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ABSTRACT

Context. Mixed-variable symplectic integrators are widely used in orbital dynamics. However, they have been developed for Solar
system-type architectures, and can not handle evolving hierarchy, in particular in systems with two or more stellar components. Such
configuration may have occurred in the history of HD 106906, a tight pair of F-type stars surrounded by a debris disk and a planetary-
mass companion on a wide orbit.
Aims. We present the new algorithm ODEA, based on the symplectic algorithm Swift HJS, that can model any system (binary,...) with
unstable architecture. We study the peculiar system HD 106906 as a testcase for the code.
Methods. We define and compute a criterion based on acceleration ratios to indicate when the initial hierarchy is not relevant anymore.
A new hierarchy is then computed. The code is applied to study the two recently evidenced fly-bys that occurred on system HD 106906,
to determine if they could account for the wide orbit of the planet. Thousands of simulations have been performed to account for the
uncertainty on the perturbers coordinates and velocities.
Results. The algorithm is able to handle any change of hierarchy, temporary or not. We used it to fully model HD 106906 encounters.
The simulations confirm that the fly-bys could have stabilized the planet orbit, and show that it can account for the planet probable
misalignment with respect to the disk plane as well as the disk morphology. However, that requires a small distance at closest approach
(.0.05 pc), and this configuration is not guaranteed.
Conclusions. ODEA is a very good choice for the study of non-Solar type architecture. It can now adapt to an evolving hierarchy, and is
thus suitable to study capture of planets and dust. Further observations of the perturbers, in particular their radial velocity, are required
to conclude on the effects of the fly-by on system HD 106906.

Key words. methods: numerical – celestial mechanics – planets and satellites: dynamical evolution and stability –
planets and satellites: individual: HD 106906 – planet–star interactions – stars: kinematics and dynamics

1. Introduction

In the context of the rapid increase of exoplanet discoveries,
the need for efficient N-body simulations has become strong
to model the evolution of complex systems and the interac-
tion between planets, planets and debris disk, or within debris
disks. Mixed variable symplectic integrators are widely used for
dynamical simulations of planetary systems, as they present two
major advantages with respect to other N-body integrators: first,
they exhibit no long-term accumulation of energy error, which
is essential to ensure orbital stability through the integration. On
the other hand, they provide a gain of at least one order of mag-
nitude in computation speed, for equivalent accuracy, because
they allow one to adopt a much larger time-step than other inte-
grators for the same result. In 1991, Wisdom and Holman devise
the first symplectic map specifically designed for N-body prob-
lems with a central dominant mass (Wisdom & Holman 1991).
Since then, numerous codes implemented this structure that are
still widely used today (e.g., Swift, Levison & Duncan 1994,
Mercury, Chambers 1999).

Yet, symplectic integrators can model the interactions
between multiple stars, moon, or simply planets whose mass are
non negligible with respect to the central mass as well. They

are versatile tools well suited to characterize the great diversity
of extrasolar system architectures, well beyond the framework
of our Solar System. Efforts were made to extend the scheme
to binary stars in two modified versions of Mercury (Chambers
et al. 2002), but it could not be generalized to multiple systems
with other hierarchies. In this context, Beust (2003) designed a
symplectic scheme valid for any type of hierarchical architec-
ture, and implemented it with Swift HJS. This generalized the
theoretical frame of Wisdom and Holman to any hierarchical
system.

However, in Swift HJS, the hierarchical structure of the sys-
tem is given at the beginning of the run and must be preserved
along the integration. This is a severe limitation as it prevents the
efficient modeling of non stable hierarchies with e.g. orbital cap-
tures (planets, dust), whereas such situations may be numerous
among young systems. With Swift HJS, handling accurately
such configurations is only possible adopting a very small time-
step, which is of course not optimal. This motivated us to build
a new version of Swift HJS, ODEA, that tackles this issue. The
code is available online1.

1 https://github.com/LaRodet/ODEA
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In the following, we describe the new code in detail, and
present a full application to the complex system of HD 106906.
Before that, we present this system and our motivations for
modeling it and using it as a benchmark for our new code.

The system HD 106906 (HIP 59960) is located at a dis-
tance of 103.3± 0.5 pc (Brown et al. 2018) and belongs to the
Lower Centaurux Crux (LCC) group, which is a subgroup of the
Scorpius-Centaurus (Sco-Cen) OB association (De Zeeuw et al.
1999). The LCC group has a mean age of 15± 3 Myr, with an
age spread of 6 Myr (Pecaut & Mamajek 2016). HD 106906 is a
2.58± 0.04 M� spectroscopic binary star, on an eccentric (0.66)
and tight (0.6 au) orbit (Lagrange et al. 2019). Moreover, high
contrast imaging has revealed an asymmetric debris disk (Kalas
et al. 2015; Lagrange et al. 2016) and a giant planet on a wide
orbit (projected separation from the binary: 735± 5 au, Bailey
et al. 2013). At such a separation, the planet relative motion can
not be detected with present imaging instruments on a reason-
able time basis. The orbital inclination with respect to the plane
of the disk is probably significant (20◦), but a coplanar configu-
ration cannot be excluded. The planet mass has been estimated at
11± 9 MJ mass from hot-start models by Daemgen et al. (2017).

Two major scenarios compete for the formation of giant plan-
ets (e.g., Baruteau et al. 2016). In the core accretion scenario,
planets begin their formation with the growth of dust grains
and the formation of planetesimals, that will slowly accrete each
other to form terrestrial planets or planetary cores. On the other
hand, the gravitational instability scenario is a faster process
that is able to form giant planets at large separation from an
instability in the protoplanetary disk. In both cases, planet for-
mation takes place in the primordial gaseous disk. Forming a
giant planet at 700 au or more from any central star appears
very unlikely in any of those scenarios, first due to the lack of
circumstellar gas at that distance, and second because the corre-
sponding formation timescale would exceed the lifetime of the
gaseous disk. This led Rodet et al. (2017) to propose a dynami-
cal scenario to account for the planet’s current separation. The
scenario involves a traditional planetary formation within the
gaseous disk, an inward migration and a subsequent scattering
by the binary. However, for the planet to remain bound, an exter-
nal perturbation such as a fly-by is necessary in order to reduce
its eccentricity and stabilize its orbit in a bound configuration.

Recently, De Rosa & Kalas (2019) investigated the stellar
neighborhood of system HD 106906 in Gaia DR2 (Brown et al.
2018), and discovered two stars that have recently come within
1 pc of the central binary HD 106906 AB. Given the uncer-
tainty on the perturbers distances and radial velocities, De Rosa
& Kalas concluded that there was a possibility that the fly-by
was dynamically significant for the planet evolution history. This
motivates us to reinvestigate the Rodet et al. (2017) scenario,
using ODEA, to check this possibility.

