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ABSTRACT

Context. Inhibition of the convective blueshift in active regions is a major contribution to the radial velocity (RV) variations, at least
for solar-like stars. A common technique to correct for this component is to model the RV as a linear function of chromospheric emis-
sion, because both are strongly correlated with the coverage by plages.
Aims. This correction, although efficient, is not perfect: the aim of the present study is to understand the limits of this correction and
to improve it.
Methods. We investigate these questions by analysing a large set of synthetic time series corresponding to old main sequence F6-K4
stars modelled using a consistent set of parameters. We focus here on the analysis of the correlation between time series, in particular
between RV (variability due to different processes) and chromospheric emission on different timescales. We also study the temporal
variation for each time series.
Results. We find that inclination strongly impacts these correlations, as well as the presence of additional signals (in particular gran-
ulation and supergranulation). Although RV and log R′HK are often well correlated, a combination of geometrical effects (butterfly
diagrams related to dynamo processes and inclination) and activity level variations over time create an hysteresis pattern during the
cycle, which produces a departure from an excellent correlation: for a given activity level, the RV is higher or lower during the ascend-
ing phase compared to the descending phase of the cycle depending on inclination, with a reversal for inclinations about 60◦ from
pole-on. We find that this hysteresis is also observed for the Sun, as well as for other stars. This property is due to the spatio-temporal
distribution of the activity pattern (and therefore to the dynamo processes) and to the difference in projection effects of the RV and
chromospheric emission.
Conclusions. These results allow us to propose a new method which significantly improves the correction for long timescales (fraction
of the cycle), and could be crucial to improving detection rates of planets in the habitable zone around F6-K4 stars.
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1. Introduction

The detection of low-mass planets using the radial velocity
(RV) technique is strongly impacted by the presence of stellar
variability. Magnetic activity leads to spurious RV signals
around the rotational period as well as on longer timescales
(related to cycle variations). We have shown that on long
timescales the signal is mostly due to the inhibition of the
convective blueshift in plages (Meunier et al. 2010a), producing
not only a strong peak in the periodograms at the cycle period,
but also a significant power at higher frequencies (periods of
a few hundred days and above): this decreases the detection
limit of low-mass planets by one to two orders of magnitudes.
A commonly used technique to correct for this contribution
relies on the strong correlation between this RV component
and the chromospheric emission as measured by the classical
log R′HK, since both depend on the filling factor covered by
plages. Such an approach has been used in a large number of
publications (e.g. Boisse et al. 2009; Pont et al. 2011; Dumusque
et al. 2012; Robertson & Mahadevan 2014; Rajpaul et al. 2015;
Lanza et al. 2016; Díaz et al. 2016; Borgniet et al. 2017) and
allows a significant decrease in the RV jitter to be achieved. This
correlation is also used in the fitting challenge organised by X.

Dumusque to compare the performance of up-to-date correction
techniques (Dumusque 2016; Dumusque et al. 2017).

The limitations of this approach are however not well stud-
ied. In the solar case, we have shown that although this approach
allows a significant gain, it is not suitable for very low planet
masses (Meunier & Lagrange 2013): for example, at distances
of around 1 AU, planets of 1 MEarth could only be reached
with very good temporal samplings. It is critical to understand
how these limitations depend on the star (spectral type, activity
level, ...) and why a better performance cannot be achieved with
this method. The issues are the following: (1) the dependence on
log R′HK can be fitted to a certain extent by a polynomial in time,
which is often used to remove the contribution from possible
unknown companions at very long periods that lead to a degener-
acy between the log R′HK and this polynomial. (2) The correction
using the log R′HK time series is not perfect, and a significant
amount of power remains in the periodograms, especially at long
periods (around the cycle period and below).

In this paper, we investigate these issues using a large set of
simulations covering F6–K4 old main sequence stars with vari-
ous activity levels. The generation of the time series is described
in Meunier et al. (2019), hereafter referred to as Paper I, which
also shows how the log R′HK, representing the chromospheric
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emission (average level, cycle amplitude) varies with inclina-
tion, with results which agree with Shapiro et al. (2014). An
initial analysis of the RV jitter was made in Meunier & Lagrange
(2019a), who compared the RV jitter from simulations with
observed jitter (Saar & Brandenburg 1999; Santos et al. 2000;
Wright 2005; Isaacson & Fischer 2010). They also showed the
good agreement with the RV−R′HK versus spectral type slope
observed by Lovis et al. (2011) on a large sample of HARPS
observations. Finally, they showed that the current status of cor-
rection techniques would not allow the detection of Earth-mass
planets around stars like the Sun, and that for lower-mass stars
a very large number of points was necessary to reach that goal.
A significant improvement of the correction method must there-
fore be made. Physical models are needed to remove the activity
contribution to ensure that the residuals are well controlled: the
correction to be made is typically one to two orders of magni-
tude (depending on the activity level). We show in the present
paper that the time series based on complex and realistic activ-
ity patterns can help us to find clues to develop better models to
perform these corrections, which in the end should help to better
control the residuals after correction.

The outline of the paper is the following. In Sect. 2 we briefly
recall the model and parameters. In Sect. 3, we study the corre-
lation between RV and log R′HK time series across our grid of
parameters. Subsequently, we present a study of the typical gain
which is obtained when performing standard correction using
log R′HK and a polynomial in time. In Sect. 5, we identify a lim-
iting element in the log R′HK correction and characterize it. We
propose a new method to correct for this effect in Sect. 6, which
will impact the detectability at long orbital periods. Finally, we
conclude in Sect. 7.

2. Model and parameters

Our model, described in detail in Borgniet et al. (2015) for the
Sun and in Paper I for other stars (F6–K4 and relatively old main
sequence stars), provides consistent spots, plages, and network
structures for complex activity patterns similar to the Sun.

