
HAL Id: insu-03705163
https://insu.hal.science/insu-03705163

Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A smoothed particle hydrodynamics algorithm for
multigrain dust with separate sets of particles

Daniel Mentiplay, Daniel J. Price, Christophe Pinte, Guillaume Laibe

To cite this version:
Daniel Mentiplay, Daniel J. Price, Christophe Pinte, Guillaume Laibe. A smoothed particle hydro-
dynamics algorithm for multigrain dust with separate sets of particles. Monthly Notices of the Royal
Astronomical Society, 2020, 499, pp.3806-3818. �10.1093/mnras/staa3171�. �insu-03705163�

https://insu.hal.science/insu-03705163
https://hal.archives-ouvertes.fr


MNRAS 499, 3806–3818 (2020) doi:10.1093/mnras/staa3171
Advance Access publication 2020 October 15

A smoothed particle hydrodynamics algorithm for multigrain dust with
separate sets of particles

Daniel Mentiplay ,1‹ Daniel J. Price ,1 Christophe Pinte 1,2 and Guillaume Laibe3

1School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
2CNRS, IPAG, University Grenoble Alpes, F-38000 Grenoble, France
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ABSTRACT
We present a method for simulating the dynamics of a mixture of gas and multiple species of large Stokes number dust grains,
typical of evolved protoplanetary discs and debris discs. The method improves upon earlier methods, in which only a single grain
size could be represented, by capturing the differential backreaction of multiple dust species on the gas. This effect is greater for
large dust-to-gas ratios that may be expected in the later stages of the protoplanetary disc life. We benchmark the method against
analytic solutions for linear waves, drag, and shocks in dust–gas mixtures, and radial drift in a protoplanetary disc showing that
the method is robust and accurate.

Key words: hydrodynamics – methods: numerical – protoplanetary discs.

1 IN T RO D U C T I O N

In order to interpret dust continuum emission, for example, in ALMA
observations showing gaps and rings (ALMA Partnership et al.
2015; Andrews et al. 2016), we must model planet–disc interactions
including multiple species. At any continuum wavelength grains
of multiple sizes contribute to the observed emission. In addition,
spectral index maps can put constraints on the size distribution of
dust grains within gaps (Huang et al. 2018). Multispecies dust models
allow us to test the underlying disc models by producing synthetic
spectral index maps to compare with observations (Casassus et al.
2015; Pinte et al. 2016).

Multiwavelength observations of protoplanetary discs show that
the radial extent of the dust disc scales inversely with wavelength,
i.e. inversely with dust grain size (Andrews 2015). Modelling this
requires dust and gas hydrodynamics with multiple dust species – one
of the grand challenges in protoplanetary disc modelling (Haworth
et al. 2016). In particular, it is important to capture the collective
backreaction of multiple dust species on the gas (Dipierro et al. 2018).
For example, small grains are well coupled to the gas and follow its
inward or outward motion (Weidenschilling 1977). Larger grains
drift inwards due to the differential velocity between the pressure-
supported gas, and, due to conservation of angular momentum, the
gas might drift outwards dragging the small grains with it (Laibe &
Price 2014c).

Radiative transfer calculations offer a way to validate hydro-
dynamical models of protoplanetary discs by producing synthetic
observations for comparison with observations. These calculations
require knowledge of the distribution of many dust species from the
hydrodynamical simulation. The ability to perform multiwavelength
synthetic observations in single species dust–gas hydrodynamical
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models is limited. One option is to stack, in post-processing, multiple
single dust species simulations (Dipierro et al. 2015; Mentiplay,
Price & Pinte 2019). However, due to backreaction, there may
be a phase difference in the location of the concentration making
this procedure unreliable. For example, discs containing dust asym-
metries and spiral arms around central cavities can show greater
concentration at different wavelengths (Casassus et al. 2015; van
der Marel et al. 2015). Previous work has suggested that the cause
of these features is a (possibly unseen) companion in the cavity
(Price et al. 2018b; Calcino et al. 2019; Poblete, Cuello & Cuadra
2019). Due to the potential for a phase difference in these single-
species simulations, producing multiwavelength synthetic observa-
tions requires multiple dust species within the same hydrodynamical
simulation.

Several groups have developed methods for simulating the
hydrodynamics of dust–gas mixtures with multiple dust species
with both grid and particle methods, e.g. Bai & Stone (2010a), Porth
et al. (2014), Hutchison, Price & Laibe (2018), Benı́tez-Llambay,
Krapp & Pessah (2019), Lebreuilly, Commerçon & Laibe (2019),
and Li et al. (2019). The methods of Benı́tez-Llambay et al. (2019)
and Lebreuilly et al. (2019) are limited by their use of the single
fluid approach (discussed below). Bai & Stone (2010a), Porth et al.
(2014), and Li et al. (2019) describe grid codes which can introduce
grid-alignment issues.

Smoothed particle hydrodynamics (SPH) is a particle method for
solving the equations of hydrodynamics (Monaghan 1992, 2005;
Price 2012). The fluid, typically gas, is discretized on to a set of
particles rather than a grid. There are two approaches to modelling
of dust–gas mixtures in SPH: (i) the dust and gas are represented by
separate sets of SPH particles (Monaghan & Kocharyan 1995; Laibe
& Price 2012a,b). In this approach, the dust and gas SPH particles
interact via a drag coupling term. In the other approach, (ii), the dust
and gas are modelled by a single set of SPH particles representing the
mixture (Laibe & Price 2014a,b,c; Price & Laibe 2015; Ballabio et al.
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2018). In this approach, the dust fraction is stored on the particles
and evolved in time.

Typically, in both of these methods, an explicit time-stepping
scheme is used. One problem with such schemes is that the drag time-
scale can be many orders of magnitude smaller than other physically
interesting time-scales, e.g. the orbital time in a protoplanetary
disc. This requires taking small time-steps and is computationally
inefficient. Various groups have developed implicit or semi-implicit
time-stepping methods that remove the restriction of small time-
steps required by explicit schemes for drag (Monaghan 1997; Laibe
& Price 2012b; Lorén-Aguilar & Bate 2014, 2015; Stoyanovskaya
et al. 2018).

In the description for both of these approaches (the dust as separate
particles method and the single SPH fluid mixture method), the meth-
ods are applicable to a single species of dust with fixed size. Laibe &
Price (2014c) and Hutchison et al. (2018) described a multiple species
approach for the single SPH fluid method. Hutchison et al. (2018)
derived the version using the terminal velocity approximation, and
tested this in the PHANTOM SPH code (Price et al. 2018a). The single
fluid approach is limited in that particles are not allowed to stream
past each other as expected for large, weakly coupled grains (Laibe
& Price 2014b). The methods of Benı́tez-Llambay et al. (2019),
Lebreuilly et al. (2019), and Li et al. (2019) are based on the single
fluid approach.

