université d'Orléans, CNRS, BRGM, F-45071 Orléans, France
³ Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers/CNRS, UMR 7285,
Bâtiment B8, rue Michel Brunet, F-86022 Poitiers Cedex, France
⁴ BRGM, F-59810 Lesquin, France
⁵ Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les Matériaux-IPREM, UMR5254, 64000 Pau, France

ABSTRACT

Arsenic (As) is one of the main toxic elements of geogenic origin that impact groundwater quality and human health worldwide. In some groundwater wells of the Sologne region (Val de Loire, France), drilled in a confined aquifer, As concentrations exceed the European drinking water standard (10 µg L⁻¹). The monitoring of one of these drinking water wells showed As concentrations in the range 20 to 25 µg L⁻¹. The presence of dissolved iron (Fe), low oxygen concentration and traces of ammonium indicated reducing conditions. The δ³⁴S_{SO₄} was anticorrelated with sulphate concentration. Drilling allowed to collect detrital material corresponding to a Miocene floodplain and crevasse splay with preserved plant debris. The level that contained the highest total As concentration was a silty-sandy clay containing 26.9 mg kg⁻¹ As. The influence of alternating redox conditions on the behaviour of As was studied by incubating this material with site groundwater, in biotic or inhibited bacterial activities
conditions, without synthetic organic nutrient supply, in presence of H\textsubscript{2} during the reducing periods. The development of both AsV-reducing and AsIII-oxidising microorganisms in biotic conditions was evidenced. At the end of the reducing periods, total As concentration strongly increased in biotic conditions. The microflora influenced As speciation, released Fe and consumed nitrate and sulphate in the water phase. Microbial communities observed in groundwater samples strongly differed from those obtained at the end of the incubation experiment, this result being potentially related to influence of the sediment compartment and to different physico-chemical conditions. However, both included major Operating Taxonomic Units (OTU) potentially involved in Fe and S biogeoycles. Methanogens emerged in the incubated sediment presenting the highest solubilised As and Fe. Results support the hypothesis of in-situ As mobilisation and speciation mediated by active biogeochemical processes.

Key words: groundwater, arsenic, speciation, microbial communities, sediment incubation, changing redox

1. Introduction

The presence of arsenic (As) in groundwater is a widespread environmental issue which consequences affect millions of people’s health (Ravenscroft et al., 2009; Chakraborti et al., 2016). Chronic exposure to As was reported to increase the risk of a range of illnesses including cancer (Schmidt, 2014; Tsuji et al., 2019). High As concentrations exceeding the European drinking water standards (10 µg L-1, EU Council Directive 98/83/EC) are generally linked to geological context in many regions of the world (Podgorski and Berg, 2020). This toxic element presents several oxidation states and compounds potentially changed by microbial activities according to redox conditions. Arsenic release in several sedimentary and alluvial aquifers is
linked with low redox conditions (Ravencroft et al. 2009; Erickson et al., 2019) and reductive reactions catalysed by microbial processes (Deng et al., 2018). These bio-reactions are linked to the availability of electron donors, generally organic matter. Several studies reported the mobilisation of As from underground sediments fuelled by organic pollutants plumes (Erickson et al., 2016; Ziegler et al., 2017). However, the natural organic matter present in sediments, found both in active and ancient floodplains, also plays the role of electron donor in reactions that solubilise As (Sahu and Saha, 2015; Johannesson et al., 2019). The reductive dissolution of As-bearing FeIII oxides minerals was evidenced as one of the main bio-processes able to release As from sediments to groundwater (Welch et al., 2000; Nath et al., 2009; Duan et al., 2019). However, sulphur biogeo-cycle may also influence As behavior: dissolved sulphide can contribute to FeIII reduction (Wang et al., 2014) and As may be adsorbed on FeS precipitates. Moreover, the formation of soluble thio-As complexes may increase As mobility through decreasing the adsorption of As on solid oxides (Pi et al., 2018). Several studies described the strong link between As, Fe and S biogeochemical cycles and As mobility and proposed geochemical models (Wang et al., 2014; Pi et al., 2018). Influence of the bio-reduction of iron oxides and sulphate on As concentrations, related with fluctuations of groundwater level and redox conditions, was observed (Schaefer et al., 2016; Zheng et al., 2020). Functional diversity of As-rich groundwater supported these hypotheses by the presence of microorganisms able to reduce AsV, either through AsV respiration or resistance mechanisms, AsIII-oxidising bacteria, FeIII-reducing and SO4-reducing bacteria (Paul et al., 2015; Cavalca et al., 2019; Zheng et al., 2019; Wang et al., 2021). In addition to field studies, a range of laboratory experiments were focused on the elucidation of biogeochemical processes in sediments from floodplains and deltas. Mechanisms of As release were studied through long-term (Radloff et al., 2007; Gillipsie et al., 2016; Duan et al., 2019; Gao et al., 2021) or short-term (Schaefer et al., 2016) incubations of underground sediments. Electron donors supply generally enhanced As release in biotic and
anoxic conditions (Gillipsie et al., 2016; Wang et al., 2017; Deng et al., 2018), however results strongly depended on the sediment geochemistry (Deng et al., 2018). Arsenic mobility was hampered in presence of oxygen (Radloff et al., 2007) and mobilised during anoxic periods when redox conditions were alternated (Duan et al., 2019). Microbial communities of incubated sediments were rarely described, although studies performed with core materials from the alluvial Jianghan plain in the middle reaches of the Yangtze River (China) indicated the presence of both FeIII- and SO4-reducing bacteria in anaerobic microcosms showing As release (Duan et al., 2019; Gao et al., 2021). However, complementary information on the influence of microbial community structure and activity on the amplitude of the bio-reactions mobilising As would help to improve models that predict changes in groundwater quality. In this context, the present research aimed to clarify the links between microbial processes and As release in groundwater, through the example of the Sologne region (Val de Loire, France), where As concentrations exceeding 10 µg L⁻¹ were detected in 43 wells out of 135 that have been monitored (Supplementary Figure 1, https://ades.eaufrance.fr/), distributed in an area of approximately 5 000 km², in a geological context of Miocene sedimentary formation (Cary et al., 2018). A drinking water well was monitored for two years, in order to study the evolution of water parameters. In parallel, core sediment material was characterised for mineralogy and geochemistry, then incubated in alternating redox conditions. Determination of microbial indicators and comparison of the evolution of physico-chemical parameters in biotic and abiotic conditions were performed to enlighten the biogeochemical processes influencing the mobility and speciation of arsenic.

