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ABSTRACT

Context. The early pre-main sequence phase during which solar-mass stars are still likely surrounded by an accretion disk represents
a puzzling stage of their rotational evolution. While solar-mass stars are accreting and contracting, they do not seem to spin up
substantially.
Aims. It is usually assumed that the magnetospheric star-disk interaction tends to maintain the stellar rotation period constant (“disk-
locking”), but this hypothesis has never been thoroughly verified. Our aim is to investigate the impact of the star-disk interaction
mechanism on the stellar spin evolution during the accreting pre-main sequence phases.
Methods. We devised a model for the torques acting on the stellar envelope based on studies of stellar winds, and we developed a
new prescription for the star-disk coupling founded on numerical simulations of star-disk interaction and magnetospheric ejections.
We then used this torque model to follow the long-term evolution of the stellar rotation.
Results. Strong dipolar magnetic field components up to a few kG are required to extract enough angular momentum so as to keep
the surface rotation rate of solar-type stars approximately constant for a few Myr. Furthermore an efficient enough spin-down torque
can be provided by either one of the following: a stellar wind with a mass outflow rate corresponding to ≈10% of the accretion rate,
or a lighter stellar wind combined with a disk that is truncated around the corotation radius entering a propeller regime.
Conclusions. Magnetospheric ejections and accretion powered stellar winds play an important role in the spin evolution of solar-type
stars. However, kG dipolar magnetic fields are neither uncommon or ubiquitous. Besides, it is unclear how massive stellar winds can
be powered while numerical models of the propeller regime display a strong variability that has no observational confirmation. Better
observational statistics and more realistic models could contribute to help lessen our calculations’ requirements.
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1. Introduction

Classical T Tauri stars (CTTS) are magnetically active pre-main
sequence stars surrounded by an accretion disk (Collier Cameron
& Campbell 1993; Edwards et al. 1993, 1994; Collier Cameron
et al. 1995; Hartmann et al. 1998). Their magnetic field (up to
a few kG, see Johns-Krull et al. 2009; Gregory et al. 2012) has
a strong impact on the dynamics and the structure of the stellar
environment and can lead to the truncation of the disk and accre-
tion of material along funnel flows down to the stellar surface,
the launch of stellar winds along the opened magnetic field lines
(Matt & Pudritz 2005a, 2008; Matt et al. 2012, 2015; Cranmer &
Saar 2011; Réville et al. 2015; Johnstone et al. 2015; See et al.
2018; Finley & Matt 2018), and the ejection of material due to
the magnetic star-disk interaction (Shu et al. 1994; Ferreira et al.
2000; Romanova et al. 2009; Zanni & Ferreira 2013).

Additionally, observations suggest (see Edwards et al. 1993;
Bouvier et al. 1993; Rebull et al. 2004; Irwin & Bouvier 2009)
that while stars contract during the early pre-main sequence
(PMS) phase (1–10 Myr) and accrete angular momentum from
the disk, they do not seem to noticeably spin up for several Myr.
Indeed, Gallet & Bouvier (2013; 2015, and references therein)
highlight the apparent steady evolution of the three percentiles
(90th, median, and 25th) of the rotational period distributions
of stars from 1 Myr to 10 Myr. The fact that the two extreme

percentiles remain almost constant in time confirms that the evo-
lution of the rotation is not random but strongly depends on
the initial conditions, that is, whether the star is initially in a
fast or slow rotating regime. Since this constant rotational phase
is comparable to the disk lifetime, it suggests a link between
the magnetic star-disk interaction and this observed behaviour.
Finally, regardless of the physical origin of this rotational evo-
lution, these observational constraints suggest that during this
early-PMS phase, a large fraction of the angular momentum of
the star needs to be removed.

Moreover, the magnetospheric star-disk interaction scenario
is still the main paradigm to interpret the angular momentum
evolution of CTTS (see Bouvier et al. 2014, for a review).
The first attempts to model the star-disk angular momentum
exchange in CTTS (see e.g. Königl 1991) were based on the
Ghosh & Lamb (1979) model, which was originally developed
for X-ray pulsars. In this framework, the star can transfer its
angular momentum to the disk along magnetic field lines that
connect the star with the disk region beyond the corotation
radius. This scenario popularized the idea that the disk itself
could adjust the stellar rotation at the observed values (disk-
locking mechanism). In more recent times, the Ghosh & Lamb
(1979) model has been revised (Matt & Pudritz 2005b), thus
showing that this mechanism is actually very inefficient since the
size of the disk region that is magnetically connected to the star is
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likely very small and often confined inside the corotation radius
(Zanni & Ferreira 2013). As of today, outflows emerging from
the star-disk interaction region seem to be the best viable mech-
anism to extract the excess of stellar angular momentum. Shu
et al. (1994) proposed that a wide-angle outflow that is launched
from a small region located around the corotation radius, the
“X-Wind”, could be able to extract a sizable fraction of the disk
angular momentum at corotation before it falls onto the star, thus
at least eliminating the spin-up torque due to accretion. Stellar
winds, which are possibly powered by accretion (accretion pow-
ered stellar wind, hereafter APSW, see Matt & Pudritz 2005a),
can directly extract angular momentum from the star. Addition-
ally, accurate estimates of the spin-down torque have been com-
puted via direct numerical simulations (Matt & Pudritz 2008;
Matt et al. 2012; Réville et al. 2015; Pantolmos & Matt 2017;
Finley & Matt 2018). Another class of outflows can exploit the
stellar magnetosphere that still connects the star to the disk, caus-
ing ejections that are intrinsically unsteady and possibly quasi-
periodic. If the magnetic moment of the field that threads the disk
is aligned with the stellar one, a reconnection X-point forms in
the disk midplane, where matter can be uplifted from the disk
and accelerated by the stellar rotation along newly opened field
lines, thus removing stellar angular momentum (“ReX-wind”,
Ferreira et al. 2000). If the stellar and disk magnetic moments are
anti-parallel, as in the case where the open disk magnetic field
is a leftover of the star-disk interaction, unsteady ejections can
arise due to the quadi-periodic process of inflation, opening and
reconnection of the closed magnetospheric field lines (magneto-
spheric ejections, hereafter MEs, Romanova et al. 2009; Zanni
& Ferreira 2013). Since these two last outflow types take advan-
tage of magnetic field lines that still connect the star with the
disk, they can exchange mass, energy, and angular momentum
with both the star and the disk.

The works by Gallet & Bouvier (2013, 2015) and Amard
et al. (2016), aimed at comparing theoretical models and obser-
vations of the rotational evolution of solar-mass stars, make the
hypothesis that during the accreting T Tauri phase the stellar
rotation is kept constant thanks to a “disk-locking” mechanism,
but they did not take into account the actual details of any magne-
topsheric star-disk interaction model. The aim of this work is to
add self-consistent elements to a physical model of the star-disk
interaction and to the evolutionary tracks presented in Gallet &
Bouvier (2013, 2015) and Amard et al. (2016) in order to deter-
mine under which physical conditions the stellar rotation period
can be kept approximately constant while the protostars are still
accreting and contracting. To model the stellar spin evolution we
include the spin-down torque exerted by a stellar wind, employ-
ing the parametrization proposed by Matt et al. (2012). Never-
theless, we present a new prescription for the angular momentum
exchange between a star and a surrounding accretion disk based
on the numerical magnetohydrodynamic (MHD) simulations of
Zanni & Ferreira (2013) that show the impact of MEs on the stel-
lar angular momentum evolution. We did not consider a Ghosh &
Lamb-like star-disk magnetic coupling since it has been tested to
provide a rather inefficient spin-down torque (see e.g. Matt et al.
2010), and we preferred taking into account scenarios that rely
on outflows. We did not consider either X-wind (Shu et al. 1994)
or ReX-wind (Ferreira et al. 2000) scenarios that are still based
on phenomenological models and we preferred to include mech-
anisms for which self-consistent MHD numerical solutions are
currently available.

