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ABSTRACT
Direct imaging of exoplanets is a challenging task as it requires to reach a high contrast at
very close separation to the star. Today, the main limitation in the high-contrast images is the
quasi-static speckles that are created by residual instrumental aberrations. They have the same
angular size as planetary companions and are often brighter, hence hindering our capability
to detect exoplanets. Dedicated observation strategies and signal processing techniques are
necessary to disentangle these speckles from planetary signals. The output of these methods
is a detection map in which the value of each pixel is related to a probability of presence
of a planetary signal. The detection map found in the literature relies on the assumption
that the residual noise is Gaussian. However, this is known to lead to higher false positive
rates, especially close to the star. In this paper, we re-visit the notion of detection map by
analysing the speckle noise distribution, namely the Modified Rician distribution. We use
non-asymptotic analysis of the sum of random variables to show that the tail of the distribution
of the residual noise decays as an exponential distribution, hence explaining the high false
detection rate obtained with the Gaussian assumption. From this analysis, we introduce a
novel time domain detection map and we demonstrate its capabilities and the relevance of our
approach through experiments on real data. We also provide an empirical rule to determine
detection threshold providing a good trade-off between true positive and false positive rates
for exoplanet detection.

Key words: methods: statistical – techniques: high angular resolution – techniques: image
processing – planets and satellites: detection.

1 IN T RO D U C T I O N

In the field of exoplanet study, high contrast imaging (HCI)
provides valuable information to study planetary systems properties
since it gives access to the spectral features of the exoplanet’s
atmosphere (Konopacky et al. 2013; Crossfield 2015), its mass
determination via orbital follow-up (Bonnefoy et al. 2014; Pueyo
et al. 2015), and the study of its interactions with its environ-
ment such as other planets or circumstellar discs (Espaillat et al.
2014; Hughes, Duchene & Matthews 2018). This information can
constrain planetary system formation models and improve our
understanding of the nature of exoplanets (see Bowler & Nielsen
2018, for a review).

� E-mail: benoit.pairet@uclouvain.be

Only a few tens of exoplanets have been directly detected around
the hundreds of stars observed within surveys led during the last
decade (Chauvin et al. 2015). This low number of detections
tells us that either the types of planets accessible through direct
imaging are indeed rare or that our sample is strongly biased by
our technical limitations. The main challenge of exoplanet imaging
is that exoplanets are faint objects located in close vicinity to their
host star that is much brighter. Emitted light from young Jupiter-
like planets are typically 10−6–10−4 fainter than their host star in
the near infrared, where the contrast is favourable, and the typical
projected separation between the planet and its host star is of 0.1
arcsec.

To reach such an angular resolution, 10 m class ground-
based telescopes are used in combination with adaptive optics
(AO) systems which correct for the resolution loss induced by
the atmospheric turbulence (Guyon 2005). Coronagraph devices
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are then used to increase the dynamic range by removing the
coherent part of the starlight which is hiding the faint circum-
stellar signals (Guyon et al. 2006). With dedicated instruments
such as VLT/SPHERE (Beuzit et al. 2008), Gemini/GPI (Mac-
intosh et al. 2008), KecK/NIRC2 (McLean & Chaffee 2000),
Subaru/SCeXAO (Jovanovic et al. 2015), or LBTI/LMIRCam (Hinz
et al. 2016), a typical contrast of 10−4 is obtained at a separation
of 0.5 arcsec. However, residual aberrations induce the presence
of speckles in the images, which are of the same angular size as
a point source and are often brighter than the exoplanets signal.
These speckles are quasi-statics and hence cannot be calibrated
or averaged through longer exposures. Post-processing techniques
are then applied to disentangle the planetary signals from these
starlight residuals and thus reach a contrast of down to 10−6 at 0.5
arcsec (Mawet et al. 2012).

To disentangle signals, post-processing methods require diversity
within the data. The diversity is obtained through specific observa-
tions strategies (such as pupil tracking, dual band imaging or dual
polarization imaging). The most widely used methods today rely
on angular differential imaging (ADI; Marois et al. 2006) which
makes use of pupil tracking mode observations. This mode keeps
the speckle field almost constant during the observation while any
circumstellar signal rotates with a deterministic velocity given by
the parallactic angles. Most methods today consist in empirically
estimating the speckle field, then subtracting it from each frame of
the image cube, and then combining the frames to form the so-called
processed frame. In this processed frame the residual speckles add
up incoherently and thus average to small values whereas planetary
signals are aligned and average to the actual values of the intensity
of the planet.

Once this processed frame is computed, one has to perform the
detection, which is usually visually performed by the user. A robust
detection requires the use of statistical tests from which a detection
map is built. In this context, a good knowledge of the underlying
distribution of the residual noise is crucial. As discussed further
below, current estimation techniques rely on asymptotic analysis
of random variables that predicts a Gaussian distribution. As it is
known that a Gaussian based detection leads to high false positive
rate (FPR), it has been proposed to modify the detection procedure
to take into account the deviation from Gaussianity. However, to
the best of the knowledge of the authors, no study has yet proposed
a method to measure how far off the residuals are from a Gaussian
distribution.

In this work, we argue that the tail of the distribution is the
important feature as it will decide the outcome of the statistical
test. We empirically and theoretically discuss the decay of the tail
of the distribution of the residual noise after post-processing. This
analysis is non-asymptotic and the resulting estimate of the residual
noise level depends on the number of frames. Then we introduce
and study a new detection map that is built in light of our results.
Although our detection map is designed for an ADI sequence of
images, we stress that the non-asymptotic analysis of the speckle
noise distribution does not depend on the observation strategy and
can be applied to any images where speckle noise is present.

1.1 Contributions

This work brings several contributions, summarized below.
First, we study the tail decay of the residual noise distribution on

the processed frame for several datasets. We show numerically that
in each case the (empirical) quantiles of the noise distribution are
closer to the quantiles of a Laplacian distribution than to those of a

Gaussian distribution. This indicates that the residual noise exhibits
the exponential tail decay of a Laplacian noise.

Secondly, we prove theoretically that the MR distribution is
actually sub-exponential (Vershynin 2010), i.e. it belongs to a class
of distributions – including the Laplacian distribution – whose tails
decay exponentially. This allows us to use non-asymptotic statistical
tools, based on measure concentration, to determine a meaningful
estimate of the residual noise level on the processed frame in
function of the number of frames. Moreover, we study the sensitivity
of our analysis with respect to the fraction of frames that can be
considered as statistically independent. In particular, we quantify
how the temporal dependence between frames slows down the tail
decay of the residual noise. We note that all these observations could
not be reached with classical asymptotic analyses, e.g. relying on
the central limit theorem (CLT).

Thirdly, we leverage this non-asymptotic analysis to introduce a
novel detection map, the standardized trajectory intensity mean map
(or STIM map). Our theoretical analysis explains the distribution of
pixel intensities in this new map, for which exoplanets are associated
with clear outliers in a hypothesis testing context. Comparatively to
the SNRt map (Mawet et al. 2014), we observe that the STIM map
distribution is also more concentrated where there is no exoplanet
signal; exoplanet detection is thus made more stable with a single
thresholding procedure.

Finally, by establishing an automatic estimation of a reliable
detection threshold, we demonstrate the capabilities of the STIM
map through numerous experiments involving real datasets.

1.2 Paper structure

The rest of the paper is organized as follows. We present the state-of-
the-art of the reduction techniques and of the detection procedure,
our notations, and our conventions in Section 2. In Section 3,
after a brief presentation of the speckle noise distribution, we
study the statistical properties of the residual speckle noise both
empirically and theoretically, through a rigorous non-asymptotic
statistical analysis. Then, we present how this analysis applies to the
tail decay of the residual noise on the processed frame. We finally
discuss the impact of non-independence of the residual speckle
noise. In Section 4, we review the current detection map procedure
and we use our previous results to introduce and justify our new
detection map, the STIM map. In Section 5, we demonstrate the
efficacy of our approach by computing the STIM map for several
on-sky data from different instruments. We finally conclude and
give perspectives for further applications of this work in Section 6.
The information about the datasets used throughout the paper and
the mathematical developments can be found in the appendices.