2. Materials and Methods

2.1. Study site and sampling

The sampling site is located on the territory of Marcilly-en-Gault village, in Sologne (Supplementary Figure 1), a wetland-rich region in the center of France, South of Orleans city,
where sands and clays of continental detrital origin (Burdigalian, Miocene) cover the calcareous aquifer of the Orléanais (Aquitanian, Miocene, Deprez and Martin, 1970). Water samplings were performed in the drinking water well (reference BSS 04611X0001/FAEP, BSS001FRCU, http://ficheinfoterre.brgm.fr/InfoterreFiche/ficheBss.action?id=04611X0001/FAEP), drilled in 1965, at 90.2 m total depth, the water level being at 21 m depth (without pumping) and the pumping performed at 70 m depth (from the ground surface). Total historical regulatory monitoring since 1986 indicates median As concentration of 23.0 µg L\(^{-1}\) with a standard deviation of 4.7 µg L\(^{-1}\). Well water was sampled after pumping sufficiently to reach stable values of pH, redox potential, dissolved oxygen concentration and conductivity. Five sampling campaigns were performed at the following dates: June 2017 23\(^{\text{th}}\); September 2017 4\(^{\text{th}}\); December 2017 18\(^{\text{th}}\); February 2018 27\(^{\text{th}}\), May 2018 29\(^{\text{th}}\). Water samples were filtrated at 0.45 µm (except for total organic carbon) and conditioned for further chemical analyses (Supplementary table 1).

For molecular microbiological analyses, 10 L of groundwater were sampled at each sampling date in 2 L sterile polyethylene bottles, kept on ice until filtration at the laboratory within 12 hours after sampling. Water samples were filtrated on sterile 0.22 µm nitrocellulose filters, that were immediately stored at -20°C until microbial DNA extraction.

Core sampling was performed about 100 m North from the location of the well, with an auger drilling machine (diameter 152 mm) (Supplementary Figure 1B). Core was performed down to 48.5 m depth, in March 2017 (23-24\(^{\text{th}}\)) without adding drilling fluid. Samples of each different geological facies were subsampled on-site with an alcohol-washed spatula, and immediately stored in sterile glass jars, flushed with N\(_2\), and kept on ice until storage at 4°C in the laboratory. Jars for microbial analysis and experiments were always opened in sterile conditions. Samples for chemical and mineralogical analyses were kept frozen (-20°C) until analyses.

2.2. Mineralogical and petrographic analysis
Core samples were lyophilised and milled below 200 µm. Powder samples (infra 50 µm fraction) were analysed by X-ray diffraction (XRD) using a Phillips Panalytical X’Pert Pro apparatus in the same experimental conditions as described by Bassil et al. (2016). Phase identification was made with the X’pert HighScore software using JCPDS Pdf2 mineralogical database (Supplementary Figure 5). After deconvolution and integration of the main peak area of each phase using Fytyk software, the semi-quantifications (Supplementary Table 5) were realised by applying modified RIR method (Chung, 1975). Thin sections (26 mm × 46 mm) were consolidated after impregnation at room temperature and under atmospheric pressure with a two-component epoxy resin (Araldite 2020) and 20% acetone. The thin sections were observed using an optical polarised light microscope (Nikon Eclipse E600 POL).

2.3. Batch experiments

Incubations of core solids sampled at 31.5 m depth, named M8, were prepared in 1 L-Shott bottles equipped with rubber stoppers and sterilised by autoclaving. Each batch was composed of 60 g solids and 600 mL of groundwater from the drinking water well (sampled on May 2018 29th). One batch was prepared with M8 core material submitted to γ-irradiation (Dagneux, France) in order to observe the evolution of the system when biological activities are inhibited (IN condition). The water was used as it was pumped for biotic experiments (BIO condition), and filtrated at 0.22 µm to remove bacteria for the IN condition. Three BIO flasks were prepared by distributing a single slurry of core sediment mixed with site water (magnetic stirring) in 3 bottles with a 25 mL sterile pipette. Alternate redox conditions were applied as follows: 3 months in anaerobic conditions (T0m to T3m), followed by 3 months in aerobic conditions (T3m to T6m) then again 3 months in anaerobic conditions (T6m to T9m). At the beginning of each anaerobic periods, the gas phase composition was imposed at 75% N₂, 25% H₂, and 1.25% CO₂, at a total pressure of 1 bar over the atmospheric pressure. For establishing the intermediary aerobic conditions, the flasks were opened in order to replace the N₂/H₂/CO₂ mixture by sterile
Flasks were incubated at 20°C under reciprocal agitation. Sampling at the end of each anaerobic period was performed in a glovebox (N₂ atmosphere) under agitation, in order to avoid change of the solids/water ratio. Just after sampling, pH, redox potential and conductivity were immediately measured. Samples (10 mL) were filtrated at 0.22 µm in a sterile Hungate tube filled with N₂ and kept at 4°C until As speciation. Samples (15 mL) filtrated at 0.45 µm were acidified with HNO₃ for analyses of total As and major cations. Samples (15 mL) filtrated at 0.45 µm but not acidified were kept for quantification of major anions (nitrate, sulphate). Slurry samples (1 mL) were stored in sterile tubes for Most Probable Number (MPN) of As-transforming microbes analyses. At the end of experiment, slurries were centrifuged in sterile falcon tubes, and the pellets containing both bacteria attached on sediments and suspended in water were stored at -20°C until microbial DNA extraction.

2.4. Chemical analyses

Methods for analysing major chemical species and trace elements in water from the site and incubations are detailed in Supplementary Table 1. Separation of As species in groundwater samples was performed on site (Kim et al., 2001). This method gives precise AsIII and AsV concentrations when only these two species are present, thus results are given as AsIII-like and AsV-like species, because other As forms might be present in groundwater. Isotopy of sulphur (δ³⁴S) was measured by continuous flow isotope ratio mass spectrometry (CF-IRMS) after precipitation as BaSO₄ and reduction/pyrolysis (Kloppmann et al., 2018). The total elemental composition of the core samples (Table 2) was determined, after digestion (HNO₃/HF), by ICP-OES and ICP-MS in an accredited laboratory (CRPG-CNRS, Nancy). Organic carbon concentrations were determined by CHNS analysis (Flash 2000 Thermo, IC2MP, France). Total As and Se were determined by ICP-MS equipped with an octopole collision/reaction cell (C/RC) (Agilent 7500ce) after HNO₃/HCl digestion. The C/RC was pressurised with helium and hydrogen delivered at 1 and 4 mL min⁻¹. Analyses of major cations and anions in water
samples from incubation experiments were performed by ion chromatography equipped with conductivity detectors (Professional IC Vario, Metrohm). Anions were separated with a Metrosep A Supp 16 ionic resin column (150 mm × 4 mm) and cations with a Metrosep C6 (150 mm × 4 mm). Speciation of As in these samples was performed by HPLC (Agilent 1100 series HPLC pump) coupled to ICP-MS (Agilent 7500ce) with the same C/RC operating conditions as described for total analysis. Chromatographic separation was carried on using an anion exchange stationary phase (Agilent G3154-65001 column and G3154-65002 guard column) with an ammonium nitrate mobile phase (20 mmol L⁻¹, 2.5% (v/v) methanol and pH 8.5 adjusted with ammonia), delivered at 1 mL min⁻¹ flow rate. The sample injection volume was 100 µL. These analytical conditions allow the separation of AsIII, AsV and mono- and dimethylated AsV species (MMAV and DMAV) (see example chromatogram in Supplementary Figure 2).