The structure of this article is as follows: in Sect. 2, we
briefly present the angular momentum evolution model together
with the different star-disk interaction processes used in this

study. The outcome of our rotational evolution models is pre-
sented in Sect. 3. In Sect. 4, we discuss the implications of these
models, in particular on the magnetic field intensity and the kind
of star-disk interaction regimes that could provide a torque that is
efficient enough to slow down the stellar surface. We finally draw
conclusions about the validity and limitations of these models in
Sect. 5.

2. The model

We build upon the model described in Gallet & Bouvier (2013)
that is dedicated to the study of the angular momentum evo-
lution of solar-type stars (i.e. stars with solar mass and metal-
licity). In this two-zone model, the stellar convective envelope
and the radiative interior are separated entities that exchange
angular momentum over a given time-scale, and the stellar inter-
nal structure evolves with time. Additionally, during the stellar
evolution after the accretion disk has been dissipated, a mag-
netized stellar-wind torque is applied to the convective region.
However, no physical description of the star-disk interaction
process was included and it was simply assumed that the rota-
tional period remained constant during the disk accretion phases
(“disk-locked” state).

In the present paper, we include the impact of a self-
consistent star-disk interaction model, encompassing the effect
of MEs and APSWs on the early PMS stellar angular momen-
tum evolution. In the following sections, we present the main
features of our angular moment evolution model.

2.1. Rotational evolution

The temporal evolution of the surface stellar angular velocity
is governed by the angular momentum evolution of the stellar
convective envelope :

J̇conv = IconvΩ̇? + İconv Ω? = Γext + Γc−e + Γrad, (1)

where Jconv = Iconv Ω? is the angular momentum of the convec-
tive envelope, Iconv is its moment of inertia, and Ω? its angular
velocity. The term Γext is the sum of all of the external torques
acting on the stellar surface, while Γc−e is the torque associated
with the core-envelope angular momentum exchange and Γrad is
the angular momentum variation of the convective envelope due
to the development of the radiative core (see e.g. Allain 1998;
Gallet & Bouvier 2015; Amard et al. 2016). We note that İconv Ω?

is related to the variation of angular velocity due to the change
of the moment of inertia of the convective envelope. This takes
into account the stellar contraction and the growth of the core
mass, whereas we have neglected the change of the moment of
inertia due to mass accretion from the surrounding disk and mass
loss associated with stellar outflows. In the following we refer to
“internal torque” as Γint = Γc−e + Γrad − İconv Ω?.

To compute the torque Γc−e, we follow MacGregor &
Brenner (1991). It implies that both the core and the enve-
lope are in solid body rotation with different angular veloci-
ties. A quantity ∆J of angular momentum is then exchanged
between the core and the envelope over a time-scale τc−e (here-
after the core-envelope coupling time-scale). The quantity ∆J is
the amount of angular momentum that the core and the enve-
lope have to exchange instantaneously in order to have the same
angular velocity. We also assume, as in Allain (1998), that τc−e
is constant for a given model.

The “disk-locked” condition assumed in Gallet &
Bouvier (2013, 2015) implies that during the accretion
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phase Ω̇? = (Γext + Γint)/Iconv = 0, which gives Γext = −Γint.
Here we remove this simplifying assumption by taking into
account the internal torques and providing an explicit expression
for the external torques acting during the disk lifetime. These
terms depend on the characteristics and the structure of the star,
summarized in Sect. 2.2, and the torques associated with the
magnetospheric star-disk interaction, presented in Sect. 2.3.

2.2. Stellar parameters, internal rotation, and magnetic field

To follow the evolution of the stellar structure from the PMS to
the end of the MS, we used the standard solar mass model at
solar metallicity Z = 0.013446 (Asplund et al. 2009), from the
grid of Amard et al. (2019) computed with STAREVOL, with a
mixing length parameter α = 1.973 and an initial helium mass
fraction Y , which is equal to 0.269. The initial time t0 of the
model is 970 yr but we only start to display the evolution at 1 Myr
since there are no observations before the Orion Nebula Cluster
(hereafter ONC) age. It is important to note that the structure
models do not include the effects of accretion or rotation, and
they evolve at a constant mass during the disk-coupling phase.

All of the external torques that are presented in Sect. 2.3
require the intensity of the dipole component of the stellar mag-
netic field Bdip as input. In Gallet & Bouvier (2013, 2015), Bdip
was initially identified as the mean magnetic field BCR estimated
by the BOREAS1 routine (Cranmer & Saar 2011) that provides
the temporal evolution of the mean magnetic field intensity as
a function of stellar parameters. In Cranmer & Saar (2011) the
mean magnetic field BCR is given by

BCR = 1.13

√
8πρ∗kBTeff

µmH

0.55[
1 + (x/0.16)2.3]1.22 , (2)

where x = Ro/Ro� with Ro = Prot/τconv the Rossby number with
Prot the rotation period, τconv the convective turnover timescale
(see Wright et al. 2011; Oglethorpe & Garaud 2013, for more
details about the convective turnover timescale), Ro� = 1.96, ρ∗
the photospheric mass density, kB the Boltzmann’s constant, Teff

the effective temperature, µ the mean atomic weight, and mH the
mass of a hydrogen atom.

The BOREAS routine reproduces reasonably well the mean
magnetic field and the mass loss rate of the present day Sun
(〈B�〉 ≈ 2–7 G and Ṁ� ≈ 2 × 10−14 M� yr−1). We note that for
less massive stars, this formalism produces magnetic fields with
smaller intensity than what is measured using spectropolarime-
try (Morin et al. 2008, 2010). When extrapolated to convective
T Tauri stars, this model does not provide magnetic fields con-
sistent with the total mean stellar field intensity, but the strength
produced by the BOREAS model is compatible with the dipo-
lar components of CTTS (a few hundred Gauss2). We assume
that our torque models only depend on the dipolar field intensity
since, due to its slower radial decrease, the dipolar component is
mainly responsible for the large-scale magnetic interactions of
the star with its surroundings.

To further investigate the magnetic field strength required by
the star-disk interaction processes to prevent the star from spin-

1 http://lasp.colorado.edu/~cranmer/Data/Mdot2011/
2 It is important to note that in our models, the Bdip value corresponds
to the dipolar field intensity at the magnetic equator, which is the value
entering the definition of the magnetic dipole moment. Spectropolari-
metric observations that perform spherical harmonics decomposition of
the surface stellar field, usually provide the values of the components at
their magnetic pole (see e.g. Donati et al. 2011), which in the case of a
dipole is twice its equatorial strength.