The time series due to activity is the sum of the contri-
butions due to spots (rvspot1 and rvspot2, where two laws are
used for the spot temperature contrast1), plages rvplage (contrast
dependence on spectral type from Norris 2018), and inhibition
of the convective blueshift in plages rvconv. We also consider
the addition of the contribution of oscillation, granulation, and
supergranulation (OGS) signal, rvogs, averaged over 1 h, and an
instrumental white noise represented by a Gaussian noise with
an amplitude of 0.6 m s−1 (rvogs). Here, log R′HK time series
are produced to be able to relate RV variation to chromospheric
emission. We also produced photometric (Meunier & Lagrange
2019b) and astrometric (Meunier & Lagrange, in prep.) time
series, but the analysis of these time series is outside the scope
of the present paper as we focus on the relationship between RV
and chromospheric emission. The temporal step is one day on
average (with random departures of up to 4 h). The time series
have a maximum length of 15 yr, and always cover an integer
number of cycles.

The rotation periods, and the cycle periods and amplitudes
also depend on the star, and a range of realistic values is consid-
ered for each spectral type and activity level. Some parameters
which are not constrained are kept to the solar values considered
in Borgniet et al. (2015), for example meridional circulation or

1 A lower limit defined by the solar contrast in Borgniet et al. (2015),
∆Tspot1, and an upper limit law depending on Teff from Berdyugina
(2005), ∆Tspot2.

size distributions. We refer to Paper I for more details about the
laws used to produce the consistent sets of parameters, where all
references and justifications can be found. Of particular interest
in this paper is the maximum average latitude at the beginning of
cycle θmax: it is not yet constrained from observations or models,
and three values were considered in Paper I, the solar latitude
θmax,�, θmax,�+10◦, and θmax,�+20◦ , so that the activity pattern
covers different ranges in latitude.

3. Correlation between RV and log R′
HK

In the solar case, we showed that inhibition of the convective
blueshift was dominating over the spot and plage contributions
(Meunier et al. 2010a; Borgniet et al. 2015). We know from other
stars that the correlation is not always strong, as seen for exam-
ple from the RV−R′HK slope in Lovis et al. (2011): the slope can
be small in some cases (see also Meunier et al. 2017), and it is
important to better understand and quantify how this property
varies with spectral type or inclination for example to interpret
the observations. It is usually assumed that departures from a
perfect correlation are due to the addition of the spot and plage
signal for example, but this may not be the only cause.

We first consider the correlation2 between RV and log R′HK,
because it can easily be derived from observational data and
gives some clues on what to expect from the log R′HK correction.
Typical values are shown in detail in Appendix A.1. The correla-
tion between RV and log R′HK depends on many parameters, but
the most influential are spectral type, activity level, and inclina-
tion. The departure from a correlation of one explains why using
log R′HK to correct RV times series is not perfect. In addition, the
presence of noise (OGS or instrumental noise) strongly degrades
the global correlation. It is for example possible to have a RV
jitter dominated by rvconv, although the correlation reaches rel-
atively low values (Appendix A.2). This is probably due to the
fact that in some cases, the addition of the OGS signal signif-
icantly degrades the correlation even though its contribution to
the RV jitter is not major.

The global correlation between RV and log R′HK includes
contributions from both short and long timescales. The short-
term correlations presented in Appendix A.3 are related to the
global correlation, but there are a large number of simulations
with short-term correlations that are much lower than the global
one; these are always lower than 0.75. The inhibition of the con-
vective blueshift is less dominant even for edge-on stars, and
there are many configurations where the inhibition of the con-
vective blueshift is not dominant on short timescales. In addition,
we observe a very strong effect of inclination: for pole-on stars,
the short-term correlations are much lower than the global ones.
This is due to the fact that for low inclinations the rotation mod-
ulation is much smaller and therefore the short timescale signal
becomes noisier.

We also note that if the inclination of a given star is well
known, it seems possible to relate the global and average short-
term correlation. The observation of a given short-term correla-
tion at a given time is however not representative of the average
short-term correlations, and its sign can even be negative as local
correlations cover a wide range of values. Finally, local correla-
tions computed on solar time series also show a large dispersion
similar to what is observed in our simulations (Appendix A.4).

2 In the remainder of this paper, the correlation refers to the Pearson
correlation computed between two time series. We have also computed
Spearman correlations, but they are almost the same, with an rms of the
difference between the two over all time series of between 0.01 and 0.05
depending on the configuration, which does not change our conclusions.
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Fig. 1. Gain in RV jitter (when correcting for log R′HK alone) vs. global
correlation between RV and log R′HK (including rvogs and rvinst).

4. Decrease of the gain in RV jitter when correcting
using the log R′

HK
–RV correlation

To characterize the gain in RV jitter, we use the ratio between
the RV jitter before and after correction. The ratio should be
higher than one to get an efficient correction, and the higher
the ratio, the better the correction. We first consider the rela-
tionship between gain and global correlation, and analyse how
the gain varies for different types of corrections. The first model
used to perform the correction is of the form RV = α+ βlog R′HK.
In a second step, we discuss the addition of a polynomial in
time, described in the introduction: the model is then of the form
RV = α+ βlog R′HK + γt + δt2 (Dumusque et al. 2017).

4.1. Gain while correcting from log R ′HK and polynomial
in time

It is interesting to see whether it is easier to correct for activity
using the log R′HK–RV correlation when the correlation between
RV and log R′HK is high. Figure 1 shows the gain defined at the
beginning of Sect. 4 versus the log R′HK–RV correlation (from
Sect. 3) and indeed shows a perfect relationship between the two
approaches. When the correlation departs from one, the gain also
decreases.