In this paper we extend method (i), in which dust is represented by
separate sets of particles, from a single species to multiple species.
We present the continuum equations to solve in Section 2.1, and the
SPH discretization of those equations in Section 2.3. We describe
several tests of the method, as implemented in PHANTOM, in Section 3.
We discuss some of the challenges of the method in Section 4.

2 ME T H O D S

2.1 Continuum equations for multiple dust species

We consider a mixture of gas, indexed by g, and N dust species,
indexed by di. We neglect the finite size of the dust particles, and thus
set the gas volume fraction to unity. We represent each dust species
as a continuous fluid with a fixed size, si, and intrinsic density, �mi

.
Then, the equations of conservation of mass for the mixture is given
by

∂ρg

∂t
+ ∇ · (ρgvg) = 0, (1)

∂ρdi

∂t
+ ∇ · (ρdi

vdi
) = 0, (2)

for each i in 1 to N, where ρg and vg are the gas density and velocity,
and ρdi

and vdi
are the dust density and velocity.

We assume the fluids are inviscid, that the dust is pressureless,
and that each dust species is homogeneous, i.e. has the same grain
size, mass, and intrinsic density. The equations of conservation of
momentum for the mixture are given by

ρg
dvg

dt
= −∇P + ρg f +

∑
i

Ki(vdi
− vg), (3)

ρdi

dvdi

dt
= ρdi

f − Ki(vdi
− vg), (4)

where P is the gas pressure, f is any body forces acting on the
fluids, typically gravity from a star or planet (we ignore self-gravity
in this paper), and Ki is the drag coefficient between the gas and a
particular dust species, i. Note that each dust fluid has one gas drag
interaction term, whereas the gas momentum equation has a sum of

interactions over each dust species. Also, note that the dust has no
pressure gradient force term. In general, the drag coefficient could
be a complicated expression. We assume that the drag force is linear
with respect to the differential velocity, �vi = vdi

− vg. Thus, the
drag coefficient is constant in differential velocity.

The gas and dust exchange momentum via drag which leads to
frictional heating. Under the assumption that the gas and dust grains
are at the same temperature, the evolution of gas internal energy is
given by

ρg
dug

dt
= −P (∇ · vg) + ρg

∑
i

Ki(vg − vdi
)2. (5)

We neglect the dust fluid internal energy under the assumption that
the dust and gas are at the same temperature.

Equations (1)–(5) are 2N + 3 equations describing the evolution
of a mixture of gas and N dust species. We discretize these equations
with SPH in Section 2.3.

2.2 Drag time-scale

2.2.1 Drag coefficient and stopping time

Dust and gas interact via a drag force. This drag force has a
characteristic time-scale, known as the stopping time. The stopping
time relates to the drag coefficient, which depends on quantities such
as the gas temperature and density, and on the physical characteristics
of the dust grains. For a single dust species, the stopping time, ts, is
given by

ts = ρgρd

K(ρg + ρd)
, (6)

where K is the drag coefficient for the single species. We assume
spherical grains of size s with a uniform material density, �m. In the
linear Epstein regime (Epstein 1924), the drag coefficient K is

K = ρgρd

�ms

√
8

πγ
csf , (7)

where γ is the adiabatic index of the gas. For convenience, we define
an effective material density, �eff, given by �eff = �m

√
πγ/8. In

addition, f is a correction for supersonic relative velocities given by
(Kwok 1975)

f =
√

1 + 9π

128

�v2

c2
s

. (8)

As discussed in Hutchison et al. (2018), a straightforward gen-
eralization of the stopping time for multiple dust species is not
available. Each dust species is separately coupled to the gas by
the drag force. However, the dust species are indirectly coupled
to each other via backreaction, as required by conservation of
momentum. Considering the multiple dust species case, and ignoring
the supersonic correction factor, the drag coefficient, Ki, is now

Ki = ρgρdi
cs

�effsi

. (9)

By analogy with equation (6) we can define a ‘stopping time’, t ′
si

, as

t ′
si

= ρgρdi

Ki(ρg + ρdi
)
. (10)

However, there are other ‘stopping times’ we can define. First, we
define ρ = ρg + ∑

i ρdi
as the total density of the gas and all dust
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species. Then, we can define another ‘stopping time’, tsi , as

tsi = ρgρdi

Kiρ
. (11)

Considering the mixture of dust and gas as a whole, we define the
weighted sum seff = ∑

i ρdi
si/

∑
i ρdi

as an effective grain size for
the mixture. Then, we can define an effective stopping time for the
dust mixture, assuming Epstein drag, as

Ts = �effseff

ρcs
. (12)

By combining equations (6) and (7), we can see the expression for
the multigrain effective stopping time, Ts, is analogous to the single
dust species case, ts.

2.2.2 Stokes number

The Stokes number, St, is a dimensionless stopping time defined as
the stopping time in units of a typical flow time. For protoplanetary
discs, the typical flow time is the Keplerian orbital time, 1/	K, so
that the Stokes number is St ≡ ts	K. Note that the Stokes number
depends on the gas disc properties, via the density and temperature,
the dust disc density, the dust grain properties, i.e. size and material
density, and the stellar mass and orbital distance. The disc surface
density, 
, and disc scale height, H, are related to the density, sound
speed, and Keplerian orbital time by ρ = 
/

√
2πH and 	K = cs/H.

Using these relations, we can show that the Stokes number in the
mid-plane of a protoplanetary disc is given by

St =
√

2π�effs



. (13)

Considering the multiple dust species case, we can define an
effective mid-plane Stokes number for the mixture using the effective
stopping time (equation 12) as Steff = √

2π�effseff/
. An alternative
is to define a per species mid-plane Stokes number in analogy with
the single grain size case:

Sti =
√

2π�effsi


g

(
1 + ∑

i εi

) , (14)

where 
g is the gas surface density and εi = ρdi
/ρg is the dust-to-gas

ratio for each dust species. Again, we see the combination of grain
properties, size and material density, and the disc surface density
fixing the Stokes number. Given that we assume the material density
is the same for all species, we see that the grain size of the species, for
any fixed location in the disc, gives the variation in Stokes number
between species.

The Stokes number controls the dynamics of dust grains in
protoplanetary discs (Weidenschilling 1977; Takeuchi & Lin 2002),
affecting radial drift, vertical settling, orbital circularization, and gap
and spiral formation. The individual Stokes number (equation 14)
encapsulates the dynamics of each dust species. We can distinguish
between three regimes of dust dynamics:

(i) small grains, i.e. those with Sti � 1,
(ii) intermediate-sized grains, i.e. those with Sti ∼ 1, and
(iii) large grains, i.e. those with Sti 	 1.

