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ABSTRACT
Recent millimetre-wavelength surveys performed with the Atacama Large Millimeter Array
(ALMA) have revealed protoplanetary discs characterized by rings and gaps. A possible
explanation for the origin of such rings is the tidal interaction with an unseen planetary
companion. The protoplanetary disc around DS Tau shows a wide gap in the ALMA
observation at 1.3 mm. We construct a hydrodynamical model for the dust continuum observed
by ALMA assuming the observed gap is carved by a planet between one and five Jupiter masses.
We fit the shape of the radial intensity profile along the disc major axis varying the planet mass,
the dust disc mass, and the evolution time of the system. The best-fitting model is obtained
for a planet with Mp = 3.5 MJup and a disc with Mdust = 9.6 × 10−5 M�. Starting from this
result, we also compute the expected signature of the planet in the gas kinematics, as traced
by CO emission. We find that such a signature (in the form of a ‘kink’ in the channel maps)
could be observed by ALMA with a velocity resolution between 0.2 − 0.5 kms−1 and a beam
size between 30 and 50 mas.

Key words: hydrodynamics – radiative transfer – planet–disc interactions – protoplanetary
discs – stars: individual: DSTau – dust, extinction.

1 IN T RO D U C T I O N

Recent observations with the Atacama Large Millimeter Array
(ALMA) and the Spectro-Polarimetric High-contrast Exoplanet
REsearch imager (SPHERE) instrument on the Very Large Tele-
scope have revealed protoplanetary discs characterized by sub-
structures in their thermal and scattered light emission, including
inner holes (e.g. Dutrey et al. 2008; Brown et al. 2009; Andrews
et al. 2011), gaps, rings (e.g. ALMA Partnership et al. 2015; Hendler
et al. 2018; Fedele et al. 2018; Dipierro et al. 2018), and non-
axisymmetric features such as horseshoes (e.g. Isella et al. 2013;
Zhang et al. 2014; van der Marel et al. 2016; Canovas et al. 2016;
Fedele et al. 2017; Pinilla et al. 2017; van der Marel et al. 2018;
Casassus et al. 2018; Long et al. 2018; Liu et al. 2018), spirals (e.g.
Muto et al. 2012; Grady et al. 2013; Garufi et al. 2013; Benisty et al.
2015; Pérez et al. 2016; Stolker et al. 2016; Benisty et al. 2017),
and shadows (e.g. Garufi et al. 2014; Avenhaus et al. 2014; Benisty
et al. 2017; Avenhaus et al. 2017).

� E-mail: benedetta.veronesi@unimi.it

The most common substructure in recent ALMA surveys are rings
and gaps (e.g Long et al. 2018; Zhang et al. 2018 and Bae, Pinilla &
Birnstiel 2018). Possible explanations include dust condensation at
the snowlines (e.g. Zhang, Blake & Bergin 2015), dead zones (e.g.
Flock et al. 2015), and the presence of planets embedded in the
disc (e.g. Dipierro et al. 2015, 2018; Bae, Zhu & Hartmann 2017;
Dong & Fung 2017; Rosotti et al. 2016). In this work, we focus in
particular on the planets hypothesis.

Significant information can be extracted from the morphology
of gaps. The size and shape of the gap is thought to constraint
the mass of the carving planet (Kanagawa et al. 2015; Dong &
Fung 2017; Dipierro & Laibe 2017), while its position inside
the disc and its mass can tell us something about the migration
history of the planet inside the disc. Planet masses inferred from
gap widths are uncertain. First, the time evolution and initial
conditions of the disc may lead to different gap shapes and
therefore inferred mass for the gap-carving planet. Second, as
pointed out also by Pinte et al. (2019) the gap width alone cannot
uniquely constrain the planet mass because changes in the grain
density (i.e. the Stokes number) can produce the same gap width
with a different planet mass. For these reasons, estimates for
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Figure 1. ALMA observation at 1.3 mm of the system DS Tau, with a beam
size of 0.14 arcsec × 0.1 arcsec wide (image re-adapted from Long et al.
2018).

planet masses should combine gap widths with other diagnos-
tics.

Recent studies (Pinte et al. 2018; Teague et al. 2018; Pinte et al.
2019; Casassus & Pérez 2019; Pinte et al. 2020) inferred the location
and mass of some planets from the gas kinematics of the discs they
were embedded in. Specifically, these studies search in different
ways for velocity deviations (localized in both space and velocity)
from the unperturbed Keplerian flow of the disc, induced by the
presence of a planet, known as ‘kinks’ and ‘Doppler flips’. These
revealed giant planets in HD163216 and HD97048.

Here, we study the protoplanetary disc orbiting around DS Tau,
an M-type star (0.83 M�, Lodato et al. 2019) in the Taurus star-
forming region located at a distance of 159 pc (Gaia Collaboration
et al. 2018). It has been observed in ALMA Cycle 4 program (ID:
2016.1.01164.S; PI: Herczeg) in Band 6 at 1.33 mm, at high-spatial
resolution (∼0.12 arcsec, corresponding to ∼16 au). This disc shows
the widest gap (see Fig. 1, Long et al. 2018) of the Taurus survey with
a width1 of 27 au centred at ≈33 au (i.e. ∼0.2 arcsec). Assuming
the planetary hypothesis for the origin of this gap, Lodato et al.
(2019) estimated that a planet mass of 5.6 MJ could have carved the
gap, under the assumption that for low-viscosity discs the gap width
scales with the planet Hill radius as � = kRH (Dodson-Robinson &
Salyk 2011; Pinilla, Benisty & Birnstiel 2012; Rosotti et al. 2016;
Fung & Chiang 2016; Facchini et al. 2018). Lodato et al. (2019)
assumed a proportionality constant k = 5.5 derived from averaging
hydrodynamical simulations results (Clarke et al. 2018; Liu et al.
2018).