The gain as a function of the original RV jitter (before correc-
tion) is shown in Fig. 2. The upper panel corresponds to a simple
correction using a linear relation between RV and log R′HK and
we see a complex behaviour with a wide spread: a large num-
ber of simulations correspond to low to medium RV jitter and a
gain close to the solid line (gain providing a RV jitter of below
1 m s−1 after correction). For RV jitters in the range 1–2.5 m s−1,
37% can be corrected to a level below 1 m s−1. However, for
medium to high RV jitters, the gain can be very different for
a given RV jitter: for example, for a jitter of 4 m s−1, the gain
can vary between 1 (no improvement brought by the correction)
and 3.5. The few simulations with the highest RV jitter are very
poorly corrected (gain close to 1). Simulations with a RV jitter
originally above 2.5 m s−1 never reach RV jitter below 1 m s−1

after correction. Finally, the shape of the upper envelope shows
that the gain does not vary linearly with RV jitter.

The second panel shows the same plot, but this time the
RV signal is corrected for both log R′HK and a second degree
polynomial in time (which is often done to correct for long-term
trends due to companions). The general behaviour is similar,
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Fig. 2. Gain in RV jitter in various conditions. Upper panel: gain vs.
RV jitter (for simulations including rvogs and rvinst, and for ∆Tspot2),
for a correction with log R′HK alone. The straight black line has a slope
of 1, indicating points where the correction allows a residual RV jitter of
1 m s−1 to be reached. The colour code corresponds to inclination, from
pole-on (i = 0◦, yellow) to edge-on (i = 90◦, blue), with light and dark
orange corresponding to 20◦ and 30◦, light and dark red to 40◦ and 50◦,
brown to 60◦, and light and dark green to 70◦ and 80◦. Middle panel:
same for a correction with log R′HK and a second-degree polynomial in
time. Lower panel: gain with log R′HK and time correction vs. gain with
log R′HK correction only. Only one point out of five is shown for clarity.

although it is possible in some cases to obtain higher gains,
as illustrated on the last panel, which shows the gain with
log R′HK and polynomial in time correction vs. gain with log R′HK
correction only. This is puzzling, because in the present case,
the polynomial in time is not a good model of the time series,
since it is not present in our simulations (no added companions):
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Fig. 3. Upper panels: amplitude of the polynomial in time vs. B−V
(left) and log R′HK (right). The black dots represent each individual time
series, while the red points correspond to a binning in B−V and log R′HK
respectively. Lower panels: percentage of polynomial amplitudes higher
than 0.5 m s−1 (stars), 1 m s−1 (diamonds), and 2 m s−1 (triangles) vs.
B−V and log R′HK respectively.

when correcting using this polynomial in time in addition to
the linear correlation with log R′HK, we use a model which is
not physical.

4.2. Discussion on the polynomial function fitted to the RV
time series

Given the difference in gain observed for certain simulations
when correcting for log R′HK alone and when also introducing
a polynomial in time, it is important to quantify this effect and
understand its origin, especially since it is widely used. Further-
more, the simulations do not include companions and therefore
the coefficients of the polynomial should be equal to zero (i.e.
the polynomial vs. time should be flat); if the coefficients of the
polynomial in time are different from zero, this means that we fit
the time series with a model which is not physically realistic.

For each simulation, we therefore corrected for log R′HK and
this polynomial in time as above. We then computed the ampli-
tude of the fitted polynomial Apol, defined as the maximum
minus the minimum of the polynomial over the time range.
Figure 3 shows this amplitude as a function of B−V and
log R′HK (upper panels). Although the average is low, there are

simulations with high values of Apol, up to a few m s−1. The per-
centage of simulations with amplitudes above 0.5, 1, and 2 m s−1

is shown in the lower panels. For the higher masses and more
active (from their average activity level) stars in the lower panels
of Fig. 3, the percentage can be relatively high, for example more
than 30% for the 0.5 m s−1 threshold. The percentage can reach
a few percent for the 2 m s−1 threshold.

All simulations with high polynomial amplitudes correspond
to long cycles, that is, simulations for which only one cycle is
simulated, and the highest amplitudes correspond to high cycle
amplitudes. For such simulations, the polynomial in time can
mimic activity (at least to a certain point, since the shape of the
cycles is not exactly polynomial). Since some fits are better with
this polynomial than without, the RV variations contain a com-
ponent which is closer to such a polynomial (as far as a single
cycle is concerned) than the log R′HK variability: a polynomial
fit is then ad hoc and the time series are not well constrained in
these cases. We explain this result in the following section.

5. Hysteresis between RV and log R′
HK

time series

In this section, we explain the previous results by the presence of
an hysteresis pattern between the RV and chromospheric emis-
sion variabilities. We quantify the amplitude of this pattern as a
function of the stellar parameters in our simulations. Finally, we
show that it is also observed for the Sun and other stars.

5.1. Why does the polynomial in time improve the correction?

We first show an example to illustrate the potential impact of
the polynomial fit. All plots are for ∆Tspot2, and include activ-
ity, OGS (smoothed over 1 h), and instrumental white noise.
Figure 4 shows an example of a time series for a G2 star with
a medium activity level: all points (full cycle) and after smooth-
ing for clarity. The upper panel shows the difference between
the RV we want to correct and the RV that would be obtained
if a linear relationship between RV and log R′HK were used. The
lower panel shows RV versus log R′HK: although there is indeed a
very good global correlation between the two (around 0.9 in this
example, hence the usual correction method), there is a depar-
ture from a strict correlation, with an asymmetry between the
ascending phase of the cycle and the descending phase, partic-
ularly visible for the pole-on (right panels) plot. For the star
seen edge-on, for a given log R′HK level, the RV is higher dur-
ing the descending phase of the cycle compared to the ascending
phase. It is the opposite for the same star seen pole-on. This is a
major effect because we observe differences higher than 1 m s−1

in these examples, which should lead to an important power in
the periodograms of the time series.

There is therefore a kind of hysteresis (we use this denomina-
tion in the following), with the two phases of the cycle behaving
in a different manner. This effect is not taken into account when
modelling RV as a linear function of log R′HK, but in some
cases can be partially taken into account using the polynomial
in time. There also might be a systematic effect of inclination.
We characterize this hysteresis in the following section for all
simulations.