2.5. Microbiological analyses

2.5.1. MPN of AsIII-oxidising and AsV-reducing bacteria

Most Probable Numbers (MPN) of active AsIII-oxidising and AsV-reducing microbes were determined in slurries by the methods described in Thouin et al. (2016) and Thouin et al. (2018), with the following modification: the pH of the culture media was adjusted to 7 in order to fit with the groundwater pH.

2.5.2. Microbial DNA extraction

Microbial DNA was extracted from (i) the filters obtained from groundwater filtration and stored at -20°C, cut into strips with a sterile scalpel just prior extraction, and (ii) the slurries pellets from end of batch experiments. The FastDNA™ Spin Kit for Soil procedure (MP Biomedicals) was followed, using a FastPrep-24™ instrument at a speed of 5 m s⁻¹ for 30 s.
DNA extract concentration was measured using the Quantifluor dsDNA sample kit and the Quantus fluorimeter, according to the manufacturer’s recommendations (Promega).

2.5.3. 16S rRNA, aioA and arsB genes copy number monitoring

Abundance of bacterial 16S rRNA genes and of aioA and arsB functional genes, encoding respectively for the catalytic subunit of arsenite oxidase and the AsIII-efflux pump of Ars resistance system, were performed by quantitative PCR (qPCR). The main characteristics of qPCR reactive mixtures and programs are described in Supplementary Information 1, Supplementary Table 2, and in Michel et al. (2021), Fernandez-Rojo et al. (2017) and Poirel et al. (2013).

2.5.4. 16S rRNA gene metabarcoding

For next generation sequencing, amplicon libraries and sequences were generated by INRAE Transfert (Narbonne, France). Briefly, the V4-V5 region of the gene coding 16S rRNA (bacteria and archaea) was amplified using the barcoded, universal primer set 515WF/918WR (Wang et al., 2009). PCR reactions were performed using AccuStart II PCR ToughMix kit and cleaned (HighPrep PCR beads, Mokascience). Pools were submitted for sequencing on Illumina MiSeq instrument at GeT-PlaGe (Auzeville, France). Sequences were processed using the FROGS (v.3.2) bioinformatics pipeline (Escudié et al., 2018), implemented into the Genotoul plateform of the Galaxy server of Toulouse (details in Supplementary information 1). The raw datasets are available on the European Nucleotide Archive system under project accession number PRJEB53046.

2.5.5. Statistical analyses

Statistical tests were carried out using R 4.0.3 (www.r-project.org). Redundance analysis (RDA) with the vegan R package, was performed to identify the effects of environmental variables on bacterial composition structure, based on the relative abundance of the detected
OTUs in water sample from the temporal evolution. This analysis was calculated based on Hellinger - transformed phylum abundance basis of 16S rRNA gene data (Borcard et al., 2011). Environmental explanatory tested variables were standardised and the function ordistep in vegan package was used to identify the significant explanatory forward environmental variable. The significance of the RDA model was tested by ANOVA based on Monte Carlo test with 999 permutations. This analysis helps to determine the most influential factors and the extent that various environmental parameters affected bacterial phylum, most abundant OTU composition. Principal component analysis (PCA) was performed on biogeochemical parameters from the batch experiment.

3. Results

3.1. Temporal monitoring of groundwater

3.1.1. Groundwater level and geochemistry

The groundwater level variations (Fig. 1A and B) present well-marked annual cycles with high level observed in late spring and the lowest level in late summer. The total amplitude of these
Fig. 1. Evolution of groundwater geochemical parameters: (A) Total As (red) and As speciation i.e. on site separation of AsIII- (yellow) and AsV- (green) like species (error bars indicate the measurement uncertainty, and groundwater level (IGN French national altitude reference, https://ades.eaufrance.fr/) corresponding to the control well referenced 04612X0024/F (BSS01FRES) located 1.4 km from the drinking well; (B) δ^{34}S (open symbol) in SO$_4$ and SO$_4$ concentration (closed circles), error bars indicate the analytical standard deviation; and
groundwater level and \(\delta^{34}S \) with total As concentration including data from previous studies.

The total As concentration (Fig. 1A) remained between 20 and 25 µg L\(^{-1}\) along the monitoring period, with a mean of 23.6 µg L\(^{-1}\) and a standard deviation of 1.6 µg L\(^{-1}\), lower than the measurement uncertainty (2.0-2.5 µg L\(^{-1}\)). The speciation of As seemed to be more variable than total As concentration. Dissolved Fe concentration varied between 0.15 and 0.3 mg L\(^{-1}\) (± 35%), and SO\(_4\) concentration between 5.2 and 5.8 mg L\(^{-1}\) (± 5%). Ammonium was always detected, with concentrations generally in the range 0.07-0.1 mg L\(^{-1}\) (± 40%, Supplementary Tables 1 and 3). For these three parameters, the temporal variations remained in the range of the analytical measurement uncertainty. Results of isotopic analyses of SO\(_4\) showed variations of \(\delta^{34}S \) higher than the range of analytical standard deviation (Fig. 1B).