Fig. 1. Evolution of stellar radius R? (R�) (upper panel), magnetic field
BCR +Bmod (G) (middle panel), and effective temperature Teff (K) (lower
panel) as function of time. It is for a 1 M� star at solar metallicity and
for accretion rate at 1 Myr of Ṁacc,init = 10−9 M� yr−1. The stellar model
is from Amard et al. (2019). The dashed line in the upper panel corre-
sponds to R? = 2.5 R�. In the middle panel, the colours correspond to
the three different initial rotation rates: fast (blue), median (green), and
slow (red). The solid lines are for Qacc = 10% and the dotted lines are
for Qacc = 1%.

ning up, we introduced a dipolar magnetic field intensity Bmod
that we assume is constant during the disk lifetime. This mag-
netic field strength was chosen so as to best reproduce the rota-
tional distribution observed in the early-PMS phase. After the
disk dissipation, the numerical model switches to the mean mag-
netic field BCR, but the transition between Bmod and BCR can be
very abrupt and thus not physically consistent.

Figure 1 shows the evolution of the stellar radius (R?), some
examples of the magnetic field intensity (BCR + Bmod), and the
effective temperature (Teff) as a function of time. It is impor-
tant to notice that the magnetic field evolution changes with the
parameters that define our models, see Sect. 3. In this figure, the
transition between a disk and disk-less regime is depicted by the
sharp decrease of the magnetic field intensity. It corresponds to
the shift between the constant required magnetic field Bmod to
the BOREAS’ magnetic field BCR.

2.3. Star-disk interaction and associated torques

The star-disk interaction is described in the framework of the
scenario proposed by Zanni & Ferreira (2013). The model is
based on axisymmetric magnetohydrodynamic numerical sim-
ulations of the interaction of a purely dipolar magnetosphere
with the surrounding accretion disk. In this context the star can
exchange angular momentum with its surrounding environment
in three different ways: firstly, through the accretion of angular
momentum from the disk; secondly, via the action of MEs asso-
ciated with the inflation, expansion, and reconnection process of
closed magnetic field lines connecting the star and the disk; and
thirdly with angular momentum loss due to stellar winds. Indeed,
once the disk has dissipated, stellar winds remain the only spin-
down torque.

2.3.1. Accretion

According to Zanni & Ferreira (2013), if the stellar magnetic
field is strongly coupled to the accretion disk (i.e. assuming
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that the disk material is characterized by a low enough mag-
netic resistivity), the stellar magnetosphere is steadily connected
with the disk over a limited radial extent around the truncation
radius Rt. At this radius, the accretion flow is deviated to form the
accretion curtains and the star directly accretes mass and angular
momentum from the disk.

We assume that the mass accretion rate evolves according to
a simple decay function based on Caratti O Garatti et al. (2012,
i.e. Ṁacc ∝ t−1.2)

fdecay(t) =

(
tdisk

tinit
− 1

)−1.2 ( tdisk

t
− 1

)1.2
, (3)

where tinit is the starting age of our simulation (i.e. 106 yr), tdisk
the disk lifetime, and t the age considered. The mass accretion
rate is thus defined as Ṁacc(t) = Ṁacc,init fdecay(t).

We parametrize the accretion torque Γacc as

Γacc = KaccṀacc
√

GM?Rt, (4)

which is proportional to the mass accretion rate Ṁacc and to
the disk specific Keplerian angular momentum in the truncation
region. As it is better specified in the next section, the proportion-
ality constant Kacc takes into account the fact that in the trunca-
tion region, the disk is not in Keplerian rotation because of disk
outflows that have extracted a relevant fraction of the disk angu-
lar momentum. The radius Rt corresponds to the region around
the star where the dipolar magnetosphere truncates the accretion
disk. It can be approximated by (Bessolaz et al. 2008):

Rt = Kt

 B4
dipR12

?

GM?Ṁ2
acc

1/7

, (5)

where Kt is a dimensionless parameter. Following Long et al.
(2005) and Zanni & Ferreira (2009), we assume Kt = 0.5.

2.3.2. Magnetospheric ejections

The MEs (Zanni & Ferreira 2013) result from the interaction of
a stellar magnetosphere and an accretion disk that produces the
expansion and reconnection of the magnetic field lines connect-
ing the star with its surrounding disk. The resulting inflation at
mid-latitudes of the dipolar magnetic field lines is very dynamic
and goes along with outflows that can exchange mass and angu-
lar momentum with both the disk and the star. Because of the
magnetic field lines reconnection, these outflows detach from
the magnetosphere and continue their propagation as magnetic
islands, which are disconnected from the central part of the star-
disk system and are in between the open magnetic surfaces that
are anchored into the star and those anchored into the disk (see
Fig. 2 from Zanni & Ferreira 2013).

The opening of the magnetospheric field lines limits the size
of the area over which the star and the disk are magnetically con-
nected, which typically does not extend beyond the corotation
radius:

Rco =

(
GM?

Ω2
?

)1/3

. (6)

Beyond this radius, the disk and the star do not have a direct
magnetic connection. Therefore, the Ghosh & Lamb (1979) sce-
nario cannot be directly applied: the disk region beyond corota-
tion, which rotates slower than the star, cannot exert any direct
spin-down torque onto the star. Here, we make the assumption

that the large-scale magnetic field is responsible for the angu-
lar momentum exchange between the different parts of the sys-
tem. With this approximation, angular momentum and electric
currents flow along magnetic field lines. The angular momen-
tum is deposited, or extracted, where the electric current closes
perpendicularly to the field, inducing a net Lorentz force. In
Zanni & Ferreira (2009, see Sect. 4) it is shown that in order
to have an angular momentum exchange between the star and
the disk region beyond the corotation radius, a magnetic connec-
tion between the two is needed. The star-disk differential rotation
generates an electric current flow that closes inside the disk along
these field lines, thus depositing a fraction of the stellar angu-
lar momentum. We note that the solutions presented in Zanni &
Ferreira (2013, see Appendix A), that are used here to constrain
the torque models, do not display such a large-scale star-disk
magnetic connection. In these simulations, only angular momen-
tum exchanges between the star and the stellar wind, the MEs,
and the part of the disk below corotation are possible.

As it is shown in Zanni & Ferreira (2013), one effect of the
MEs is to reduce the “Keplerian” accretion torque. This is qual-
itatively expressed by the constant Kacc < 1 that translates the
fact that a fraction 1 − Kacc of the accretion torque is launched
in the form of MEs. This effect is similar to the action of an
X-Wind, which represents the limiting case with Kacc = 0 for
which all the disk angular momentum is extracted by the wind
and the disk exerts no torque onto the star. In the case of MEs,
we assume a lower efficiency and employ Kacc = 0.4.

The torque directly exerted by the MEs onto the star is
related to a differential rotation effect between the star and the
MEs. The torque exerted by stellar magnetic field lines coupled
to a region of size ∆R of the MEs can be expressed as (Armitage
& Clarke 1996; Matt & Pudritz 2005b)

ΓME = q∆R
B2

dipR6
?

R4
t

, (7)

where q = Bφ/Bz ∝ [ΩMEs −Ω?] /ΩMEs (Livio & Pringle 1992;
Armitage & Clarke 1996; Matt & Pudritz 2005a) takes into
account the differential rotation between the star and the MEs.
This factor can be approximated as:

q ∝ Krot −

(
Rt

Rco

)3/2

, (8)

with Krot = 0.7. A Krot < 1 expresses the fact that the MEs rotate
at a sub-Keplerian rate. Assuming ∆R ∝ Rt, the MEs torque can
be written as:

ΓME = KME

B2
dipR6

?