5.2. Characterisation of the hysteresis across the grid
of parameters

In order to characterise the hysteresis, we define the criterium
Chyst. For a given simulation, we consider one cycle. We esti-
mate the position of cycle maximum to separate the ascending
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Fig. 4. Example of smoothed time series for a moderately active G2 star
seen edge-on (left) and pole-on (right). First line: RV vs. time (solid
line), and RV fitted from the log R′HK variations (dashed line). Second
line: log R′HK vs. time. Third line: RV vs. log R′HK, during the ascending
phase of the cycle (red) and during the descending phase (green).

phase and the descending phase. We then consider a series of 30
equally spaced log R′HK levels (corresponding to the range cov-
ered by each time series). The RV is averaged over each log R′HK
bin during the ascending phase (RVasc) and during the descend-
ing phase (RVdesc). We then compute RVdesc-RVasc and average
it over the 30 levels to produce Chyst.

Figure 5 shows Chyst versus B−V , log R′HK, and RV jitter. A
first striking result is that there is indeed a systematic effect of
inclination, going from a negative (pole-on) to a positive (edge-
on) value. The reversal happens around 60◦ from pole-on. Chyst
is strongly related to the average activity level and RV jitter
(i.e. variability level). Because of this, Chyst naturally decreases
towards lower masses.

The value of θmax (maximum average latitude at the begining
of the cycle) also has a strong effect on the hysteresis. Figure 6
shows binned Chyst vs. the RV jitter, for our three values of

θmax. In addition to an almost linear relationship with the RV
jitter in most cases, θmax strongly impacts Chyst as well: higher
θmax means a wider range covered by Chyst. Finally, the ampli-
tudes are lower for edge-on configurations compared to pole-on
configurations.

In summary, Chyst is strongly related to the activity level,
inclinations, and θmax. We attribute this dependence to the con-
junction of two facts: structures are not at the same position in
latitude on the disk during the cycle, and projection effects are
different for RV and log R′HK. This is detailed and discussed in
Sect. 6, where a new correction method is proposed.

5.3. Is the hysteresis present in observations?

We show that the hysteresis is also observed for the Sun, based
on the analysis of two cycle-long time series. We then find that
it is also present for other stars.

5.3.1. The solar case

Our simulations provide evidence for the presence of an hystere-
sis pattern between the long-term RV and log R′HK variations over
the cycle. We now examine two solar RV time series to confirm
this property with observations.

We first consider the RV reconstruction over a complete
cycle made by Meunier et al. (2010a). This reconstruction was
based on observed solar structures (spots, plages), and a model
was used to build the integrated RV from the estimated RV for
each structure. After selecting days for which an observation
of the chromospheric emission was available (S-index from the
Sacramento Peak Observatory), we plot the hysteresis pattern in
Fig. 7 (upper panels). The amplitude of the hysteresis is of the
order of 0.5 m s−1, which is very similar to our simulation for
edge-on configurations, both in sign and amplitude.

We also computed the hysteresis pattern from the solar
RV time series reconstructed from SOHO/MDI Dopplergrams
(Scherrer et al. 1995) by Meunier et al. (2010b). In this case,
the RV due to active regions was reconstructed by integrating
the Doppler velocities over the disk; we did not compute the
RV using the model for the RV associated to each structure.
The chromospheric emission is also from the Sacramento Peak
Observatory. The hysteresis shown in Fig. 7 (lower panels) is
very similar to the previous case, which shows that the model is
very good to that level of detail.

These two solar series are, to our knowledge, the only ones
available to compare with our simulation. The ongoing solar pro-
grams with HARPS-N (Dumusque et al. 2015; Collier Cameron
et al. 2019; Milbourne et al. 2019) and HARPS produce high-
cadence observations of the Sun in stellar conditions, and will
be suitable for such an analysis, but the temporal coverage so far
is still insufficient to allow such a study (only the end of the
descending phase of the solar cycle is available, with a solar
minimum in 2019). The reconstruction of the solar RV from
structures derived from HMI observations by Milbourne et al.
(2019) is similar in length.

5.3.2. Stellar observations

It is more difficult to check whether such an hysteresis is
observed on other stars because of the usually poor temporal
sampling. Surveys such as the Mount Wilson survey provide
large samples of stars with a good cycle coverage (e.g. Baliunas
et al. 1995), but they are not associated to simultaneous RV mea-
surements. We have however identified eleven stars observed
with HARPS for which a complete cycle with a large number
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Fig. 5. Upper panels: hysteresis amplitude Chyst vs. B−V (left), vs. log R′HK (middle), and vs. RV jitter (right), for F stars. The colour code is similar
to that in Fig. 2. Middle panels: same for G stars. Lower panels: same for K stars. Only one point out of five is shown for clarity.

of points is available (Table 1). Unlike in our simulations, the
cycle is not necessarily covered from one minimum to the next.
We binned the data over one year, and plot the corresponding
hysteresis pattern. The results are shown in Fig. 8. We observe
both types (edge-on or pole-on sign) of hysteresis in seven stars,
and four stars show either a more complex mixed pattern (two
stars) or no hysteresis (two stars). This is summarised in Table 1.
The presence of stars with no hysteresis is expected given the
reversal observed in Fig. 5. A mixed pattern could be due to a
spatio-temporal distribution of the structures that is more com-
plex than the solar one. We therefore find evidence suggesting
that the same hysteresis is present in other stars as well.

6. Towards a better correction of the long-term RV
variability

In this section, we explain the origin of the hysteresis pattern. We
then use these results to propose a new correction method using
a better model for the relationship between RV and log R′HK, and
illustrate its performance on a subset of G2 star simulations.