3.1.2. Microbial parameters

Rarefaction curves (Supplementary Figure 3) together with richness and diversity indexes (Supplementary Table 4) indicated a relatively low bacterial diversity. Bacterial communities of the groundwater were composed of a majority of Proteobacteria (Fig. 2A). The most abundant OTU found in groundwater was affiliated to Hydrogenophilaceae family, with an unknown genus representing 69 to 86% of the total sequences (Fig. 2B). The second main OTU belonged to the Gallionellaceae family, gathering autotrophic FeII-oxidisers (Hallbeck and Pedersen, 2014). Autotrophic bacteria using FeII as energy source, identified at the genus level, (\textit{Gallionella}, \textit{Ferrirphaselus} and \textit{Sideroxydans} genera), were always present in groundwater samples (from 0.5 to 2.2 % of the sequences). Sulphate-reducing bacteria (SRB), including \textit{Desulfovibrio} and \textit{Desulfatirhabdium} genera were always present but in small abundance (total from 0.1 to 0.5 % of the sequences), and this abundance did not vary with seasons. Bacteria
involved in denitrification and able to use sulphur compounds as energy source, identified at the genus level (*Sulfuritalea, Denitratisoma, Sulfuricella*) were always present as minor OTUs (total from 0.01 to 0.1% of the sequences) in groundwater. The global abundance of the universal bacterial 16S rRNA gene did not follow a clear seasonal tendency (Fig. 2C). The two functional genes, i.e. *aioA* and *arsB* genes, involved in As biotransformations were always present, and their abundance ranged between 1.6×10^6 and 2.6×10^8 gene copies L$^{-1}$ for *aioA*, and between 5.8×10^3 and 2.2×10^5 gene copies L$^{-1}$ for *arsB*.
Fig. 2. Drinking water well of Marcilly-en-Gault, evolution of (A) main bacterial phyla; (B) most abundant OTUs; (C) total biomass (16S rRNA gene copies) and functional genes *aioA* and *arsB* copies respectively involved in the biological oxidation and reduction of arsenic.

A RDA was performed to identify the influence on microbial community structure of physico-chemical characteristics of groundwater (Fig. 3). The results indicated that total As, total Fe and dissolved oxygen concentration were explanatory variables that significantly influenced the community structure at the phylum level (Fig. 3A), whereas only Mn concentration significantly influenced the community structure at the genus level (Fig. 3B).

![Fig. 3](image.png)

Fig. 3. RDA of sequence abundance assigned at phylum level (A) and genus level (B) of microbial communities in groundwater samples in relation to environmental variables. Red lines represent the significant environmental variables, black lines represent the phylum or genus and circles represent the samples, from orange to dark green following the chronology.

3.2. **Solids description**

3.2.1. **Sedimentological description**
The sedimentological description (Supplementary Figure 4) begins at 13.5 m depth; this section shows at the base the dominant clays with roots traces and plant debris (48.0 m to 35.5 m). These clays are followed by poorly sorted medium and coarse sands (35.5 m to 31.5 m). Finally, the youngest levels (31.5 m to 13.6 m) correspond to an alternation of well-sorted medium sands and clays with plant debris. The profile represents a part of “Sables et Argiles de Sologne” formation (Desprez and Martin, 1970) that covers the aquifer limestone formations “Marne de l’Orléanais” and “Calcaire de Pithiviers”. The sedimentary filling is characterised by clays and heterogeneous sands (well to poorly sorted fine to coarse sands). These clays with root traces, organic matter and plant debris correspond to floodplain deposits. The thick sandy part (poorly-sorted) probably corresponds to meandering channel (river) and the isolated sandy levels (well-sorted) in the floodplain clays corresponds to crevasse splay deposits.

3.2.2. Mineralogy

The mineralogy of the sediments was determined by XRD on 13 different samples corresponding to 13 visually different geological layers, with one of the layer (M9, 37.5 m deep) divided in two sub-samples (XRD spectra given in supplementary Figure 5). Total As concentration was also determined on these samples (Supplementary Table 5). The upper 8 layers (M1 – M8) represent a floodplain clays with crevasse splay sands. Two samples, M7 and M8 (floodplain and crevasse splay facies), present the two highest As concentrations of the profile, (> 20 ppm), and relatively high clay content. These two layers are visually characterised by different colours; blue for M7, and red-brown for M8. The M9 layer presents heterogeneous facies, marly in the upper part (M9a). This level is close to the interface between two different geological formations, the sands and clays of Sologne above, and the underlying calcareous formation. The deeper samples (M10-M13) are mostly calcareous facies (M11 and M13) or marl-calcareous (M10 and M12).

3.2.3. Chemical composition
Three samples, corresponding to the 2 clayey levels with high As concentrations (M7 and M8), and one of the underlying calcareous levels (M12) were characterised in terms of major and trace elements contents (Supplementary Table 6 and Fig. 4 for M8). These analysis confirmed the siliceous feature of M7 and M8 compared with the characteristics of M12 that defined this level as calcareous. Iron, sulphur and organic carbon contents were similar in the 3 samples, with significant Fe contents but very low S and C concentrations. Arsenic and metals (Pb and U) were enriched in M7 and M8 compared with M12.

2.3.4. Petrographic description

Petrographic observations of resin-impregnated M8 sample (Fig. 4) showed that the material was mainly composed of beige siliceous clay showing numerous desiccation traces (arrow D in Fig. 4A), and a laminar structure (arrow L in Fig. 4A). Desiccation cracks form sub-polygonal structures where the siliceous matrix can be partially or entirely transformed into clay (Fig. 4B, arrows MA), as indicated by the presence of remaining white matrix in clayey phases (Fig. 4C, D, E). The laminations are composed of successive layers of clear siliceous material and clayey beige material. Small black, dark brown and red pellets are observed inserted into the layers (Fig. 4D).
Fig. 4. Microscopic petrographic observations of thin sections (A to D) and chemical composition (F) of M8 sample. Letters inside the pictures correspond to: SA: Siliceous/Argillaceous mud; L: Laminar structures; MA: Sub-polygonal structures (partly argillaceous siliceous matrix); D: Desiccation traces.

3.3. Batch experiments with M8

3.3.1. Water geochemistry

Total As concentrations increased during the anaerobic periods and decreased during the aerobic step in the BIO slurries (Fig. 5). These variations in As concentrations were not observed in the IN condition. At the end of the first anaerobic period (T3m), total As concentrations were in the range 100-150 μg L⁻¹ in BIO slurries, and the three parallel microcosms behaved in the same way. Conversely, at the end of the second anaerobic period (T9m), the BIO B slurry presented higher As concentration (275 μg L⁻¹) than A and C (between 150 and 200 μg L⁻¹). Total dissolved Fe followed the same evolution as total As, with concentrations close to 900 μg L⁻¹ at the end of the first anaerobic period, and up to 7000 μg L⁻¹
1 in B slurry at the end of the second anaerobic period. The redox potential was lower at the end of the second anaerobic period in all flasks, independently from the presence of active bacteria, and pH was higher in BIO than in IN conditions all along the experiment. During the anaerobic periods, pH tended to decrease, probably because of CO2 present in the gas phase. Acidification was less important in B slurry than in A and C, at the end of experiment.