2 FRAMEWO RK AND PRELI MI NARI ES

2.1 Current ADI-based post-processing techniques

An ADI dataset is a volume with T images (or frames) of size
n × n that is reshaped into RT ×N matrices with N = n2. In the
same fashion, n × n images are depicted as RN vectors. We denote
matrices by capital bold symbols, e.g. Y , and vectors by lowercase
bold symbols, e.g. f .

ADI-based post-processing methods can be summarized in three
steps described in Fig. 1: (i) a point-spread function (PSF) model1
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2264 B. Pairet et al.

Figure 1. Schematic representation of the ADI method. Y is the data cube,
L is the model PSF, S the subtracted data cube, and T the number of frames.
f is the processed frame.

L, containing only the host star signal with neither planetary
companions nor circumstellar discs signals, is estimated empirically
from the data cube Y , i.e. L = �(Y ) for some function � discussed
below, (ii) this PSF model is subtracted from the cube to form the
volume S = Y − L, and (iii) the individual frames of S are aligned
to a common direction for the potential companions and collapsed
into a processed frame f . The temporal correlation of S is known
to be lower than that of the initial volume, resulting in residual
speckles being considerably less correlated. Thus in step (iii), the
residual speckles average to a mean close to zero while the planetary
signals add-up. In practice, part of the planetary signal is present in
the model PSF L and the intensity of the planetary signals extracted
from the resulting processed frame f is an underestimate of their
true intensity.

The processed frame f computed in step (iii) of the ADI-based
post-processing is often computed as the pixelwise median of the
aligned frames of S. In order to ease the theoretical analysis, we use
in this study the mean instead of the median. Moreover, our methods
are conveniently described according to the following mathematical
conventions. When referring to a certain pixel in an image, we
use a single index g instead of a tuple (i, j) such that an element
of the processed frame is depicted as fg. Instead of defining an

1We note that, in HCI, the PSF has a slightly different meaning than in
other fields such as signal processing. In the context of HCI for exoplanet
detection, the PSF refers to the response of the whole observation system,
from the star to the detector, going through the atmosphere, the telescope
pupil, the AO, the coronagraph and any optical device in the light path. Hence
here, the PSF model refers to the approximation of the whole starlight signal,
accounting for the speckle field. Planetary signals have a different response
because the coronagraph is designed to act mainly (if not only) on on-axis
signals.

aligned volume as in step (iii) above, we first collect in a vector
s[g] = (s[g]

1 , · · · , s
[g]
T )� ∈ RT the values of the pixels of S that are

part of the trajectory induced by the parallactic angles starting from
the first line of the matrix S at index g. In this context, the gth element
of the processed frame is the computed mean of the trajectory g in
the volume S:

fg = μ̂g ≡ μ̂(s[g]) = 1

T

T∑
i=1

s
[g]
i . (1)

This description of the post-processing in terms of trajectories is
also illustrated in Fig. 5 in the context of the detection maps.

A wide variety of methods exists to construct the model PSF
L (that is to say different ways to define the function �), such
as c-ADI (classical ADI; Marois et al. 2006, using the median of
the data cube), LOCI (Locally Optimized Combination of Images;
Lafrenière et al. 2007, using a linear combination of patches of
the images), or PCA (Principal Component Analysis; Soummer,
Pueyo & Larkin 2012; Amara & Quanz 2012, using the first
principal components of the data cube). Other methods based on
ADI perform different steps to obtain the processed frame f , such
as LLSG (Gonzalez et al. 2016, that separates the volume in a low-
rank part for the star PSF plus a sparse part for the planetary signal).
We refer to this class of method as the speckle subtraction methods.

There exists another class of post-processing techniques based on
the inverse problem approach that perform a maximum likelihood
estimation (equivalent to matched filtering under the Gaussian
hypothesis) of the companion flux and position, producing directly a
detection map. The techniques, pioneered by ANDROMEDA (Can-
talloube et al. 2015), have been extended in different fashions, such
as multispectral data (see for instance the FMMF technique, Ruffio
et al. 2017).

These two classes of post-processing methods are complementary
in exoplanets detection. They are often used together, as it is
illustrated, for instance, in Delorme et al. (2017a).

The aim of the detection map that we introduce in Section 4.2 is
to provide a more robust detection procedure for speckle subtraction
methods. For this reason, we do not consider the second class of
methods in this paper. However, it is worth mentioning that our
theoretical findings have implications in the maximum likelihood
estimation on which they rely. This is briefly discussed in the
conclusion.

2.2 Detection procedure

We want to test the absence or the presence of a planet for each
pixel g on the processed frame f . In this context, we define on the
trajectory supported by g the null-hypothesis H0 as the absence of
a planet and the research hypothesis H1 as the presence of a planet.
Mathematically,

H0 : fg = Inoise, (2)

H1 : fg = Iplanet + Inoise, (3)

where Iplanet is the intensity of a hypothetical planet on location g
and Inoise is a random variable describing the residual noise at this
location.

Nothing is known a priori about the value of Iplanet, hence we
accept H1 by rejecting H0. Given an observed intensity I, how
likely is it that the null-hypothesis accounts for this observation? In
other words, what is the probability that the random variable Inoise
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takes a value equal or greater than I. Or mathematically, how large
is P(fg ≥ I|H0) = P(Inoise ≥ I). If it is unlikely that the residual noise
explains the observed values, then it is likely that something else,
such as an off-axis signal, explains it.

In this context, it is thus important to have a realistic estimate
of the distribution of the residual noise. Then one can select a
detection threshold in order to have a fixed confidence level, i.e. a
fixed probability, for a planetary signal to be detected.

Because the usual data reducing techniques have a whitening
effect on the residuals, justifying the independence of the random
variables summed together into the processed frame and the number
of frames being typically large, the CLT is generally invoked to state
that the residual noise in the processed frame follows a Gaussian
distribution (Marois et al. 2008; Mawet et al. 2014). Hence, under
the null hypothesis, pixels values are assumed to be drawn from
a Gaussian distribution with zero mean and standard deviation σ .
The probability of observing a value of 5σ is below 3 × 10−7.
Hence, rejecting H0 when Ig > 5σ yields a confidence level of
1−3 × 10−7 under a Gaussian assumption. However, it is known
that the Gaussian assumption leads to high FPRs (Marois et al. 2008;
Mawet et al. 2014). We briefly summarize how this non-Gaussianity
is currently accounted for in Section 4.1, before introducing the
proposed detection procedure based on our theoretical analysis.

In the context of direct imaging, the outcome of the hypothesis
testing is a detection map that assigns a value to each pixel in
the processed frame. The larger this value, the less likely the null-
hypothesis is verified, hence the more likely a planetary signal is
present at that location.

2.3 Planet-free datasets

In what follows, we will study the distribution of the residual
speckle noise in the processed frame. The presence of a planet
disturbs the tail distribution as planets are precisely detected as
outliers in the processed frame. Hence the study of the tail decay
requires planet-free datasets. An option is to remove all known plan-
etary signals with, for instance, the negative companion injection
method (NEGFC; Marois, Macintosh & Véran 2010). However, this
method does not guarantee that the totality of the planetary signal is
removed as it cannot be used for extended sources or faint planetary
signals that are not previously detected.

For these reasons, we decided to use another method to signifi-
cantly reduce the influence of potential exoplanets or other on-sky
signals in the dataset. We consider the trajectory groups ḡ ∈ Ḡ that
we obtain using the opposite values of the parallactic angles (Marois
et al. 2008). This way, we obtain a similar temporal dependence of
the residual speckles but circumstellar signals will be all averaged
to negligible values and have larger standard deviation. Processed
frames obtained with this method are referred to as opposite angles
processed frames in the text. We discuss the applicability of this
method in Section 5.

In the following, we will use three datasets described in Ap-
pendix A: β-Pic using the VLT-NACO instrument, and HD 206893
and 51 Eri taken with the VLT/SPHERE-IRDIS instrument. Each
target hosts a planetary signal.

3 R ESIDUA L SPECKLES STATISTICS

In this section, we first present the statistics followed by the speckle
noise. Then we empirically show that the distribution of the residual
noise on the processed frame exhibits a slower decay than expected
with a Gaussian distribution. After that, we introduce the concept

of sub-exponentiality and show that the MR distribution is sub-
exponential. We use this newly demonstrated property of the speckle
noise to characterize the residual noise on the processed frame using
non-asymptotic statistics. We end this section by an analysis of the
impact of the non-independence of the residuals on S.