Small grains have short stopping time, i.e. differential velocity
decays faster than the orbital time, and are thus strongly coupled
to the gas. These grains stick to the gas, e.g. following the gas
accretion flow. Large grains have long stopping time, i.e. differential
velocity decays more slowly than the orbital time, and are thus
weakly coupled to the gas. Intermediate-sized grains are marginally

coupled to the gas. These grains experience the fastest radial drift
velocities (Takeuchi & Lin 2002; Ayliffe et al. 2012). For a typical
protoplanetary disc, with surface density ≈1 g cm−2 and intrinsic
grain density ≈1 g cm−3, small grains are �10μm, and large grains
are �1 mm. Note that for other physical systems the terms small and
large grains have different meaning. For example, in the interstellar
medium large grains might be any grains >10μm.

Several works describe the behaviour of these dust species as
independently coupled to the gas (Nakagawa, Sekiya & Hayashi
1986; Dipierro & Laibe 2017; Kanagawa et al. 2017). Dipierro et al.
(2018) extended the analysis to consider the full backreaction of all
species on to the gas. They showed that the cumulative backreaction
from multiple dust species can strongly affect the gas flow, even for
low dust-to-gas ratio, and that, for large dust-to-gas ratio, the small
grains can drift outwards, as opposed to the typical inwards drift.
This gives motivation to this work.

2.3 SPH with multiple dust species

2.3.1 SPH density with multiple dust species

We extend the SPH method for dust and gas mixtures with a
single species, first described in Monaghan & Kocharyan (1995)
and improved upon by Laibe & Price (2012a,b), to multiple dust
species. We use a separate set of particles to represent the gas and
each dust species. So, each phase of the mixture has its own density
and smoothing length that depend only on the neighbouring particles
of its own phase. This differs from the 1-fluid method described by
Hutchison et al. (2018) in which there is a single set of SPH particles
representing the mixture. The SPH formulation of the continuity
equations, equations (1)–(2), are given by

ρk
a =

∑
b

mk
bWab

(
hk

b

)
, (15)

hk
a = η

(
mk

a

ρk
a

)1/ν

, (16)

where the superscript k ∈ {g, d1, . . . , dN} is an index distinguishing
between the gas and all dust species; ν is the number of spatial
dimensions; mk

a , ρk
a , and hk

a are the SPH particle mass, density, and
smoothing length, respectively; Wab is the SPH smoothing kernel;
and η is a factor of order unity which determines the number
of neighbours per particle. For an overview on the SPH method,
see Monaghan (1992, 2005) and Price (2012). So, there are N +
1 sets of equations, equations (15)–(16), one set per phase. This
is a straightforward generalization of previous single dust species
methods.

One important feature of the above equations is that the gas and
dust densities (for each dust species) are calculated without reference
to any other phase. Given that the dust is pressureless, this can lead
to dust becoming trapped under the gas resolution (Laibe & Price
2012a). This is in contrast to the gas in which, due to the pressure
force, particles are kept apart to prevent this overconcentration. Dust
and gas interact only via drag which requires relative motion. If dust
particles become concentrated and remain motionless with respect
to the local gas distribution there is no pressure force to stop further
collapse. This can lead to unphysical clumping of dust which can
mimic physical clumping of dust that might be expected, in, for
example, protoplanetary discs or molecular clouds. (See Tricco, Price
& Laibe 2017, for a discussion of this in the context of molecular
clouds.)
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2.3.2 SPH equation of motion with multiple dust species

The equations of motion in SPH can be derived from a Lagrangian
giving exact conservation of linear and angular momentum, and
energy (Price 2012). Following Laibe & Price (2012a) and Price &
Laibe (2020), the equation of motion for the gas is given by

dvg
a

dt
= −

∑
b∈g

m
g
b

[
Pa + qa

ab

	
g
a

(
ρ

g
a

)2 ∇aWab

(
hg

a

) + Pb + qb
ab

	
g
b

(
ρ

g
b

)2 ∇aWab

(
h

g
b

)]

+ ν

N∑
i=1

∑
b∈di

m
g
b

Kab

ρ
g
aρ

di

b

(v∗
ab · r̂ab)r̂abDab(hmax), (17)

where Kab, Dab, hmax , and v∗
ab are defined below. Pa refers to the

pressure on particle a, 	g
a is a term related to the variable smoothing

length given by

	g
a = 1 − ∂ha

∂ρa

∑
b

mb

∂Wab(ha)

∂ha

. (18)

qa
ab and qb

ab are terms relating to artificial viscosity given by

qa
ab =

{− 1
2 ρavsig,avab · r̂ab, vab · r̂ab < 0,

0, otherwise,
(19)

where r̂ab = (ra − rb)/|ra − rb| is the normalized separation vector,
vab = va − vb, and vsig,a is the maximum signal speed given by

vsig,a = αAV
a cs,a + βAV|vab · r̂ab|, (20)

where αAV
a and βAV are parameters controlling the artificial viscosity

strength. The first term in equation (17) represents the usual SPH
discretization of the pressure gradient force on a particle, labelled by
a. The sum, denoted by

∑
b∈g, is a sum over gas neighbours, labelled

by b. The second term is discussed in Section 2.3.3.
The equation of motion for each dust species, di, is given by

dvdi
a

dt
= −ν

∑
b∈g

m
di

b

Kab

ρ
g
bρ

di
a

(v∗
ab · r̂ab)r̂abDab(hmax), (21)

where Kab is the drag coefficient between particles a and b, Dab is
the drag kernel (Section 2.3.3), hmax = max (ha, hb) is the maximum
smoothing length between any pair of particles, and v∗

ab refers to a
higher order reconstructed velocity for the particle pair a and b (Price
& Laibe 2020). This avoids the ‘overdamping’ problem described by
Laibe & Price (2012a).

2.3.3 Drag kernel and drag coefficient

The second term in equation (17) represents the cumulative drag force
from each dust species on particle a (with i ∈ {1, . . . , N} representing
each species). For each species, the sum, denoted by

∑
b∈di

, is a sum
over dust neighbours, labelled by b, where here the a index refers
to the gas particle and the b index refers to its dust neighbours.
Similarly, the sum on the right-hand side of equation (21) represents
the drag force from the gas on the particular dust species, where a
refers to a dust (SPH) particle and b refers to its gas neighbours.

Equations (17) and (21) are a straightforward generalization of
Laibe & Price (2012a) to multiple dust species. For Epstein drag, the
drag coefficient Kab is given by

Kab = ρg
aρ

di

b

�effsi

cs,afab, (22)

where cs,a is the sound speed on the gas particle and fab supersonic
correction factor (equation 8) between the two particles.

The typical bell-shaped kernel used in SPH to estimate density,
denoted by Wab, is not appropriate for the drag force summation.
Rather, we use a separate drag kernel, Dab, with a ‘double-hump’.
This was found to be 10× more accurate (Laibe & Price 2012a).