Fig. 5. Evolution of pH (A), redox potential (Eh, B), total As (C) and Fe (D) concentrations in the incubated slurries; anaerobic periods are presented in grey background. IN: inhibited biological activities; BIO: microcosms with active biological activities. T0m: starting up; T3m: 3 months; T6m: 6 months; T9m: 9 months. Major phyla (E) and 10 major OTUs (F) found in the BIO slurries at the end of the second anaerobic period (T9m).

The incubation conditions influenced the speciation of As in the water phase (Table 1). In the IN condition, AsIII was the major initial species, then AsV became the main form of As until the end of experiment. In the BIO condition, at the end of the anaerobic periods, As-containing species were detected, with retention times that did not match any available standard. They could not be precisely quantified because of the lack of standards, however as estimated based
on AsV standard additions slope, they represented more than 50% of total As in A, B and C at the end of the first anaerobic period and in A and C at the end of the second anaerobic period. The unidentified As species were not detected at the end of the aerobic incubation period, however at the end of this experimental step, dimethyl-arsenate (DMA_V) was present in BIO condition, representing nearly 50% of total As. From the end of the first incubation period, dissolved As concentration remained very low but mainly in the form of AsV in the IN microcosm. This result might be linked to the adsorption of AsIII followed by abiotic oxidation at the surface of clay material (Lin and Puls, 2000).

Table 1. Total As, As speciation in the water phases of incubated slurries, and MPN of AsIII-oxidising and AsV-reducing microbes.

<table>
<thead>
<tr>
<th>Time</th>
<th>Condition</th>
<th>Total As (µg L⁻¹)</th>
<th>AsIII (%)</th>
<th>AsV (%)</th>
<th>DMA² (%)</th>
<th>Un. species 1* (%)</th>
<th>Un. species 2* (%)</th>
<th>Un. species 3* (%)</th>
<th>MPN AsIII-ox g⁻¹ solids</th>
<th>MPN AsV-red g⁻¹ solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning (T₀m)</td>
<td>BIO A</td>
<td>17.0</td>
<td>40.0</td>
<td>60.0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>3.16×10³</td>
</tr>
<tr>
<td></td>
<td>BIO B</td>
<td>16.7</td>
<td>37.2</td>
<td>62.8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>3.76×10³</td>
</tr>
<tr>
<td></td>
<td>BIO C</td>
<td>15.3</td>
<td>36.9</td>
<td>63.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>9.20×10⁴</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>14.3</td>
<td>95.5</td>
<td>4.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>End of first anaerobic period (T₃m)</td>
<td>BIO A</td>
<td>155.0</td>
<td>4.8</td>
<td>0.8</td>
<td>ND</td>
<td>6.8</td>
<td>8.6</td>
<td>79.0</td>
<td>1.84×10⁴</td>
<td>2.52×10³</td>
</tr>
<tr>
<td></td>
<td>BIO B</td>
<td>118.0</td>
<td>4.5</td>
<td>0.7</td>
<td>ND</td>
<td>9.8</td>
<td>7.9</td>
<td>77.0</td>
<td>9.60×10⁴</td>
<td>5.20×10³</td>
</tr>
<tr>
<td></td>
<td>BIO C</td>
<td>141.0</td>
<td>6.7</td>
<td>1.3</td>
<td>ND</td>
<td>7.7</td>
<td>9.0</td>
<td>75.3</td>
<td>3.60×10⁵</td>
<td>9.60×10⁴</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>4.4</td>
<td>3.5</td>
<td>96.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>End of aerobic period (T₆m)</td>
<td>BIO A</td>
<td>1.2</td>
<td>1.8</td>
<td>44.6</td>
<td>53.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>5.20×10⁵</td>
<td>9.60×10⁵</td>
</tr>
<tr>
<td></td>
<td>BIO B</td>
<td>1.4</td>
<td>1.5</td>
<td>46.2</td>
<td>52.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.32×10⁵</td>
<td>1.96×10⁵</td>
</tr>
<tr>
<td></td>
<td>BIO C</td>
<td>1.1</td>
<td>1.7</td>
<td>50</td>
<td>48.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1.32×10⁵</td>
<td>5.20×10⁶</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>0.5</td>
<td>4.0</td>
<td>95.0</td>
<td>1.0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
<tr>
<td>End of second anaerobic period (T₉m)</td>
<td>BIO A</td>
<td>173.0</td>
<td>14.1</td>
<td>0.9</td>
<td>ND</td>
<td>10.3</td>
<td>5.9</td>
<td>68.8</td>
<td>1.96×10⁵</td>
<td>3.68×10⁵</td>
</tr>
<tr>
<td></td>
<td>BIO B</td>
<td>278.0</td>
<td>88.7</td>
<td>2.3</td>
<td>ND</td>
<td>8.5</td>
<td>0.5</td>
<td>ND</td>
<td>9.60×10⁵</td>
<td>6.80×10⁵</td>
</tr>
<tr>
<td></td>
<td>BIO C</td>
<td>193.0</td>
<td>25.7</td>
<td>1.6</td>
<td>ND</td>
<td>5.8</td>
<td>6.3</td>
<td>60.6</td>
<td>8.80×10⁵</td>
<td>5.20×10⁵</td>
</tr>
<tr>
<td></td>
<td>IN</td>
<td>4.2</td>
<td>10.6</td>
<td>89.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>< LQ</td>
<td>< LQ</td>
</tr>
</tbody>
</table>
ND: not detected, (*) unidentified As-containing species, estimated indicative values calculated with AsV standard addition slope; LQ = 4.00×10^4 g⁻¹.

Concentrations of Cl⁻, Na⁺, Ca²⁺ and Mg²⁺ remained stable and identical in BIO and IN conditions all along experiment (Supplementary Figure 6), whereas NO₃⁻ and SO₄²⁻ tended to be more impacted by redox conditions in BIO than in IN condition, particularly between T0m and T6m.

3.3.2. Microbial parameters

The quantification of As-transforming microbes by MPN showed the growth of active AsIII-oxidising and AsV-reducing bacteria throughout the incubation (Table 1), independently of aerobic or anaerobic periods, whereas in IN condition the quantity of As-transforming microbes remained lower than the quantification limit all along the experiment. AsV-reducing bacteria were always more abundant than AsIII-oxidising micro-organisms. At the end of the second anaerobic period, the order of magnitude of MPN in sediments from parallel microcosms A, B and C was 10⁶ g⁻¹ for AsIII-oxidising bacteria and 10⁷ g⁻¹ for AsV-reducing bacteria.