In this paper, we present a follow-up study by modelling the
continuum emission of the protoplanetary disc orbiting around DS
Tau, focusing on the gap observed in the Taurus survey and assuming
its origin is due to a planet. By combining 3D hydrodynamical
simulations of a suite of dusty protoplanetary disc models hosting
one embedded protoplanet with 3D Monte Carlo radiative transfer
simulations, we study the gap shape of DS Tau and also analyse the
different observational predictions for a planet kink detectable in the
gas kinematics. Here, we have chosen to explore the simplest model
that can explain the formation of the gap, that is a single planet

1The gap width has been defined as the full width at half-maximum.

on a circular, non-inclined orbit, following Occam’s razor. Other
scenarios could be equally plausible but generally involve a larger
number of free parameters. Among these, we might consider: a
multiple planet system, a planet on an eccentric (Muley, Fung & van
der Marel 2019) or inclined orbit, a lower disc viscosity combined
with a sub-Neptune mass planet (Dong et al. 2017, 2018). Moreover,
a higher resolution image could turn the observed broad disc ring
into multiple narrow rings (e.g. HD 169142: Fedele et al. 2017
versus Pérez et al. 2019), something that at present we cannot
exclude but neither explore.

This paper is organized as follows: in Section 2, we describe our
numerical method and simulation setup. In Section 3, we describe
the results of the numerical simulations and the fitting procedure we
use to find our best model. In Section 4, we discuss our modelling
results for the continuum images and we analyse our kink prediction.
We finally draw our conclusions in Section 5.

2 ME T H O D S

2.1 Dust and gas numerical simulations

We perform a suite of 3D smoothed particle hydrodynamics (SPH)
simulations of dusty protoplanetary discs, using the code PHANTOM

(Price et al. 2018). We adopt the multigrain (Hutchison, Price &
Laibe 2018) one fluid (for St < 1, Price & Laibe 2015; Ballabio
et al. 2018) method to simulate the dynamics and evolution of
dust grains. In this algorithm, SPH particles representing gas and
dust are evolved using a set of governing equations describing the
gas–dust mixture (Laibe & Price 2014). A dust fraction scalar is
carried by the particles and is updated according to an evolution
equation. This model is only suited for modelling small dust grains
(St < 1), since the formalism lacks the ability to represent large
grains velocity dispersion. Moreover, the formalism employs the
‘terminal velocity approximation’ (e.g. Youdin & Goodman 2005)
which greatly simplifies the governing equations and alleviates the
need to temporally resolve the dust stopping time, significantly
speeding up the computation. Back-reaction from the dust on to the
gas is automatically included in this approach. In all our simulations,
we do not take into account the fluid self-gravity.

2.2 Disc models

The parameter choice for our models is motivated by the observa-
tions of Long et al. (2018) (see Table 1).

2.2.1 Gas and dust

The system consists of a central star of mass M� = 0.83 M� (Lodato
et al. 2019) surrounded by a gas and dust disc extending from Rin

= 10 au to Rout = 100 au and modelled as a set of 106 SPH particles.
The initial gas surface density profile is assumed to be a power law
with an exponential taper at large radii, that is

�g(r) = �c

(
r

Rc

)−p

exp

[
−
(

r

Rc

)2−p
]

, (1)

where �c is a normalization constant, chosen in order to match the
total disc mass, Rc = 70 au is the radius of the exponential taper and
p = 1. We adopt a locally isothermal equation of state P = c2

s ρg,
with

cs = cs,in

(
R

Rin

)−q

, (2)
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A wide gap in DS Tau 1915

Table 1. Model parameters. M� is the star mass as in Lodato et al. (2019).
Teff is the effective temperature we use in our radiative transfer model,
assuming the star to be radiating isotropically with a Kurucz spectrum at
3750 K. The disc is located in the Taurus star-forming region at a distance d
(Gaia Collaboration et al. 2018) with an inclination i (Long et al. 2018). Rin

and Rout are the initial condition for the disc inner and outer radius. Rc and
p are, respectively, the radius of the exponential taper and the power-law
index of the gas surface density profile defined in equation (1). q is the
power-law index of the sound speed radial profile (see equation 2) and αss

is the effective Shakura & Sunyaev (1973) viscosity. H/Rin is the disc aspect
ratio at the inner radius. Mdust and Mgas are the dust and gas disc initial mass.
In our model, we have N = 11 dust grains ad, logaritmically spaced between
amin and amax, with intrinsic grain density ρd. Mp and Rp are the mass and
the radial position in the disc of the planet.