2. Algorithm

2.1. Structure of the code: Swift HJS

Let us consider the gravitational N-body problem, with masses
(mi)i=1,..,N , positions (ri)i=1,..,N and impulsions (pi)i=1,..,N . The
Hamiltonian is

H =

N∑
i=1

pi
2

2mi
−

∑
1≤i< j≤N

Gmim j

ri j
, (1)

where G is the constant of gravitation and ri j = ||r j − ri|| is the
distance between bodies i and j.

In the current version of Swift HJS, as in the other simi-
lar codes, the integrator do not solve H exactly, but a surrogate
Hamiltonian H̃. The latter is chosen to be close to the real one,
and exactly solvable. In that case, the algorithm is symplec-
tic: it exactly preserves the areas in phase space and exhibit no
long-term drift of the energy.

In order to design a proper H̃ in orbital mechanics, the key
idea is to split the Hamiltonian into two integrable parts:

H = HA + HB. (2)

Several splitting have been suggested (e.g., Wisdom &
Holman 1991; Saha & Tremaine 1994; Chambers 1999), most
of them consisting on a Keplerian part and a perturbation part.
Both parts are then integrable within computer round-off errors.
H̃ corresponds to the successive integration of these parts sep-
arately. For a second order symplectic integrator, a so-called
leap-frog method can be used. It consists in integrating HB for
∆t/2 (kick), then HA for ∆t (drift), then again HB for ∆t/2 (kick),
where ∆t is the time step.
Swift HJS is based on the Hierarchical Jacobi Symplec-

tic method introduced by Beust (2003), where the description
is based on orbits instead of on bodies. An orbit consists in a
collection of two non-empty sets of bodies, the set of centers and
the set of satellites, that have empty intersection. In all problems
in orbital mechanics, a hierarchy can then be defined as a collec-
tion of orbits comprising all bodies satisfying the following rule:
for all couples of orbit k and l , k, one of the three subsequent
propositions apply

– orbits k and l have no common bodies (orbits k and l are
foreign);

– orbit k is comprised in the centers or satellites of orbit l
(orbit k is inner to orbit l);

– orbit l is comprised in the centers or satellites of orbit k
(orbit k is outer to orbit l).

A so-defined hierarchy is made of exactly N − 1 orbits. In Swift
HJS, the orbits are numbered from 2 to N. Finally, we define µk
and ηk as the total mass of the satellites and centers, respectively,
in orbit k. The total dynamical mass in orbit k is then Mk = µk +ηk
and the reduced mass m′k = µkηk/Mk.

In this formalism, a new set of N coordinates (r′k, p′k)i=1,..,N
are designed with a Jacobi-like approach: r′k is the relative posi-
tion of the center of mass of orbit k’s satellites with respect to
that of its centers, and p′k is the relative conjugate momentum.
The first coordinates r′1 and p′1 are the position and impulsion
of the center of mass. These positions and conjugate momenta
derive from a canonical transformation that let the Hamiltonian
invariant. They can be expressed with the bodies coordinates as

r′k =
∑

i, satellites of k

miri

µk
−

∑
i, centers of k

miri

ηk
, (3)

p′k = m′k

 ∑
i, satellites of k

pi

µk
−

∑
i, centers of k

pi

ηk

 . (4)

The Hamiltonian can then be split as follows

HA =

N∑
k=2

p′k
2

2m′k
−

Gµkηk

r′k
; (5)

HB =

N∑
k=2

Gµkηk

r′k
−

∑
1≤i< j<≤N

Gmim j

ri j
. (6)

When the hierarchy is sufficiently clear (that is if the
orbits are almost Keplerian), HB � HA. As HA is a Keplerian
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Initial hierarchy Initial hierarchy 
strongly perturbed New hierarchy

Fig. 1. Example of hierarchy change in the case of a capture. At first
the red body orbits the yellow–blue pair. After a strong interaction, it
captures the small blue body.

Hamiltonian describing N − 1 independent orbits, the drift con-
sists of evolving each Keplerian orbits. On the other hand, as HB
depends exclusively on the positions, the kick consists of a linear
raise of the velocities, with accelerations aB

k
≡ 1/m′k ∂HB/∂r′

k
.

2.2. Building a new hierarchy

The above scheme is well adapted to lightly perturbed Keplerian
orbits in a fixed hierarchy, but becomes strongly unsuitable if the
initial hierarchy evolves, whether temporarily or definitively (see
example Fig. 1).

Thus, when the hierarchy is not relevant anymore (that is the
splitting in the initial HA and HB does not optimize the error),
a module of the algorithm will design a new hierarchy from the
current positions of the bodies. For this, the algorithm computes
a two-dimensional symmetric array that compiles the Keplerian
acceleration between two bodies aKep

k = GMk/r2
i j, where Mk is

the sum of the masses. The strongest acceleration gives the first
orbit, then the two bodies are replaced by their center of mass
and the array is updated, and again until the last orbit comprises
all bodies. We first checked that this algorithm always returns the
existing hierarchy when no change is expected. Then, if the com-
puted hierarchy is different than the current one, the hierarchy
must be changed.

If the hierarchy needs to be changed, so is the time-step ∆t.
We choose a Keplerian-like time mink Tk/20, where

Tk =

√
4π2a3

k | 1 − ek |
3

GMk
(7)

if orbit k is bound or if its smallest approach has not yet occurred,
or

Tk =

√
4π2r′k

3

GMk
(8)

otherwise. The choice to adapt or not the time step is given to the
user.

Strictly speaking, when changing the hierarchy, the sym-
plectic nature of the algorithm does not hold anymore, as the
splitting of the Hamiltonian is entirely based on the hierarchy.
This is also true for any change of the time step. A new approx-
imate Hamitonian is integrated from an already approximated
scheme, which means that the error budget raises potentially
at each hierarchy change. However, the algorithm is designed
for orbital dynamics, where systems are not subject to frequent
reorganization of their architecture. Designing a new Hamiltio-
nan when the initial hierarchy is not suited anymore allows to
limitate the error on each orbit, which will otherwise become
out of control. This is basically the same problem as the one

raised by close encouters in planetary dynamics. When handling
close encounters (Levison & Duncan 1994; in Swift RMVS) and
(Chambers 1999; in Mercury) temporarily change the way of
splitting the Hamiltonian when transferring to HA the part of HB
that concerns the close encounter, even sometimes changing the
hierarchy to planetocentric (in the latest version of Mercury the
use of a smooth criterion that weights the different perturbing
terms allows the map to remain symplectic with a continuous
Hamiltonian while handling close encounters; Rein et al. 2019).
Conceptually, a close encounter within a planetary system can
be viewed as a temporary change of hierarchy that eventually
returns to the initial hierarchy. Here we are concerned by changes
that can be permanent.