The PCA built with all physico-chemical and biological parameters measured during the incubation (Supplementary Figure 7) illustrates the contrast between the evolution of IN and BIO slurries. Arsenic concentration was correlated with Fe concentration, and negatively correlated with sulphate concentration. Moreover, this analysis suggests an early divergence, detectable at the end of the first incubation period, between the microcosm B and the two microcosms A and C.

The bacterial diversity in the slurries at the end of the second anaerobic period (supplementary Table 4) was higher than that of the groundwater bacterial communities, in spite of a lower richness. The corresponding 16S rRNA gene sequences (Fig. 5 E and F) showed close diversity
profiles in batches A and C, that differed from batch B that contained Euryarchaeota (Archaea domain) in higher abundance, with a significant proportion of sequences affiliated to methanogenic micro-organisms. All slurries contained, as major OTUs, sequences that were only affiliated at the family level, first to Rhodocyclaceae, then to Geobacteraceae. Sum of sulphate-reducers sequences (Supplementary Table 7) represented nearly 10% in A and C, but only 0.3% in B. Conversely, sum of methanogens sequences represented 37% of the sequences in B, but less than 0.2% in A and were not detected in C.

4. Discussion

4.1. Geological context and origin of As in the confined aquifer

Macroscopic and microscopic observations of the core material suggest that the sands and clays covering the calcareous confined aquifer were deposited in a meandering river system environment composed of channels, crevasse splay and floodplain facies. These last two facies are enriched in As and other trace elements. The As enrichment in sedimentary facies linked with high groundwater As concentrations was already reported (Chatterjee et al., 2003; Sahu and Saha, 2015). In these formations, As-rich levels are generally described as containing elevated organic matter concentrations. Here, the clayey levels presenting the highest As contents displayed low organic carbon concentrations (0.01 to 0.02%). However, macroscopic observation of plant debris in the core suggested that organic matter is present but distributed in nuggets.

4.2. As release mechanisms implying Fe and S cycles
The geochemical composition of the confined groundwater, with absence of nitrate (< 0.5 mg L\(^{-1}\)) and presence of ammonium, dissolved Mn and Fe, suggests anaerobic conditions. The dissolved O\(_2\) concentrations (0.9 to 2.3 mg L\(^{-1}\)) might be related to the diffusion of this gas into the well which creates local suboxic conditions. Low concentrations of SO\(_4^{2-}\) associated with high \(\delta^{34}\)S of sulphate (mean of 16.3 ‰) would be consistent with in-situ sulphate reduction (Stueben et al., 2003; Wang et al., 2014). The evolution of the \(\delta^{34}\)SO\(_4\) of the water sampled in the drinking water well of Marcilly-en-Gault according to total sulphate concentration suggests variations of the in-situ activity of SRB, that might be influenced by evolution of redox conditions or organic matter supply. These \(\delta^{34}\)S values are also associated to notable concentrations of As (mean 22.6 µg L\(^{-1}\)) as already described by various authors e. g., (Fig. 1C; Pi et al., 2018, Stueben et al., 2003, Wang et al., 2014). In a complementary way, the development of active As-transforming microbes during batch incubations confirmed the presence of living micro-organisms in the confined aquifer. These results support the hypothesis of active biogeochemical reactions influencing the release and speciation of As in groundwater.

A link between biogeochemical processes and As mobilisation from sediments to groundwater, implying diverse mechanisms and especially iron and sulphur cycles, was evidenced in several other sites. The mechanism most often at the origin of As release is the biological reduction of Fe oxides (Stuben et al., 2003; Zheng et al., 2004; Nath et al., 2009; Erickson et al., 2016; Ziegler et al., 2017; Johannesson et al., 2019). The confined groundwater of Marcilly-en-Gault contains dissolved Fe, the analysis of core materials indicated the presence of FeIII in the As-rich levels, and our slurry incubation experiment showed As and Fe release during anaerobic periods (Figure 5), and correlation between these two parameters (Supplementary Figure 7). These results support the hypothesis that Fe oxides reduction plays a major role in the release of As. Sulphate reduction was also invoked in previous studies as possibly contributing to As release through (1) indirect chemical reduction of Fe oxides by H\(_2\)S, and (2) the formation of
soluble thio-arsenate complexes (Wang et al., 2014; Gao et al., 2021). These processes might have modestly contributed to As mobility in our microcosms. Pi et al. (2018) observed profiles of biogeochemical Fe reduction and sulphate reduction controlling both As speciation and concentration in groundwater of Datong basin, China. They hypothesised that vertical variations of As concentrations and forms were associated with availability of organic matter, providing energy to microbial reactions. Our incubations of core materials showed that bacterial activities influenced As speciation, producing As species different from AsIII and AsV. In anaerobic conditions, non-identified species might correspond to thio-arsenate complexes that were already associated with bacterial sulphate reduction in core sediments microcosms (Gao et al., 2021). In aerobic conditions, up to 50% of total As was present as DMAV, a biologically produced methylated species (Dombrowski et al., 2005). Yet, these species exclusively produced when bacterial communities are active could be less efficiently adsorbed on Fe oxides surfaces than AsV or AsIII (Lafferty and Loeppert, 2005; Couture et al., 2013). Thus, in addition to the reduction of iron oxides, bio-reduction of sulphate and direct As transformation by microbes could contribute to the mobility of this toxic element.

4.3. Microbial assemblages

4.3.1. Groundwater

The main major OTU found in Marcilly-en-Gault groundwater was affiliated to Hydrogenophilaceae family, currently composed of 5 genera, *Thiobacillus, Hydrogenophilus, Sulfuricella, Petrobacter*, and *Tepidiphilus* (Garrity et al., 2005; Orlygsson and Kristjansson, 2014). This family includes chemolithotrophic or mixotrophic bacteria able to oxidise inorganic substrates, such as sulphur compounds or hydrogen, possibly using nitrate as electron acceptor (*Sulfuricella*, Kojima and Fukui, 2010). The second main metabolic group found in
groundwater is composed of OTUs affiliated to Galliollenaceae, gathering autotrophic microorganisms oxidising FeII in micro-aerophilic environments. Their abundance in the sampled groundwater is consistent with the presence of dissolved Fe, and it might be assumed that they could form biofilms onto surfaces of the drinking water well (Stuetz and McLaughlan, 2004). They may also grow in areas of the aquifer where small quantities of oxygen could diffuse or be transported. Glodowska et al. (2021) already quantified non negligible proportions of Galliollenaceae and other putative FeII-oxidisers in As-bearing groundwater where they are assumed to favour As immobilisation with FeIII oxides formation in environments of low-oxygen availability. Bacteria that could contribute directly or indirectly to iron oxides reduction, such as sulphate reducers (Desulfovibrionaceae) and FeIII reducers (Georgfuchsia) were always detected in groundwater samples, but in relatively low abundance. Interestingly, Georgfuchsia was described as able to degrade aromatic compounds (Weelink et al., 2009), that could be an asset to use organic molecules derived from buried plant debris. Sphingopyxis, another heterotroph found in the groundwater, is also known for its ability to degrade complex molecules (Sharma et al., 2021).