Parameters Value

M� (M�) 0.83
Teff (K) 3800
d (pc) 159
i (◦) 65
Rin (au) 10
Rout (au) 100
Rc (au) 70
p 1.
q 0.25
αSS 0.005
H/Rin 0.06
Mdust (M�) 4.8 × 10−5

Mgas (M�) 4.8 × 10−3

ad (cm) [amin = 1.5 × 10−4, amax = 0.6, N = 11]
ρd (g cm−3) 1

MP (Mj) 1, 2, 2.5, 3, 5
RP (au) 34.5

where cs, in is the sound speed at the inner disc radius and ρg is the
gas volume density. We assume q = 0.25 as the power-law index
of the sound speed radial profile. The disc is vertically extended by
assuming a Gaussian profile for the volume density and ensuring
vertical hydrostatic equilibrium

H

R
= cs

vk
= H

Rin

(
R

Rin

)1/2−q

, (3)

where vk is the Keplerian velocity and H/Rin = 0.06 is the aspect
ratio at the reference radius Rin. We model the angular momentum
transport throughout the disc using the SPH artificial viscosity (see
section 2.6, Price et al. 2018) with αAV = 0.3, which results in a
Shakura & Sunyaev (1973) viscous parameter αSS ≈ 0.005.

For the dust we use the same functional form of the initial surface
density as for the gas (equation 1), assuming a dust mass of Mdust =
4.8 × 10−5 M�. In our SPH simulations the disc mass is fixed, while
to fit the continuum emission we rescale it (i.e. the dust mass) as a
free parameter (this is possible since the back-reaction is negligible).
The dust-to-gas ratio is initially assumed constant for the whole
disc extent (dust/gas = 0.01), so that the dust has the same vertical
structure as the gas. After a few orbits of the planet, the dust settles
down forming a layer with thickness (Dubrulle, Morfill & Sterzik
1995; Fromang & Nelson 2009)

Hd = Hg

√
αss/(St + αss) (4)

where αss is the Shakura & Sunyaev (1973) viscous parameter, Hg

and Hd are, respectively, the gas and dust disc height, St is the Stokes
number (i.e. St = ts�k, Weidenschilling 1977).

We perform simulations with the multigrain one-fluid method
considering 11 grain sizes logarithmically spaced in a range between
1.5 μm and 6 mm with a grain size distribution dn/da ∝ a−3.5. In
this multigrain method, the dust and gas evolve simultaneously,
allowing us to take into account the back-reaction of the dust on the
gas, and to simulate different levels of coupling between the two
disc components. We note that the back-reaction in our models is
in principle negligible for an initial dust-to-gas ratio equal to 0.01.
Additionally, even if we consider a later stage in the evolution of our
system, the maximum dust-to-gas ratio is still ∼0.1. In Fig. 2, we
show for illustrative purposes the gas (first panel) and the 11 grains
dust surface density maps of the disc model with Mp,0 = 2 MJup,
after ≈140 orbits of the planet (at the initial planet location Rp =
34.5 au). Increasing the grain size (from top to bottom) leads to
increases in the width and depth of the gap carved by the planet.
Moreover, for larger dust grains the dust disc extent is smaller
because of radial drift.

2.2.2 Properties of the embedded planets

In each disc model, we embed one planet with an initial mass of
Mp = [1, 2, 2.5, 3, 5] Mj at a radial distance from the central star of
Rp = 34.5 au slightly more distant than the 33 au centroid of the gap
to account for some migration. The planet orbit is assumed to be
initially circular and coplanar. We model the planet and the central
star as sink particles, free to migrate and which are able to accrete
gas and dust (Bate, Bonnell & Price 1995). The accretion radius of
each planet is chosen to be one quarter of the Hill radius. Lodato
et al. (2019) estimated a planet mass equal to Mp = 5.6 MJup in
order to open a gap as wide as the one observed in DS Tau by Long
et al. (2018).

We have also attempted to simulate planets with Mp > 5 MJup

(Lodato et al. 2019), but we do not discuss them, since upon an
initial analysis the radial flux profile we obtain in these cases is
too different with respect to the observations. Moreover, the planet
mass derived from the gap width gives an upper limit estimate.

2.3 Radiative transfer and synthetic observations

We compute synthetic observations of our disc models by perform-
ing 3D radiative transfer simulations, by means of the MCFOST

code (Pinte et al. 2006, 2009), starting from the results of the
hydrodynamical simulations. Our goal is to compute the dust
continuum for Band 6 (1.3 mm, Long et al. 2018) and Band 3
(2.9 mm, Long et al. submitted) and the CO, 13CO, and C18O
isotopologue channel maps.

The main inputs for the radiative transfer modelling are the gas
and dust density structure, a model for the dust opacities and the
source of luminosity. We used a Voronoi tesselation where each
MCFOST cell corresponds to an SPH particle. We adopted the Disc-
Analysis (DIANA) dust model for the dust opacity (Woitke et al.
2016; Min et al. 2016), assuming a fixed dust mixture composed of
70 per cent silicate, 30 per cent amorphous carbonaceous. Note that
the shape and the width of a gap carved by a fixed planet mass might
change for different opacity values and different Stokes number
(e.g. for different grain porosity, fluffiness or shape, see Pinte et al.
2019).

The expected emission maps at 1.3 and 2.9 mm are computed via
ray-tracing, and using 108 photon packets to sample the radiation
field, assuming a disc inclination of i = 65◦ (Long et al. 2018).
We use a passively heated model, where the source of radiation is
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1916 B. Veronesi et al.