3.1 Speckle noise statistics

The mean intensity I for an AO-corrected long exposure can be
modelled as the sum of the static coherent point spread function
(only due to the diffraction by the telescope aperture) Ic and a
random speckle noise intensity Is. It has been shown that the total
intensity I follows a Modified Rician (MR) distribution:

pMR(I , Ic, Is) = 1

Is

exp

(
− I + Ic

Is

)
I0

(
2
√

IIc

Is

)
, (4)

where I0 is the modified Bessel function of the first kind. This
equation, first derived for laser (Goodman 1975), was adapted to
HCI for exoplanet detection (Fitzgerald & Graham 2006; Soummer
et al. 2007; Marois et al. 2008, and references therein).

The expectation and variance of I are given by (Soummer et al.
2007):

EI = Is + Ic, (5)

σ 2
I = I 2

s + 2IsIc. (6)

In the following, we will consider that in high flux regime the
other sources of noise (photon and detector noise) are negligible,
especially close to the star, and hence σ total = σ I.

The parameters Ic and Is are not constant throughout the field of
view, however they can be consider as constant at a given radius, i.e.
at constant separation from the star. Hence the mean and standard
deviation of the speckle is a function of the radial distance from the
star.

When Ic equals zero, the intensity distribution turns into a pure
speckle exponential statistics. Note that when using a coronagraph,
the unaberrated term Ic tends towards 0 since the coronagraph is
designed to remove the static diffraction pattern. Moreover, thanks
to the post-processing, the PSF model L which is subtracted to the
data cube includes the static features and hence Is � Ic.

Another important aspect of the speckle noise is the different
time-scales appearing in the speckle formation (Hinkley et al. 2007).
A thorough analysis of the impact these different time-scales is
beyond the scope of this paper. However, we argue (Soummer et al.
2007) that this effect can reasonably be modelled by changing Is to
Is1 + Is2 , where Is1 and Is2 are the random speckle noise intensity of
time-scales τ 1 and τ 2, respectively. This substitution has no impact
in the scope of this work, hence, for simplicity and without loss of
generality, we consider the distribution displayed in equation (4)
for the speckles.

3.2 Tail-decay of the residual noise on the processed frame

We use a statistical visualization tool, namely a quantile–quantile
plot (Q–Q plot), to empirically show that, under the null-hypothesis,
the tail decay of pixel intensities on the processed frame is better
explained by a Laplacian distribution than by a Gaussian distribu-
tion. This empirical observation is, later in this paper, supported by
a theoretical analysis of the MR distribution.

A Q–Q plot is a statistical tool to compare two distributions
by plotting their respective quantiles against each other (see e.g.
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Figure 2. Q–Q plots for the three datasets. The sample is drawn from the centre circle of radius of 8λ/D of the opposite angles processed frame, using
respectively 10, 17, and 5 principal components. Top, we compare the distribution of the pixel values to the Gaussian distribution. We can see that the fit is
accurate for the centre of the distribution but becomes increasingly bad for the end of the tails. Bottom, we make the comparison with the Laplace distribution.
The corresponding Q–Q plot being closer to a straight line than under the Gaussian assumption. We display R2, the coefficient of determination, i.e. the Pearson
correlation between the paired of quantiles. The closer R2 is to 1, the better the fit is, i.e. if the two distributions are linearly related, then R2 = 1. Its values
confirms here that the Laplacian fit is better than the Gaussian fit.

Heiberger & Holland 2004). It thus allows one to compare the
empirical distribution of some data to the distribution they are
assumed to follow. If the assumed distribution is correct, the
resulting Q–Q plot will approximately be a straight line. When
the distribution parameters (e.g. mean and variance) are identical,
the resulting straight line is the bisector. Deviations from the straight
line indicate differences between the two distributions, such as
different skewness or kurtosis. In the context of exoplanet detection,
we are particularly interested in the tail of the distribution, as this
indicates when the H0 hypothesis can be rejected. As we are only
interested in the positive values, the information about the tail is
extracted from the right side of the plot. If the points of the Q–
Q plot are above the straight line in the right side of the plot, it
indicates that the distribution on the y-axis (data) has a heavier tail
than the distribution on the x-axis (test distribution).

We use the opposite angles processed frames for all three datasets
in order to significantly reduce the influence of any circumstellar
signal which could bias the residual speckles distribution (as
described at the end of Section 2). To build the Q–Q plots, we
arbitrarily select the pixels within the central annulus of radius
8λ/D in the opposite angles processed frame as our data sample.
Note that we observe that the results are similar when performed
with a different radius or annulus-wise.

We compare the pixel intensities distribution of our sample to the
Gaussian distribution in the Q–Q plot displayed in Fig. 2 (top). We
see that the Gaussian fit is good for the first quantiles but becomes
increasingly discrepant for higher quantiles. As a consequence,

likelihood that residual noise has a large value is greater than what
we can expect from a Gaussian random variable. In the framework
of detection, it means that a given probability of presence under the
Gaussian assumption will in reality yield a larger number of false
alarms.

Interestingly, we found that a Laplace distribution yields a better
fit for the tail decay, as shown in Fig. 2 (bottom). The Laplace
distribution follows a probability density function f (x|μ, b) =
1

2b
exp

(−|x−μ|
b

)
, where μ is the mean and b refers to as the diversity,

which is linked to the variance as σ 2 = 2b2. For x ≥ μ, the
cumulative distribution function (CDF) is given by

Fx(x) = P (X � x) = 1 − 1

2
exp

(
−x − μ

b

)
.

In other words, this means that the probability that a Laplacian ran-
dom variable is larger than the mean, P (X − μ � x) = 1

2 exp
(− x

b

)
decreases exponentially. In comparison, for a Gaussian r.v.’s, we

have P (X − μ � x) � exp
(
− x2

2σ 2

)
when x ≥ 0 increases.

To ease the comparison between the Gaussian and the Laplacian
plots, we also displayed in Fig. 2 the coefficient of determination R2

that is the Pearson correlation between the paired sample quantiles.
For two compared samples X and Y, it is given by:

R2 =
(

cov(X, Y )

σ̂ (X)σ̂ (Y )

)2

,
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STIM map: detection map for exoplanets imaging 2267

where cov(X, Y) is the sample covariance between samples X and
Y. The closer R2 is to 1, the closer the distribution X is to the
distribution Y. We can see that R2 is always closer to one in the
Laplacian probability plots than in the Gaussian probability plots,
thus supporting the observed trends.

We emphasize here that the only information provided by Fig. 2
is that the tail decay is better explained by a Laplacian (i.e. it has
an exponential tail decay) but not that the actual distribution of the
residual noise on the processed frame is Laplacian. A bound for
the actual tail decay of the residual noise on the processed frame is
derived in Section 3.4, based on the theoretical results presented in
Section 3.3.

3.3 Sub-exponentiality of the MR distribution

We prove now that an MR distribution has an exponential tail day,
i.e. it belongs to the class of sub-exponential random variables
(Vershynin 2010). Consequently, an MR random variable Z is such
that P(Z > z) decays like O(e−z) when the level z increases, and
not like the Gaussian tail decay O(e−z2

). As described below (see
Theorem 1), this has a clear impact on the sum of m independently
and identically distributed (i.i.d.) MR random variables; this sum,
seen as a random variable, has a tail that also decays exponentially
when the level increases beyond a value only depending on the MR
characteristics.

Mathematically, a sub-exponential random variable is such
that (Vershynin 2010),

P (|X − E(X)| � t) � c1 exp(−c2t),

for all t ≥ 0, where c1, c2 > 0 are two universal constants.
Equivalently, sub-exponential random variables can be defined as
follows (Vershynin 2010).

DEFINITION 1 (Sub-exponential random variables) A random
variable X is called sub-exponential if its sub-exponential norm
‖X‖ψ1 , defined as

‖X‖ψ1 := sup
p�1

p−1 (E|X|p)1/p , (7)

is bounded, i.e. ‖X‖ψ1 < +∞.

Interestingly, as proved in Appendix B, MR random variables are
sub-exponential.

PROPOSITION 1. Let X ∼ MR(α, β) be an MR random variable
with

MR(α, β) ∼ 1

β
exp

(
− t + α

β

)
I0

(
2
√

tα

β

)
,

i.e. with mean α + β and variance β2 + 2αβ. Then X is sub-
exponential with ‖X‖ψ1 � 6β.