4.3.2. Batch experiments

The microbial communities retrieved at the end of the incubation experiment clearly differed from those observed in groundwater samples. This difference can be explained by the strong reducing conditions and hydrogen supply during the last incubation period, while in the drinking well, diffusion of oxygen could create microaerophilic conditions, specific to the local environment of this water source. Moreover, the sediment is a source of nutrients and carries some bacteria. Indeed, bacterial communities present in the water phase of aquifers may differ from those attached to solid phases (Smith et al., 2018). In these incubated slurries, the two most abundant OTUs were affiliated, at the family level, with Rhodocyclaceae and Geobacteraceae. Rhodocyclaceae family includes many genera presenting diverse
metabolisms; thus it is hardly possible to infer a role of members of this OTU. However, a recent report of microcosm experiment performed with groundwater and sediments supplied with hydrogen also led to enrichment of Rhodocyclaceae that could be related to the genus *Dechloromonas*, a hydrogenotrophic denitrifier (Duffner et al., 2021). This OTU was clearly enriched during incubation, but was also present in all groundwater samples, in small abundance. Geobacteraceae members share the ability to use FeIII as terminal electron acceptor and can use either small organic compounds or hydrogen as electron source (Röling, 2014). Their presence as a major OTU in our system can be related with the Fe oxides dissolution process which could mobilise As. This OTU was very rare in the groundwater samples, only sparsely detected in September 2016 and May 2018. Incubation also led to enrichment of Comamonadaceae, a very metabolically diverse family. The next groups of less abundant but major OTUs marked differences between microcosms: they included either SRB in A and C, or methanogens in B. This strong contrast between B compared with A/C microbial communities might be considered in the light of the difference in final geochemical profiles of the slurries: B presented much more dissolved Fe and As than A and C. In terms of sulphate concentrations, the three microcosms behaved similarly. The divergence of results in B might be linked to the initial heterogeneity of the solid phase inherent in the nature of the actual material that induced heterogeneity in initial microbial communities. Such phenomenon was previously reported in parallel slurries of underground sediment mixed with ferrihydrite (Kwon et al., 2016) which evolved differently in terms of geochemistry and microbial communities, this result being related with subtle differences in the initial composition of the microbial communities. High As concentrations in zones of active methanogenic activities have already been reported (Wang et al., 2015; Glodowska et al., 2021) whereas the biogeochemical link between methanogenesis and As release is not clearly elucidated. According to Glodowska et al. (2021), organic carbon input due to hydrogeological conditions fuels fermentation producing
hydrogen, thus, indirectly, methanogenic metabolisms and efficient reduction of As-bearing Fe minerals. Methane oxidation might also be coupled to FeIII reduction. In our systems, hydrogen was provided, thus could be consumed for both FeIII reduction and methanogenesis. One important question would be the possible availability of hydrogen or other electron donors in the confined aquifer. Previous studies showed that intrinsic organic matter of aquifer sediments could fuel anaerobic respiration processes (Duan et al., 2019; Gao et al., 2021). However, organic carbon concentration was very low in M8 sample, (0.02%) compared with that reported in previous studies (0.16 to 0.70% in Duan et al., 2019; 0.22% in Gao et al., 2021). The classical hypothesis of hydrogen production through fermentation of organic matter could hardly be considered in our system except if nuggets of organic matter, such as the plant debris macroscopically observed in the sedimentary profile, could be used as organic substrates. As a fact, the microbial community of incubated slurries contained the fermentative genus Propionivibrio, in low abundance (0.1 to 0.6%) but in all microcosms. Species of this genus, belonging to Rhodocyclaceae, are aerotolerant anaerobes performing fermentation of aromatic compounds (Brune et al., 2002); their emergence in the incubated slurries might indicate the intrinsic organic matter could be metabolised.

4.3.3. Linking microbial assemblages with biogeochemical processes

SRB were always detected both in groundwater samples and microcosms. However, they were present in relatively low abundance in groundwater, and in B microcosm in which the highest release of As was observed. In-situ evolution of SO$_4$ and δ^{34}S and the development of SRB in A and C slurries support the hypothesis of active sulphate-reduction in the confined aquifer.

Both groundwater and microcosms hosted microbial assemblages containing OTUs whose known members are involved in iron and sulphur cycles, but only a few methanogens except in one of the microcosms, where this metabolic group was abundant. All these types of microbial metabolisms were already observed in other As-bearing groundwater systems (Table 2).
Globally, the major abundance of bacterial OTUs involved in Fe cycling, i.e. FeII oxidation in groundwater samples, and FeIII-reduction in all incubated slurries, strongly suggests a major role of Fe biogeoecyle in the confined aquifer. The Geobacteraceae-affiliated OTU massively present at the end of slurry incubations, and putatively involved in Fe oxide reduction, was only sparsely detected in groundwater samples, possibly because they were not mobile but attached to solid phases, or because the local suboxic condition of the well was not suitable for their growth. However another OTU, affiliated to *Georgfuchsia*, a known FeIII reducer (Weelink et al., 2009), was present in low abundance but regularly along all seasons in groundwater.

Table 2. Main characters of microbial communities in arsenic-rich groundwater, groundwater-related sediments, and related laboratory experiments