Figure 2. Rendered images of gas (first panel) and dust surface density (in units of g cm−2 on a logarithmic scale) of the Mp,0 = 2 MJup hydrodynamic
simulation after ≈140 orbits of the embedded planet at Rp, 0 = 34.5 au. The dust density is presented for the 11 grain sizes simulated in our model (see Table 1).

assumed to be the central star, located at the centre of the coordinate
system, with parameters described in Table 1. The full-resolution
images at 1.3 mm directly produced by MCFOST is then convolved
with the same Gaussian beam of the observations reported in Long
et al. (2018), 0.14 × 0.1 arcsec (∼22 × 16 au at 159 pc). In
order to compute the CO, 13CO, and C18O isotopologue channel
maps in the J = 2–1 transitions we perform radiative transfer
simulations, assuming Tgas = Tdust and that the emission is at local
thermodynamic equilibrium. We include in our simulations freeze-
out where T < 20 K and photodissociation induced by UV radiation.
We consider a velocity resolution of 0.2 km s−1. We then convolve
the obtained channel maps with a 40 mas beam (∼6.5 au at the
source distance).

3 R ESULTS

Our main goal is to reproduce the ALMA continuum image at
1.3 mm observed by Long et al. (2018), as shown in Fig. 1. For
a more accurate analysis we focus on the radial intensity profile
along the disc major axis (i.e. radial cut). Fig. 3 shows both the
azimuthally averaged radial intensity profile (black lines) and the
radial cut (red and orange markers). We also compute the errors
by considering the quadratic sum of the standard deviation σ and
of the 10 per cent of the flux at each radii (Long et al. 2018).
The standard deviation with respect to the azimuthally averaged
radial profile has been computed by deprojecting the disc on a
planar surface and binning it into 40 annuli (to match the beam
resolution).

Figure 3. Radial flux intensity profile for the ALMA continuum image at
1.3 mm (see Fig. 1). In black we show the azimuthally averaged profile,
while in red and orange the radial cut along the disc major axis. The error is
obtained as the root mean square of σ and the 10 per cent of the flux value
F10 per cent = 0.1 × F (R). In the left-hand corner is reported the projected
beam size along the disc major axis 0.14 arcsec.
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A wide gap in DS Tau 1917

Figure 4. Radial flux intensity profile along the disc major axis for the models with initial planet masses Mp,0 = [1, 2, 2.5, 3, 5] MJup (from left to right) and
for a dust disc mass of Mdust = 4.8 × 10−5 MJup. Different line colours represent the time evolution of the system in terms of planet orbits from 50 (dark blue
line) to 250 (dark red line). The grey shaded area R < 0.1 arcsec corresponds to the region we excluded from the fitting procedure described in Sec. 3.1.1.

3.1 Fitting the radial profiles

For a better comparison between our models and observations,
and in order to reproduce the correct gap shape, we study the
radial intensity profile along the disc major axis. Fig. 4 shows
the radial intensity profile for the disc described in Section 2.2.1
with a dust disc mass of 4.8 × 10−5 MJup and an initial planet
mass in the range Mp,0 = [1, 2, 2.5, 3, 5] MJup. As mentioned in
Section 2.2.2, we excluded from our analysis systems with a planet
mass > 5 MJup, since their gap shape was too different with respect
to the data (as one can already notice in the radial flux intensity
profile obtained with Mp,0 = 5 MJup, see Fig. 4). Lines with different
colours describe the time evolution of the system (increasing from
blue, Norb = 50, to dark red, Norb = 250), while the data are presented
as black star markers. The better match between the models and the
observations is found for the Mp,0 = 2 MJup case, but the flux needs
to be rescaled by a constant factor. In order to fit both the Mp,
the time evolution of the system, the dust disc mass (i.e. the flux
intensity), we performed MCFOST simulations considering values of
gas-to-dust between 10 and 150 for all the orbit snapshots collected
in Fig. 4 (keeping the gas mass constant at Mgas = 0.0048). It
is important to highlight that, since the dust-to-gas ratio in our

simulation is always �1 and so the back-reaction of the dust on to
the gas is negligible, it is possible to rescale Mdust, without affecting
the disc dynamics.

As the system evolves, the shape of the intensity profiles shows
a similar behaviour for all planet masses. After an annular gap
is opened, the inner disc is progressively depleted, both in gas
and dust. This is due to a combination of factors. First, the tidal
torques produced by the planet reduce the mass accretion rate into
the inner portion of the disc (cf. Ragusa, Lodato & Price 2016).
Secondly, large dust grains are trapped at the pressure maximum
and are thus filtered out from the inner regions (Rice et al. 2006).
Thirdly, there is some spurious evacuation of material from the
inner disc, since as the surface density of the gas is reduced, we
lose resolution, increasing the SPH artificial viscosity, which in turn
speeds up the cavity depletion. Moreover, the increased pressure
gradient at the inner boundary accelerates the radial drift in the
inner regions. The depletion observed in the inner disc in our models
could be explained also by the fact that in our simulation we are
not considering dust growth, so we might be neglecting an opacity
contribution from larger grains. Finally, we note that by increasing
the planet mass, the position of the ring outside the gap moves

MNRAS 495, 1913–1926 (2020)
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Figure 5. Reduced chi-squared χ2
r as a function of the disc dust mass (A, B, C, D, and E panels). In each panel we show results obtained for our models with

initial planet masses Mp,0 = 1, 2, 2.5, 3, 5 MJup, while different colours correspond to the time evolution in our models, from Norb = 50 (dark blue line) to
Norb = 170 (dark red line). Minimum reduced chi-squared χ̃r

2 = min(χ2
r ) (bottom right panel) from [A,B,C,D,E] panels, as a function of the planet mass in

unit of Jupiter masses. The black markers represent the results obtained considering the disc extent −0.5 arcsec < R < 0.5 arcsec, while the red ones represent
results obtained excluding the inner region −0.1 arcsec < R < 0.1 arcsec.
The letters with the 0 subscript represent the initial planet mass values, and are connected to the final ones by grey arrows. The value of the planet mass that
minimize the χ̃r

2 is Mp = 3.5 ± 1 MJup. The error has been obtained via bootstrapping the data.

outward, and that as the system evolves, the planet accretes gas
from the disc, so its mass grows with time.