Therefore, sums of MR random variables enjoy the following
concentration phenomenon shared by all sub-exponential random
variables.

THEOREM 1 (Vershynin (2010)) Let X1, . . . , Xm be indepen-
dent m centred sub-exponential random variables, and let K =
maxi ‖Xi‖ψ1 . Then, for every ε ≥ 0, we have

P
(∑m

i=1 Xi � εm
)
� exp

[
−c min

(
ε2

K2 , ε
K

)
m
]
, (8)

where c > 0.

We can thus bound the complementary CDF (i.e. 1 − CDF) of∑
iXi and state that for small values of the level ε, sub-exponential

random variables behave as Gaussian random variables while for
larger values of ε, they exhibit an exponential decay when ε

increases. As detailed in Section 3.4, this change of behaviour is
critical to detect outliers to the speckle distribution, e.g. planetary
signals.

3.4 Non-asymptotic analysis of the residual noise

The takeaway message of Proposition 1 is that we can apply
Theorem 1 to characterize the tail decay of pixel intensities in
the processed frame under the null-hypothesis (in the absence of
a planetary signals). We first show how this can be done for a
processed frame computed with the c-ADI algorithm. Then we
argue that, even if in the case of PCA this analysis is more
complicated and beyond the scope of this paper, we can still expect
our analysis to hold.

For the c-ADI algorithm, L consists of T copies of an image
whose pixel intensities are the temporal median (or mean) of the
data sequence of the corresponding trajectories. Hence the mean
of the distribution is shifted towards zero but otherwise remains
MR and under the i.i.d. hypothesis, the sum along trajectories (step
3 in Fig. 1) satisfies equation (8). The processed frame is fg =∑

i s
[g]
i /T and for a trajectory g, under the null-hypothesis, we

have

P
(

1
T

∑
i s

[g]
i � ε

)
� exp

(−c min(ε2/K2, ε/K)T
)
. (9)

From equation (4) and Proposition 1, we note that if I ∼ MR(Ic,
Is), then K ≤ 6Is and the variance is equal to σ 2

I = I 2
s + 2IcIs �

K2/36. Therefore, K ≤ σ I/6 and the bound (9) implies

P
(

1
T

∑
i s

[g]
i � ε

)
� exp

(−c̃ min
(
c̄ε2/σ 2

I , ε/σI

)
T
)
, (10)

for some c̃ > 0 and c̄ > 0. For small values of ε/σ I, we do observe a
Gaussian bound in equation (10). On the contrary, for large values of
ε/σ I the bound displays an exponential decay, i.e. the tail decreases
exponentially as ε increases. As the confidence level of the detection
depends on the probability of having an outlier, it is important to take
into account this phenomenon to avoid high FPRs. Therefore we
can reject the null-hypothesis by a careful selection of a threshold
driven by the bound (10). This is the theoretical motivation of our
detection map presented in Section 4.2.

Moreover, the bound in equation (10) provides the information
that the tail of distribution of the residual noise on the processed
frame decays exponentially with the number of frames. Indeed,
we see that the more i.i.d. random variables are added together,
the larger the probability that the sum does not deviate from the
mean. This effect is called the concentration of measure. The non-
asymptotic nature of our analysis lies in this explicit dependence on
the number of frames.

To the best of the authors’ knowledge, these effects had not been
fully theoretically assessed. This is the key theoretical contribution
of this paper as it explains the lower confidence level observed in
the literature and it is the basis of the detection map proposed in
Section 4.2.

In the case of PCA, the theoretical analysis is more difficult and is
left for future work. Nevertheless, we observed from the empirical
Q–Q plots in Fig. 2 that PCA-generated processed frames exhibit
residual noise with exponential tail decay. Furthermore, we argue
that since L is built with few principal components is the low-rank
structure of the data sequence, i.e. that it captures the slowly varying
parts of the data volumes, L remains close to the temporal mean.
Hence the residual noise of a PCA-processed frame is expected to
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2268 B. Pairet et al.

Figure 3. The fraction of pixels in the opposite angles processed frame
above a certain threshold ε as ε increases for three different datasets. We
can see the fast decay for small values of ε followed by a smaller decay. Each
opposite angles processed frame is obtained using one principal component.

be similar to that of ADI-processed frame. We also note that PCA
subtraction removes highly temporally correlated speckles, leaving
lesser correlated speckles (Mawet et al. 2014) and thus the i.i.d.
hypothesis of Theorem 1 is more likely to be verified for PCA.
Indeed, we show in the Section 3.5 that the non-independence of
the residual noise along trajectories results in a slowdown of the
concentration towards the mean and that the temporal correlation
drops quickly as the number of principal components increases.

To furthermore illustrate that we can use equation (10) to
bound the probability that residual corruption on a PCA-processed
frame reaches a value ε, we exhibit the sub-exponential behaviour
expected from equation (10) in three different datasets using PCA in
the reduction. To do so, we compute the empirical complementary
CDF of the opposite angles processed frame of the three datasets.
We count nε the number of pixels on the processed frame that are
larger than ε, for an ε ranging from zero to the maximal values taken
on the processed frame. We display in Fig. 3 the evolution of nε /n as
ε increases for the three considered datasets. We can see that for all
datasets the decay of the complementary CDF exhibits two distinct
behaviours as expected from the bound of equation (10). First a fast
decay that is compatible with a quadratic (thus Gaussian) decay.
Then a slower decay that displays a linear (thus exponential) trend.

For these reasons, we used a PCA to process the data throughout
this paper and we characterized the resulting processed frame using
our analysis. As demonstrated in Section 5, we obtained convincing
results regarding the capability of our method to detect exoplanets.

3.5 Time-dependent residual speckles

As it is common in the literature, we assumed so far that the
whitening effect of the reduction procedure is sufficiently strong
to consider that the residual noise along trajectories is made of
independent temporal components. That is the underlying assump-
tion when one uses the CLT to state that the noise on the processed
frame asymptotically follows a Gaussian distribution if the number
of frames is large. In our analysis, we also sum random variables
along trajectories and the bound given by equation (10) only holds
for i.i.d. random variables s

[g]
i , i.e. s

[g]
i and s

[g]
j are independent for

i = j.
It is thus important to estimate the length of the temporal

dependence of the residual speckle and its impact on the confidence
level for the detection procedure. Due to its asymptotic nature, it is
unclear how one can estimate the impact that the non-independence
of the random variables has on the CLT, whereas this estimation
is possible for our analysis. We here show how, under mild
assumptions, the tail bound in equation (10) can be modified to

Figure 4. Correlation length (in number of frames) with respect of the
number of principal components used in the processing for different dataset.

account for the non-independence of the random variables s
[g]
i . We

did not consider spatial dependence because it does not interfere
with the assumptions of Theorem 1.

We are here interested in the typical temporal dependence along
trajectories after subtraction of the model PSF in terms of number
of frames as it determines the number of i.i.d. random variables
appearing in the sum of equation (10). We assume a length of
dependence τ , such that τ successive elements of a trajectory are
dependent. In other words, two elements of a trajectory xi and xj are
independent if |i − j| > τ (τ being an integer). The result concerning
the sub-exponential decay of the tail is summarized in the following
corollary, the proof is postponed to Appendix C.

COROLLARY 1. With a length of dependence τ , equation (10)
becomes

P
(

1
T

∑
i s

[g]
i � ε

)
� τ exp

(
−c̃ min

(
c̄ε2

σ 2
I

, ε
σI

)
T
τ

)
. (11)

Corollary 1 tells us that the temporal dependence slows down the
concentration of measure around the mean.

It is in practice impossible to know the temporal dependence.
Hence, we use the temporal autocorrelation (for each trajectory)
after the subtraction of the model PSF in order to estimate
the dependence of the residual noise. For a signal with non-
correlated samples, the autocorrelation displays a large central
peak surrounded by white noise. We averaged the normalized
autocorrelation of all trajectories into a total autocorrelation. We
define the correlation length as the number of frames for which the
averaged autocorrelation is above a certain threshold.