R3
t

Krot −

(
Rt

Rco

)3/2 , (9)

where KME = 0.21. It is interesting to note that this torque spins-
down the star only for Rt > K2/3

rot Rco while for a lower truncation
radius, the MEs spin the stellar surface up.

We used the results of the simulations presented in Zanni
& Ferreira (2013) to calibrate the constants appearing in Eqs.
(4) and (9). These results explore only a small fraction of the
parameter space of the star-disk interaction problem and even
this limited sample suggests that the Kacc,Krot, and KME val-
ues are not constant and are a function of the parameters of the
model, such as the mass accretion rate. However, the simple for-
mulation adopted in this paper allows one to reproduce the main
feature of the MEs scenario, such as the decrease of the accre-
tion torque or the spin-up and spin-down change depending on
the relative position of the truncation and corotation radii.
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Fig. 2. Evolution of Ṁ? as function of time in case of fast (blue) and
slow (red) initially rotating stars. For each rotators, two initial mass
accretion rates are investigated Ṁacc = 10−10 (upper panel) and 10−7

(lower panel) M� yr−1 with Qacc = 1 (dotted) and 10% (solid).

2.3.3. Stellar winds

The torque exerted by the magnetized stellar winds on the stellar
surface can be expressed as (see Weber & Davis 1967)

Γwind = Ṁwind r2
A Ω? (10)

where Ṁwind is the wind mass loss rate and rA is the average
value of the Alfvén radius. We use the expression obtained by
Matt et al. (2012)

rA = K1

 B2
pR2

?

Ṁwind

√
K2

2v
2
esc + Ω2

?R2
?


m

R?, (11)

where vesc =
√

2GM?/R? is the escape velocity. We assume the
values m = 0.2177 and K2 = 0.0506, provided by Matt et al.
(2012). The constant K1 is given in Table 2.

In agreement with the APSW scenario (Matt & Pudritz
2005a), we assume that during the disk-accretion phase, the stel-
lar wind takes its driving power from a fraction of the energy
dissipated by the impact of the accretion columns onto the stellar
surface. This establishes a relation between the accretion and the
wind driving power and consequently between the mass accre-
tion and the wind outflow rate. We take into account two values
for the accretion ratio Ṁwind/Ṁacc = Qacc = 1% and 10%3.

After the disk has dissipated (t > τdisk), the stellar wind
can not derive its power from accretion anymore and the stellar
wind torque becomes the only spin-down mechanism left. As in
Gallet & Bouvier (2013, 2015), during this phase the mass-loss
is estimated using the BOREAS routine (Cranmer & Saar 2011)
that uses the stellar angular velocity, luminosity, and radius as
input. In order to prevent a sharp transition at t = τdisk during
the star-disk interaction regime, we use the wind mass loss rate
as the maximum value between the accretion-powered and the
BOREAS’s rates. Figure 2 displays the evolution of the mass loss
rate as a function of time from the disk accretion phase up to the
late PMS for some of our models. The figure clearly shows the
transition between the APSW mass loss rate and the BOREAS’s
mass loss rate at t = τdisk.
3 This assumption is equivalent to assume a K1 = 1.3 constant, as
originally found by Matt et al. (2012), and Qacc ≈ 3% and Qacc ≈ 30%,
respectively.

Γacc

ΓME

Γwind, 10%

Γ tot, 10%

Γ tot, 1%

Γacc, max

Γwind, 1%

Fig. 3. External torques as function of mass accretion rate (lower axis)
and corresponding truncation radius (upper axis) for given set of stellar
parameters at 1 Myr (M? = 1.0 M�,R? = 2.5 R�, P? = 7 days, Bp =
1 kG). The accretion torque Γacc (black dotted line), the maximum spin-
up torque allowed Γacc (Kacc = 1) (grey dotted line), the MEs torque
ΓME (dot-dashed line), the stellar wind torque Γwind for Qacc = 1% (grey
dashed line) and Qacc = 10% (black dashed line), and the total external
torque Γext = Γacc + ΓME + Γwind for Qacc = 1% (orange solid line) and
Qacc = 10% (red solid line) are plotted.

2.3.4. External torque summary

In order to point out some important properties of the total exter-
nal torque Γext = Γacc + ΓME + Γwind that acts during the accretion
phases, we plot in Fig. 3 the torques presented in Sects. 2.3.1–
2.3.3 as a function of the mass accretion rate for a solar mass star
with a radius R? = 2.5 R�, a rotation period of seven days (i.e.
≈0.07 of the break-up speed), and a dipolar field Bp = 1 kG. The
black and grey dotted lines are the accretion torque and the max-
imum accretion torque (i.e. Kacc = 1), respectively. The torque
associated to the MEs is shown with a black dot-dashed line, and
the grey and black dashed line represent the stellar wind torque
for Qacc = 1% and Qacc = 10%, respectively. Finally, the orange
and red solid lines show the evolution of the total external torque
for Qacc = 1% and Qacc = 10%, respectively.

As the disk truncation gets closer to the stellar surface,
Γext assumes positive values (i.e. it exerts a spin-up torque)
and asymptotically approaches the limiting value Γext ≈

Ṁacc
√

GM?Rt (i.e. Γacc with Kacc = 1). This coincides with the
fact that, in such a situation, the external torque is dominated by
accretion and the spin-down effects associated with MEs become
negligible (Zanni & Ferreira 2013). In this regime, even a mas-
sive stellar wind (Qacc = 10%) is not able to balance the accre-
tion torque. One can notice that, in contrast with the Zanni &
Ferreira (2013) simulations, in this regime the spin-up torque
associated to the MEs is even larger than the spin-up torque
due to accretion. This is a consequence of having assumed con-
stant KME and Kacc values, while the Zanni & Ferreira (2013)
simulations suggest that Kacc (KME) increases (decreases) with
the accretion rate and the Rt/Rco value. On the other hand, the
Γacc + ΓME sum becomes comparable to the maximum total spin-
up torque (Γacc with Kacc = 1), which is consistent with the sim-
ulations employed to calibrate our models.

For Qacc = 1%, the spin-down torque due to MEs becomes
comparable to the stellar wind’s torque for Rt/Rco ≈ 1 and
becomes more important for larger Rt/Rco values. For Qacc =
10%, the MEs and stellar wind spin-down torques become
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comparable for even larger Rt/Rco values, corresponding to a
strong propeller regime (Illarionov & Sunyaev 1975) in which
the stellar centrifugal barrier prevents the disk from accreting
(see Sect. 4.2). For Qacc = 1%, and even more so for Qacc = 10%,
in a steadily accreting regime (i.e. Rt < Rco), the spin-down
torque that is due to stellar winds is always more important than
the MEs’ torque.