2.4 Time-stepping

2.4.1 Time-step constraint

We use an explicit leapfrog time-stepping scheme as discussed in
Price et al. (2018a). Given that we use an explicit scheme for the
drag term there is an additional stability constraint on the time-step
�t. We derive this constraint for the forward Euler scheme. (Even
though we do not use this scheme, it provides a guide to the nature
of the constraint.) Following Laibe & Price (2012a, 2014c), we start
with the discretization of the drag-only velocity equations for dust
and gas with the forward Euler method, we have

vn+1
g − vn

g

�t
= −

∑
i

Ki

ρg

(
vn

g − vn
di

)
, (23)

vn+1
di

− vn
di

�t
= Ki

ρdi

(
vn

g − vn
di

)
. (24)

Then we perform a von Neumann stability analysis, where we expand
the solution in plane waves, vm

j = V m
j eikx , where j refers to the

species, k is the wavenumber, and m refers to the time-step. This
expansion leads to the following matrix equation:

⎛
⎜⎜⎜⎝

Vg

Vd1

...
VdN

⎞
⎟⎟⎟⎠

n+1

=

⎛
⎜⎜⎜⎜⎜⎝

1 − �t
∑

Ki

ρg

�tK1
ρg

· · · �tKN

ρg
�tK1
ρd1

1 − �tK1
ρd1

· · · 0

...
...

...
...

�tKN

ρdN

0 · · · 1 − �tKN

ρdN

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

Vg

Vd1

...
VdN

⎞
⎟⎟⎟⎠

n

. (25)

To find the eigenvalues of the matrix M above we need to find the
characteristic polynomial, det(M − λI ). We can find the determi-
nant of M using Schur’s determinant identity det(M) = det(A −
BD−1C) det(D), where A is the 1 × 1 matrix consisting of the upper
left value, B is the N × 1 matrix of the top row except the first value,
C is the 1 × N matrix of the left-hand column except the first value,
and D is the remaining N × N diagonal matrix. Applying this identity
to the matrix M − λI gives(

1 − �t
∑

Ki

ρg
− f − λ

)
×
∏

i

(
1 − �tKi

ρdi

− λ

)
, (26)

where f = ∑
i �t2K2

i [ρgρdi
(1 − �tKi

ρdi

− λ)]−1. We neglect f as it

is second order in �t. To find the eigenvalues we equate the
characteristic polynomial with zero and solve to find

λg = 1 − �t
∑

i Ki

ρg
and λdi

= 1 − �tKi

ρdi

. (27)

For stability, we require |λk| < 1. Using this condition with equa-
tions (9) and (11) gives the following time-step criteria:

�t <
2∑

i εi/tsi
and �t <

2tsi

1 − ε
∀ i, (28)

where ε = ∑
iεi and εi = ρdi

/ρ. We have N + 1 inequalities. We
take the minimum over dust stopping times in the inequality on the
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right to find the most restrictive time-step criterion involving only
dust quantities:

�t <
2

1 − ε
min

i
tsi . (29)

Laibe & Price (2014c) derived more general bounds on the eigenval-
ues of the drag matrix that imply a time-step criterion:

�t <

(
max

i

(
1

εi t ′
si

)
+ 1

1 − ε

∑
i

t ′
si

)−1

. (30)

Assuming strong drag, this can be approximated by

�t <

(
1

mini tsi
+ 1

(1 − ε)t ′
si

)−1

. (31)

We take the minimum over dust stopping times in the first term of the
inequality to find the most restrictive time-step criterion given by

�t <
2

N

maxi tsi

mini εi

. (32)

This is a sufficient but not necessary condition. Given that N is of
order tens and, at worst, min iεi ∼ 1, we can say that equation (29) is
more restrictive than equation (32), and thus provides the time-step
constraint for drag. Note that (i) the stability constraint depends on
the shortest stopping time, and (ii) for large dust-to-gas ratios, i.e. ε

→ 1, the stability constraint becomes unimportant.
This time-step constraint is not the same as the one derived in

Laibe & Price (2012a) for a single dust species. In that case, the
time-step constraint is the stopping time itself, and does not depend
on the dust fraction. Note that we have shown that equation (29) is
the stability constraint for the forward Euler discretization of the drag
terms to first order in �t. We have not derived the stability constraint
for the leapfrog scheme we use in our numerical tests below, but we
expect the stability constraint to remain the same.

2.4.2 Time-step constraint for SPH

We can rewrite the time-step constraint in equation (29) using the
alternative stopping time, t ′

si
(defined in equation 10). First, we note

that tsi /(1 − ε) = ρdi
/Ki and t ′

si
(1 + εi) = ρdi

/Ki . Then, given that
1 − ε does not depend upon the index i, we can bring it under the
min operator to give

�t < 2 min
i

{t ′
si

(1 + εi)}. (33)

This is useful because in evolving the momentum equations we use
the drag coefficient on a dust (or gas) particle over its gas (or dust)
neighbours, without reference to the other dust species. Given that εi

> 0, for simplicity, we take the more restrictive constraint of setting
εi = 0, i.e.

�t < 2 min
i

t ′
si
. (34)

Even though using a factor of 2 in equation (34) provides a nu-
merically stable time-stepping scheme (in the von Neumann sense),
numerical experimentation showed that any value greater than 1.0
led to inaccurate results. We use Cdrag to refer to this factor.

For a dust particle, we take the minimum over gas neighbours
(labelled by a) of the individual species constraint (�t < Cdragtsi ):

�t < Cdrag min
a

{
ρg

aρ
di

b

Kab

(
ρ

g
a + ρ

di

b

)
}

, (35)

whereas, for a gas particle, we take the minimum of equation (34),
rewritten in terms of the drag coefficient and densities, over the
neighbouring dust particles (labelled by b) to find the SPH time-step
constraint for a particle:

�t < Cdrag min
i

min
b

{
ρg

aρ
di

b

Kab

(
ρ

g
a + ρ

di

b

)
}

. (36)

3 NUMERI CAL TESTS

We implemented the numerical method described in Section 2.3 in
the SPH code PHANTOM.1 We then performed several tests to validate
the method against known analytical solutions. The dusty box test
(Section 3.1) validates the drag force coupling in the absence of
spatial gradients. The dusty wave test (Section 3.2) validates the
method with spatial gradients in a linear regime. The dusty shock
test (Section 3.3) validates the method in a challenging non-linear
regime. The radial drift test (Section 3.4) validates the method is the
context of a global 3D protoplanetary disc model.

The tests all have analytical solutions in one spatial dimension. We
performed each of the tests in three dimensions, and then reduced the
data to one dimension for comparison with the analytical solutions.
In each of the tests we used, unless stated otherwise: a globally
isothermal equation of state; the quintic kernel with 113 mean particle
neighbours (η = 1.0 in equation (15)); global time-stepping, i.e.
all particles have the same time-step; a Courant factor of 0.3; a
time-step constraint on the acceleration Cforce of 0.25, where �ta <

Cforce
√

ha/|aa |; and a time-step constraint on the drag Cdrag of 0.9.