In order to find the best-fitting model to the data, we thus perform
a χ2 fit assuming as free parameters the planet mass, the scale factor
for the dust density and the planet number of orbits. For this last
parameter we stop at 170 orbits. After this time, especially for
higher planet masses, the inner disc becomes optically thin due
to the partially artificial draining of the inner disc. We show the
result as a function of the disc dust mass in panels [A,B,C,D,E]
of Fig. 5, corresponding to different initial planet masses in the
range Mp,0 = [1, 2, 2.5, 3, 5] MJup. Different line colours represents
different planet orbits in our simulations, from 50 (dark blue line)
to 250 (dark red line). We then proceed as follows: for each planet
mass we consider the best matching model in terms of minimum χ2

for the various choices of dust mass and number of orbits. We then
compare the best models for different planet masses. In the bottom
right panel of Fig. 5, we plot the minimum χ2 obtained for each
planet mass, as a function of the instantaneous planet mass, both
with (black markers) and without (red markers, see Section 3.1.1)
the inner region R < 0.1 arcsec. Grey (and red) arrows connect
the value of the current mass with its initial value. The best-fitting
model corresponds to the case with an initial planet mass Mp, 0 =
2 MJup, which corresponds to 3.5 ± 1 MJup. We estimated the mass

uncertainty via bootstrapping the data. In this way, we computed
the χ2 on 10 000 new samples taken from the measured data set
itself.

Lodato et al. (2019) estimate a planet mass of the order of 5.6
MJup, assuming that the gap width was ∼5.5RHill. Our best-fitting
model yields a smaller value, which results in a gap width �/RHill =
7.3, which is slightly higher compared to the value obtained by
Lodato et al. (2019).

3.1.1 Fitting procedure excluding R < 0.1 arcsec

Due to the possible numerical effects that accelerate the formation
of a cavity (discussed in Section 3.1), and in order to check the
robustness of our result, we repeat the fit procedure described in the
previous section excluding the flux inside a radius R < 0.1 arcsec
(grey band in Fig. 4). This allows us to evaluate the exact portion
of the disc which contains the gap and the outer ring, avoiding the
possible contamination with regions that could have an evolution
influenced by numerical effects. Indeed, we do expect physically to
see an inner depletion due to radial drift, on larger time-scales with
respect to the number of orbits in our models. The results obtained
are presented by red markers in the bottom right panel of Fig. 5. We
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A wide gap in DS Tau 1919

Figure 6. First row: ALMA observation (left-hand panel) and continuum mock image (centre panel) of the DS Tau disc at 1.3 mm. The synthetic image has
been computed for our best-fitting model (Mp = 3.5 MJup and Mdust = 9.6 × 10−5 M�). The Gaussian beam we take to convolve the full-resolution image has
been chosen to reproduce the observations reported by Long et al. (2018) and Long et al. (submitted), respectively, 0.14 arcsec × 0.1 arcsec and 0.13 arcsec ×
0.09 arcsec. In the 1.3 mm image, we highlight in blue the left-hand side of the major axis and in red the right-hand side. Right-hand panel shows the comparison
between the left (blue)–right (red) side of the radial cut along the disc major axis for the data (dot marker) and the modelling (dashed line). Second row: same
as first row but for the 2.9 mm continuum image. ALMA images have been re-adapted from Long et al. (2018) and Long et al. (submitted).

recover for the planet mass the same value found in Section 3. We
also note that the minimum reduced χ2 for the Mp,0 = 1, 3, 5 MJup

cases is slightly higher than found previously.

4 D ISCUSSION

4.1 Dust continuum

In this section, we discuss our results starting from the dust
continuum synthetic images at both 1.3 and 2.9 mm wavelengths
obtained with MCFOST.

4.1.1 ALMA synthetic images and gap shape

The result we obtain from our χ2 test show that a planet with a mass
of 3.5 MJup ± 1 is the best fit in order to reproduce the gap shape.
The quoted uncertainty clearly refers to the specific model that we
assume and additional systematic uncertainty arises if one considers
extra degrees of freedom (e.g. multiple planets, orbit eccentricity
and inclination, and lower viscosity). Moreover, having kept as free
parameters the dust disc mass and the evolution time of our system,
we also obtain that the disc should have a gas-to-dust ratio of 50
with a dust mass of 9.6 × 10−5 M� (similar to what we have fixed
in our SPH simulations).

Concerning the time evolution of the system, the best outcome
for our modelling is reached in different time for different planet
masses. This is to be expected, since more massive planets carve
their gaps faster compared to smaller ones. We also note that
by the end of our simulations the system has not reached a
steady-state configuration. However, it is important to remember

that in reality such a quasi-steady-state condition does not exist:
the disc and planet secularly evolve due to planet migration and
accretion processes (note that, often, modelling efforts assume that
the planet does not migrate nor accrete, and that is why they are able
to reach a quasi-steady state: this is not the approach that we have
adopted here). What is important is that the number of orbits in our
models is enough to avoid transients on a short time-scale and that
the initial conditions have washed out. This is certainly achieved in
our case, as we evolve the simulation for � 100 orbits.