6.1. Explanation of the inclination-dependent hysteresis
pattern

Our interpretation of this hysteresis pattern is that although RV
and chromospheric emission are roughly correlated in the long
term due to the major contribution of rvconv, the signal produced
by a given active region strongly depends on its position on the
disk, while the projection effects are different for both variables:
the chromospheric emission is essentially linear vs. the projected
area of the structure. In RV, the dependence on µ (cosine of the
angle between the normal to the surface and the line-of-sight)
is more complex, as it includes an additional projection effect
of the velocity field (µ), a contrast dependence on µ, and the
center-to-limb darkening function (see Paper I).

As a consequence, if the average µ (hereafter µ̄) changes in
time (in particular due to a butterfly diagram pattern), this must
introduce a departure from the linear relationship between RV
and chromospheric emission. This is the case when considering
different stellar inclinations. For a solar-like butterfly diagram
such as in our simulations (i.e. toward the equator), if the star is
seen pole-on, µ̄ decreases during the cycle because the structures
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Fig. 6. Average hysteresis vs. RV jitter for three values of θmax: solar
(black), solar +10◦ (red), and solar +20◦ (green). Each plot corresponds
to a different inclination, from pole-on (0◦, upper left panel) to edge-on
(90◦, lower right panel). All plots are on the same scale in m s−1.

appear at lower latitudes, as shown in Fig. 9, and µ̄ therefore also
covers a wide range: RV decreases faster than the chromospheric
emission, so for a given activity level, the RV signal is higher
during the ascending phase of the cycle. This is the opposite for
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Fig. 7. Relative velocity (solid line), RV deduced from the linear
relation with Sacramento Peak S-index (dashed line) vs. time (left
panels), and RV vs. S-index (right panels, in red for ascending phase
and in green for descending phase). Upper panels: RVs reconstructed
from observed structures (Meunier et al. 2010a). Lower panels: RVs
reconstructed from MDI/SOHO Dopplergrams (Meunier et al. 2010b).

Table 1. Star sample and hysteresis.

Star Spectral Number Hysteresis
type of points

HD 21693 G9 IV-V 212 E
HD 7199 K1 IV 112 O
HD 1461 G3 V 461 M
HD 20003 G8 V 183 P
HD 207129 G2 V 362 P
HD 38858 G2 V 213 E
HD 71835 G9 V 109 O
HD 82516 K2 V 89 E
HD 95456 F8 V 244 P
HD 10180 G1 V 327 M
HD 13808 K2 V 244 E

Notes. The spectral type is from the CDS (https://simbad.u-
strasbg.fr/simbad/). “E” indicates an hysteresis pattern similar to
our edge-on configurations, “P” similar to our pole-on configurations,
“M” a mixed pattern, and “O” no hysteresis.

a star seen edge-on because during the cycle, µ̄ increases and
covers a small range of values: for a given activity level, the RV
signal is lower during the ascending phase of the cycle. This
behaviour should be responsible for the reversal seen in Fig. 5
and is related to the average position of the structures, which is
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Fig. 8. Relative velocity vs. time (stars linked by solid black lines), and RV from linear dependence on log R′HK (diamonds linked by orange dashed
line) for each star. The second plot for each star shows the hysteresis pattern, with the ascending phase in red and descending phase in green.

due to the presence of a butterfly diagram pattern, and therefore
to dynamo processes. It could also explain why θmax has a strong
effect on the hysteresis pattern.

Furthermore, a simulation similar to the one shown in Fig. 4,
but with a constant latitude over time (flat butterfly diagram),
exhibits no hysteresis, as illustrated in Fig. 10. This shows that
the hysteresis is strongly related to the spatio-temporal distri-
bution of the structures. We also note from this figure that the

relationship between RV and log R′HK, although showing lit-
tle dispersion, is not strictly linear and some dispersion is still
present.

6.2. Construction of a reference catalogue

If the butterfly diagram of a star were known, the difference in
trend between RV and chromospheric emission could then be
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Fig. 9. Average µ̄ vs. cycle phase for pole-on (solid line) and edge-on
(dashed line) configurations for simulation shown in Fig. 4.
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Fig. 10. Relative velocity vs. log R′HK for simulation similar to Fig. 4,
seen pole-on (upper panel) and edge-on (lower panel), but with constant
latitude over time.

modelled and corrected. In practice however, it is not known, but
we can build a large number of functions corresponding to differ-
ent configurations (different latitude ranges for example), which
can be generated to build a reference catalogue describing the
different possibilities for the ratio between the RV and log R′HK
behaviour over time. This must then be modulated by the activity
level over time when applied to a given time series. The function

leading to the lowest residuals after correction is then selected.
We built these functions for the following parameters:

– Stellar inclination: we consider 91 values between 0◦ and
90◦ with a step of 1◦.

– Average latitude at the beginning of the cycle θmax: we
consider values between 15◦ and 59◦. We recall that in our sim-
ulations, we only considered input values of 22◦, 32◦, and 42◦
(the actual average latitudes are usually higher, in particular due
to meridional circulation). Here we generate the functions for
a wider range of parameters since θmax is not constrained for a
particular observation.

– Width of the butterfly diagram in latitude, Γ: we considered
values from 2 to 20◦, with a step of 2◦. We recall that all simula-
tions were made with an input value of 6◦ (the actual values are
usually higher due to diffusion and meridional circulation). We
use a Gaussian distribution around the average latitude, with a
cut at ±20◦.

– Average latitude at the end of the cycle θmin: this is kept
constant (9◦, corresponding to the input value in our simulations)
in this first analysis.

For each of these parameter sets, we computed the butterfly
diagram pattern in latitude for 100 phases during a cycle. We
attributed to each pixel of the stellar disk the projection effects
corresponding to RV and chromospheric emission respectively.
The center-to-limb darkening is similar to the function used in
our simulation in Paper I (Claret & Hauschildt 2003). The plage
contrast is an average as a function of µ of the function used
in Paper I. For a given inclination, adding the pixel contribu-
tions over the whole disk at each phase produces two time series,
hereafter RVcat and Cacat. These functions do not include any
structures such as spots or plages: they only describe the rel-
ative variability of the two variables (RV and chromospheric
emission), for a constant activity level, due to the position of
the structure. For that reason, we also attribute to each pixel a
factor describing the fact that a structure rotating in longitude
would spend more time at a position close to the limb compared
to disk center due to projection effects (for a given rotation rate).
This leads to a catalogue of 20 930 functions. Figure 11 shows
an example of such a function (upper panels).