3.1 Dusty box

We performed the multigrain version of the dusty box test described
in Laibe & Price (2011). We set up a periodic box of uniform density
gas and dust with an initial differential velocity between the gas and
each dust species. In this test, the equation of motion simplifies to

∂�V
∂t

= −	�V , (37)

where �V is the differential velocity vector in the direction of
motion, i.e. vdi

− vg for each i projected along the direction of
motion, and 	 is the drag matrix (equation 65 of Laibe & Price
2014c) given by

	ij =
⎧⎨
⎩

1
t ′′si

1
(1−ε) , i �= j,

1
t ′′si

(
1
εi

+ 1
1−ε

)
, i = j,

(38)

where ε = ∑
iεi, and t ′′

si
= (

∑
i ρi)/Ki .

This problem tests how well the numerical scheme captures the
exchange of momentum between gas and each dust species via the
drag force. All tests were in the linear Epstein drag regime. We
performed six tests in two sets of three. The first set had a total dust-
to-gas ratio of 0.01, and the second set 0.5. The tests within each set
had 1, 2, and 5 dust species, respectively, with grain sizes given in
Table 1. Each test had equal mass in each grain size bin. The gas is
initially motionless, and each dust species has uniform velocity in
the positive x-direction. We turned off the SPH viscosity, i.e. set αAV

to zero in PHANTOM. We set Cdrag = 0.2 for computational reasons (to
allow PHANTOM to output data more frequently while still restricting
the time-step via the drag force).

1See the git commit labelled by the hash 64dbd2b1 in the PHANTOM source
code repository for the implemented changes.
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SPH for multigrain dust 3811

Table 1. Grain sizes for dusty box test.

Species Grain size (cm)

One dust species
1 0.01

Two dust species
1 0.01
2 0.1

Five dust species
1 0.01
2 0.0316
3 0.1
4 0.316
5 1.0

For each test problem, we set up each of the gas and dust fluids on
a close-packed lattice, using dense-sphere packing, such that there
were 648 particles per species (eight particles in the direction of
motion). We set the gas density to 10−13 g cm−3, with the dust-to-gas
ratio varying per test problem. We set the dust grain material density
for all species to 1.0 g cm−3.

Fig. 1 shows the time evolution of the mean velocity differential
between the gas and each dust species, compared with analytical
solutions. The time is a dimensionless time-scaled by the stopping
time, tsi , of the smallest grain size, which is 9.677, 19.354, and
48.385 yr for the low dust-to-gas ratio (0.01) calculations (top row),
and 0.287, 0.575, and 1.437 yr for the high dust-to-gas ratio (0.5)
calculations (bottom row). Given that there are no spatial gradients in

the problem, all particles follow the mean velocity. The dashed lines
represent the analytical solution without backreaction from the dust
on the gas. The solid lines represent the analytical solution including
backreaction.

For low dust-to-gas ratio (0.01) both analytical solutions give
the same decay of differential velocity, with which the PHANTOM

simulation agrees. For a larger dust-to-gas ratio (0.5) the analytical
solutions for multiple species differs from the single-species solution,
and the PHANTOM simulation data follows the backreaction-inclusive
solution. In all cases, the numerical solution matches the analytical
solution with relative error less than 0.01.

Fig. 2 shows a zoomed version of the bottom right-hand panel
in Fig. 1. For large dust-to-gas ratio we see that the smallest grains
(0.01 cm) rapidly slow and the differential velocity reverses sign.
That is the small grains slow to the gas velocity; then, as the
larger grains speed up the gas via drag, the gas drags the small
grains along with it. This shows that the behaviour of multiple
dust species for large dust-to-gas ratios requires taking backreaction
into consideration to capture the physics of dust drag accurately
(Gonzalez, Laibe & Maddison 2017; Dipierro et al. 2018).

Fig. 3 shows that the method is second-order accurate with respect
to the time-step. Each marker represents the L2-norm error, of a
numerical solution for the two dust species case with a dust-to-gas
ratio of either 0.01 or 0.5, with varying time-step controlled by Cdrag.
The error is given by

error(�t) =
√∑

i,j

(
V �t

i,j − vj (ti)
)2

, (39)

Figure 1. Dusty box numerical test showing the differential velocity between the dust and gas. The total dust-to-gas ratio is 0.01 (top row) and 0.5 (bottom
row). From left to right: the number of dust species is 1, 2, 5. The open circles represent the results from the PHANTOM numerical solution. The solid and dashed
lines represent the analytical solution with and without taking backreaction into account, respectively. In the top row, the solid and dashed lines lie on top of
each other. In the bottom row, the numerical solution matches the analytical solution including backreaction. Each colour represents the differential velocity of
a dust species increasing in size from bottom to top. For the specific grain sizes, see Table 1. Time is dimensionless, scaled by the shortest stopping time.
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3812 D. Mentiplay et al.

Figure 2. Zoomed-in version of bottom right-hand panel in Fig. 1. The
smallest dust grains (in blue) show a negative differential velocity.

Figure 3. The L2-norm error with varying time-step showing the second-
order convergence of the method. Each marker represents a single simulation
with two dust species with a dust-to-gas ratio of either 0.01 or 0.5. The grey-
dashed line represents a slope of 2. For large time-steps, the error matches the
line of slope 2 (indicating second-order convergence). For smaller time-steps
the error is dominated by kernel bias. The diamond and the square markers
represent numerical solutions with η = 1.0 and η = 2.5, respectively.

where the indices i and j represent time and dust species, respectively,
V �t

i,j is the numerical solution for a particular �t (or equivalently
Cdrag), and vj(ti) represents the exact solution. For large time-steps,
the error matches the grey, dashed line of slope 2 (indicating second-
order convergence in the log–log plot). For smaller time-steps the
error is dominated by kernel bias. This is demonstrated by the fact that
in the case with fewer neighbours (η = 1.0), indicated by diamond
markers, the error plateaus at a larger magnitude than for the case
with a greater number of neighbours (η = 2.5), indicated by the
square markers.

3.2 Dusty wave

We performed the multigrain version of the dusty wave test described
in Laibe & Price (2011, 2014c). This is a test of the dust–gas drag
coupling in the context of a damped sound wave. The dust is a
pressureless fluid and cannot support sound waves. However, the gas

Table 2. Mean density and stopping times for dusty wave test.

Species Density Stopping time

One dust species
g 1.0 –
1 2.24 0.4

Four dust species
g 1.0 –
1 0.1 0.1
2 0.2333 0.2154
3 0.3667 0.4642
4 0.5 1.0

can support sounds waves and drags the dust. This leads to damping
of the wave. This tests the numerical method in a problem including
spatial gradients in a linear regime.