Fig. 6 shows the comparison between the data and our modelling
for the DS Tau disc for both 1.3 (first row) and 2.9 (second row)
mm wavelengths. Left-hand panels show the ALMA continuum
images from Long et al. (2018) for the 1.3 mm wavelength and
from Long et al. (2020) for the 2.9 mm one. Centre panels show
the synthetic images, that have been computed for our best-fitting
model (performed on the 1.3 mm case) parameters: Mp = 3.5 MJup,
Mdust = 9.6 × 10−5 M� and t = 150 orbits (discussed in Sec-
tion 3.1). The right-hand panels of Fig. 6 compare radial cuts of
the flux intensity profile along the disc major axis obtained from the
synthetic image at 1.3 and 2.9 mm (top and bottom centre panels of
Fig. 6) with the ALMA data (top and bottom left panels). The left
(blue) and right (red) sides of the radial cut correspond to the left-
and right-hand side of the disc major axis. Dot markers represent
the data, while the models are in dashed lines.

By looking at the synthetic images, the gap shape and the flux
of the observation are recovered in our models at 1.3 and 2.9 mm.
We note that in both cases we end up with a slightly higher peak
flux with respect to the observation. An interesting point is that by
looking at the real ALMA image at 1.3 mm the ring has a brighter
spot in the lower part. This can be due to an inclination effect, though
this feature is missing in our model. Also, if we consider the 2.9 mm
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1920 B. Veronesi et al.

Figure 7. First row: map (left-hand panel) and radial cut along disc major axis (right panel) of the spectral index α1.3,2.9mm. Red and white contour lines in
the left-hand panel indicate the approximate size of the disc in the 1.3 (white line) and 2.9 (red line) mm images. Central panel shows the spectral index α

obtained by Long et al. (submitted). Second row: left-hand and central panels: vertical section of the optical depth as a function of the radius at 1.3 and 2.9 mm,
respectively. Right-hand panel: azimuthal and vertical averages of the optical depth as a function of radius. The solid line represents τ at 1.3 mm, while the
dashed line at 2.9 mm. The disc appears to be generally optically thin, but approaches τ = 1 in the ring.

comparison, the data show an asymmetry in the ring that seems to
be more elongated in the right-end side of the major axis. This
feature is also not recovered in our model. By a comparison of the
synthetic images obtained for the two wavelengths, the 2.9 mm one
seems more compact with respect to the other one due to radial drift
(see also Fig. 2). We will discuss in Section 4.1.2 what we can learn
from this modelling regarding the dust distribution inside the disc.

The peak of our radial profiles at both wavelengths is slightly
higher with respect to the data. This can be due to different dust
opacity or to the fact that in our fitting procedure we excluded the
flux contribution from a region with radius R < 0.1 arcsec. If we
consider the 1.3 mm case, for which we have reduced χ2 fitting
process, the gap shape of our model reproduces the one of the data.
Instead, for the 2.9 mm case, we note that the model flux is higher
by a factor of 0.7 with respect to the data for the entire disc extent.

4.1.2 Dust trapping?

Having multiwavelength data for the same system allows to analyse
the dust distribution inside the disc. In particular, a change in the
spectral index α provides information about the grain size in discs
(Testi et al. 2014). When dust trapping occurs, α is expected to be
≈2, which is smaller than the value typically found in the ISM,
αISM 	 3.5–4.0 (Draine 2006; Ricci et al. 2010). Our simulations
do produce dust traps (see Fig. 2), such that larger grains collect in

narrower rings. We can thus test whether such traps also show up
as a change in the spectral index.

Since we obtained both the 1.3 and 2.9 mm synthetic images, we
compute the spectral index α1.3,2.9mm

αν1,ν2 = log(ν2Fν2 ) − log(ν1Fν1 )

log ν2 − log ν1
, (5)

with ν1 = 1.3 mm and ν2 = 2.9 mm. In Fig. 7, we show the
resulting spectral index, both as a map (left-hand panel) and as a
radial cut along the disc major axis (central panel) in comparison
with the α1.3, 2.9mm radial profile (blue line) found by Long et al.
(submitted). We note that at 	0.3 arcsec, we have a spectral index
α1.3,2.9mm 	 2. This can be due to two different reasons: there could
be dust trapping in the ring region, or the disc may be optically
thick. Thus, we compute with MCFOST the disc optical depth τ ν ,
where in each cell τ ν is computed from the centre of the cell to z =
+∞ (and −∞). Then, for each Voronoi cell of the model we sum
the optical depth towards the +z and the −z direction. The results
are displayed in the lower row of Fig. 7. In the first two panels we
show the vertical cut of the map of the optical depth for each cell. In
these plots SPH noise is visible, so we also compute the azimuthal
and vertical averages of the optical depth within concentric annuli.
The results of the azimuthally and vertically averaged optical depths
are shown in the right-hand panel of Fig. 7, with a solid line for
1.3 mm and a dashed line for 2.9 mm. While the disc appears to
be generally optically thin, the ring is marginally optically thick.
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A wide gap in DS Tau 1921

Figure 8. Synthetic 13CO, C18O, and CO ALMA channel maps (J = 2–1 transitions) for our best model with Mp = 3.5 MJup (cyan dot). The disc inclination
is i = 65◦ (Long et al. 2018), the images have been convolved with a 40 mas Gaussian beam. The azimuthal planet position is φ = 225◦ with respect to the
reference case (φ = 0◦, dashed white line). We notice that the kink produced by the planet is detectable at −2.7 km s−1 with a velocity resolution of 0.2 km s−1.