6.3. Fitting the time series using the reference catalogue

The catalogue is then used as follows for a given time series
covering a stellar cycle:

– We first bin the time series over the rotation period,
because the catalogue is used to improve the correction over long
timescales (we average the structure positions in longitude). This
leads to RVbin and Cabin vs. tbin in the following. In principle, the
same procedure could be applied directly to the original time
series, but this approach is faster and gives a very good idea of
the performance when considering the long-term variations only.

– Each function of the catalogue is then tested: we apply a
linear fit to (RVbin, Cabin), leading to a RV time series corrected
from the linear correlation with Cabin, RVcorlin. Here, RVcorlin
is then multiplied by RVcat/Cacat (after interpolating on tbin) to
account for the difference in behaviour with µ over the cycle of
RV and chromospheric emission, and by a constant to minimize
the residuals, the amplitude in the catalogue being arbitrary.

– Finally, we select the catalogue function providing the
lowest rms of the residuals.

When applied to the binned time series corresponding to
Fig. 4, the rms RV before correction is 3.79 m s−1 (3.65 m s−1),
after a standard linear correction 0.48 m s−1 (0.77 m s−1), and
after the new correction 0.2 m s−1 (0.27 m s−1), for the edge-on
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Fig. 11. First panel: example of correcting function from catalogue (see
Sect. 6.4) vs. phase for edge-on configuration (left) and pole-on config-
uration (right): chromospheric emission (solid line), RV (dashed line),
and ratio between RV and chromospheric (thick dotted-dashed line),
all normalized to 1 for clarity. Second panel: RV vs. chromospheric
emission for the simulation shown in Fig. 4, colour-coded according
to the cycle phase: red for the ascending phase, green for the descend-
ing phase. The orange and brown curves correspond to the same phases
respectively but for the model derived from the catalogue functions. The
black dashed line is the linear fit between RV and log R′HK. Third panel:
RV residual after standard correction (black dashed line) and after the
new correction (orange and brown solid lines as in the second panel).
Fourth panel: RV residual vs. time after standard correction (dashed
line) and after the new correction (solid line).

and the pole-on configurations respectively. There is therefore a
gain of 2.40 (2.85) between the standard correction and the new
correction.

To illustrate the performance of the new method, we applied
this procedure for a subset of G2 star simulations, over one cycle
only and ∆Tspot1. We compare the rms before correction (rms0),
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Fig. 12. Distribution of different rms ratios, for inclinations of 0◦
(orange), 30◦ (red), 60◦ (brown), and 90◦ (green). Panel A: rms0/rmsstand.
Panel B: rms0/rmsnew. Panel C: rmsstand/rmsnew. Panel D: rmsnew/rmsopt.
Panel E: rmsnew/rmsext. Panel F: rmsext/rmsopt.

after a standard linear correction with chromospheric emis-
sion (rmsstand), and after this new correction method (rmsnew).
Median values of the gain are shown in Table 2 and distributions
in Fig. 12. With the new method, the gain with respect to the
standard correction is about 2.5 for pole-on configurations and
1.5 for edge-on configurations (median values), and very close to
one for inclinations of 60◦ as shown in panel C. This is expected
because the reversal of the hysteresis occurs around this inclina-
tion, meaning that no improvement is expected in that case. The
distributions show that for some simulations the gain is as high
as 4–6 with respect to the standard correction.

6.4. Going beyond the hysteresis correction

The residuals show that no hysteresis remains, but a curvature
is still present (Fig. 11). This is likely to be related to the non-
linearity observed in Fig. 10. After correction of this curvature
using a second-degree polynomial in log R′HK on the residu-
als shown in Fig. 11, the residuals have a rms of 0.219 and
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Table 2. Performance for G2, ∆Tspot1 stars.

Inclination rms0/rmsstand rms0/rmsnew rmsstand/rmsnew rmsnew/rmsopt rmsnew/rmsext rmsext/rmsopt
(◦)

0 4.26 11.23 2.53 1.05 1.02 1.02
30 7.19 17.38 2.35 1.00 1.01 0.98
60 12.82 14.13 1.08 1.04 1.02 1.01
90 10.08 17.60 1.54 1.07 1.03 1.02

Notes. Median of the gains between the different correction levels for four inclinations between pole-on (0◦) and edge-on (90◦). These correspond
to the distributions shown in Fig. 12.

0.174 m s−1 (for pole-on and edge-on respectively): this is very
close to the residuals after a similar correction (second degree
polynomial) for the time series at constant latitude shown in
Fig. 10 (rms of the residuals of 0.215 and 0.176 m s−1). We
propose to add another step to the procedure, consisting in per-
forming this second degree in the log R′HK fit, which leads to an
rms of the residuals, rmsext. The results are shown in Fig. 12
(panels E and F) and Table 2: for many simulations, the gain is
centred on one, but it allows a significant gain to be added for
some of them (tail in panel E).

After this step, the median gain in power for periods in the
habitable zone of G2 stars computed as in Meunier & Lagrange
(2019a), that is in the 274-777 days range, is between 1.3 (60◦)
and 2.8 (30◦). The gain is higher than two (representing a gain
of four in mass) for 61, 63, 21, and 49% of the simulations for
the four inclinations respectively. We note that for 7–18% of the
simulations, the power is slightly increased after correction how-
ever (the gain is very high for periods between typically Pcyc/2
and Pcyc, but not as high below Pcyc).