Considering small perturbations around an equilibrium state, ρj =
ρ0

j + δρj , and vj = δvj, where the index j is g for the gas species, and
di for each of the dust species, the linearised equations of motion for
this system are

∂δρg

∂t
+ ρ0

g

∂δvg

∂x
= 0, (40)

∂δρdi

∂t
+ ρ0

di

∂δvdi

∂x
= 0, (41)

ρ0
g

∂δvg

∂t
=
∑

i

Ki(δvdi
− δvg) + c2

s

∂δρg

∂x
, (42)

ρ0
di

∂δvdi

∂t
= −Ki(δvdi

− δvg). (43)

For the particular set-up, we followed Benı́tez-Llambay et al. (2019).
By assuming solutions to the linearised equations of the form
δf = δf̂ eikx−iωt they derive solutions as a dispersion relation (their
equation 45) and associated set of eigenfunctions (their equations 46–
48). Following Benı́tez-Llambay et al. (2019), we set the initial
condition to constant density and zero velocity plus a perturbation of
the form

δf = A[Re(δf̂ ) cos(kx) − Im(δf̂ ) sin(kx)]. (44)

We set the sound speed cs = 1, and the wave amplitude A to 10−4cs

and 10−4ρ0
g for the velocity and density perturbations, respectively.

We performed two tests: (1) with gas and a single dust species, and
(2) with gas and four dust species. We set the background density,
drag coefficients, and initial perturbations from table 2 in Benı́tez-
Llambay et al. (2019). We set up a periodic box of unit length, with
8192 particles for each species (128 particles in the wave direction).
We use constant drag, Ki, for each dust species, where Ki = ρdi

/tsi ,
and ρdi

and tsi from Table 2 (following Benı́tez-Llambay et al. 2019).
We turned off the SPH viscosity, i.e. set αAV to zero in PHANTOM.

Fig. 4 shows the time evolution of the normalized velocity and
density perturbations at a particular location within the domain (x =
0). The normalized velocity vN and density ρN are defined by

ρN = ρ − ρ0

Aρ0
, (45)

vN = v

Acs

, (46)

where the zero subscript represents the initial value. The solid
lines represent the analytical solution from Benı́tez-Llambay et al.
(2019) and the open circles represent the numerical solution from
PHANTOM. We see that the numerical solution accurately reproduces
the analytical solution, i.e. the relative error is everywhere less than

MNRAS 499, 3806–3818 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/3/3806/5924468 by IN
IST-C

N
R

S IN
SU

 user on 21 July 2023



SPH for multigrain dust 3813

Figure 4. Dusty wave numerical test showing the normalized velocity (top) and density (bottom) perturbation at x = 0, for gas with one dust species (left) and
gas with four dust species (right). The open circles represent the PHANTOM simulation, and the solid line represents the analytical solution from Benı́tez-Llambay
et al. (2019). The gas is blue, and other colours represent different dust species.

0.01. In both cases, we see the wave damping effect, and within a
few wave periods the wave dissipates.

3.3 Dusty shock

We performed a multiple species version of the isothermal steady
state single species dusty shock test, with exact solution given
in Lehmann & Wardle (2018).2 Benı́tez-Llambay et al. (2019)
generalized that solution to multiple dust species. The solution,
in steady state, for this shock is described by the following set of
equations:

∂

∂x
(ρgvg) = 0, (47)

∂

∂x
(ρdi

vdi
) = 0, (48)

∂

∂x

[
ρg

(
v2

g + c2
s

)] = −
N∑

i=1

Ki(vg − vdi
), (49)

∂

∂x

(
ρdi

v2
di

) = Ki(vg − vdi
). (50)

We assume a constant drag coefficient Ki per species. The constant
isothermal sound speed is cs. In steady state, due to the drag force,
the gas and all dust species have the same pre-shock velocity vs

and the same asymptotic post-shock velocity. We define normalized
velocities ωg = vg/vs and ωdi

= vdi
/vs , then these equations can be

integrated to give

2The solution is described as a J-type shock in which the fluid variables
undergo a jump discontinuity, rather than the properties being continuous
across the front (as in a C-type shock).

Table 3. Dusty shock parameters. Same as Benı́tez-Llambay et al. (2019).

Fluids K1 K2 K3 ρ− ρ+ ω− ω+

2 1.0 – – 1.0 8.0 1.0 0.125
4 1.0 3.0 5.0 1.0 16.0 1.0 0.0625

0 = ω2
g + ωg

[∑
i

εi(ωdi
− 1) − M−2 − 1

]
+ M−2, (51)

dωdi

dx
= Ki

ρdi

(ωg − ωdi
), (52)

where x0 is the shock position and M = vs/cs is the Mach
number (Benı́tez-Llambay et al. 2019). These equations can be
numerically integrated to give the normalized velocities. Then,
equations (47) and (48) give the densities:

ρj = ρj (x0)vj (x0)
vj

, (53)

where the index j refers to either g or di.
We set up two tests. One test with a single dust species to validate

against previous single dust species tests. And another test with three
dust species to validate our multiple dust species method. We used
that same parameters as shown in table 3 in Benı́tez-Llambay et al.
(2019) reproduced here in Table 3 for completeness. For both tests,
we chose M = 2, cs = 1, and εi = 1 for all dust species. The left
(pre-shock) velocities are set be the Mach number, i.e. vj = 2, where
j represents both gas and all dust species. We set the left (pre-shock)
gas density ρg to 1. We set the drag coefficients Ki to: 1.0 for the
single dust species test, and 1.0, 3.0, and 5.0 for the three dust species
test. The right (post-shock) asymptotic values are given by
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3814 D. Mentiplay et al.

Figure 5. Dusty shock initial conditions. We used a step function for the
velocity profile (top), and a smoothed density profile (middle). The particles
for each species are placed on two close packed lattices, one on either side of
the shock (bottom). The density is lower in the pre-shock region, on the left,
than on the right. The particle positions in the shock region are adjusted to
smooth the shock over a few particle spacings.

ρR
j = ρL

j ωL
j

ωR
j

, (54)

ωR
j = (1 + N )−1M−2, (55)

where j represents both gas and all dust species, N is the number of
dust species, and the superscripts L and R represent left and right
asymptotic states, respectively. We set αAV to 1.

We set up initial conditions such that the velocities are constant
with their asymptotic values on either side of the shock at xshock = 0.
We set up the densities similarly except that we smoothed the shock
at shock boundary, using a logistic function, i.e.

ρ(x) = ρLe−kx + ρR

1 + e−kx
, (56)

where ρL and ρR are the density on the left and right of the shock,
respectively, and k is a factor determining the width of the smoothing.
We set k−1 to 2xsep, where xsep = 0.1953125 is the (resolution-
dependent) separation between particles in the x-direction in the low-
density region. This is due to the large (in principle, infinite) gradient
in density at the shock boundary leading to an overconcentration of
dust in the post-shock region.