2.3. Checking the relevance of the hierarchy

Performing a hierarchy change is quite costly: all the accel-
eration couples have to be computed and must be compared
and updated for the definition of each of the N − 1 orbits
(multiple operations that scale as O(N3)). Checking for a pos-
sible change at each time-step, with the result that most of the
time the current hierarchy would be left unchanged, would thus
amount to a considerable loss of efficiency. Prior to launching
the entire hierarchy re-building process, an efficient algorithm
with a simpler criterion must be applied to check whether it is
appropriate or not. The most exact criterion would be the theo-
retical energy error associated to the symplectic mapping, as it
gives us an objective estimate of the relevance of the numerical
scheme. However, its computation is tedious (grows as N4, see
Appendix B). The criterion must be fast to compute (maximum
as N3, like the accelerations) and correlated to the error.

In Mercury (Chambers 1999), the criterion to spot close
encounters is the ratio between the relative distances and the Hill
radii, assuming the latter roughly constant. This is a legit crite-
rion for the study of the Solar system, but it is not relevant to our
case. Indeed, the Hill radius is not easy to compute for eccen-
tric orbit, it depends strongly on the orbital parameters (which is
subject to variation in the general case) and it is not satisfyingly
correlated to the errors in a complex architecture.

We choose to compute at each step the ratio aB
k /a

Kep
k for each

orbit k, where aKep
k and aB

k are the accelerations r̈′
k

respectively
induced by HA and HB (Eqs. (5) and (6)). We declare the hierar-
chy questionable if it is higher than 0.2 for at least one orbit. The
computation of that criterion also scales as O(N3) in theory, but
it uses the acceleration aB that is already computed in any step
of the integration, so that the extra cost remains limited.

Thus, with this criterion, the problem can keep a non-optimal
hierarchy if the associated error remains small. This can be
adjusted by changing the value of the threshold, which is a free
parameter of the code. This might be useful in situations when
two similar hierarchies become alternately optimal, to prevent
the algorithm to perform numerous changes that will have a
negative effect on long term conservation properties.

2.4. The case of test particles

The study of planetary systems often involved the study of debris
belts. In N-body simulations, the dust is modeled at first order by
massless bodies (or test particless) that interact with the massive
bodies but not with each other. Test particles must be specifi-
cally considered in ODEA as the handling of their hierarchy is
slightly different. Indeed, they are the only satellites of their orbit
and their orbit is invisible to the bodies and other test particles
evolution. When looking for a new hierarchy, ODEA will not
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Fig. 2. Maximum relative energy error over a 1 Myr evolution of
HD 106906 including the two fly-bys, for ODEA and Swift HJS, as a
function of the time-step assumed.

consider the test particles, for it searches foremost to optimize
the energy error budget related to the massive bodies.

When the hierarchy of the massive bodies changes, each test
particle must find its natural orbit given its relative position. A
similar procedure to the hierarchy building of massive bodies
is then performed. For a consistent hierarchy, the test particles
have 2N − 1 possibilities for their orbit: around one massive bod-
ies (N) or around one orbit (N − 1). Thus, for each test particle,
a 2N − 1 array is computed, compiling the Keplerian accelera-
tions. The maximal element will correspond to the new particle
configuration.

Finally, a test particle may also be subject to a hierarchy
change, independently of the massive bodies architecture evo-
lution. Thus, the acceleration ratio criterion is computed at each
time step to check the suitability of the particle orbit, and a new
orbital configuration is investigated if necessary following the
previous procedure.

2.5. Comparison with other codes

Several algorithms have been introduced since the formalization
of the first mixed-variable symplectic map for orbital mechan-
ics, including the widely used Mercury (Chambers 1999). Most
of them are designed to work in Solar-System-like hierarchy.
Chambers et al. (2002) introduced two algorithms, derived from
Mercury, to model planetary motions in binary systems. How-
ever, to our knowledge, no symplectic integrator are able to
integrate indifferently any types of hierarchy, or a more complex
hierarchy, except from Swift HJS.

Moreover, no mixed-variable integrator that we know of are
designed to handle long or definitive hierarchy change. Such sit-
uations can be encountered in case of a stellar fly-by, or of a
capture of debris disk dust by a stellar or planetary companion.
The subsequent study of system HD 106906 is a perfect example
of situations that can not be tackled by ordinary symplectic algo-
rithms: binary fly-by and dust capture. Figure 2 illustrates the
gain of energy precision that ODEA allows on the HD 106906’s
fly-bys test case (the parameters of the corresponding simula-
tion are presented in Appendix A). The relative energy error
is here entirely dominated by the close encounters. By chang-
ing the hierarchy, ODEA decreases the error of one or two orders
of magnitude compared to Swift HJS. Moreover, it allows the
energy error to decrease after the encounter in case of definitive
hierarchy change.

Table 1. N-body simulations of the 15 Myr past evolution of HD 106906
including the two fly-bys.

Code CPU time (s) ∆E/E0

Swift HJS 4 3× 10−5

ODEA 7 3× 10−7

IAS 15 (Rebound) 320 3× 10−9

Bulirsch-Stoer 600 5× 10−4

Notes. The time step has been fixed to 100 yr in ODEA and Swift HJS.

On an other hand, Rein & Spiegel (2014) argue that a high-
order classical integrator is quicker and more accurate than
symplectic integrators. This may be true for some complex
cases, or if we aim for a very high precision. However, sym-
plectic integrators have encoded the exact resolution of the
Keplerian motion, while a classical integrator makes no hypoth-
esis for the form of the motion, and has to solve from scratch
the differential equations of motion. Thus, for lightly perturbed
Keplerian motion, symplectic algorithms are certainly more
practical than classical integrators. The time steps can be large
without endangering the stability of the orbits.

For example, in the case of HD 106906, the simulations
involved very different scales, from the planet periastron to the
wide hyperbolic orbit of the perturbers. A classical integrator
would have to adapt its time step to the smallest distance, while a
symplectic integrator can adopt a larger timescale without com-
promising the stability of the planet orbit. This is illustrated in
Table 1, where the two symplectic integrators ODEA and Swift
HJS can achieve a reasonable precision with a large time step
(same simulation than for Fig. 2, but for the entire 15 Myr evolu-
tion). Outside the fly-bys, they reach a precision similar to that of
the classical integrator IAS 15, that has to decrease regularly its
time step to resolve the periastron passage, increasing the com-
putation time. We also ran the simulation with the Bulirsch-Stoer
implementation of Press et al. (1989), with a precision constraint
on the trajectory of order 10−7 (similar to the value reached by
ODEA). The energy error grows very rapidly, and the computation
time is already significantly larger than the other codes.