As a complementary approach, we also fitted the time
series with a function of the form RV =α(1 + β log R′HK +
γ(log R′HK)2)(1 + δt + εt2) where the polynomial in log R′HK takes
a non-linear relationship between RV and chromospheric emis-
sion into account, and the polynomial in time plays the role of
the reference catalogue functions computed above to correct for
the hysteresis. This represents an estimate of the best gain which
can be achieved when considering processes on long (cycle) time
scales, as it is less physically constrained than the current func-
tions in the catalogue. We computed the rms of the residuals after
such a correction, rmsopt. The distribution of the gains are shown
in Fig. 12 (panels D and F) and the median gains in Table 2. The
new correction (previous section) provides a gain with respect to
rmsopt with a peak around 1, and a small tail toward higher val-
ues. After the polynomial fit (rmsext), the tail has disappeared,
which shows that the correction is very close to what we can
expect to reach, which is an excellent result.

We note that at this stage, the rms of the binned series after
correction is in the range 0.02–0.33 m s−1. There is therefore
some signal left, which is more stochastic in nature than what
we have removed so far, and is on typically lower timescales. We
will study these residuals in a future work. They could be due to
departure from the average latitude of large active regions, and/or
to size effects (see Fig. 10 and Sect. 6.1).

In conclusion, this section shows the feasibility and interest
of this method, which appears to be very promising and allows
substantial improvement of the residuals. In a future work, we
will test the impact of a degraded sampling (lower number of
points, incomplete coverage of the cycle). The construction of
the catalogue will also be improved using smaller steps and/or

interpolating in the catalogue, and taking different values of θmin
into account. Finally, the performance will also be tested when a
planet in the habitable zone is added, and for all spectral types in
our simulations (F6–K4).

7. Conclusion

We analysed a large number of simulated time series of stellar
activity covering the spectral types F6–K4 and different activ-
ity levels. We showed that such simulations, based on realistic
complex activity patterns, are very useful to understand the lim-
itation of correction methods. We have focused on the methods
using the correlation between RV and log R′HK.

The detailed study of the correlation between RV and
log R′HK, and the gains in RV jitter which can be obtained using
the typical log R′HK correction compared to the gain obtained
when also considering a second-degree polynomial in time, led
us to several important conclusions:

– Inclination usually plays a crucial role.
– The global and short-term correlations related to the rel-

ative weight between rvspot and rvplage (contribution of spots
and plages due to their intensity contrast) on one side, and rvconv
(due to the inhibition of the convective blueshift in plages) on
the other side, present a complex relationship. This relation is
impacted by inclination, and by the addition of other contribu-
tions such as oscillation, granulation, and supergranulation.

– Not only is the correction using log R′HK limited (as shown
in previous papers Meunier & Lagrange 2013, 2019a; Dumusque
et al. 2017), but the addition of a polynomial in time may also
help to reduce the RV jitter a little, although in an uncontrolled
way. However, the results show that adding polynomial fits in
time should be used with caution.

– An hysteresis between RV and log R′HK was discovered due
to a different relationship between RV and log R′HK depending
on the cycle phase, produced by the combination of geometrical
effects (due to the butterfly diagram and the inclination) and the
activity level variability along the cycle.

The existence of the hysteresis is a major result, because it
comes as a limitation to the RV correction. We have shown that
this hysteresis pattern is present in RV solar time series, as well
as in other stars. Also, this result will help to better model the
long-term RV due to activity.

We propose a new method which significantly improves the
correction for long timescales (fraction of the cycle, i.e. suit-
able for planets in the habitable zone). The method is based
on the physical description of the processes at the origin of the
hysteresis (butterfly diagram related to dynamo processes and
projection effects), which allows us to better constrain the rela-
tionship between the observables (RV and log R′HK) and therefore
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to better control the residuals, that is, to avoid adding spurious
effects due to unphysical contributions. We note that Haywood
et al. (2016) found that the unsigned magnetic flux (which is an
observable that is currently very difficult to measure on solar-like
stars other than the Sun) may be better correlated with long-term
RV variation than log R′HK: the difference may be due to a similar
effect, with the unsigned flux corresponding to different projec-
tion effects. The new method proposed in the present paper needs
to be further tested on all simulations to derive realistic detection
rates for planets in the habitable zone around F6–K4 stars. After
improvement and validation, these functions can then be made
publicly available.

In addition to these new perspectives to detect low-mass
planets in the habitable zone, we will also investigate the pos-
sibility of using this method to derive information on the
spatio-temporal distributions of stellar activity, in particular in
the direction (poleward or equatorward) of the dynamo wave,
which would be extremely interesting since this has been very
poorly constrained from observations so far. This should be
feasible especially if the stellar inclination is well constrained.

Finally, the correction of the RV signal due to activity will
be critical for the TESS and PLATO follow-ups. When these
follow-ups aim at confirming planets observed by transit, this
will concern stars seen close to edge-on statistically (unless they
have a highly inclined orbit with respect to the equatorial plane
of the star) and therefore with a significant hysteresis effect.
For this reason, it is necessary to improve correction techniques
taking this effect into account.
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Appendix A: RV–log R’HK correlations
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Fig. A.1. Correlation between RV (due to activity only, SERIE 1, left,
and including rvogs and rvinst, SERIE 2, right) and log R′HK vs. aver-
age log R′HK for different types of stars: F stars (upper panels), G stars
(middle panels), and K stars (lower panels). The colour code is similar
to that of Fig. 2. Only one point out of five is shown for clarity.

This appendix provides further details of the RV–log R′HK cor-
relations for our simulations: the correlation is computed either
on whole time series (global correlations) or on subsets of data
(local correlations), as discussed in Sect. 3. We then quantify
these correlations for the Sun.