Fig. 5 shows a sample of the initial particle positions (bottom)
with the analytical density profile (top). For the gas and each dust
species, we set up the particles on two close-packed lattices; one on
each side of the shock, with the density and velocity set by their
asymptotic values. We use the same resolution for the gas and each
dust species. Due to the resolution following the mass in SPH, the
numerical resolution is higher in the high-density region.

Fig. 6 shows the velocity and density of both tests at t = 300
which is long enough so that any transient behaviour has died out.
We have binned the particles into 40 bins in the x-direction and
calculated a mass-weighted average for both density and velocity.

We have overplotted the analytical solution for comparison. Note
that the shock position has drifted from its initial position, perhaps,
due to numerical dissipation. We have shifted the analytical solution
shock position to minimize the error, as in Benı́tez-Llambay et al.
(2019). Note that this drift has velocity ∼0.5 per cent of the pre-shock
velocity, and ∼5 per cent of the post-shock velocity. Our numerical
method reproduces the exact solution in this non-linear test problem.

To achieve an accurate solution, we used a larger number of
particle neighbours in the SPH density sum than is typical in
dust–gas simulations with PHANTOM. The typical mean neighbour
number when using the quintic kernel, used by default for dust–gas
simulations, in calculating density sums is 113 (Price et al. 2018a).
The mean neighbour number Nneigh is related to the proportionality
constant η by

Nneigh = 4

3
π (Rkernη)3. (57)

For the quintic kernel, Rkern = 3.0. So, by default, η = 1.0. We used
a η value of 1.8 in Fig. 6.

Fig. 7 shows the comparison between the analytical and numerical
solutions for the density varying the value of η = 1.2, 1.5, 1.8, cor-
responding to Nneigh = 195, 381, 660. We can see that the accuracy
of the gas density (blue line and markers) is independent (or weakly
dependent) on the neighbour number. In contrast, the dust density
depends strongly on the neighbour number. To avoid large errors,
we require η = 1.5, for the single dust species case, and η = 1.8,
for the three dust species case. We discuss the implications of this in
Section 4 below.

3.4 Radial drift

We tested the method against the steady-state radial drift solution for
a viscous protoplanetary disc with multiple dust species calculated
in Dipierro et al. (2018) as a generalization of the single species
solution in Nakagawa et al. (1986) and the multiple species inviscid
case in Bai & Stone (2010b). Following Dipierro et al. (2018), the
gas radial drift velocity v

g
R is given by

v
g
R = −λ1vP + (1 + λ0) vvisc

(1 + λ0)2 + λ2
1

, (58)

and the dust radial drift velocity v
di
R is given by

v
di
R = vP [(1 + λ0) Sti − λ1] + vvisc (1 + λ0 + Stiλ1)[

(1 + λ0)2 + λ2
1

] (
1 + St2

i

) , (59)

where vP, the dust drift velocity due to the gas being pressure-
supported, is

vP = 1

ρg	k

∂P

∂R
, (60)

and vvisc, the gas radial velocity due to viscous spreading, is

vvisc =
[
Rρg

∂

∂R

(
R2	k

)]−1
∂

∂R

(
ηR3 ∂	k

∂R

)
, (61)

with η = νρg = αcsHρg (where α is the Shakura & Sunyaev (1973)
viscosity parameter) and λk is given by

λk =
∑

i

Stki
1 + St2

i

εi . (62)

We used equations (58) and (59) to validate our numerical method
for the radial drift test.

We set up a 3D, locally isothermal protoplanetary disc around a
star of 1 M�. We used 10 dust species logarithmically distributed
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SPH for multigrain dust 3815

Figure 6. Dusty shock numerical test showing the velocity (top) and the density (bottom) at time t = 300. The left figures have gas (in blue) and one dust
species; the right figures have gas (blue) and three dust species. The open circles represent the results from the PHANTOM simulation. The solid lines represent
the analytical solution from Benı́tez-Llambay et al. (2019).

Figure 7. The effect of η in the dusty shock test problem. The lines and the markers are the same as used in Fig. 6. From left to right: η = 1.2, 1.5, 1.8,
corresponding to Nneigh = 195, 381, 660. For the single dust species case, we require 381 neighbours. For the three dust species case, we require 660 neighbours.

in size from 1 to 104 cm. The gas mass was 0.05 M� and the total
dust-to-gas ratio was 0.5. The dust sub-disc mass for each species
scaled with the grain size. We used 106 gas particles and 106 dust
particles with 105 per species. We used a dust grain material density

of 3 g cm−3. The disc extends from 1 to 150 au. The radial profile of
the surface density was given by 
(R) ∝ R−1. The radial profile for
the gas temperature was given by T(R) ∝ R−0.5 with the aspect ratio
H/R = 0.05 at R = 1 au. We used α-disc viscosity (section 3.3.4, Price
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3816 D. Mentiplay et al.

Figure 8. Azimuthally averaged radial drift velocity profiles for gas (black)
and five dust species (other colours). The circle markers represent the drift
velocities measured directly on the particles with shading indicating the
standard deviation from radial binning. The solid line corresponds to the
analytical solution from Dipierro et al. (2018). The numerical and analytical
solutions agree within the variation due to binning. The error in the 1.6 cm
and 4.0 cm grains for radius �90 au is due to the depletion of those grains at
those radii.

et al. 2018a) with an artificial viscosity parameter αAV = 0.74. We
set the initial radial velocities to zero. We set the orbital velocities to
account for the pressure gradient (section 3.3.2, Price et al. 2018a).
Initially, the dust sub-discs are co-located with the gas disc. We used
individual time-stepping (section 2.3.4, Price et al. 2018a).

After evolving the disc for 3674 yr, we binned the particles into 25
equally spaced radial bins between 25 and 140 au. For the analysis,
we considered only particles within 0.05 times the gas scale height of
the mid-plane. The Stokes number is exponentially dependent on the
height above the mid-plane (Sti ∼ ρ−1

g ∼ ez2
). Averaging, within a

radial bin, by including particles above the mid-plane (�0.05 Hg)
produces a poor estimate of the mid-plane Stokes number. We
computed the mass-weighted average of the radial velocities in the
each annular cylinder for the gas and each dust species. To compare
with the analytical solution (equations 58 and 59), we computed each
of the terms (equations 60–62) on the radial bins. We computed the
gradient terms using a second-order finite difference approximation.

Fig. 8 shows this comparison of the radial drift velocities for the
five smallest dust species. The drift velocities are scaled by vP. We
omit grains larger than 63.1 cm as they are consistent with zero radial
drift. The shading represents the standard deviation from the binning
procedure. The solid lines represent the drift velocities computed
from equations (58) and (59). We see that for most of the radial extent
of the disc the drift velocities match to within the error introduced by
binning. The deviation for the 1.6 and 4 cm grains for radius �90 au
is due to depletion of those grains via radial drift.