In agreement with the Zanni & Ferreira (2013) results, the
Γext = 0 condition (i.e. when the spin-down torques associated
with the MEs and the stellar wind exactly balance the accretion
torque) is already attained for Rt < Rco even in the presence
of a weak stellar wind (Qacc = 1%). This condition is clearly
not sufficient to keep the stellar angular velocity constant, which
requires the spin-down torques to balance both accretion and
internal torques (Γint , 0). For both values of Qacc, it is possible
to define an optimal configuration, corresponding to the mini-
mum of the Γext curves, as something that is related to the most
efficient spin-down torque that can be obtained for a given set
of stellar parameters. For Qacc = 10%, such a configuration is
obtained for Rt ≤ Rco and the spin-down torque is dominated
by the stellar wind. For Qacc = 1%, the maximum spin-down is
attained for Rt ≥ Rco and the MEs spin-down torque becomes
more important than the stellar wind torque. This is consistent
with the Zanni & Ferreira (2013) results, which show that the
system must enter a propeller regime in order for the star-disk
interaction’s spin-down torque to be strong enough to balance
the stellar contraction.

As the truncation radius moves further out due to the
decrease of the accretion rate, the total external torque still leads
to a spin-down, but it gets weaker. For a given value of the stellar
magnetic field, the increase of the differential rotation between
the star and the MEs in Eq. (9) does not balance the weak-
ening of the magnetic field intensity in the truncation region,
while the stellar wind torque weakens since its mass outflow rate
decreases.

3. Results

In order to compare with the observed distributions of stellar
periods of rotation, we computed rotational evolution models by
varying the initial (at 1 Myr) period of rotation, accretion rate,
dipolar field intensity, and stellar wind mass-loss rate.

3.1. Rotational period constraints and models

We used the rotation period distribution of five star-forming
regions from 1.5 Myr (The Orion Nebula Cluster, Rodríguez-
Ledesma et al. 2009) to 13 Myr (the h PER cluster, Moraux et al.
2013) as observational constraints for the angular velocity evolu-
tion of solar-like stars. The age and the references for each clus-
ter are listed in Table 1. Among these clusters, ONC, NGC 6530,
Cep OB3B, and NGC 2362 display near-infrared excesses that
are associated to the presence of circumstellar disks and by
extension to a disk-coupling phase (Bell et al. 2013).

We computed models for slow, median, and fast rotators,
which are characterized by a different initial period of rota-
tion at 1 Myr. The initial rotation periods were chosen following
Gallet & Bouvier (2015) so as to be able to compare the rota-
tional tracks of this paper with the ones from their work. The
different types of rotators are characterized by a core-envelope
coupling time-scale τc−e, a disk lifetime τdisk, and an initial rota-
tional period Pinit (see Table 2). We computed the evolution of
each rotator for four different initial mass accretion rates in the
range Ṁinit = 10−10−10−7 M� yr−1 and used two possible values

Table 1. Open clusters whose rotational distributions are used is this
study.

Cluster Age Ref.
(Myr)

ONC 1.5 1
NGC 6530 2 2
Cep OB3b 4 3
NGC 2362 5 4
h PER 13 5

References. (1) Rodríguez-Ledesma et al. (2009); (2) Henderson &
Stassun (2012); (3) Littlefair et al. (2010); (4) Irwin et al. (2008); (5)
Moraux et al. (2013).

Table 2. Model parameters.

Parameter Slow Median Fast

Pinit (days) 8 5 1.4
τc−e (Myr) 30 28 10
τdisk (Myr) 9 6 2
K1 1.7 1.7 1.7

of the stellar wind mass loss and accretion rate ratio during the
accretion phases, Qacc = 1% and 10%. After the disk dissipates,
the wind mass loss rate that is provided by the BOREAS model
(Cranmer & Saar 2011) is employed, as in Gallet & Bouvier
(2013, 2015), see Fig. 2.

During the disk accretion phases, the following two prescrip-
tions were adopted for the dipolar field strength: firstly, BCR
(the Cranmer & Saar 2011 magnetic field) as provided by the
BOREAS model; and secondly, Bmod, a constant value chosen to
better reproduce the observed rotational distributions. The Bmod
value was chosen so that the rotational tracks fit the initial stellar
period at 1 Myr and the corresponding percentile of the h PER
cluster at 13 Myr. Clusters older than the h PER cluster are thus
not used to constrain Bmod. It is important to notice that we do
not try to reproduce a perfectly constant spin evolution, but we
follow the general assumption that a star in a given rotation state
(fast/median/slow) remains in that regime from the early-PMS
up to the early-MS phase. The underlying hypothesis is that the
initial conditions dictate the evolution of the surface rotation rate
of the stars during these phases. We recall that a constant Bmod is
only used during the star-disk interaction phase and in both cases
the Cranmer & Saar (2011) magnetic field is used to follow the
angular velocity evolution after the end of the disk lifetime. The
values of BCR at 1 Myr, its maximum value reached during the
disk lifetime, and Bmod are given in Table 3.

Figures 4 and 5 display the surface angular velocity evo-
lution of fast and slow initially rotating stars as a function of
age for two different accretion rates Ṁacc,init = 10−9 M� yr−1

and 10−8 M� yr−1, respectively. In these figures, we compare the
angular velocity evolution resulting from using the MEs and
APSW processes at the two Qacc efficiency, either by using the
Cranmer & Saar (2011) magnetic field BCR (blue and red line)
or the imposed magnetic field Bmod. It is important to note that
we only display the first 20 Myr of the evolution because it is at
the core of the present work.

In these figures, it is clear that for the initially slow rotating
stars, the MEs and APSW processes with the imposed magnetic
field Bmod better match the early-PMS observation than the mod-
els using the Cranmer’s magnetic field. For these slow rotators,
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Table 3. Magnetic field strength (in G) employed in angular velocity
evolution models at 1 Myr.

(a) Qacc = 1% BCR Bmod

Ṁacc/Prot (d) 1.4 5 8 1.4 5 8

10−7 M� yr−1 653 898 939 500 2000 2600
10−8 M� yr−1 712 880 914 400 1200 1600
10−9 M� yr−1 715 882 902 700 1300 1300
10−10 M� yr−1 655 895 925 1700 2400 2200
(b) Qacc = 10% BCR Bmod

Ṁacc/Prot (d) 1.4 5 8 1.4 5 8
10−7 M� yr−1 640 821 850 300 900 1300
10−8 M� yr−1 699 775 785 300 600 900
10−9 M� yr−1 715 839 821 500 800 800
10−10 M� yr−1 655 890 911 1300 1800 1600

Notes. The values for BCR, are the maximum magnetic field intensity
reached by BCR during the disk lifetime. The initial values (i.e. at 1 Myr)
for BCR are: 590, 530, 440 G for the fast, median, and slow rotators,
respectively.

it suggests that a stronger magnetic field, of the order of the kG,
is already required at early ages <1 Myr. However, for the ini-
tially fast rotating stars, it seems that both Bmod and BCR are
quite close to each other. It suggests that the Cranmer’s mag-
netic field is in that case well suited to be used in the framework
of the MEs and APSW processes. However, the rotational evolu-
tion of these rotators clearly overestimates the 90th percentile of
ONC, Cep OB3b, and NGC 2326. This issue was already present
in Gallet & Bouvier (2013, 2015) and comes from the constraints
imposed by the h PER cluster at 13 Myr. Indeed, the contraction
rate and the associated increase of the surface rotation due to
angular momentum conservation impose a certain initial rota-
tion period that is not compatible with the observed percentile
of the rotation distribution in the previously mentioned clus-
ters. We note that it is not an issue linked to the completeness
of the rotation period observations; the rotational distribution of
Cep OBS3b does indeed seem to be fully recovered for periods
<7 days (see Littlefair et al. 2010) while the completeness of
NGC 2362 is close to 100% (see Irwin et al. 2008). Addition-
ally, we can see that the free contraction matches the upper part
of some of the observations. These stars are more presumably
outliers, with initial conditions associated to a very short disk
lifetime (<1 Myr), that therefore populate the fast rotating part
of the distributions at ZAMS.