Thus, we cannot draw any firm conclusion on the origin of the
spectral slope. Comparing our results with the one presented in
Long et al. (submitted), the shape of the spectral index radial profile
is similar between the model and the data. Indeed, we qualitatively
reproduce the features observed in the data: a local minimum and
maximum, with an increase in spectral index at larger radius. The
actual value of the spectral index is different between the two cases.
This can be due to dust grain properties (maximum grain size, dust
composition, and morphology) in our model not in agreement with
the real conditions of DS Tau. This results in different spectral index
and different opacity in the optically thin case. Moreover, we point
out that considering higher levels of porosity and fluffiness for the
dust produces differences in the spectral index profile with respect
to the compact case (Kataoka et al. 2014).

However, this observed decreasing of α could also be motivated
if we consider the presence of larger grains near the ring region. In
general, a more precise estimate of the optical thickness of the disc
is necessary in order to confirm it.

4.2 Is it possible to detect the planet from gas kinematic?

The ubiquity of rings and gaps in recent observations of protoplan-
etary discs poses one important question: if all these structures have
been formed by embedded planets, why are we not able to observe
them, apart from few cases such as PDS 70 (Keppler et al. 2018;
Isella et al. 2019; Mesa et al. 2019)? A possible way of answering
this question and understanding what is the correct origin scenarios
for these structures is to study the kinematics of these systems, in
particular looking for kinks.

Assuming that the observed gap is due to a planet with a mass of
Mp = 3.5 MJup (see Section 3.1), we check if it can be detected via
‘kinks’ in the gas channel maps. Therefore, we study the kinematics
to determine whether the observational capabilities of ALMA would
allow us to detect such a planet at such a distance (≈30 au) from
the central star. For our purpose, we choose a channel velocity
resolution of 0.5 km s−1 and an angular resolution of 40 mas. Fig. 8
shows the computed channel maps for the three CO-isotopologue,
for two different channels, with �v equals to −2.70 and 2.70 km s−1

from the systemic velocity. We assure the planet is at an azimuthal
position of φ = 225◦ with respect to the reference case (dashed
white line). The planet position is plotted in cyan. We note that
a kink at the planet location is visible in the �v = −2.7 km s−1

channel but not in the symmetrical one at �v = 2.7 km s−1.
In Figs A1 and A2 in Appendix A, we collect channels from

−4.10 to −1.30 km s−1 and from 1.30 to 4.10 km s−1. The kink
appears localized both in space and in velocity in channels from
−3.5 to −1.9 km s−1. It is necessary to highlight that there are other
similar features, for example in channels from 2.10 to 2.70 km s−1,
which could actually be due to the inside borders of the gap. As a
first analysis, the main difference between the two features is that
for the planet-induced kink there is an asymmetry between the left-
and right-hand sides of the disc, while for the geometric feature the
deviation is symmetric.

To check what is the threshold needed in (spatial and velocity)
resolution to be able to observe it, we perform a further analysis,
varying the azimuthal angle, the angular and the velocity resolution.
We also performed a test in order to determine what is the minimum
mass detectable in this system according to our models (Mp,fin =
2.3 MJup), at a distance of ≈30 au from the star. The results of this
test are presented in Appendix A2.
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Figure 9. Synthetic C18O ALMA channel maps (J = 2–1 transitions) for our best model with Mp = 3.5 MJup (cyan dot). With respect to Fig. 8, we changed
the planet azimuthal position, φ = [65◦, 90◦, 265◦, 315◦] (from left to right).

Figure 10. Channel maps for C18O isotopologue with a velocity resolution of 0.2 km s−1 and a beam size of [30,40,50,70] mas (from left to right). The
azimuthal position of the planet is φ = 225◦.

4.2.1 Changing the azimuthal angle

To be able to judge the robustness of our prediction of a velocity kink
feature shown in Section 4.2, we need to investigate the dependence
of this feature on the azimuthal position of the planet, the velocity
resolution, and the beam size. Fig. 9 shows the channel maps for
the C18O isotopologue (as best case), varying the azimuthal planet
position (φ = 65◦, 90◦, 265◦, 315◦ from left to right). For each
azimuthal position, the first row shows the channel in which the
planet kink is detectable at different �v with respect to the systemic
one, while the second one is its symmetrical one. Taking into
account also the channel maps obtained with φ = 225◦ in Fig. 8, we
highlight that the kink feature changes for different planet azimuth.
Also it appears more detectable for the 225◦, 265◦, and 315◦ cases.

It is interesting to note that when the planet is closer to the disc
minor axis (φ = 90◦ or 265◦), the kink appears to be visible in a
channel and in its symmetrical one.

4.2.2 Changing the angular resolution

We also computed channel maps for different beam size and channel
velocity resolution, keeping the planet azimuth fixed at φ = 225◦.
Fig. 10 shows the results obtained with beam size of 30, 40, 50,
and 70 mas. The velocity resolution is 0.2 km s−1. Reaching a beam
resolution of both 30 and 40 mas would allow to clearly detect the
kink at the planet location, while at 50 mas, it is barely visible and
at 70 mas it is not detectable.
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Figure 11. Channel maps for C18O isotopologue with a velocity resolution of 0.1, 0.2, 0.3, and 0.5 km s−1 (from left to right). The azimuthal position of the
planet is φ = 225◦. The beam resolution is 40 mas.