We display in Fig. 4 the evolution of the correlation length, using
a threshold of 0.2, for our three different datasets processed using
PCA when the number of principal components increases. Although
the typical correlation length decreases quickly as the number of
principal components increases, its impact cannot be disregarded
and the bound of equation (11) is more accurate than the bound of
equation (10). However, the estimation of the factor τ depends on
the threshold one uses to compute the correlation length. Hence,
the presence of τ (along with the other constants) in the bound of
equation (10) hinders our capability to exactly estimate the inverse
CDF of the distribution of the residual corruption. We show in
Section 5 that the inverse CDF can be estimated from the opposite
angles processed frame.

4 D E T E C T I O N MA P

In this fourth section, we first briefly summarize a popular approach
to compute a detection map from the processed frame, i.e. the SNRt

map (Mawet et al. 2014), and list the shortcomings of this method.
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STIM map: detection map for exoplanets imaging 2269

Figure 5. Illustrative views of the computations of both the SNRt and
the STIM maps. We depicted three arbitrary trajectories s[gi ] and the
corresponding elements gi of each frame to illustrate the notations used
in the paper. The SNRt is built from the processed frame, comparing the
statics of resolution elements located at the same radial distance from the
centre of the frame. The STIM map is constructed directly from the residual
cube S.

We then propose our novel detection map, the STIM map, and
provide statistical guarantees for its subsequent thresholding based
on our theoretical analysis.

4.1 Current detection procedure for exoplanets direct imaging

As the statistical properties of the processed frame are known to
be radius dependent, the null-hypothesis is tested for each radius
separately. And because of the diffractive effect, resolution elements
of diameter λ/D are considered. As there are fewer such resolution
elements closer to the star, the confidence level of the detection
suffers from small sample statistics.

To deal with the small sample statistics and the high FPR obtained
when relying directly on Gaussian confidence level, Mawet et al.
(2014) proposed another detection map based on the t-student
statistics. The t-test is argued to be more robust with respect to
small sample statistics and with respect to the deviation from a
Gaussian distribution for the null-hypothesis. The test is defined
by computing the following map from the pixels intensity on the
processed frame

SNRt (x) = x̄1−x̄2

s2

√
1+ 1

n2

, (12)

where x̄1 is the mean flux of intensity inside the circle surrounding
the regarded pixel centred on x, n2 is the number of the other
λ/D resolution elements located at the same radial distance from
the centre of the frame, and x̄2 and s2 are respectively the mean
fluxes and sample variances of all such resolution elements. The
computation of the SNRt map is illustrated in Fig. 5. The resulting
SNRt map and the processed frame from which it is built can be seen
in Fig. 6 for the three tested datasets. These images were built using
the VORTEX IMAGE PROCESSING (VIP) PYTHON package (Gonzalez
et al. 2017b).2

2The code is publicly available at https://github.com/vortex-exoplanet/VIP.

Despite its capacity to detect faint objects (see e.g. Currie et al.
2015; Quanz et al. 2015), there are two main drawbacks for this
SNRt.

First, although the t-test is more robust with respect to deviation
from a Gaussian distribution, this deviation is not quantified. We can
hope that this distribution will be close to Gaussian if we add enough
frames. But we have no knowledge of how robust the validity of the
Gaussian hypothesis is with respect of the number of frames.

Secondly, the SNRt compares the statistical properties of a pixel
against pixels at same angular separation from the star. If there exist
multiple planets at the same radius, or extended structures such
as circumstellar discs, the map will overestimate the noise at that
radius, hence increasing the likelihood of a planet to be considered
as a residual speckle. Furthermore, any test performed directly on
the processed frame suffers from the small sample statistics when
considering pixels near the centre of the processed frame, i.e. when
attempting to detect planets close to their host star.

Our objective is to define a robust detection procedure, still
efficient at very close separation to the star in order to be sensitive
to faint planetary signals all over the field of view, even at locations
where the starlight residuals are very intense and varying fast
(typically below a few λ/D from the star).

The proposed detection map is computed in the temporal domain
and independently for each trajectory. Hence it has a sample
statistics that does not depend on the radial distance from the centre
and the presence of multiple planets does not hinder the likelihood
of a detection. Furthermore, the analysis of the distribution of the
residual noise is non-asymptotic with respect to the number of co-
added frames, consequently it is possible to estimate the confidence
of a detection depending on the number of frames available.

4.2 STIM: a time domain sub-exponential detection map

We now present our detection map and justify its use in the light
of the results of the previous section. The presence of the standard
deviation in the exponential in equation (10) induces a slower decay
rate in areas of S with a larger standard deviation. Thus trajectories
with larger temporal standard deviation are more likely to yield
a significantly large value on the processed frame under the null
hypothesis. For this reason, we propose to compute the map d
whose components are given by

dg = μ̂g

σ̂g

, (13)

where μ̂g is the computed mean of trajectory g in equation (1)
and σ̂g its standard deviation; e.g. the square root of its computed
variance

σ̂ 2
g ≡ σ̂

(
s[g]

)2 = 1

T − 1

T∑
i=1

(
s

[g]
i − μ̂g

)2
. (14)

We use d as a detection map and we name it the standardized tra-
jectory intensity mean map or STIM map for short. Its computation
is illustrated in Fig. 5.

Another way to introduce the STIM map would be the following.
The quantity σ̂g is proportional to the standard deviation of the
computed mean μ̂g . Indeed, denoting the standard deviation of μ̂g

by σ (μ̂g), it is given by

σ
(
μ̂g

) = σ
(
s[g]

)
√

T
.
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2270 B. Pairet et al.

Figure 6. Illustrative results for the three datasets: β-pic NACO (left), HD 206893 SPHERE (centre), and Eri 51 SPHERE (right). Top: the processed frame,
obtained with PCA, using respectively 3, 10, and 5 principal components. Middle: SNRt map. Bottom: STIM map.

Replacing the standard deviations by the estimator (14), we get that
the STIM map is given by

dg =
√

T
μ̂g

σ̂ (μ̂g)
.

We display the STIM maps obtained for the three considered
datasets in Fig. 6. In Fig. 7, we also display a one-dimensional plot
of both the SNRt and the STIM map for the HD 206893 SPHERE
dataset in order to better compare the behaviour of the two maps.

Intuitively, because residual speckles on S are spread on multiple
trajectories, for a trajectory g that is free of an exoplanet signal, the
computed mean is expected to be small after the PCA subtraction.
However, since most temporally correlated speckles are absorbed
in L (see Section 2), the computed variance of the intensities along
the trajectory g is expected to be large. Thus, we can expect to have
μ̂g/σ̂g � 1. On the other hand, since most the planets flux is still
present on S, for a trajectory p containing a planet, we expect the
computed mean to be large. Hence, we expect μ̂p/σ̂p to be larger
than μ̂g/σ̂g .

We now show how we can use sub-exponentiality of the MR
distribution to characterize the proposed detection map. Using the
argument from Section 3.2, we can apply Theorem 1 with ε ← σ Iε

and equation (10) becomes

P
(

1
T

∑
i s

[g]
i � σI ε

)
� exp

(−c̃ min
(
c̄ε2, ε

)
T
)
. (15)

As we noted, σ I depends on the separation from the star. We assume
that there are enough frames so that the computed standard deviation
along a trajectory is a good estimate of σ I for that trajectory and we
can set ε ← εT σ̂g ≈ εT σI and rearrange

P

(∑
i s

[g]
i

T σ̂g

� ε

)
� exp

(−c̃ min
(
c̄ε2, ε

)
T
)
. (16)

By definition
∑

i s[g]
i /T = μ̂g , hence

P

(
μ̂g

σ̂g

� ε

)
� exp

(−c̃ min
(
c̄ε2, ε

)
T
)
. (17)

In other words, the probability that the residual speckle noise
reaches a large value on the STIM map decays exponentially with
respect to T, the number of frames.

We argue that the proposed detection map does not suffer from
the two drawbacks of SNRt described in Section 4.1.

First, by accessing the temporal domain, it is not impacted by the
small sample statistics when considering planets close to their host
(compared to the SNRt that only analyses the processed frame).
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STIM map: detection map for exoplanets imaging 2271

Figure 7. Comparison of the SNRt map (top) and the STIM map (bottom) in
a one-dimensional plot for the HD 206893 dataset. The planetary trajectories
are represented with dots. Other trajectories are displayed as rectangles in a
transparency fashion, the darker the more trajectories take this value. We can
see that for the SNRt map, it is not possible to select a detection threshold
such that planetary trajectories are the only to take values larger than the
threshold. For the STIM map, such a threshold exists. In Section 5, we
describe how to set automatically this threshold from the complementary
CDF.