We also point out that Swift HJS never makes the assump-
tion that the orbits we are considering are actually bound. The
only requirement is that the sum of the Keplerian interactions
associated with the hierarchy (i.e. HA) must represent most of
the full Hamiltonian. Some of the orbits we are considering can
thus be hyperbolic, and this will be the case in a fly-by configu-
ration. The Kepler solver used to integrate HA handles bound or
unbound orbits as well.

3. Application to system HD 106906

3.1. Characterizing the perturbers

Searching for potential stellar perturbers in Sco-Cen during the
previous 15 Myr, De Rosa & Kalas (2019) identified two per-
turbers in LCC (Pecaut et al. 2012): HIP 59716 and HIP 59721.
Located around 11 pc (projected 0.5◦) from HD 106906 and
0.5 pc (projected 30′′) from each other, their relative velocities
suggest an encounter with HD 106906 a few million years ago.
The coordinates and velocities of the three systems are summa-
rized in Table 1 of De Rosa & Kalas (2019). As can be seen on
Fig. 3, the relative separation and velocity between HD 106906
and its perturbers lie essentially on the direction to Earth.
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Fig. 3. Representation of HD 106906, HIP 59716 and HIP 59721 current
positions and velocities in HD 106906 rest frame (disk lies in the Y–Z
plane, observed extension in the Y-direction).

Unfortunately, the quantities projected in this direction (distance
and radial velocity) have the larger observational uncertainties,
which creates a high dispersion on the closest encounters, in
particular for the most promising candidate HIP 59716 (Fig. 4).

We note that the relative velocities between each systems
(∼4 km s−1) are four times higher than the velocity dispersion
reported for LCC (1.13± 0.07 km s−1; Madsen et al. 2002), that
was used in Rodet et al. (2017). We will see in Sect. 3.3 that the
effect of a fly-by is inversely proportional to the velocity of the
passing star.

The masses of HIP 59716 and HIP 59721 have been esti-
mated, respectively, 1.37 M� for HIP 59716 and 1.22 M� for
HIP 59721 from the spectral types. HD 106906 binary mass
has been estimated to 2.58± 0.04 M� from radial velocity and
interferometric measurements by Lagrange et al. (2019).

3.2. Simulating the encounters

N-body simulations performed by De Rosa & Kalas (2019) indi-
cate that the galactic gravitational potential has a negligible
influence on the characteristics of the encounters. Moreover,
the binarity of HD 106906 does not affect the encounters,
because of the very high ratio between the closest approaches
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Fig. 4. Two dimension histograms of the coordinates of the intersection
points between the perturbers trajectories and the X–Y plane, assuming
linear trajectories.

HD 106906
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HIP 59721

TodaySecond encounterFirst encounter15 Myr ago

Time

Fig. 5. Representation of a typical evolution of the hierarchy in the
three-body simulations of HD 106906 fly-bys with ODEA. All orbits here
are hyperbolic.

and the binary separation (>1000). In order to efficiently deter-
mine the parameters of the encounters, we first performed 10 000
simulations with ODEA, including three bodies: HD 106906 ABb
(2.58 + 0.01 M�), HIP 59716 and HIP 59721. The mass of
HD 106906 and the algorithm that we present here are the only
differences with De Rosa & Kalas (2019) study at that point.

The initialization of the simulations is designed with a
Monte-Carlo approach, following De Rosa & Kalas (2019). The
3 × 6 parameters and their respective precision are the right
ascension α (0.05 mas), the declination δ (0.002 mas), the par-
allax π (0.05 mas), the proper motion of the right ascension
µα cos δ (0.05 mas yr−1), the proper motion of the declination
µδ (0.05 mas yr−1) and the radial velocity γ (up to 1.7 km s−1).
The parameters are drawn from a normal distribution centered
on their measured values, with a dispersion equal to the observa-
tions uncertainties, taking into account the correlations given by
Gaia catalog. Then, we trace back the stars trajectory to observe
the encounters.

Most of the simulations follow the same hierarchy evolu-
tion, represented on Fig. 5: the first fly-by involves HIP 59716
and the second HIP 59721, before the two perturbers get very
close at each other as can be seen today. The hierarchy will thus
naturally evolves to take into account the successive encounters.
Computing the eccentricity of several sets of configurations, we
evaluated that the two perturbers have currently a 2.1± 0.1%
chance of being gravitationally bound to each other. How-
ever, De Rosa & Kalas (2019) point out that the probability of
them having such similar angular positions and proper motions
without being bound are extremely low.
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Table 2. Timescales of the HD 106906 simulations.

Objects Timescale (yr)

Host binary star period 10−1

Planet period 103

Duration of the fly-by 105

Perturbers binary period 106

Time of the fly-by 3× 107 yr ago
Age of the system (15± 6)× 107
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Fig. 6. Distribution of the distances at closest approach. The following
study will focus on the red part, that corresponds to fly-by closer than
0.1 pc (3.6% of the configurations).

We launched 10 000 simulations for 15 Myr, corresponding
to a backward evolution from our days to the formations of the
stars. The different timescales of the simulations are summa-
rized in Table 2. At first sight, 10 000 simulations may not seem
enough to correctly sample the 18 parameters confidence inter-
vals. However, most of the parameters are strongly constrained,
the only strong uncertainties being the perturbers relative radial
velocities and distances, that is 4 parameters. Thus, these are the
critical parameters that must be correctly sampled, and 10 000 is
then a sufficient number. The initial time-step was set to 1000 yr,
with outputs every 1000 yr. To account for the possibility of
the two perturbers being bound, we performed an additional
10 000 simulations with only bound configurations. It comes
down essentially to selecting only the configurations where the
perturbers have similar radial velocities.

The distances at closest approach were computed for each
simulation (Fig. 6). Most of the encounters occur with a clos-
est approach between 0.3 and 2 pc, with a maximal probability
around 0.6 pc, consistent with the results of De Rosa & Kalas
(2019). We then reviewed the simulations for which a close
(<0.1 pc) fly-by occurred, from any one or both of the two per-
turbers. 359 configurations were selected, that is around 4%
of the total number of studied configurations. In most cases
(&90%), HIP 59716 encounters HIP 106906 at the shortest dis-
tance. For the bound configurations, the peak is around 0.4 pc but
the number of close fly-bys is roughly the same. HIP 59716 coor-
dinates distributions are presented on Fig. 8. Most of the parame-
ters of the configurations with close fly-bys are drawn randomly
within the configurations, except for the radial velocity, where
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Fig. 7. Distribution of the times and velocities at closest approach, for
the cases where the distance at closest approach is less than 0.1 pc.

we see that the configurations leading to a close fly-by corre-
spond to the higher radial velocities (closer to the radial velocity
of HIP 59721). The distributions for the two other bodies are
presented on Figs. E.1 and E.2.