3.2. Dipolar field intensity

In Table 3 we display the dipolar magnetic field values
used to compute our models, the BCR value provided by the
Cranmer & Saar (2011) model at 1 Myr, its maximum value
during the disk lifetime, and the Bmod stay constant during the
star-disk interaction phases so as to fit the evolutionary tracks at
1 Myr and 13 Myr.

We note that BCR is comparable, at least initially, to Bmod,
yielding an approximately constant envelope rotation during
the accretion phases for fast rotator models with weaker stellar
winds (Qacc = 1%) and accretion rates larger than 10−9 M� yr−1.
See, for example, the evolutionary track in Fig. 5 for a fast rota-
tor with Qacc = 1%. For fast rotator cases with a larger stellar
wind mass-loss rate (Qacc = 10%), BCR can be even larger than
the “optimal” Bmod value, corresponding to a rapid spin-down

during the star-disk interaction stages, see for example the fast
rotator model plotted with a grey line in Fig. 5.

In all other cases Bmod is larger than the BCR estimate, with
values that systematically exceed 500 G (corresponding to 1 kG
maximum dipolar intensity at the magnetic pole) up to more
than 2 kG (4 kG at the magnetic pole). Looking at the behaviour
of the dipolar field intensity Bmod as a function of the free
parameters of the rotational models, it is possible to highlight
some trends. Given the same mass accretion rate and rotation
period, the Qacc = 10% models require a weaker field than
the Qacc = 1% cases; a more massive wind clearly provides
a more efficient spin-down torque and requires a weaker mag-
netic field. For a fixed accretion rate, median and slow rotators
require a stronger dipolar magnetic component than fast rota-
tor; a more efficient spin-down torque is required to prevent
them from spinning-up. For a given rotation period, Bmod dis-
plays a more complex behaviour as a function of the accretion
rate, often passing through a minimum at intermediate accretion
rates. This minimum of the dipolar field strength corresponds to
the condition of maximum spin-down efficiency characterizing
our external torque model outlined in Sect. 2.3.4 (see Fig. 3).
To confirm this result, we plot in Fig. 6 the contribution of the
different torques as a function of time in the case of the median
rotator model for the four values of Ṁacc,init considered and for
Qacc = 1%. In the same plots we also show the Rt/Rco ratio
as a function of time. The lower left panel corresponds to the
minimum field intensity found in the median rotator column
in Table 3a. As consistent with the torque model discussed in
Sect. 2.3.4, the star-disk system transits here through a config-
uration characterized by Rt/Rco ≈ 1, roughly corresponding to
the minimum (i.e. maximum spin-down efficiency) of the orange
solid line in Fig. 3. Similar to the discussion in Sect. 2.3.4, for a
higher mass accretion rate (a lower Rt/Rco ratio) the spin-down
torque is dominated by the stellar wind. For a lower accretion
rate, the MEs provide the main spin-down torque, while, corre-
spondingly, the Rt/Rco value becomes quite large (up to 5 for
Ṁacc,ini = 10−10 M� yr−1). This indicates that the system is most
likely in a (strong) propeller regime. Figure 6 also shows that the
total torque is not constant and null in time, which would corre-
spond to a perfect constant Ω? condition. This clearly points to
the fact that the star-disk system can go through spin-down and
spin-up phases during its evolution.

4. Discussion

In the Sect. 3, we show how our modelling allows us to put some
constraints on the intensity of the dipolar component of the stel-
lar magnetic field necessary to prevent the star from spinning up
during the star-disk interaction phases. Here, we discuss these
results, their implications for the star-disk interaction regimes
that provide an efficient enough spin-down torque, and the obser-
vational constraints and biases that could support or refute our
findings.

4.1. A magnetic dipole strength issue

The results presented in Sect. 3 show that, particularly in the
case of median and slow rotators, dipolar magnetic fields that
are stronger than 1 kG at their magnetic pole are required to
efficiently reduce the stellar spin-up, independently of the main
spin-down mechanism and the initial disk accretion rate. We
recall that our models take into account only two specific mech-
anisms that can influence the stellar rotational evolution, namely
stellar winds and magnetospheric ejections. However, the
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Fig. 4. Angular velocity evolution of stellar convective envelope as function of time for fast (up) and slow (down) rotator models in case where
Ṁacc,init = 10−9 M� yr−1. The black and the grey solid lines represent the MEs and APSW processes with Qacc = 1% and Qacc = 10%, respectively,
and the magnetic field is from the BOREAS routine from Cranmer & Saar (2011). The red and the blue dotted lines represent the models including
the MEs and APSW processes with Qacc = 1% and Qacc = 10%, respectively, but with the numerically imposed magnetic field Bmod. The free
contraction (i.e. without any external interaction) is shown by the magenta long-dashed line. It represents the increase of the rotation rate during a
free contraction phase. The angular velocity is scaled to the angular velocity of the present Sun. The blue and the red tilted square and associated
error bars represent, respectively, the 90th percentile and the 25th percentile of the rotational distributions of solar-type stars in star-forming regions
and young open clusters obtained with a rejection sampling method described in Gallet & Bouvier (2013).

magnetic field values that we found are consistent with the
magnetic field strength found by Matt et al. (2010) who use a
model similar to Ghosh & Lamb (1979). As already mentioned
in Sect. 1, other possible spin-down scenarios, such as X-winds
(Shu et al. 1994) or ReX-winds (Ferreira et al. 2000) were not
taken into account due to the lack of a self-consistent model or
torque parametrization.

Classical T Tauri stars are known to have very strong sur-
face average magnetic fields up to a few kG (Johns-Krull 2007).
Spectropolarimetric observations using the Zeeman–Doppler
Imaging (ZDI) technique can also provide constraints on the
topology of the stellar field, and they often indicate the presence
of a complex field where the dipolar component is not always
dominant (see e.g. Johnstone et al. 2014). These reconstructions
need a dense and regular sample of rotation period and cold
stars. One strong limitation of this technique is that depending on
the structure of the magnetic field, some components can cancel
each other out (Morin et al. 2010), reducing the strength of the
magnetic components. Moreover, the reconstructions are done
at a specific time t, neglecting the possible temporal evolution of
the magnetic topology.

Keeping this in mind, we tried to apply our simple torque
model presented in Sect. 2 to the sample presented in Johnstone
et al. (2014), and summarized here in Table 4. The dipolar field
value corresponds to the intensity at the magnetic pole. We also

provide an estimate for the characteristic spin-up (positive) or
spin-down (negative) timescale. We computed it as the ratio of
the total (core plus envelope) angular momentum of the star J?
and Γext obtained with our torque model (see Sect. 2), using the
stellar parameters displayed in Table 4.