Indeed, the sample statistics of the STIM map is the number of
frames T and is the same for all radii.

We mention that if T is small (or if the temporal correlation is
strong, see Section 3.5), σ̂ is not necessarily a good estimator of the
standard deviation. Nevertheless, the asymptotic analysis behind the
state-of-the-art detection procedures suffers from the same small
sample statistics. Indeed, if T is small or strongly correlated, the
hypothesis that the number of i.i.d. random variables summed-up
can be considered as infinite is severely hindered. Furthermore, the
non-asymptotic nature of our analysis allows one to evaluate the
quality of the estimator σ̂ using standard statistical tools.

Secondly, by construction, the intensity of a given pixel on d
does not depend on the intensity of other pixels. There is thus no
influence of other planets that could be located on the same radius.
We also note that the STIM map is easy to implement and fast to
compute. For the illustrative examples of Fig. 6, the STIM maps
only required a third of a second to be completed using a single
CPU. A python implementation of the STIM map is available in the
VIP toolbox.

The detection map suffers the same concentration of measure
slowdown as described in Section 3.5. With a length of dependence
τ , equation (17) becomes

P
(

μ̂g

σ̂g
� ε

)
� τ exp

(−c̃ min
(
c̄ε2, ε

)
T /τ

)
. (18)

In Section 5.1, we use the opposite angles detection map to
estimate the typical values observed on the detection map under
the null hypothesis. As with the opposite angles procedure the plan-

Figure 8. Plot of the fraction of pixels in the STIM map above τ in three
different settings: (i) dark, the planet is present, (ii) medium, the planet is
removed with the negative companion injection method, and (iii) light, the
planet is present but the opposite parallactic angles are used in the processing.
As the decay is indistinguishable for the cases (ii) and (iii), we added dots
(light) and crosses (medium) to ease the comparison. On the other hand,
the decay is significantly different when a planet is present. These results
are obtained on the β-pic dataset processed using a PCA with 10 principal
components.

etary signal is significantly reduced while preserving the speckle
temporal dependence, the concentration of measure slowdown of
equation (18) is then accounted for.

Before moving on, we note that the bound similar to the one in
equation (17) would still hold if the mean is replaced by the me-
dian (Wainwright 2019). However, when performing experiments
with median, we did not find significant improvement over the mean
(See Appendix D).

5 EXPERI MENTS AND DI SCUSSI ON

In this section, we provide some numerical experiments to demon-
strate the capabilities of our approach.

5.1 Detection threshold estimation

We know from sub-exponentiality of the MR distribution that
the ratio μ̂g/σ̂g is close to zero with high probability under the
null-hypothesis. Unfortunately, the unknown constants c̃ and c̄ in
equation (17) and the potential temporal dependence in the residual
noise prevents us to leverage this bound to determine a detection
threshold rejecting H0. We here propose to select a detection
threshold by estimating the complementary CDF of the residual
noise on the processed frame, i.e. estimating P (μ̂g/σ̂g > ε|H0).
If this function is known, a threshold can be set so that it is
unlikely that the residual noise reaches its value. As we do not have
access to the true complementary CDF of the residual noise, we
propose to estimate it from the empirical CDF computed from the
opposite angles detection map. As outlined previously, the temporal
dependence of the speckle noise is the same as in the initial dataset.
Therefore, the concentration of the μ̂/σ̂ around 0 is also preserved
with the same potential concentration of measure slowdown (see
Section 3.5). Mathematically, P (μ̂g/σ̂g > ε|H0) ≈ P (μ̂ḡ/σ̂ḡ > ε)
holds because H1 does not arise in the opposite angles processed
frame. We estimate the complementary CDF as the number of
pixels taking a value larger than a threshold for increasing values of
this threshold. We thus compute nε = ∑

g χ+(μ̂g/σ̂g − ε), where
χ+(x) = 1 if x > 0 and 0 otherwise. If n is sufficiently large, we
have nε/n ≈ P (μ̂g/σ̂g > ε) and nε /n is then a good approximation
of the complementary CDF.
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2272 B. Pairet et al.

Figure 9. Detectability level for STIM map (top) and for SNRt map
(bottom) obtained with the HD 206893 dataset. In dark (triangle), intensity
at planet location, and in light (rectangle), detectability level estimated
by inverse trajectories. In medium (dots), detectability level estimated by
looking at the second largest spot on the detection map. On the SNRt map
we overplotted in grey dashed the 5σ threshold. The STIM map detects the
planet for all rank larger than 1 while SNRt map requires large number of
principal components to yield sufficiently large values of the SNR.

To show that we can indeed use the opposite parallactic angles
technique to estimate the residual noise level, we compare the
empirical complementary CDF of the detection map in three
different cases: (i) the planet is present in the dataset, (ii) the planet
signal is strongly attenuated using the negative companion injection
method, and (iii) the planet is present but we used the opposite
parallactic angles in the processing. We have observed that the
curves in cases (ii) and (iii) are practically indistinguishable, hence
the complementary CDF of the residual noise can be estimated from
the detection map obtained with the opposite parallactic angles. We
display the comparison for the β-pic dataset in Fig. 8 where we see
that τ = 0.5 is an adequate detection threshold. In Fig. 11, we see
that this threshold allows to detect the three injected companions
without any false positive.

We also show the sensitivity of the threshold with respect of the
number of principal components used in the PCA. We compare the
intensity of the planetary signal on the detection maps with (i) the
largest intensity observed on the opposite angles detection map
and (ii) the largest intensity on the detection map under the null-
hypothesis. Fig. 9 displays the evolution of these three quantities
as the number of principal components increase from 1 to 50, for
the STIM and SNRt maps obtained with the HD 206893 dataset.

Figure 10. ROC curves obtained for 100 fake companion injections, all
processed using four principal components. Top: at radial separation 250
mas with contrast between 2.75 × 10−5 and 4.12 × 10−5. Bottom: at radial
separation 375 mas with contrast between 1.37 × 10−5 and 2.75 × 10−5.

For the STIM map, the opposite angles detection map yields a good
approximation of the maximal noise intensity on the actual detection
map. Furthermore, this approximation can be used to estimate a
detection threshold such that the planetary signal is detected without
false positives. In contrast, for the SNRt, the maximal values on the
opposite angles map is not a good estimate for the maximal value
of the detection map under the null-hypothesis. In addition, for a
wide range of numbers of principal components, the SNRt map is
unable to detect the planet without false positive. We observed a
similar trend for the other datasets.

5.2 Receiver operating characteristic curves

Receiver operating characteristic (ROC) curve is a widely used tool
to compare classifiers. It consists of plotting the true positive rate
(TPR) as a function of the FPR. A good classifier yields a good
trade-off between large TPR for small FPR.

We propose to build a ROC curve that is localized following
the procedure described in Gonzalez, Absil & Van Droogenbroeck
(2017a). The resulting ROC curve is close to an alternative free-
response operating characteristic (AFROC) curve where one plots
the fraction of objects detected versus the fraction of images
with one or more false positives (Metz 2006). Given a detection
threshold, we say there is a TP if there is, within a λ/D diameter
area around the planet’s position, one pixel whose intensity is above
the threshold. We count the number of FP’s as the number of λ/D
circular areas that contain at least one pixel above the threshold, the
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STIM map: detection map for exoplanets imaging 2273

Figure 11. Results with three synthetic exoplanets injected at the same separation in the β-pic NACO data. Top row: processed frame using PCA with five
principal components (left), SNRt map (centre), and STIM map (right). Bottom row: intensities of the SNRt map (left) and of the STIM map (right) for each
trajectory. For the SNRt map, we see that no planet stands above the noise level, while for the STIM map, all three planets are detected without false positive
when using the 0.5 threshold derived in Section 5.1.

experiment is repeated 100 times. We computed the TPR and the
FPR for a given radius and for a given intensity range.

We display in Fig. 10 the ROC curves obtained for the β-
pic dataset with synthetic planets injected at small inner working
angles (top) and high contrast (bottom). In both cases, we observe
a gain in terms of TPRs versus FPR ratio. For the small inner
working angles case, the TPR for no false positive is 9 per cent for
SNRt map, whereas the STIM map reaches 57 per cent TPR for no
false positive. For high contrast, thesepercentages are respectively
10 per cent and 76 per cent. We conclude that in both cases, a
significant improvement is achieved.