The distributions of the time and velocities of the perturber
at closest approach are represented in Fig. 7 (only the cases
where the distance was less than 0.1 pc). Most of the encoun-
ters occur between 4 and 2 Myr ago, with a velocity between 2
and 6 km s−1.

3.3. Effect on the planet

3.3.1. Setup

Once the configurations for which a close fly-by occur within the
15 Myr of the system life have been identified, we launch a new
set of simulations, this time including the planet. The bodies are
initialized at their position at the end of the first simulation, that
is at their position 15 Myr ago. HD 106906 is separated into two
bodies, namely the binary HD 106906 AB (2.58 M�), and the
planet HD 106906 ABb (0.01 M�). The simulations are launched
from 15 Myr ago to the present epoch, so that the final outcome
represents the current positions of the bodies. The time-step was
set to 100 yr, with outputs every 1000 yr.

In the study of Rodet et al. (2017), the destabilization of
the planet takes place after a violent encounter with the cen-
tral binary, in the beginning of the system’s life. The outcome
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Fig. 8. Initial distribution (today) of HIP 59716 coordinates and velocities for the 10 000 simulated cases (green), and for the 359 cases where a
fly-by closer than 0.1 pc occurred (red).

was either a definitive ejection on a hyperbolic trajectory, or a
transitional state where the eccentricity raised dramatically with-
out passing 1. The probability of the different outcomes depends
on the characteristics of the encounter, which is highly under-
constrained. In the case of a hyperbolic trajectory, a subsequent
stabilization by a fly-by must be precisely synchronized, and is
thus difficult to achieve. Thus, we study here the case of a highly
eccentric transitional bound orbit. The periastron should roughly
correspond to the separation of the planet when the perturba-
tion occurred, around 1 au. On the other hand, the apoastron
will remain mostly unchanged after a fly-by. The current pro-
jected separation implies a minimal value of 730 au. Moreover,
the probability is higher to observe the planet near apoastron: it
spends 2/3 of its time at a separation greater than 700 au for an
apoastron of 1000 au, and 95% for an apoastron of 3000 au. All
in all, two sets of simulations are performed, where the planet
is initialized with a periastron of 1 au and an apoastron of 1000
(a = 500.5 au, e = 0.998) or 3000 au (a = 1500.5 au, e = 0.9993).

The necessary energy to completely eject the planet is
1
2GMHD106906/ap, where ap is the initial semi-major axis of the
planet and MHD106906 the mass of the host binary. From its cur-
rent position close to the central binary, a definitive ejection
requires around 1 M�au2 yr−2. A proportion of 2× 10−3 less cor-
responds to an elliptic trajectory with apoastron 1000 au, and
2× 10−4 M�au2 yr−2 less corresponds to 10 000 au. Thus, from
an energetic point of view, reaching a high apoastron on a still
bound orbit in the ejection process is nearly as costly as being
definitely ejected.

For a fly-by to have a meaningful role in the dynamical his-
tory of the planet, it has to decrease the planet eccentricity by
increasing the periastron to a safer value (an increase of the
order of the astronomical unit at least). The time-scale of the
fly-by is much larger than the orbital period of the planet, so
that the initial position of the planet on its orbit is not a rel-
evant parameter in the simulations. Moreover, in our scenario,
the planet formed within the disk, so that its orbit was initially
coplanar with the disk mid-plane. We assume that the planet

apoastron is aligned with the observed extension of the disk. A
close encounter with the central binary will retain this copla-
narity if the inclination of the binary orbit is similar to that of
the disk plane, which seems likely from the first estimates of its
orbital parameters (Lagrange et al. 2019). As the fly-by is likely
to keep the apoastron roughly unchanged and the eccentricity
high (consistent with the observed patterns of the disk according
to Jílková & Zwart 2015; Nesvold et al. 2017; Rodet et al. 2017),
this is consistent with the current position of the planet.

3.3.2. Results

The conclusion of the study depends essentially on the possi-
bility for the fly-by to increase significantly the periastron. This
effect is stongly correlated to the distance at closest approach.
We thus represented the periastron change with respect to the
distance at closest approach for the outputs of the two sets of
simulations on Figs. 9 and 10.

Whether for a 1000 or 3000 au apoastron, a 0.1 pc encounter
is not enough to significantly raise the periastron: a closer fly-
by is required. For the 1000 au apoastron case, the distance at
closest approach must be less than 0.01 pc, that is 2000 au.
For the 3000 au apoastron case, the destabilization is certainly
easier, but the distance at closest approach must still be less
than 0.05 pc, that is 10 000 au. For such distances, the results
are essentially identical for the bound cases, as the separation
between the two perturbers is greater of similar than the distance
at closest approach with HD 106906. On our initial 10 000 draws,
respectively, 2 and 20 resulted in a periastron increase superior
to 1 au for the 1000 and 3000 au apoastron cases, and 1 and 2
lead to the ejection of the planet (for distance at closest approach
similar or less than the planet semi-major axis).

Moreover, coplanarity of the planet orbit with the disk plan
is expected if the planet formed within the disk. The current
projected planet misalignment with the disk plane is currently
estimated at 23◦, although a lower angle (and even coplanarity)
would be possible if the planet true separation is greater than its
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Fig. 9. Periastron increase with respect to the distance at closest
approach, from N-body simulations (dots) and theoretical approaches
(lines), for the closer fly-bys, and for an initial planetary apoastron of
1000 au. The grey part corresponds to a periastron change inferior to
+1 au, which will not secure the planet stability.
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Fig. 10. Periastron increase with respect to the distance at closest
approach, from N-body simulations (dots) and theoretical approaches
(lines), for the closer fly-bys, and for an initial planetary apoastron of
3000 au. The grey part corresponds to a periastron change inferior to
+1 au, which will not secure the planet stability.

projected separation (&3000 au for coplanarity). A 23◦ misalign-
ment corresponds to a minimal altitude of ∼280 au above the
disk plane, and such gain of altitude is rarely seen in the simula-
tions, even in the most favorable case of a high initial apoastron.
This would suggest that the misalignment (or part of it at least)
is an illusion due to projection effects.