4 D ISCUSSION

In deriving our method, we made no assumptions on the size of the
dust grains. This is unlike the method described in Hutchison et al.
(2018) that makes the terminal velocity approximation, appropriate
for small, well-coupled grains (Youdin & Goodman 2005).

However, we use an explicit time-stepping scheme (Price et al.
2018a). In addition to the usual Courant–Friedrichs–Lewy (CFL)
time-step constraint (Courant, Friedrichs & Lewy 1928), which in

SPH form is �tCFL < CCourh/cs (Price et al. 2018a), there is an
extra constraint given in equation (29). This restricts the minimum
stopping time of grains that can be simulated. To get an estimate on
this restriction we compare this constraint with the CFL constraint.
If we require that the stopping time constrained time-step is less
restrictive than the CFL constraint, then we get that

tsi >
CCourh(1 − ε)

Cdragcs
. (63)

The parameters cs and ε are physical parameters set by the problem
of interest. Whereas CCour = 0.3, Cdrag = 0.9, and h are numerical
parameters.

Considering protoplanetary discs, converting this into an inequal-
ity for the mid-plane Stokes number Sti we get

Sti >
CCour

Cdrag
(1 − ε)

h

H
, (64)

where H is the gas disc scale height. Using values of h/H ≈ 0.5 and
ε ≈ 0.1 we find a minimum Stokes number, such that the time-step is
unconstrained compared with the CFL condition, of Sti � 0.1. Note
that the numerical resolution is inversely proportional to h. So, as
the resolution increases this restriction is loosened. However, as the
resolution increases the CFL time-step decreases.

The Stokes number is linearly proportional to the grain size (in the
Epstein regime). So, this constraint on the Stokes number provides
a constraint on the dust grain size; one that is dependent on the
disc parameters too. Considering a disc with surface density 
 ≈
1 g cm−3 and effective grain size �eff = 3 g cm−3 we find that the
minimum grain size is approximately 0.2 mm. Note that this is not
a minimum grain size that can be represented. Using smaller grains
is merely inefficient given the explicit time-stepping scheme. The
single fluid method is more efficient for these smaller grains, which
satisfy the terminal velocity approximation. Cuello et al. (2019) show
that the two methods overlap and give the same results. Using the
single fluid method for small grains negates the need to implement
an implicit time-stepping scheme as in, e.g. Lorén-Aguilar & Bate
(2014), Lorén-Aguilar & Bate (2015).

The method requires storing an extra set of particles per dust
species. For each particle, we store the position, smoothing length,
and velocity, in total requiring seven 64-bit floating point numbers
per particle. This is in contrast to the mixture method. In that method
there is only a single set of particles (representing the mixture)
and for each dust species an additional four 64-bit floating point
numbers are required: one for the dust fraction, and three for the
velocity differential (Hutchison et al. 2018). So, it seems that the
method described here is more expensive in memory and storage
requirements than Hutchison et al. (2018). However, this is not so. In
practice, we use fewer dust SPH particles than gas; see, for example,
Dipierro et al. (2015), Mentiplay et al. (2019), and Calcino et al.
(2019). This is to prevent the dust from becoming trapped under
the gas resolution scale (Laibe & Price 2012a). In either case, the
additional memory and storage requirement is not prohibitive.

We represent each dust species as a pressureless fluid that interacts
with gas via the drag force and with massive objects such as stars and
planets (represented by sink particles) by the gravitational force. The
gas, in contrast, has a non-zero pressure. The pressure gradient force
leads to a rearrangement of particles into a regular glass-like lattice
(Monaghan 2005) that minimizes the Lagrangian of the system of
particles (Price 2012). So, if the gas particles are initialized in a
‘pathological’ arrangement, e.g. such that particles are almost on top
of each other or randomized, they will rearrange into a quasi-regular
lattice. This rearrangement leads to an improved density estimate
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(Price 2012). The lack of rearranging due to the lack of a pressure
gradient force in the dust can lead to noisy density estimates.

In calculating the density, we sum over neighbours of the same
type. So, the gas and each dust species has a smoothing length
per particle independent of each other species. In PHANTOM, the
smoothing length proportionality factor η is constant. This means
that the mean number of neighbours Nneigh is the same for both
the gas and dust. Given that the dust particle arrangement does not
re-mesh, unlike the gas, using a larger number of neighbours may
improve the density estimate for the dust. One possible approach, not
explored in this study, would be to set η independently for the gas and
dust. The dusty shock test (Section 3.3) provides some evidence for
this. In that test, the gas density was accurate for η = 1.2. However,
the dust density required η = 1.8 in the three dust species case.

An alternative approach would be to provide a pressure gradient
force for the dust. This would provide for a rearrangement of particles
to improve the density estimates and reduce artificial clumping of
dust. Such a force would necessarily be a short range one. It is not
clear at what distance it should activate. Any such prescription would
be a sub-grid model and resolution dependent.

In the limit of small drag coefficient, or large stopping time,
our scheme reduces to an N-body integrator, which preserves the
orbital parameters exactly. As the method is Lagrangian, we can
track particles throughout time. This allows for coupling with, for
example, chemistry codes that require knowledge of the thermal
history of the dust.

5 C O N C L U S I O N S

We have derived an SPH numerical scheme to model a dust and gas
mixture using a separate set of SPH particles per species. The method
includes a drag force coupling between the gas and each dust species
that conserves momentum. Thus, the method captures the full effects
of backreaction between the gas and dust. This method can be applied
to any distribution of dust grain sizes. It is not restricted to grain sizes
such that the terminal velocity approximation holds. Although given
that it uses an explicit time-stepping scheme, it becomes inefficient
for grain sizes with small Stokes number, i.e. �0.05.

We have implemented this method in the SPH code PHANTOM.
We have demonstrated that the method is accurate by testing it on
four test problems with analytical solutions: a dusty box, to test the
drag coupling and time-stepping in the absence of spatial gradients;
a dusty wave, to test those factors with spatial gradients in a linear
regime; a dusty shock, to test those factors in a highly non-linear
regime; and a radial drift test to test the method is the context of
a global 3D protoplanetary disc model. In all cases, we show the
method is accurate.

We suggest that dust particles may require a larger number of
particle neighbours in computing SPH sums than the gas. This is
due to the lack of interparticle forces, i.e. dust is pressureless fluid
and does not rearrange into a glassy structure like the gas does. Dust
can numerically clump resulting in artificial high-density regions.
Using a greater number of particle neighbours leads to a smoother
density field. This may reduce the performance degrading effect of
high-density dust clumps on the time-step.
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