Using the Qacc = 10% model, only AA Tau and BP Tau
(Bdip = 1220 G) are characterized by a spin-down timescale
of a few million years, which is compatible with the Kelvin–
Helmholtz contraction timescale. V2129 Oph (Bdip = 970 G),
BP Tau (Bdip = 960 G), CR Cha, and V2247 Oph are in a spin-
down state, but the associated timescale is larger than 10 Myr.
GQ Lup, V2129 Oph (Bdip = 280 G), TW Hya, and CV Cha are
in a spin-up state. It is possible to notice that the same object
can go from a spin-up to a spin-down state at different epochs,
as in the case of V2129 Oph, or conversely, the efficiency of the
spin-down torque can change, as is the case of BP Tau, which
highlights the usefulness of multi-epoch observations. In apply-
ing the Qacc = 1% model, only AA Tau would be characterized
by a spin-down timescale shorter than 5 Myr.

In our models we also made the limiting assumption that
the Bmod magnetic field, selected to best reproduce the observed
rotational evolution, stays constant during the disk accretion
phase. Recently Folsom et al. (2016, 2018) investigated the evo-
lution of the magnetic field strength and topology of low-mass
stars from the PMS to the end of MS. They find that up to the
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Fig. 5. Same as Fig. 4, but for Ṁacc,init = 10−8 M� yr−1. It is important to note that for the fast rotation cases, the black and red lines are superimposed.

Fig. 6. Evolution of accretion torque Γacc (dotted line), ME’s torque ΓME (solid line), stellar wind torque Γwind (short dashed line), and positive
torque due to stellar contraction (long dashed line) as function of time for median rotator with Qacc = 1% and Ṁacc,init = 10−7 M� yr−1 (upper
panel), Ṁacc,init = 10−8 M� yr−1 (upper middle panel), Ṁacc,init = 10−9 M� yr−1 (lower middle panel), and Ṁacc,init = 10−10 M� yr−1 (lower panel).
The red solid line is the sum of all of these torque contributions. The blue solid line represents the zero torque condition leading to a constant
angular velocity during the disk accretion phase. The grey solid line shows the evolution of Rt/Rco.

ZAMS, the magnetic field properties are primarily driven by the
structural evolution of the stars, while during the MS phase the
magnetic field strength decreases with a decreasing stellar rota-
tional period. Actually, the intensity of the magnetic field rapidly
decreases during the first 10 Myr of the stellar evolution (Folsom
et al. 2016) following the increase of the complexity of the inter-
nal structure (Gregory et al. 2012; Villebrun et al. 2019).

4.2. The interaction regimes

As discussed in Sect. 3.2, the Qacc = 10% models, and accord-
ing to which the mass outflow rate of the stellar wind during the
disk accretion phase corresponds to 10% of the mass accretion
rate, require a weaker dipolar field that is closer to the typically
observed values than the intensities required by the Qacc = 1%
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Table 4. Values of mass accretion rate, dipole magnetic field strength, and stellar radius from Johnstone et al. (2014).

Star Bdip M? R? Prot,? Ṁacc J?/Γext
(kG) (M�) (R�) (days) (M� yr−1) (1%/10%; Myr)

V2247 Oph 0.11 0.36 2.00 3.5 1.6 × 10−10 −503.2/−25.5
CV Cha 0.14 2.0 2.50 4.4 3.2 × 10−8 0.6/0.7
CR Cha 0.22 1.9 2.50 2.3 1.0 × 10−9 68.6/−53.4
V2129 Oph 2005 0.28 1.35 2.00 6.53 6.3 × 10−10 8.1/13.7
TW Hya 2008 0.37 0.8 1.10 3.56 1.3 × 10−9 2.4/3.1
TW Hya 2010 0.73 0.8 1.10 3.56 1.3 × 10−9 2.3/3.8
GQ Lup 2011 0.90 1.05 1.70 8.4 1.0 × 10−9 2.5/5.3
BP Tau Dec 2006 0.96 0.7 1.95 7.6 2.5 × 10−9 1.6/−14.3
V2129 Oph 2009 0.97 1.35 2.00 6.53 6.3 × 10−10 17.9/−10.9
GQ Lup 2009 1.07 1.05 1.70 8.4 1.0 × 10−9 2.6/7.2
BP Tau Feb 2006 1.22 0.7 1.95 7.6 2.5 × 10−9 2.1/−2.8
AA Tau 1.72 0.7 2.00 8.2 6.3 × 10−10 −3.5/−1.2

Notes. The stars are sorted by increasing dipole magnetic field strength.

models. On the other hand, the feasibility and nature of these pow-
erful stellar winds is still debated. Since T Tauri stars are slow
rotators that spin at a fraction ≤10% of their break up speed, stel-
lar winds can not be driven by a magneto-centrifugal mechanism.
It is unlikely that the driving force is given by a thermal pres-
sure gradient, which requires a coronal temperature close to virial,
that is, ≈106 K. Matt & Pudritz (2007) show that a massive wind
would have an X-Ray luminosity that is much higher than the typ-
ical value observed for T Tauri stars, and its total radiative power
would largely exceed the wind kinetic power and even the accre-
tion luminosity. These estimates can provide an upper limit for a
thermally-drivenwind Ṁwind . 10−11 M� yr−1. Inorder tocool less
efficiently, a more massive wind, such as Ṁwind ≈ 10−9 M� yr−1,
should have a temperature around 104 K, and therefore can not be
thermally driven. As an alternative, it has been proposed that these
winds can be driven by the momentum deposited by Alfvén waves
(Decampli 1981), which are possibly excited and amplified by the
impact of the accretion funnels onto the stellar surface (APSW,
Matt & Pudritz 2005a). Moreover, one-dimensional MHD mod-
els of this process suggest that the wind mass loss rate can not be
higher than 1% of the mass accretion rate (Cranmer 2008).

On the one hand, if we assume an ejection efficiency of
Qacc = 1%, which is less problematic from the point of view
of the stellar wind theory, our models require a stronger dipo-
lar field intensity. Besides, according to our discussion in
Sects. 2.3.4 and 3.2, for mass accretion rates lower than approx-
imately Ṁacc < 10−8 M� yr−1, which roughly correspond to the
maximum spin-down efficiency and to the minima of the Bmod
values in Table 3 for the Qacc = 1% models, the system is likely
to enter a “propeller” regime. We recall that a star is in a propeller
regime (Illarionov & Sunyaev 1975) when the inner radius of the
accretion disk is equal or larger than the corotation radius (i.e.
when Rt ≥ Rco). In such a situation the spin-down efficiency of the
magnetospheric ejections is maximized since they can be directly
powered and accelerated by the stellar rotation, and it becomes
more important than the torque exerted by the stellar wind.

On the other hand, the centrifugal barrier produced by the
stellar rotation makes accretion more difficult since the inner
edge of the disk tends to be spun-up by the stellar rotation. Typ-
ically, in this regime accretion occurs in cycles (Romanova et al.
2005, 2018; Lii et al. 2014), which determine a strong variabil-
ity (no accretion to accretion bursts) and occur on relatively short
timescales (a few stellar periods). It is important to notice that this

extreme variability could already occur when the disk is truncated
slightly inside the corotation radius. This is due to the fact that
as the disk tends to rotate at a sub-Keplerian rate in the trunca-
tion region, it can already feel the stellar rotational barrier when
Rt . Rco (Zanni & Ferreira 2013). As far as we know, this kind of
variability has never been observed in CTTS. It must be pointed
out that the axisymmetric MHD simulations commonly used to
investigate the propeller regime could strongly amplify this effect.
As a matter of fact, AA Tau, which we recall being the only star in
Table 4 to be efficiently spun-down when applying our Qacc = 1%
model, should be truncated very close to the corotation radius,
but this star has never shown the variability usually found in pro-
peller models. Both conditions are theoretically (the mass carried
by stellar wind i.e. Qacc = 10%) and observationally (the strong
variability introduced by the propeller regime) problematic.