3.3.3. Theory

We first study the periastron increase as a function of the distance
at closest approach, and compare it to the theoretical predic-
tions. The computation of the following theoretical formula is
explained in the appendix. The simplest approach is the impulse
approximation, where the fly-by is assumed to be instantaneous
and trigger a sudden velocity change on the planet. Although this
cannot be considered as representative for the reality if we com-
pare the fly-by time-scale with the orbital period of the planet,
this approximation often provides a good estimate. In this frame-
work, Brunini & Fernandez (1996) show that the fly-by increases

the planet velocity by:

|∆vp| .
2GM∗
VD2 ap, (9)

where vp is the planet velocity, M∗ is the perturber’s mass, V its
velocity at closest approach, D its distance at closest approach,
and ap the planet semi-major axis. This formula nevertheless
applies to circular orbits only (Brunini & Fernandez 1996). By
supposing that the new orbit intersects the old one at apoastron,
the planet eccentricity ep takes part, and we have a change of
semi-major axis ∆ap =−ap∆ep, which gives a change of perias-
tron ∆peri =−2ap∆ep. Finally, one gets (see Appendix C):

|∆peri| . 8
GM∗

√
GMHD106906

a
5
2
p

VD2 . (10)

It can be adapted to an eccentric orbit, as was done in Rodet
et al. (2017), by supposing that the perturbations occur only at
apoastron. Then, stating that the apoastron is preserved, one gets
∆ap =−ap∆ep/(1 + ep) and ∆peri =−2ap∆ep/(1 + ep). Finally,
using Eq. (9) to quantify the velocity increase at apoastron, one
gets (see Appendix C):

|∆peri| . 8
GM∗

√
GMHD106906

a
5
2
p

VD2

√
(1 − ep)(1 + ep)

3 − ep
. (11)

On the other hand, a more rigorous approach is to compute
the secular evolution of the orbital elements of the planet during
the passage of the perturber. Heggie & Rasio (1996) used that
method to determine the eccentricity increase of a companion,
and found a complex formula depending on all 6 orbital ele-
ments of the perturber’s orbit. In this framework, the semi-major
axis is invariant throughout the fly-by. Considering a coplanar
orbit and a perturber’s eccentricity significantly higher than 1
(strongly unbound orbit), the maximum is:

|∆peri| .
5
2

GM∗
√

GMHD106906

a
5
2
p

VD2 ep

√
1 − ep2. (12)

The three theoretical predictions are represented on Figs. 9
and 10: circular impulse, apoastron impulse and secular approx-
imation. They all correspond to maximum values, as the true
periastron evolution depends on the angular characteristics of
the encounter. The velocity V is set to its mean value over all
closest approaches, around 4 km s−1. M∗ was set to 1.3 M�, but
the increase depends weakly on the perturber’s exact mass. The
eccentricity ep is set to its initial value, an approximation that
becomes less relevant when ∆ep & 1 − ep = 2× 10−3 (for closest
approach less or around 0.01 pc).

We see on Fig. 9 that the periastron change is best modeled
by the secular approximation, but is also correctly approached
by the impulse approximation at apoastron. It suggests that the
effect of both perturbers on the planet can be estimated by the
effect of the perturber that had the closest approach. This is
also true for the cases where the two perturbers are bound (see
Appendix E).

Furthermore, we seek to estimate if the fly-by could account
for the possible misalignment of the planet with the debris disk
plane. Depending on the exact value of the argument of perias-
tron ωp, a very eccentric orbit does not necessarily have a large
elevation above the disk plane, even if it is highly inclined. To
have a meaningful plan misalignment, the planet should have
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approach, from N-body simulations (dots) and secular theoretical
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approach, from N-body simulations (dots) and secular theoretical
approach (line), for the closer fly-bys, and for an initial planetary apoas-
tron of 3000 au. The grey line indicates the projected elevation of the
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an inclination change combined with a shift of the argument
of its periastron that results in a significant elevation above the
disk plane. For any Keplerian orbit, the maximum elevation zmax
above the reference plane is given by:

zmax = ap sin(ip)
(√

1 − e2
p cos2(ωp) + ep| sin(ωp)|

)
. (13)

Obviously, with ep ∼ 1 and ωp ∼ 0 or π, zmax remains small
irrespective of the value of ip.

We thus computed the change in zmax, inspiring from
Heggie & Rasio (1996). The details are explained in
Appendix D. The resulting maximal altitude is represented
in Figs. 11 and 12.

3.3.4. Discussion

From both approaches, theoretical and numerical, in the most
favorable case, it appears that a fly-by has a significant impact
on the planet (periastron increase above 1 au) only if its closest

approach is less than 0.05 pc, that is 10 000 au. This corre-
sponds to a small subset among the initial draws, not because
of an incompatibility with the observations, but because of the
high dispersion of closest approaches, underconstrained by the
observations.

We checked that the distance at closest approach is not corre-
lated to the time at closest approach, nor to the velocity at closest
approach. Considering the compatibility between our results and
the dynamical scenario proposed in Rodet et al. (2017), the time
of the fly-by must be considered. Given our simulations, the
closest approach occurred likely 2 to 4 Myr ago (3± 1 Myr).
However, our scenario account for the ejection of the planet only
in the beginning of the system life, when protoplanetary disk
is still present and can effectively trigger planetary migration.
Given the disk lifetime for massive stars (∼3 Myr, Ribas et al.
2015) and the system assumed age (15 Myr), 2 to 4 Myr ago is
significantly too late for the fly-by to have a decisive role. How-
ever, a younger age for the system (10 Myr, compatible with LCC
age spread of 6 Myr) could still account for this discrepancy.

3.4. Effect on the disk

The effects of a fly-by on a disk may be significant, depending
on the parameters of the encounter. The case of a dynami-
cally efficient fly-by can be observed in system HD 141569,
where the ongoing encounter has been deeply studied in Reche
et al. (2009). In this system, the fly-by could be responsible for
truncation, spiral formation, collisional evolution, eccentricity
and inclination raise. In our study, the effect of the fly-by on
test-particles will be essentially similar to that on the planet.
Since the test particles in a debris disk have a nearly circu-
lar orbit, the fly-by will increase the eccentricity, significantly
or not depending on the distance of closest approach. More-
over, all fly-by characteristics being equal, particles inclination
will be excited differently depending on their distance to the
host star. The disk might then be warped. The sensitivity of
the scattered-light images of the disk are not sufficient to reveal
a weak warp, but the warp can induce further instabilities and
asymmetries in the disk that could account for its non-standard
shape.

We chose among the previous cases a situation with a very
short distance at closest approach (1000 au), with a medium
relative inclination (∼45◦) and ran a simulation with the three
massive bodies (HD 106906 ABb and the perturbers) and 1000
test particles. The particles have initially semi-major axes evenly
shared between 10 and 600 au, eccentricity below 0.05, and an
inclination spread of 2 degrees. The simulation was launched for
100 000 yr around the fly-by epoch, with a time step of 1 yr. The
resulting disk is represented in Fig. 13.