<table>
<thead>
<tr>
<th>Environments</th>
<th>Main OTUs (16S genus level)</th>
<th>Main detected functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater, Inner Mongolia</td>
<td>Pseudomonas, Acinetobacter, Brevundimonas, Aquabacterium, Psychrobacter, Geobacter, Arthrobacter, Massilia, Dietzia, Sphingomonas, Planococcus, Methanosaeta, Nitrosophaera, Thermoprotei</td>
<td>Not mentioned</td>
<td>Li et al., 2013</td>
</tr>
<tr>
<td>Holocene and Pleistocene sediments, Cambodia</td>
<td>Geobacter, Propionivibrio, Aeromonas, Acidobacteria, Pelagibius, Enterobacter, Pseudomonas, Sphingomonas, Pseudolabrys, Methylobacterium, Microvirga, Delfia, Tumebacillus, Euzebya, Dietzia</td>
<td>Not mentioned</td>
<td>Hery et al., 2015</td>
</tr>
<tr>
<td>Location</td>
<td>Bacteria</td>
<td>Respiration and Redox Processes</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Groundwater, West Bengal, India</td>
<td>Pseudomonas, Rhizobium, Brevundimonas, Rhodococcus, Rheinheimera, Phyllobacterium, Staphylococcus, Herbaspirillum, Acinetobacter, Arthrobacter, Bacillus, Stenotrophomonas, Hydrogenophaga</td>
<td>As resistance, AsV respiration, AsIII oxidation, FeIII respiration, NO3 and SO4 respiration</td>
<td>Paul et al., 2015</td>
</tr>
<tr>
<td>Groundwater, Cremona, Italy</td>
<td>Sphingopyxis, Sphingomonas, Thiobacillus, Methylophilus, Sulfuricurvum, Thiotrix, Pseudomonas, Azotobacter, Methylomonas Rhodobacter, Leptothrix, Geobacter, Geothrix, Ferribacterium</td>
<td>AsIII oxidation, As resistance, AsV respiration (few), C fixation, FeIII-reduction</td>
<td>Cavalca et al., 2019</td>
</tr>
<tr>
<td>Groundwater, central Yangtze River Basin, China</td>
<td>Sideroxydans, Gallionella, Geobacter, Methylophilenera, Methylosinus, Methylomonas, Methylocaldum, Sulfurospirillum, Sulfitaeal, Methanospirillum, Methanosarcina, Methanosataea, Methanomassilicoccus, Methanobacterium, Desulfovibrio, Rhodoferax, Pseudomonas, Microbacterium, Flavobacterium, Aquabacterium, Acidovorax</td>
<td>FeII oxidation, FeIII reduction</td>
<td>Zheng et al., 2019</td>
</tr>
<tr>
<td>Location</td>
<td>Organisms</td>
<td>Processes</td>
<td>References</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Groundwater, Inner Mongolia</td>
<td>AsV respiration, As resistance</td>
<td>Wang et al., 2021</td>
<td></td>
</tr>
<tr>
<td>Groundwater, Central Yangtze River basin, China</td>
<td>SO$_4$ reduction (dsrB gene of Desulfobulbus, Desulfocapsa, Desulfomonile, Desulfobaccaa, Desulfovibrio, Desulfurispora, Desulfatiglans)</td>
<td>Zheng et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Groundwater, Sologne, France</td>
<td>Gallionella, Brevundimonas, Nitrospira, Georgfuchsia, Sphingopyxis, Perlucidibaca, Desulfurivibrio, Delftia, Sphingobium, Sediminibacterium, Magnetovibrio, Ferrphasalus</td>
<td>AsIII-oxidation, AsV-reduction</td>
<td>Present study</td>
</tr>
<tr>
<td>Incubations with lactate + acetate, Holocene and Pleistocene sediments, Cambodia</td>
<td>Geobacter, Sulfurospirillum, Desulfovibrio Pelosinus, Hydrogenophaga, Dechloromonas, Desulfobulbaceae</td>
<td>AsV respiration</td>
<td>Hery et al., 2015</td>
</tr>
<tr>
<td>Microcosms, Jianghan Plain, China</td>
<td>Pseudomonas, Pedobacter, Paenibacillus, Cellulomonas, Clostridium, Thiobacillus, Geobacter, Dechloromonas, Desulfosporosinus, Clostridium</td>
<td>Sulphate reduction, FeIII-reduction, As resistance</td>
<td>Deng et al., 2018</td>
</tr>
</tbody>
</table>
Microcosms

<table>
<thead>
<tr>
<th>Microcosms</th>
<th>Desulfovibrio, Desulfomicrobium, Geobacter, Methanosarcina, Methanobacterium</th>
<th>Sulphate-reduction, AsV respiration</th>
<th>Gao et al., 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcosms, Sologne, France</td>
<td>Methanobacterium, Desulfovibrio, Sediminibacterium, Thermincola, Sulfuritalea, Lacibacter, Propionivibrio, Haliangium, Methyloversatilis, Sandaracinus</td>
<td>AsIII-oxidation, AsV-reduction</td>
<td>Present study</td>
</tr>
</tbody>
</table>

5. Conclusion

The occurrence of As in the confined aquifer of Sologne appears to find its origins in anoxic bioprocesses, as already described in other sedimentary paleo-environments. In particular, the Fe oxides detected in As-rich floodplain and crevasse splay clays (fluvial environment) covering the calcareous aquifer (lake environment) could be biologically reduced. The major role of FeIII reduction in As release was supported by high Fe concentrations in water and solid phases, and proportions of microbial groups involved in Fe bio-geocycle, both in groundwater samples and microcosms. Other microbial reactions could play non negligible roles in As mobilisation, namely sulphate reduction, AsV reduction, AsIII oxidation and As methylation. Corresponding bacterial activities drive the production of diverse As species whose proportions may fluctuate and influence the distribution of As between solids and water. Even if phenomena globally followed the same patterns in all microcosms, our results underline the possibility of strong variations in the amplitude of the bio-reactions driving As release from solids to water, linked to subtle heterogeneities that induced important divergence of microbial communities compositions. This phenomenon, generally ignored or underestimated, deserves to be explored further to improve the accuracy of predictive models taking into account biogeochemical
reactions. In the context of global change and increasing anthropic pressure on water resources, managers will need reliable tools to anticipate the evolution of groundwater quality. At larger scale, important spatial heterogeneities of organic matter distribution and As concentrations, linked to geological context, i.e. sedimentary deposition in the meandering river system (channels, crevasse splay and floodplain), may occur and induce local variations of the intensity of biogeochemical processes. The mechanisms of As release in the sub-surface and their potential evolution with groundwater table level would need to be better understood through long-term monitoring of dissolved As species, and development of experimental systems and models taking into account heterogeneities at different scales.

Acknowledgements

This research was supported by the Water Agency Loire-Bretagne (decision n°2015C009), and by BRGM funding PEX BIODIV. We thank Luigi Ardito for performing core sampling operation, and the municipal authority of Marcilly-en-Gault for allowing our sampling campaigns.

References

HIGHLIGHTS

• Arsenic of sedimentary origin influences quality of a French groundwater
• Temporal variations of As- and S- cycles bio-indicators are observed on site
• Incubations of core material show biologically related As solubilisation
• Incubated core slurries and groundwater present distinct bacterial communities
• As concentration and speciation is driven by bacterial activities
Declaration of competing interest

The authors declare that they have no known competing interest that could have influenced this research results and interpretation.