A.1. Impact of the parameters on the global correlation

The left panels of Fig. A.1 show the global correlation for RV
due to activity only (rvspot2, corresponding to ∆Tspot2 as defined
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Fig. A.2. Upper panel: correlation between RV (due to activity only)
and log R′HK vs. RV jitter due to convection only (rvconv) divided by
total RV jitter (due to activity only). The colour code is similar to Fig. 2.
Lower panel: same including rvogs and rvinst (for both the total RV
jitter and the RV used to compute the correlation). Only one point out
of five is shown for clarity.

in Sect. 2), computed over each time series, as a function of the
average activity level. The plots for ∆Tspot1 are very similar (not
shown here). The correlation is usually high (above 0.7), but
there is a drop in correlation for active F stars and high incli-
nations. This is due to the fact that for these stars the spot and
plage contribution at the rotation period (which is not corre-
lated with log R′HK) increases relative to the convection inhibition
contribution: this decreases the correlation.

After adding the OGS signal as well as instrumental white
noise (right panels), we observe a decrease of the correlation
values for both quiet and active stars of all spectral types. The
effect is particularly strong for K stars, despite the fact that the
OGS signal is also decreasing when going to lower mass stars
(see Paper I).

A.2. Relationship between correlation and convective
RV component

Figure A.2 shows the correlation between RV and log R′HK vs. the
ratio between the RV jitter due to convection alone (which is the
component which should be correlated to log R′HK) and the total
RV jitter. With no-noise added (i.e. no OGS nor instrumental
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Fig. A.3. Average short-term correlation between RV (including activ-
ity, rvogs and rvinst) and log R′HK vs. global correlation. The colour code
is similar to Fig. 2. Only one point out of five is shown for clarity.

noise), there is a relatively good correlation between the two
(0.92), but the relation is not entirely linear. The contribution
of rvconv can be as low as 40–50% over our range of param-
eters, and the correlation between RV and log R′HK, although
always positive, can reach values of 0.2 (and even almost 0 in
the presence of noise).

In the presence of noise (lower panel), the relationship is
more complex. The global correlation remains good for two
thirds of the simulations (66% still have a correlation above 0.7,
while this was 95% for the no-noise case), but both ratios and
correlations reach lower values (down to 0). Moreover, we see
two regimes: one with a very good correlation and a linear rela-
tionship, and one below, where the correlation is degraded. This
lower regime corresponds to F stars (37% of the F stars are in
the second regime) with high inclinations (i.e. close to edge-on)
compared to average. This is due to the fact that the correlation
seems to be more strongly affected by inclination than the RV jit-
ter ratio for these stars, leading to the observed shift toward lower
correlations. This is probably due to the fact that in some cases,
the addition of the OGS signal significantly degrades the corre-
lation even though its contribution to the RV jitter is not major.

A.3. Short-term correlation

We have so far considered the global correlation between RV
and log R′HK . This global correlation includes contributions from
both short and long timescales. We now compute a short-term
correlation, which is sensitive to the short (Prot) timescales but
not to the longer timescales: it is impacted by the convective
blueshift inhibition in plages (correlated with log R′HK) and by
the spot+plage signal, as well as the OGS signal when consid-
ered (not correlated with log R′HK). We compute the short-term
correlation over time spans of 90 days: this is repeated for N con-
secutive intervals over the whole time series, with N between 35
and 59 depending on the length of time series. The average of the
N values over each time series is then computed. The resulting
averaged short-term correlation is shown in Fig. A.3.

The short-term correlation is related to the global corre-
lation, however there is a large number of simulations with
short-term correlations much lower than the global one. We also
note that if the inclination of a given star is well known, it
is possible to use this plot to relate the global and short-term
correlations.
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Fig. A.4. Upper panel: minimum value of short-term correlation
(including activity, rvogs and rvinst). The minimum is computed over
the N values of a given time series (see text). The colour code is similar
to Fig. 2. Upper panel: same for the maximum of the short-term cor-
relations. Lower panel: same for the maximum minus minimum of the
short-term correlation. Only one point out of five is shown for clarity.

For RV including the OGS signal and the instrumental noise,
the short-term correlations can vary within a range of 0.4–1
depending on the time series, as shown in Fig. A.4. For exam-
ple, for an average short-term correlation of 0.6, the minimum
varies between −0.2 and 0.4, and the maximum between 0.75
and 0.95. For an average short-term correlation, the minimum is
typically in the range −0.4 to −0.1 (and therefore negative) and
the maximum between 0.45 and 0.8.

A.4. The solar case

Figure A.5 shows the local correlation in the solar case for
the two time series obtained by Meunier et al. (2010a,b) cov-
ering a complete cycle. They are described in Sect. 5.3. The
average local correlation is similar (0.57–0.58) while the global
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Fig. A.5. Local correlation between RV and log R′HK vs. time (Julian
days - 2 450 000) for RV reconstructed from observed solar structures
(Meunier et al. 2010a) in black (stars) and from RV estimated from
MDI/SOHO Dopplergrams (Meunier et al. 2010b) in red (diamonds).
The horizontal lines correspond to the global correlations.

correlation is much higher (0.91), which agrees with our simula-
tions (see Figs. A.1 and A.3). The dispersion of the correlation
values is respectively 0.20 and 0.27 and the local correlations
cover a wide range of values as in our simulations.

Similar local correlations can be computed from the HARPS
solar observation published by Milbourne et al. (2019), and
are shown in Fig. A.6; the average of around 0.41 is slightly
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Fig. A.6. Local correlation between RV and log R′HK vs. time (Julian
days – 2 457 222.5) for RV observed with HARPS (black stars), and
reconstruted from HMI (raw in red diamonds, with noise added in green
triangles), estimated from time series published by Milbourne et al.
(2019). The horizontal lines correspond to the global correlations.

lower than for the previous time series. The correlation with the
HMI/SDO RV that these latter authors reconstructed (no noise,
spot, plage and convective blueshift inhibition only) is larger: on
average around 0.63. However, if a noise of 1.2 m s−1 is added for
example, the average local correlation decreases (0.39, similar to
the correlation with HARPS). The local correlations also show a
wide dispersion, as in our previous results.
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