On the other hand, the repeating passing of the planet within
the disk would have stronger consequences. If a very small
percentage is ejected over one period (.0.01%), the mean eccen-
tricity of the particles raise from 0.02 at each passage. For the
disk to remain long-lived in its current shape, Jílková & Zwart
(2015; non collisional simulations) and Nesvold et al. (2017;
collisional simulations) estimated that the planet orbit should
not cross the disk. Thus, the planet periastron should be outer
to the observed ∼100 au outer disk radius. Within our scenario,
it means that this enlargement of the periastron occurred rather
quickly, whether or not it was caused entirely by the fly-by. In
any case, the planet interactions would have cover the track of
the fly-by-induced perturbations

The new structure of the code allows to estimate the percent-
age of dust capture by the planet. It turns out that temporary (less
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Fig. 13. Orbital elements of the test particles after a close fly-by. The
lightly blue zones represent the initial configuration.

than 10 yr) capture is experienced by about 5% of the dust at each
passage, but no permanent captures were produced.

4. Conclusion

In this paper, we present the N-body mixed-variable code ODEA,
that is able to study multiple systems in evolving architectures.
We use it to study the rare planetary system HD 106906. We
confirm that the two stars identified by De Rosa & Kalas (2019)
could have helped stabilizing the planet after a destabilization
by its host binary star. This scenario could account for the wide
separation of the planet, its possible elevation with respect to the
disk plane, as well as the structures evidenced within the disk.

However, the significance of the encounter strongly depends
on the distances at closest approach. With the current preci-
sion on the three systems configuration (especially the relative
radial velocities and distances), it is not possible to establish the
role of the flybys. To circularize the planet orbit if it was previ-
ously ejected on a wide trajectory, a fly-by closer than 0.05 pc
is needed (assuming apoastron ≤3000 au), which is one order

of magnitude below the uncertainty on the closest approach.
The simulations show that the angular configuration is favorable
when this condition is met.

Any indication of HD 106906 b relative motion would be
helpful to constrain its orbit, and thus its dynamical history.
More precise parallaxes and radial velocities for HIP 59716 and
HIP 59721 are necessary to constrain the distances at closest
approach, and conclude on the effect of the fly-bys on the system
dynamical evolution.
ODEA handles hierarchy changes in systems with non-Solar-

system-type architectures. It can model efficient captures and
fly-bys. Through a criterion based on accelerations ratios, a new
hierarchy is defined when the current is perturbed. ODEA’s natu-
ral upgrade is the implementation of a Mercury-like approach
to handle close encounters, that is transitional states of non-
Keplerian movements.
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Appendix A: Theoretical error associated with the
symplectic mapping

Splitting the Hamiltonian with a kick-drift-kick approach, as
described in Sect. 2.1, the energy error that we get is (Saha &
Tremaine 1994)

H̃ = H −
∆t2

12

{
{HA,HB},HA +

1
2

HB

}
+ O(∆t4), (A.1)

where the Poisson brackets are defined as follows:

{ f , g} =
∑

i

∂ f
∂ri

∂g

∂pi
−
∂ f
∂pi

∂g

∂ri
. (A.2)

In Swift HJS, HA and HB are given by Eqs. (5) and (6),
which can be computed respectively with O(N) and O(N2) oper-
ations. Thus, computing {{HA,HB},HA} already requires O(N4)
operations.

Appendix B: Test simulation for ODEA

The simulation that was used for the study of the performance of
ODEA belongs to the 10 000 simulations performed in Sect. 3.2,
in the case where the two perturbers were bound. We chose a
simulation with a small distance of closest approach (∼2000 au),
so that there is an effect on the planet orbital elements. The fly-
bys occurred between 4 and 2 Myr ago, so that we restricted
ourselves to this time interval when studying the energy error
with respect to the time-scale (to limit the floating point round-
off error associated with the large distances).

Appendix C: Derivation of the changes of planet
periastron due to the fly-by in the impulse
approximation

C.1. Circular impulse

The expression of the change of the planet velocity is given
in Eq. (9). Supposing that the new orbit intersects the old
one at apoastron or periastron, we have ∆ap = ap∆ep. More-
over, the velocity of the planet if on a circular orbit is
vp =

√
GMHD106906/ap. Thus, the eccentricity is

|∆ep| =
|∆ap|

ap
= 2
|∆vp|

vp
. 4

GM∗
√

GMHD106906

a
3
2
p

VD2

and the periastron is then given by ∆peri = ∆ap − a∆ep =
−2ap∆ep.

C.2. Apoastron impulse

Stating instead that the apoastron is preserved, one gets
∆ap =−ap∆ep/(1 + ep). Within the impulse framework, the
change of velocity involves the velocity at apoastron, so that the
velocity writes vp =

√
GMtot/ap

√
(1 − e)/(1 + e). Thus,

∆vp

vp
=−

∆ap

2ap
−

∆ep

1 − ep2 = −
∆ep

2(1 + ep)
−

∆ep

1 − ep2

which gives

|∆ep| = −2
|∆vp|

vp

1 − e2
p

3 − ep

. 4
GM∗

√
GMHD106906

a
3
2
p

VD2

(1 + ep)
3
2
√

1 − ep

3 − ep

and the periastron is then given by ∆peri = ∆ap(1 − ep) −
a∆ep =−2ap∆ep/(1 + ep).

Appendix D: Derivation of the changes of planet
orbital characteristics due to the fly-by in the
secular approximation

D.1. Perturbative potential

We inspire from Heggie & Rasio (1996) to derive the first-
order perturbation of the planet orbital elements in the secular
approximation.

Following Heggie & Rasi, we number respectively 1, 2 and
3 HD 106906 central star, HD 106906 b and one of the stel-
lar perturber. The position of the planet relative to its host star
is denoted by r, and the position of the third body relative to
HD 106906 center of mass is denoted by R. In this framework,
the evolution of the planet orbit verifies:

r̈ = −
GM12

r3 r + ∇U

U =
Gm3M12

m1m2

 m2

|R − m1
M12

r|
−

m1

|R + m2
M12

r|


=

Gm3r2

2R3

3 (
r.R
rR

)2

− 1

 + O
(( r

R

)3
)

where U is the perturbative potential.
In the secular approximation, U is averaged over the orbit

of HD 106906 planetary orbit. The implicit assumptions is that
all orbital elements but the anomaly have a longer evolution
timescale than the orbital period. As we are interested in the
first order evolution, we only integrate the dominant part in ap/a
(quadripole order). Then, we use Lagrange equations to retrieve
the evolution of the eccentricity, the inclination and the longitude
of periastron.