5.3 Example with multiple planets at same radius

In Section 4, we stated that when multiple planets are located at the
same radial distance from the host star, or when extended structures
are present, the SNRt tends to overestimate the residual noise and
this hinders its capability to detect planets. We illustrate this effect
in this first experiment. We inject three planets at the same radial
separation in a planet-free dataset and show how the SNRt and
STIM maps behave.

We perform this experiment on the β-pic dataset using the
opposite angles to significantly reduce the effect of the known
companion. Then we injected three synthetic planetary signals, at a
radial separation of 352 mas and position angles of 133◦, 270◦, and
15◦ with contrast of 4.41 × 10−5, 4.81 × 10−5, and 3.73 × 10−5,
respectively (which is below the 5σ detection limit presented in
Absil et al. 2013). We processed the data with a PCA, using five
principal components. Fig. 11 shows the processed frame, the SNRt

map, and the STIM map. We see that no planet is found above the

noise level in the SNRt map whereas all three planets are above the
noise level in the STIM map.

6 C O N C L U S I O N A N D F U T U R E WO R K

In this paper, we first showed empirically that the tail decay of
the residual noise on the processed frame is better explained by a
Laplacian distribution than by a Gaussian distribution. From this
qualitative observation, we then theoretically proved that the MR
distribution is sub-exponential which means that its tail decays
as an exponential. We used non-asymptotic statistical analysis to
show that the tail distribution of the residual noise on the final
post-processed frame indeed decays as an exponential. Compared
to the commonly used CLT approach, this non-asymptotic analysis
directly estimates the sensitivity of the detection procedure with
respect to the number of frames we have in a given dataset and with
respect to the temporal correlation of the residuals.

Based on our statistical analysis, we introduced a novel detection
map, called STIM map, and studied its theoretical properties.
We then used thorough numerical experiments to demonstrate its
capabilities on real data. We also provided a method to automatically
estimate the detection threshold from any dataset. This detection
map thus enables direct and automatic detection in PCA-processed
frames with a higher true positive to false positive ratio than state-of-
the-art SNRt map used for exoplanet imaging today. In particular,
our performance analysis showed that the proposed STIM map
reaches a significant gain in terms of detection, especially at small
inner working angles where the poor field rotation and the high
speckle noise variance makes it very difficult to extract signals
and reveal the presence of fainter signals. This usual limitation is
bypassed thanks to the time-domain approach of the STIM map
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that, to the best knowledge of the authors, has never been used in
the framework of HCI post-processing.

On top of being directly used after speckle subtraction algorithms,
our analysis has implications on other algorithms. For instance
inverse problems approaches, such as ANDROMEDA or FMMF,
rely on a maximum a posteriori (MAP) estimate thus the knowledge
of the actual distribution of the residual noise allows to take it into
account when solving the problem. Indeed, these authors assume
that the residual distribution is Gaussian, which implies the use of
an �2-norm estimation. We have shown in this paper that the decay
of the tail is exponential and better accounted for by a Laplace
distribution. It turns out that the optimal norm to use in the MAP
estimation for the Laplace distribution is an �1-norm. This solution is
being implemented in such methods and published in a forthcoming
paper.

Future work would involve studying the specific case of extended
features, such as faint debris discs with sharp edges (see e.g. Lee &
Chiang 2016, for a gallery) or bright protoplanetary discs showing
blunt structures such as spiral arms (see e.g. Benisty et al. 2015,
2017). Another step is to apply this method on images taken using
different diversity such as the spectral diversity provided by integral
field spectrograph, where the planet extraction and characterization
is difficult due to the degeneracy of the obtained signal-to-noise
ratio with planetary spectrum.
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Marois C., Macintosh B., Véran J.-P., 2010, Adaptive Optics Systems II,

International Society for Optics and Photonics Vol. 7736. p. 77361J
Mawet D., Riaud P., Absil O., Surdej J., 2005, ApJ, 633, 1191
Mawet D. et al., 2012, Space Telescopes and Instrumentation 2012 : Optical,

Infrared, and Milimeter Wave, Vol. 8442, p. 844204
Mawet D. et al., 2013, in Shaklan S., ed., Proc. SPIE Conf. Ser. Vol. 8864,

Techniques and Instrumentation for Detection of Exoplanets VI. SPIE,
Bellingham, p. 9

Mawet D. et al., 2014, ApJ, 792, 97
McLean I. S., Chaffee F. H., 2000, in Iye M., Moorwood A. F., eds,

Proc. SPIE Conf. Ser. Vol. 4008, Optical and IR Telescope Instrumen-
tation and Detectors. SPIE, Bellingham, p. 2

Metz C. E., 2006, J. Am. Coll. Radiol., 3, 413
Milli J. et al., 2017, A&A, 597, L2
Papoulis A., Pillai S. U., 2002, Probability, Random Variables, and Stochas-

tic Processes. Tata McGraw-Hill Education
Pueyo L. et al., 2015, ApJ, 803, 31
Quanz S. P., Amara A., Meyer M. R., Girard J. H., Kenworthy M. A., Kasper

M., 2015, ApJ, 807, 64
Ruffio J.-B. et al., 2017, ApJ, 842, 14
Samland M. et al., 2017, A&A, 603, A57
Soummer R., 2005, ApJ, 618, L161
Soummer R., Ferrari A., Aime C., Jolissaint L., 2007, ApJ, 669, 642
Soummer R., Pueyo L., Larkin J., 2012, ApJ, 755, L28
Vershynin R., 2010, preprint (arXiv:1011.3027)
Wainwright M. J., 2019 , High-dimensional Statistics: A Non-asymptotic

Viewpoint, Vol. 48. Cambridge Univ. Press, Cambridge

MNRAS 487, 2262–2277 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/487/2/2262/5490399 by C
N

R
S - ISTO

 user on 26 June 2023

http://dx.doi.org/10.1051/0004-6361/201322748
http://dx.doi.org/10.1111/j.1365-2966.2012.21918.x
http://dx.doi.org/10.1051/0004-6361/201526011
http://dx.doi.org/10.1051/0004-6361/201629798
http://dx.doi.org/10.1051/0004-6361/201424041
http://dx.doi.org/10.1051/0004-6361/201425571
http://dx.doi.org/10.1086/683115
http://dx.doi.org/10.1088/2041-8205/814/2/L27
http://dx.doi.org/10.1051/0004-6361/201731145
http://dx.doi.org/10.1051/0004-6361/201731145
http://dx.doi.org/10.1086/498339
http://dx.doi.org/10.1086/431209
http://dx.doi.org/10.1086/507630
https://dlmf.nist.gov
http://dx.doi.org/10.1086/509063
http://dx.doi.org/10.1086/682989
http://dx.doi.org/10.1126/science.1232003
http://dx.doi.org/10.1086/513180
http://dx.doi.org/10.1126/science.1187187
http://dx.doi.org/10.3847/0004-637X/827/2/125
http://dx.doi.org/10.1126/science.aac5891
http://dx.doi.org/10.1086/500401
http://dx.doi.org/10.1086/523839
http://dx.doi.org/10.1086/462409
http://dx.doi.org/10.1088/0004-637X/792/2/97
http://dx.doi.org/10.1051/0004-6361/201629908
http://dx.doi.org/10.1088/0004-637X/803/1/31
http://dx.doi.org/10.1088/0004-637X/807/1/64
http://dx.doi.org/10.3847/1538-4357/aa72dd
http://dx.doi.org/10.1051/0004-6361/201629767
http://dx.doi.org/10.1086/427923
http://dx.doi.org/10.1086/520913
http://dx.doi.org/10.1088/2041-8205/755/2/L28
http://arxiv.org/abs/1011.3027


STIM map: detection map for exoplanets imaging 2275

Table A1. Description of the three datasets used in this paper. The total number of images constituting the data cube is noted Nimages. The
integration time used for each exposure of this data cube is noted tint. The average turbulence coherence time during the observation is noted
tcoh.