4.2.3 Changing the velocity resolution

Fig. 11 shows channel maps obtained by changing the channel
velocity resolution in the range [0.1,0.2,0.3,0.5] km s−1 (from left
to right). We kept the planet fixed at an azimuthal location of φ =
225◦. The beam size is set to 40 mas. The kink feature is detectable
with all the velocity resolutions.

To summarize, with this more detailed analysis in which we vary
both the beam and velocity resolution we found that a planet kink
in this system would be detectable using a beam of [30,40] mas
(barely visible with 50 mas), and velocity resolution between 0.1
and 0.5 km s−1. A more detailed study about the probability of
detecting or not a planet depending on its azimuthal position would
be necessary. Moreover, also if a kink is not detectable, having
access to gas kinematics data could be useful to map the height of
the two side of the CO-isotopologue layer in the disc and check if
there are some discrepancies due to the presence of a planet (Pinte
et al. 2018).

5 C O N C L U S I O N S

In this paper, we modelled the gap shape observed by Long et al.
(2018) and Long et al. (2020, submitted) around the DS Tau star.
Assuming that a planet has carved the gap, we performed 3D dust
and gas SPH and radiative transfer simulations of protoplanetary
discs with one embedded planet, considering different values for the
planet mass. By comparing the simulated dust gap/ring morphology
with observations, we derive a best-fitting planet mass and compare
the result with simple analytical calculations (Lodato et al. 2019).
We also studied the gas kinematics in order to check if a kink pro-
duced by the embedded planet would be visible in the channel maps.

The basic result of our modelling is that the planet we expect to
be responsible for the gap observed in DS Tau should have a mass of
Mp = 3.5 ± 1 MJup. We recall that this confidence interval should
be interpreted in the light of the chosen one-planet model. For
future developments, it would be interesting to gradually add other
degrees of freedom in order to explore other formation scenarios.
To reach this result, we performed a χ2 test comparing the major
axis radial profile of the data with the ones obtained by the different

planet mass models. To match the correct flux, we also performed
different radiative transfer models varying the gas-to-dust ratio from
our initial reference case (i.e. 100) in order to take into account
different dust disc masses. The outcome of this fitting procedure is
that the dust mass required to produce the observed ALMA images
is of 9.6 × 10−5 M�. Another interesting point to be noted is that
in order to recover the correct gap shape, it is necessary to study the
system in its time evolution. Indeed, as time increases, the inner disc
is gradually depleted, paving the way for a cavity to originate at a
later stage (see Section 3.1 for a discussion about possible numerical
effects that might affect the dust depletion in the inner disc).

Starting from this result, we then computed the CO,13CO, and
C18O isotopologue channel maps. We found that a planet with
3.5 Jupiter masses, with a channel width of 0.3/0.5 km s−1 and
a beam size of 70 mas, would be barely detectable in the gas
kinematics through the kink feature. Instead, by assuming a slightly
higher (0.2 km s−1) velocity resolution, and by choosing a slightly
smaller (i.e. 40 or 50 mas) beam size the kink appears to be visible.
Moreover, we showed that changing the azimuthal position of the
planet results in different kink signatures.
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APPENDI X A : C O-I SOTOPOLOGUES
C H A N N E L MA P S

A1 Channels for vres = 0.2 km s−1 and with beam resolution 40
mas

Figs A1 and A2 shows velocity channels for the model with
a 3.5 MJup planet (represented with the outer cyan dot). The
velocity resolution is 0.2 km s−1, for channels going from −4.10 to
−1.30 km s−1 and from 1.30 to 4.10 km s−1. The beam resolution
is 40 mas.

A2 Minimum detectable planet mass test: Mp = 2.3 MJup

We present here the channel maps computed for a planet with a mass
of 2.3 MJup. We perform this test to check what is the minimum
planet mass detectable by ALMA at the distance of ≈30 au from
the star, according to our models. As reference case, we use the
best observational parameters we found in Section 4.2: an angular
resolution of 40 mas, an azimuthal planet position of φ = 225◦

and a velocity resolution of vres = 0.2 km s−1. Fig. A3 shows the
three CO-isotopologue channel map (CO left-hand, 13CO centre,
and C18O right-hand columns), for two different channels, with �v
equals to −2.7 (top row) and 2.7 (bottom row) km s−1 from the
systemic velocity. The channel maps we recover for this planet are
very similar to the one presented in Section 4.2. The kink should
be detectable also in this case in the channel with �v = −2.7
km s−1.
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A wide gap in DS Tau 1925

Figure A1. Channel maps for C18O isotopologue with a velocity resolution of 0.2 km s−1, from −4.10 to −1.30 km s−1. The azimuthal position of the planet
is φ = 225◦. The beam resolution is 40 mas.

Figure A2. Channel maps for C18O isotopologue with a velocity resolution of 0.2 km s−1, from 1.30 to 4.10 km s−1. The azimuthal position of the planet is
φ = 225◦. The beam resolution is 40 mas.
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1926 B. Veronesi et al.

Figure A3. Channel maps obtained for a planet with mass Mp = 2.3 MJup. Columns show the 13CO (left-hand column), C18O (centre column), and CO
(right-hand column) isotopologue channel maps with a velocity resolution of 0.2 km s−1, φ = 225◦, and with a beam resolution of 40 mas. The velocity channel
of the first row is the one in which the kink is visible (�v = −2.7 km s−1), while the second row shows its opposite (�v = 2.7 km s−1).

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 495, 1913–1926 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/2/1913/5835230 by guest on 28 M
ay 2024