D.2. Eccentricity and periastron change

After we first averaged over the planet orbital motion, the secu-
lar evolution of the eccentricity obtained at the quadrupole level
writes:

dep

dt
=

15Gm3RxRya
3
2
p ep

√
1 − ep2

2R5
√

GM12

where the x–y plane is the initial plane of the planet (plane of
the disk), and the x direction is given by the planet initial peri-
astron. To compute the first order of the change of e after the
fly-by, we integrate de/dt along time from −∞ to +∞ by fixing
all variables to their initial values but the angular evolution of
the stellar perturber.

Heggie & Rasio computed in their Eq. (7) the change in
eccentricity as a function of the angular parameters of the
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encounter, and we exactly retrieve their expression. The max-
imum efficiency is obtained for a coplanar encounter, where
all the transferred angular momentum apply only on the eccen-
tricity. Stating that the eccentricity of the perturber’s orbit is
significantly more than 1 (V = 3 km s−1 and D = 1 pc gives e ∼
500, D = 0.1 pc gives e ∼ 50), we obtain

∆ep = −
5
2

M∗
√

MHD106906Mtot

a
3
2
p

D
3
2

ep

√
1 − e2

p
√

e
sin(2Ω + 2ω),

where Ω is the longitude of the ascending node and ω the argu-
ment of the periastron of the perturber hyperbolic orbit. The
maximum is obtained for Ω + ω= π/4. Moreover, the eccentric-
ity e depends on D, V and GMtot as V =

√
GMtot(1 + e)/D so that√

e ' V
√

D/GMtot. Thus, the eccentricity change satisfies:

|∆ep| .
5
2

GM∗
√

GMHD106906

a
3
2
p

VD2 ep

√
1 − ep2. (D.1)

On the other hand, the semi-major axis is constant in
the secular approximation. The periastron is then given by
∆peri =−a∆ep.

D.3. Inclination change

The secular evolution of the inclination obtained at the
quadrupole level writes:

dip

dt
= −

3Gm3a
3
2
p

(
4e2

p + 1
)

RxRz

2R5
√(

1 − e2
p

)
GM12

.

We then integrate as before to compute the change of
inclination ∆ip.

∆ip =
3
2

GM∗
√

GMHD106906

a
3
2
p

VD2

1 + 4e2
p√

1 − e2
p

×

(
cos(i) sin(Ω)

(
arccos

(
−

1
e

)
+
√

e2 − 1
)

−(cos(Ω) sin(2ω) + cos(i) sin(Ω) cos(2ω))
(e2 − 1)

3
2

3e2

 .
The maximum is reached for i = π/4, Ω = π/2 and ω= π/2.

Thus, we obtain

∆ip .
GM∗

√
GMHD106906

a
3
2
p

VD2

1 + 4e2
p√

1 − e2
p

.

D.4. Longitude of the periastron change

The secular evolution of the total longitude of the periastron
ω̄p =ωp + Ωp obtained at the quadrupole level writes:

dω̄p

dt
= −

3Gm3a
3
2
p

√(
1 − e2

p

)
(R2 − 4R2

x + R2
y)

2R5
√

GM12
.

We then integrate as before to compute the change of
inclination ∆ω̄p p.

∆ω̄p =
1
4

GM∗
√

GMHD106906

a
3
2
p

VD2

√
1 − e2

p

×
(
6 cos2(i) cos2(ω) − 5(cos(2i) − 3) cos2(ω) cos(2Ω)

+ 2 cos(2i)(3 − 5 cos(2Ω)) sin2(ω)

− 10 cos(i) sin(2ω) sin(2Ω)
)
.

The maximum is reached for i = π/2, Ω = 0 and ω= 0. Thus,
we obtain

∆ω̄p . 5
GM∗

√
GMHD106906

a
3
2
p

VD2

√
1 − e2

p.

D.5. Maximal altitude

The maximum altitude zmax reached by the planet on its orbit is
given as a function of its orbital elements:

zmax = ap sin(ip)
(√

1 − e2
p cos2(ωp) + ep| sin(ωp)|

)
. (D.2)

It thus depends on the evolution of ap, ep, ip and ωp.
Due to the term sin(ip), the same approach than above leads

to neglecting all evolution but that of the inclination. It is con-
sistent with the fact that in the previous expressions, ∆i p �
∆ep,∆ip when the eccentricity tends to 1. We get:

∆zmax = ap

√
1 − e2

p∆ip (D.3)

.
GM∗

√
GMHD106906

a
5
2
p

VD2 (1 + 4e2
p). (D.4)

However, this estimate is not valid anymore when ∆i p
approaches π/2, that is when sin(ip) approaches 1. At this point,
the estimates of ∆ep and ∆ω̄ must be taken into account. In order
to comprise all the different evolution scales, we thus simply esti-
mate the maximal altitude by replacing directly the computed
evolution in the definition formula:

∆zmax . ap sin
(
ĩp

) (√
1 − ẽp

2 cos2 (ω̃) + ẽp| sin (ω̃) |
)
, (D.5)

where ĩp = max(∆ip,
π
2 ), ẽp = ep − ∆ep and ω̃= max(∆ω̄p,

π
2 ).

Appendix E: Additional materials for HD 106906
fly-by simulations

Figures E.1 and E.2 represents the distribution of the coordinates
of the bodies in the simulations. Figures E.3 and E.4 describe
the case where the two perturbers are bound. The coordinates
of the bodies are drawn from the observational constraints with
the same process that for the non-bound case, but we discarded
the configurations where the eccentricity of the relative orbit is
greater than 1. The resulting semi-major axis and eccentricity
distributions are presented here, along with the effect of the fly-
bys on the planet periastron, which is very similar to the non-
bound case.
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Fig. E.1. Initial distribution (today) of HD 106906 coordinates and velocities for the 10 000 simulated cases (green), and for the 359 cases where a
fly-by closer than 0.1 pc occurred (red).
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Fig. E.2. Initial distribution (today) of HIP 59721 coordinates and velocities for the 10 000 simulated cases (green), and for the 359 cases where a
fly-by closer than 0.1 pc occurred (red).
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Fig. E.3. Semi-major axis and eccentricity distributions for the relative
orbit of the two perturbers HIP 59716 and HIP 59721, assuming they are
bound.
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Fig. E.4. Periastron increase with respect to the distance at closest
approach, from N-body simulations (dots) and theoretical approaches
(lines), for the closer fly-bys, for an initial planetary apoastron of
1000 au, in the case where the two perturbers are bound.
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