Name Date Instrument Coronagraph Filter Nimages Total field rotation tint tcoh

(VLT) (deg) (s) (ms)

β-pic Feb 2013 NACO AGPM Lp (3.5–4.1μm) 612 83.0 8 2.1
HD 206893 Oct 2015 SPHERE-IRDIS APLC H (1.48–1.77μm) 570 49.3 4 2.8
51 Eri Sep 2015 SPHERE-IRDIS APLC K1 (2.0–2.2μm) 256 41.6 16 6.2

APPENDIX A : PRESENTATION O F THE
DATA SET U SED IN THIS PAPER

Throughout this paper, we used three different representative dataset
to test our approach: (1) Beta Pictoris (HIP 27321) observations
using the VLT/NaCo instrument, published in Absil et al. (2013)
(ESO program ID 60.A-9800), (2) HD 206893 (HIP 107412)
observations using the VLT/SPHERE-IRDIS instrument, published
in Milli et al. (2017) (ESO program ID 96.C-0388), and (3) 51
Eridani (HIP 21547) observations using the VLT/SPHERE-IRDIS
instrument, published in Samland et al. (2017) (ESO program
ID 095.C-0298). Each target has one companion discovered by
imaging: (1) β-pic b (Lagrange et al. 2010) is a 8–15 Jupiter mass
exoplanet orbiting its host star at 5–10 au, (2) HD 206893 b (Milli
et al. 2017) is a 12–50 Jupiter mass companion orbiting its host star
at 10–15 au (Delorme et al. 2017b), and (3) 51 Eri b (Macintosh
et al. 2015) is a 2–10 Jupiter mass companion orbiting its host star
at 10–14 au (Samland et al. 2017).

Table A1 gathers the main information about each dataset taken
with instrument located at the ESO Paranal observatory. The three
dataset make use of a coronagraph: the β-pic data are taken with an
Annular Groove Phase Mask (AGPM) vector vortex coronagraph
(Mawet et al. 2005) optimized in L’ band (Mawet et al. 2013)
and the two SPHERE datasets are taken using the Apodized Lyot
Coronagraph (APLC, Soummer 2005) optimized for the YJH bands
(focal mask diameter of 185 mas) and including a Lyot stop
(Boccaletti et al. 2008).

A P P E N D I X B: PRO O F O F
SUB-EXPONENTIALITY OF MR
DISTRIBU TION

We prove Proposition 1, i.e. let X ∼ MR(α, β) with

MR(α, β) ∼ 1

β
exp

(
− t + α

β

)
I0

(
2
√

tα

β

)
,

then X is sub-exponential with ‖X‖ψ1 � 6β.

Proof. The moments of X are given by

EXp = ∫ +∞
0 tp 1

β
exp

(
− t+α

β

)
I0

(
2
√

tα

β

)
dt,

by change of variable t = s2, dt = 2s ds, we get

EXp = ∫ +∞
0 s2p

(
2s
β

exp
(
− s2+α

β

)
I0

(
2s

√
α

β

))
ds

= 1√
2
EY 2p,

where Y follows a Rice distribution (Papoulis & Pillai 2002):

Y ∼ Rice(ν, σ ) ∼ s

σ 2
exp

(
− s2 + ν2

2σ 2

)
I0

( sν

σ 2

)

with ν = √
α and σ =

√
β

2 . We thus have to prove that 1
p

(EY 2p)1/p

is bounded. The raw moment of Y are given by3

EY 2p = σ 2p2p�(1 + p)Lp(− ν2

2σ 2 ),

where �(·) is the gamma function and Lγ (·) is the Laguerre
polynomial of degree γ .

Since for x > 0, �(x) <
√

2πe−(11/12)xxx−1/2 [sec-
tion 5.6] (NIST), we find, for p ≥ 1,

�(1 + p) <
√

2π (1 + p)
1
2 +p,

where we use the fact that e−(11/12)x < 1. Moreover, for n ∈ N, Ln(·)
[equation 18.14.8] (NIST):

|Ln(x)| � 1

n!
exp(x/2),

Gathering all these observations yields:

E(Y 2p) <
(
σ 2p 2p

p!

√
2π(1 + p)

1
2 +p exp

(
− ν2

4σ 2

))
.

Thus for p ≥ 1,

p−1(EY 2p)
1
p < p−1

(
σ 2p 2p

p!

√
2π(1 + p)

1
2 +p

) 1
p

.

Recalling that EY 2p = √
2EXp , we get

p−1(EXp)
1
p < p−1

(
σ 2p 2p

p!

√
π(1 + p)

1
2 +p

) 1
p

< p−1

(
σ 2p 2p

p!

√
π(1 + p)

1
2 (1 + p)p

) 1
p

< σ 22
√

π
1
p

(√
1 + p

p!

) 1
p

(1/p + 1).

To find a bound for
(√

1+p

p!

) 1
p

, we consider two cases. First, the case
√

1+p

p! � 1, then
(√

1+p

p!

) 1
p � 1. Otherwise,

(√
1+p

p!

) 1
p �

√
1+p

p! �
√

1+p

p
=

√
1/p2 + 1/p. Then we observe that

√
1/p2 + 1/p is a

monotonically decreasing function reaching its maximum for p =
1 with value

√
2. Hence in both cases, we conclude

(√
1+p

p!

) 1
p �√

2. For (1/p + 1), we also use the fact that it is a monotonically
decreasing function reaching its maximum for p = 1 with value 2.
Collecting these results and observing that

√
π

1/p � √
π , we get

‖X‖ψ1 � σ 24
√

π
√

2 = β2
√

2π < 5.02β < 6β.

Hence we have shown that X ∼ MR(α, β) is sub-exponential with
‖X‖ψ1 < 6β. �

3https://reference.wolfram.com/language/ref/RiceDistribution.html
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A P P E N D I X C : PRO O F O F T H E
C O N C E N T R AT I O N O F ME A S U R E S L OW D OW N
I N D U C E D BY N O N - I N D E P E N D E N C E

We prove Corollary 1, we first present a proposition.

PROPOSITION 2. Assume B = ∑�

i=1 Ai and ε > 0. Then

P (|B| � ε) � � max
i

P (|Ai | � ε/�). (C1)

Proof. We have

P
(
|∑�

i=1 Ai | � ε
)
� P

(∑�

i=1 |Ai | � ε
)

(C2)

� P
(∑�

i=1 maxi |Ai | � ε
)

(C3)

= P (� maxi |Ai | � ε). (C4)

Using a union bound, one gets

P
(
|∑�

i=1 Ai | � ε
)
� � maxi P (|Ai | � ε/�) .

Corollary 1 follows from Proposition 2. We assume we have a
dependence length of τ . We put the elements of the trajectory into
subgroups of ν = T/τ independent elements.

We write B = ∑τ

i=1 Ai , where Ai = ∑ν

j=1 s
[g]
(i+j ·τ ). Then we

apply Proposition 2 with � = τ and ε ← εT. We get

P
(|μ̂g| � ε

) = P
(
|∑τ

i=1

∑ν

j=1 s
[g]
(i+j ·τ )| � εT

)
(C5)

� τ maxi P
(
|∑ν

j=1 s
[g]
(i+j ·τ )| � εT /τ

)
. (C6)

For a given i, the s
[g]
(i+j ·τ ) are i.i.d. sub-exponential random variables

and hence we can apply Theorem 1 and get

P
(∣∣μ̂g

∣∣ � ε
)
� 2 exp

(−c min(K2/σ 2, ε/K)T /τ
)
. (C7)

APPENDI X D : C OMPARI SON BETWEEN TH E
M E D I A N A N D TH E M E A N

In order to compare the capability of the STIM when using the mean
(STIMean) or the median (STIMedian), we reproduce two figures
from the text.

Figure D1. Reproduction of Fig. 7 for the mean (top) and for the median
(bottom). The planetary signal is found to emerge from the noise more
clearly for the mean than for the median.

In Fig. D1, we compare the capability of the STIMean and the
STIMedian on HD 20689. We can see that the median performs
poorly compared to the mean.

We also reproduce the ROC curves of section with the STIMedian
added in Fig. D2. We do not observe any significant difference
between the detection capabilities of the two maps.
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Figure D2. Reproduction of Fig. 10, with the STIMedian map added.
Top: radial separation of 250 mas with contrast between 2.75 × 10−5 and
4.12 × 10−5. Bottom: radial separation of 375 mas with contrast between
1.37 × 10−5 and 2.75 × 10−5. We do not observe a significant difference
between the use of the median or the mean in the computation of the STIM
map.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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