4.3. Early-PMS rotation rate

Since the results of the models are compared to the observa-
tions, the cluster’s age is a key parameter. Unfortunately, the
age of PMS clusters is poorly constrained yet (Bell et al. 2013)
this factor limits the strength of the results presented here. The
uncertainties in the rotation period measurement induced by, for
example, synchronized binaries and multiple spots at the stellar
surface (Bouvier et al. 1997; Moraux et al. 2013) are in prin-
ciple already included in the error bars given by the rejection
method used in this study (see Gallet & Bouvier 2013, 2015).
Moreover, the age estimations come from different observations,
methods, and techniques that thus provide an inhomogeneous
temporal sample. This highlights the need for a self-consistent
analysis of clusters properties.

Besides this age estimation limitation, there are several
observational biases in terms of rotation period measurement.
These measurements are usually realized by extracting quasi-
periodic modulations in the photometric observation of a given
star that is induced by the presence of surface stellar spots.
Hence, the nature of the technique itself leads to observations
that are more sensitive to magnetically active fast rotating stars,
for which several complete rotational periods can be monitored
during the observation time.

We can also mention that the metallicity could have a
strong effect on the rotational evolution of low-mass stars, even
during their early-PMS phase evolution. Indeed, changing the
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initial metal content of a star can mimic the effect of changing
its initial mass on the evolution of the stellar internal structure. A
decrease of metallicity induces a reduction of the global opacity
of the star that allows for an easier redistribution of the energy
inside of the convective envelope and thus leads to an increase of
the stellar surface effective temperature (see Amard et al. 2019).

4.4. Observational evidences of magnetopsheric outflows

Outflows from the innermost parts of the star-disk interaction
region play a fundamental role for the stellar spin evolution
in our framework. They have been typically associated with
the blue-shifted components either in the emission of forbidden
lines, or in the absorption of permitted ones.

For example the P-Cygni profile of the He I λ10830 line has
proven to be a sensible diagnostic for both infall and outflow
(Dupree et al. 2005; Edwards et al. 2006). In particular Edwards
et al. (2006) propose that broad and deep blue-shifted absorp-
tion features could be associated with a stellar wind in sys-
tems seen at low inclinations, as in the TW Hya case (Dupree
et al. 2014). Radiative transfer calculations have confirmed this
hypothesis but, at least in the specific case of AS 353 A, a mas-
sive (Ṁwind > 10−9 M� yr−1) and relatively cold (8000 K) wind
is required to reproduce the observations (Kurosawa et al. 2011).
These estimates raise questions about the nature of these putative
stellar winds, as previously mentioned in Sect. 4.2.

On the other hand, Edwards et al. (2006) associate narrow
blue-shifted absorption features of the He I λ10830 line with out-
flows emerging from the inner disk of systems seen at high incli-
nations. In the case of AA Tau, a prototypical CTTS seen at high
inclination, Bouvier et al. (2003) observed a correlation between
the variations of the radial velocity of the blue-shifted (outflow)
and red-shifted (inflow) absorption components in the Hα line
profile. The authors interpret this correlation to be due to a peri-
odic inflation and reconnection of the stellar magnetic field. This
interpretation is qualitatively consistent with the behaviour of
magnetospheric ejections, but the variability that the numerical
models of Zanni & Ferreira (2013) require to efficiently slow
down the stellar rotation is much more extreme than the one dis-
played, for example, by AA Tau. In general, young stellar objects
are known to be characterized by accretion and ejection outbursts
(see e.g. Ansdell et al. 2016) but, as far as we know, this burst-
like behaviour has never been observed on the relatively short
timescales (a few stellar periods) that seem to characterize the
simulations of the propeller regime.

In any case, it is not clear whether it is possible or not
to use the blueshifted absorption components to differentiate
between the possible inner disk outflow scenarios, that is, MEs,
an X-wind, an ReX-wind, or the inner part of a more extended
disk-wind. For example the radiative transfer calculations of
Kurosawa et al. (2011) and Kurosawa & Romanova (2012) that
are based on a semi-analytic toy model of a more extended disk-
wind and a numerical MHD model of a conical wind solution
(that we think to be closely related to the MEs), respectively,
provide qualitatively the same line profiles. More detailed radia-
tive transfer calculations of different outflow classes are required
to attempt a more quantitative comparison with observations and
constrain the properties of these winds and their possible influ-
ence on the stellar spin evolution.

5. Summary and conclusions

Different measurements of the rotational period distribution
of young star-forming regions lead to the conclusion that the

surface rotation rate of stars remains approximately constant dur-
ing their early-PMS phase. This stage seems to be related to the
epoch during which the forming stars are still surrounded by, and
interact with, an accretion disk. These observations hence have
motivated angular momentum evolution models to often simply
consider a constant surface angular velocity during the first few
Myr of the stellar life so as to mimic this observed feature (Gallet
& Bouvier 2013, 2015; Amard et al. 2016).

To improve this simplified vision of a constant surface rota-
tion rate, we decided to include an actual star-disk interaction
model in our angular momentum evolution calculations so as to
investigate what properties of CTTS are required to fulfill the
observations constraints. In this study, we directly compared the
angular velocity evolution that results from our star-disk interac-
tion model to rotation period observations of solar-type stars.

We pointed out that a kG dipolar magnetic field compo-
nent is typically required during the entire disk lifetime so as
to extract enough angular momentum from the stellar surface
to compensate for the acceleration of the stars due to their con-
traction and accretion. While such strong dipolar magnetic field
intensity is sometimes detected, it is not ubiquitous. Indeed, at
the very beginning of their evolution, young and fully convec-
tive CTTS (e.g. AA Tau and BP Tau) are sometimes observed
to display strong dipolar magnetic field components between
1 kG and 2 kG. This dipolar magnetic field intensity is then ideal
for rotational regulation through star-disk magnetic interaction
processes.

Besides, we find that, to have an efficient spin-down, the
interaction regimes are often rather extreme. Our models fre-
quently require either of the following: firstly, strong stellar
winds, with a mass loss rate around 10% of the accretion rate,
that seem hard to produce due to general energetic consider-
ations; or secondly, being in a propeller regime (Rt > Rco)
that maximizes the spin-down efficiency of magnetospheric ejec-
tions, but at least according to axisymmetric numerical mod-
els, triggers an extreme accretion variability that is generally not
observed.

The results of this work should, however, be considered as
preliminary and a more physical model has yet to be devel-
oped. More specifically, we should investigate star-disk inter-
action models in which the impact of a non-axisymmetric and
multipolar magnetic field is taken into account, or include other
effects that could influence the spin evolution, such as the accre-
tion and ejection bursts associated with FU Ori events that are
neglected in this work.
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